Optimize BIT-VECTOR-= on non-simple arrays.
[sbcl.git] / src / code / late-type.lisp
blob80b415e2ffe9272de7f234b0360180bf0b0d03a7
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier))
32 (:default-initargs
33 :specifier (missing-arg)))
35 ;;; This condition is signalled whenever we encounter a type (DEFTYPE,
36 ;;; structure, condition, class) that has been marked as deprecated.
37 (define-condition parse-deprecated-type (condition)
38 ((specifier :reader parse-deprecated-type-specifier :initarg :specifier))
39 (:default-initargs
40 :specifier (missing-arg)))
42 ;;; These functions are used as method for types which need a complex
43 ;;; subtypep method to handle some superclasses, but cover a subtree
44 ;;; of the type graph (i.e. there is no simple way for any other type
45 ;;; class to be a subtype.) There are always still complex ways,
46 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
47 ;;; chance to run, instead of immediately returning NIL, T.
48 (defun delegate-complex-subtypep-arg2 (type1 type2)
49 (let ((subtypep-arg1
50 (type-class-complex-subtypep-arg1 (type-class-info type1))))
51 (if subtypep-arg1
52 (funcall subtypep-arg1 type1 type2)
53 (values nil t))))
54 (defun delegate-complex-intersection2 (type1 type2)
55 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
56 (if (and method (not (eq method #'delegate-complex-intersection2)))
57 (funcall method type2 type1)
58 (hierarchical-intersection2 type1 type2))))
60 (defun contains-unknown-type-p (ctype)
61 (typecase ctype
62 (unknown-type t)
63 (compound-type (some #'contains-unknown-type-p (compound-type-types ctype)))
64 (negation-type (contains-unknown-type-p (negation-type-type ctype)))
65 (cons-type (or (contains-unknown-type-p (cons-type-car-type ctype))
66 (contains-unknown-type-p (cons-type-cdr-type ctype))))
67 (array-type (contains-unknown-type-p (array-type-element-type ctype)))
68 (args-type
69 (or (some #'contains-unknown-type-p (args-type-required ctype))
70 (some #'contains-unknown-type-p (args-type-optional ctype))
71 (acond ((args-type-rest ctype) (contains-unknown-type-p it)))
72 (some (lambda (x) (contains-unknown-type-p (key-info-type x)))
73 (args-type-keywords ctype))
74 (and (fun-type-p ctype)
75 (contains-unknown-type-p (fun-type-returns ctype)))))))
77 ;; Similar to (NOT CONTAINS-UNKNOWN-TYPE-P), but report that (SATISFIES F)
78 ;; is not a testable type unless F is currently bound.
79 (defun testable-type-p (ctype)
80 (typecase ctype
81 (unknown-type nil) ; must precede HAIRY because an unknown is HAIRY
82 (hairy-type
83 (let ((spec (hairy-type-specifier ctype)))
84 ;; Anything other than (SATISFIES ...) is testable
85 ;; because there's no reason to suppose that it isn't.
86 (or (neq (car spec) 'satisfies) (fboundp (cadr spec)))))
87 (compound-type (every #'testable-type-p (compound-type-types ctype)))
88 (negation-type (testable-type-p (negation-type-type ctype)))
89 (cons-type (and (testable-type-p (cons-type-car-type ctype))
90 (testable-type-p (cons-type-cdr-type ctype))))
91 ;; This case could be too strict. I think an array type is testable
92 ;; if the upgraded type is testable. Probably nobody cares though.
93 (array-type (testable-type-p (array-type-element-type ctype)))
94 (t t)))
96 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
97 ;;; method. INFO is a list of conses
98 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
99 (defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
100 ;; If TYPE2 might be concealing something related to our class
101 ;; hierarchy
102 (if (type-might-contain-other-types-p type2)
103 ;; too confusing, gotta punt
104 (values nil nil)
105 ;; ordinary case expected by old CMU CL code, where the taxonomy
106 ;; of TYPE2's representation accurately reflects the taxonomy of
107 ;; the underlying set
108 (values
109 ;; FIXME: This old CMU CL code probably deserves a comment
110 ;; explaining to us mere mortals how it works...
111 (and (sb!xc:typep type2 'classoid)
112 (dolist (x info nil)
113 (let ((guard (cdr x)))
114 (when (or (not guard)
115 (csubtypep type1 (if (%instancep guard)
116 guard
117 (setf (cdr x)
118 (specifier-type guard)))))
119 (return
120 (or (eq type2 (car x))
121 (let ((inherits (layout-inherits
122 (classoid-layout (car x)))))
123 (dotimes (i (length inherits) nil)
124 (when (eq type2 (layout-classoid (svref inherits i)))
125 (return t))))))))))
126 t)))
128 ;;; This function takes a list of specs, each of the form
129 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
130 ;;; Consider one spec (with no guard): any instance of the named
131 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
132 ;;; its superclasses. If there are multiple specs, then some will have
133 ;;; guards. We choose the first spec whose guard is a supertype of
134 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
135 ;;; G0, G1, G2
136 ;;; is actually
137 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
139 ;;; WHEN controls when the forms are executed.
140 (defmacro !define-superclasses (type-class-name specs progn-oid)
141 (let ((defun-name (symbolicate type-class-name "-COMPLEX-SUBTYPEP-ARG1")))
142 `(progn
143 (defun ,defun-name (type1 type2)
144 (has-superclasses-complex-subtypep-arg1
145 type1 type2
146 (load-time-value
147 (list ,@(mapcar (lambda (spec)
148 (destructuring-bind (super &optional guard) spec
149 `(cons (find-classoid ',super) ',guard)))
150 specs)) #-sb-xc-host t)))
151 (,progn-oid
152 (let ((type-class (type-class-or-lose ',type-class-name)))
153 (setf (type-class-complex-subtypep-arg1 type-class) #',defun-name)
154 (setf (type-class-complex-subtypep-arg2 type-class)
155 #'delegate-complex-subtypep-arg2)
156 (setf (type-class-complex-intersection2 type-class)
157 #'delegate-complex-intersection2))))))
159 ;;;; FUNCTION and VALUES types
160 ;;;;
161 ;;;; Pretty much all of the general type operations are illegal on
162 ;;;; VALUES types, since we can't discriminate using them, do
163 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
164 ;;;; operations, but are generally considered to be equivalent to
165 ;;;; FUNCTION. These really aren't true types in any type theoretic
166 ;;;; sense, but we still parse them into CTYPE structures for two
167 ;;;; reasons:
169 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
170 ;;;; tell whether a type is a function or values type without
171 ;;;; parsing it.
172 ;;;; -- Many of the places that can be annotated with real types can
173 ;;;; also be annotated with function or values types.
175 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
176 (type1 type2)
177 (declare (ignore type2))
178 ;; FIXME: should be TYPE-ERROR, here and in next method
179 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
181 (!define-type-method (values :complex-subtypep-arg2)
182 (type1 type2)
183 (declare (ignore type1))
184 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
186 (!define-type-method (values :negate) (type)
187 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
189 (!define-type-method (values :unparse) (type)
190 (cons 'values
191 (let ((unparsed (unparse-args-types type)))
192 (if (or (values-type-optional type)
193 (values-type-rest type)
194 (values-type-allowp type))
195 unparsed
196 (nconc unparsed '(&optional))))))
198 ;;; Return true if LIST1 and LIST2 have the same elements in the same
199 ;;; positions according to TYPE=. We return NIL, NIL if there is an
200 ;;; uncertain comparison.
201 (defun type=-list (list1 list2)
202 (declare (list list1 list2))
203 (do ((types1 list1 (cdr types1))
204 (types2 list2 (cdr types2)))
205 ((or (null types1) (null types2))
206 (if (or types1 types2)
207 (values nil t)
208 (values t t)))
209 (multiple-value-bind (val win)
210 (type= (first types1) (first types2))
211 (unless win
212 (return (values nil nil)))
213 (unless val
214 (return (values nil t))))))
216 (!define-type-method (values :simple-=) (type1 type2)
217 (type=-args type1 type2))
219 ;;; a flag that we can bind to cause complex function types to be
220 ;;; unparsed as FUNCTION. This is useful when we want a type that we
221 ;;; can pass to TYPEP.
222 (!defvar *unparse-fun-type-simplify* nil)
223 ;;; A flag to prevent TYPE-OF calls by user applications from returning
224 ;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
225 (!defvar *unparse-allow-negation* t)
227 (!define-type-method (function :negate) (type) (make-negation-type type))
229 (!define-type-method (function :unparse) (type)
230 (if *unparse-fun-type-simplify*
231 'function
232 (list 'function
233 (if (fun-type-wild-args type)
235 (unparse-args-types type))
236 (type-specifier
237 (fun-type-returns type)))))
239 ;;; The meaning of this is a little confused. On the one hand, all
240 ;;; function objects are represented the same way regardless of the
241 ;;; arglists and return values, and apps don't get to ask things like
242 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
243 ;;; other hand, Python wants to reason about function types. So...
244 (!define-type-method (function :simple-subtypep) (type1 type2)
245 (flet ((fun-type-simple-p (type)
246 (not (or (fun-type-rest type)
247 (fun-type-keyp type))))
248 (every-csubtypep (types1 types2)
249 (loop
250 for a1 in types1
251 for a2 in types2
252 do (multiple-value-bind (res sure-p)
253 (csubtypep a1 a2)
254 (unless res (return (values res sure-p))))
255 finally (return (values t t)))))
256 (and/type (values-subtypep (fun-type-returns type1)
257 (fun-type-returns type2))
258 (cond ((fun-type-wild-args type2) (values t t))
259 ((fun-type-wild-args type1)
260 (cond ((fun-type-keyp type2) (values nil nil))
261 ((not (fun-type-rest type2)) (values nil t))
262 ((not (null (fun-type-required type2)))
263 (values nil t))
264 (t (and/type (type= *universal-type*
265 (fun-type-rest type2))
266 (every/type #'type=
267 *universal-type*
268 (fun-type-optional
269 type2))))))
270 ((not (and (fun-type-simple-p type1)
271 (fun-type-simple-p type2)))
272 (values nil nil))
273 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
274 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
275 (cond ((or (> max1 max2) (< min1 min2))
276 (values nil t))
277 ((and (= min1 min2) (= max1 max2))
278 (and/type (every-csubtypep
279 (fun-type-required type1)
280 (fun-type-required type2))
281 (every-csubtypep
282 (fun-type-optional type1)
283 (fun-type-optional type2))))
284 (t (every-csubtypep
285 (concatenate 'list
286 (fun-type-required type1)
287 (fun-type-optional type1))
288 (concatenate 'list
289 (fun-type-required type2)
290 (fun-type-optional type2))))))))))))
292 (!define-superclasses function ((function)) !cold-init-forms)
294 ;;; The union or intersection of two FUNCTION types is FUNCTION.
295 (!define-type-method (function :simple-union2) (type1 type2)
296 (declare (ignore type1 type2))
297 (specifier-type 'function))
298 (!define-type-method (function :simple-intersection2) (type1 type2)
299 (let ((ftype (specifier-type 'function)))
300 (cond ((eq type1 ftype) type2)
301 ((eq type2 ftype) type1)
302 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
303 (fun-type-returns type2))))
304 (flet ((change-returns (ftype rtype)
305 (declare (type fun-type ftype) (type ctype rtype))
306 (make-fun-type :required (fun-type-required ftype)
307 :optional (fun-type-optional ftype)
308 :keyp (fun-type-keyp ftype)
309 :keywords (fun-type-keywords ftype)
310 :allowp (fun-type-allowp ftype)
311 :returns rtype)))
312 (cond
313 ((fun-type-wild-args type1)
314 (if (fun-type-wild-args type2)
315 (make-fun-type :wild-args t
316 :returns rtype)
317 (change-returns type2 rtype)))
318 ((fun-type-wild-args type2)
319 (change-returns type1 rtype))
320 (t (multiple-value-bind (req opt rest)
321 (args-type-op type1 type2 #'type-intersection #'max)
322 (make-fun-type :required req
323 :optional opt
324 :rest rest
325 ;; FIXME: :keys
326 :allowp (and (fun-type-allowp type1)
327 (fun-type-allowp type2))
328 :returns rtype))))))))))
330 ;;; The union or intersection of a subclass of FUNCTION with a
331 ;;; FUNCTION type is somewhat complicated.
332 (!define-type-method (function :complex-intersection2) (type1 type2)
333 (cond
334 ((type= type1 (specifier-type 'function)) type2)
335 ((csubtypep type1 (specifier-type 'function)) nil)
336 (t :call-other-method)))
337 (!define-type-method (function :complex-union2) (type1 type2)
338 (declare (ignore type2))
339 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
340 ;; FUNCTION, then it is the union of the two; otherwise, there is no
341 ;; special union.
342 (cond
343 ((type= type1 (specifier-type 'function)) type1)
344 (t nil)))
346 (!define-type-method (function :simple-=) (type1 type2)
347 (macrolet ((compare (comparator field)
348 (let ((reader (symbolicate '#:fun-type- field)))
349 `(,comparator (,reader type1) (,reader type2)))))
350 (and/type (compare type= returns)
351 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
352 (values nil t))
353 ((eq (fun-type-wild-args type1) t)
354 (values t t))
355 (t (type=-args type1 type2))))))
357 (!define-type-class constant :inherits values)
359 (!define-type-method (constant :negate) (type)
360 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
362 (!define-type-method (constant :unparse) (type)
363 `(constant-arg ,(type-specifier (constant-type-type type))))
365 (!define-type-method (constant :simple-=) (type1 type2)
366 (type= (constant-type-type type1) (constant-type-type type2)))
368 (!def-type-translator constant-arg ((:context context) type)
369 (make-constant-type :type (single-value-specifier-type-r context type)))
371 ;;; Return the lambda-list-like type specification corresponding
372 ;;; to an ARGS-TYPE.
373 (declaim (ftype (function (args-type) list) unparse-args-types))
374 (defun unparse-args-types (type)
375 (collect ((result))
377 (dolist (arg (args-type-required type))
378 (result (type-specifier arg)))
380 (when (args-type-optional type)
381 (result '&optional)
382 (dolist (arg (args-type-optional type))
383 (result (type-specifier arg))))
385 (when (args-type-rest type)
386 (result '&rest)
387 (result (type-specifier (args-type-rest type))))
389 (when (args-type-keyp type)
390 (result '&key)
391 (dolist (key (args-type-keywords type))
392 (result (list (key-info-name key)
393 (type-specifier (key-info-type key))))))
395 (when (args-type-allowp type)
396 (result '&allow-other-keys))
398 (result)))
400 (!def-type-translator function ((:context context)
401 &optional (args '*) (result '*))
402 (let ((result (coerce-to-values (values-specifier-type-r context result))))
403 (if (eq args '*)
404 (if (eq result *wild-type*)
405 (specifier-type 'function)
406 (make-fun-type :wild-args t :returns result))
407 (multiple-value-bind (llks required optional rest keywords)
408 (parse-args-types context args :function-type)
409 (if (and (null required)
410 (null optional)
411 (eq rest *universal-type*)
412 (not (ll-kwds-keyp llks)))
413 (if (eq result *wild-type*)
414 (specifier-type 'function)
415 (make-fun-type :wild-args t :returns result))
416 (make-fun-type :required required
417 :optional optional
418 :rest rest
419 :keyp (ll-kwds-keyp llks)
420 :keywords keywords
421 :allowp (ll-kwds-allowp llks)
422 :returns result))))))
424 (!def-type-translator values :list ((:context context) &rest values)
425 (if (eq values '*)
426 *wild-type*
427 (multiple-value-bind (llks required optional rest)
428 (parse-args-types context values :values-type)
429 (if (plusp llks)
430 (make-values-type :required required :optional optional :rest rest)
431 (make-short-values-type required)))))
433 ;;;; VALUES types interfaces
434 ;;;;
435 ;;;; We provide a few special operations that can be meaningfully used
436 ;;;; on VALUES types (as well as on any other type).
438 ;;; Return the minimum number of values possibly matching VALUES type
439 ;;; TYPE.
440 (defun values-type-min-value-count (type)
441 (etypecase type
442 (named-type
443 (ecase (named-type-name type)
444 ((t *) 0)
445 ((nil) 0)))
446 (values-type
447 (length (values-type-required type)))))
449 ;;; Return the maximum number of values possibly matching VALUES type
450 ;;; TYPE.
451 (defun values-type-max-value-count (type)
452 (etypecase type
453 (named-type
454 (ecase (named-type-name type)
455 ((t *) call-arguments-limit)
456 ((nil) 0)))
457 (values-type
458 (if (values-type-rest type)
459 call-arguments-limit
460 (+ (length (values-type-optional type))
461 (length (values-type-required type)))))))
463 (defun values-type-may-be-single-value-p (type)
464 (<= (values-type-min-value-count type)
466 (values-type-max-value-count type)))
468 ;;; VALUES type with a single value.
469 (defun type-single-value-p (type)
470 (and (%values-type-p type)
471 (not (values-type-rest type))
472 (null (values-type-optional type))
473 (singleton-p (values-type-required type))))
475 ;;; Return the type of the first value indicated by TYPE. This is used
476 ;;; by people who don't want to have to deal with VALUES types.
477 #!-sb-fluid (declaim (freeze-type values-type))
478 ; (inline single-value-type))
479 (defun single-value-type (type)
480 (declare (type ctype type))
481 (cond ((eq type *wild-type*)
482 *universal-type*)
483 ((eq type *empty-type*)
484 *empty-type*)
485 ((not (values-type-p type))
486 type)
487 ((car (args-type-required type)))
488 (t (type-union (specifier-type 'null)
489 (or (car (args-type-optional type))
490 (args-type-rest type)
491 (specifier-type 'null))))))
493 ;;; Return the minimum number of arguments that a function can be
494 ;;; called with, and the maximum number or NIL. If not a function
495 ;;; type, return NIL, NIL.
496 (defun fun-type-nargs (type)
497 (declare (type ctype type))
498 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
499 (let ((fixed (length (args-type-required type))))
500 (if (or (args-type-rest type)
501 (args-type-keyp type)
502 (args-type-allowp type))
503 (values fixed nil)
504 (values fixed (+ fixed (length (args-type-optional type))))))
505 (values nil nil)))
507 ;;; Determine whether TYPE corresponds to a definite number of values.
508 ;;; The first value is a list of the types for each value, and the
509 ;;; second value is the number of values. If the number of values is
510 ;;; not fixed, then return NIL and :UNKNOWN.
511 (defun values-types (type)
512 (declare (type ctype type))
513 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
514 (values nil :unknown))
515 ((or (args-type-optional type)
516 (args-type-rest type))
517 (values nil :unknown))
519 (let ((req (args-type-required type)))
520 (values req (length req))))))
522 ;;; Return two values:
523 ;;; 1. A list of all the positional (fixed and optional) types.
524 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
525 (defun values-type-types (type &optional (default-type *empty-type*))
526 (declare (type ctype type))
527 (if (eq type *wild-type*)
528 (values nil *universal-type*)
529 (values (append (args-type-required type)
530 (args-type-optional type))
531 (cond ((args-type-rest type))
532 (t default-type)))))
534 ;;; types of values in (the <type> (values o_1 ... o_n))
535 (defun values-type-out (type count)
536 (declare (type ctype type) (type unsigned-byte count))
537 (if (eq type *wild-type*)
538 (make-list count :initial-element *universal-type*)
539 (collect ((res))
540 (flet ((process-types (types)
541 (loop for type in types
542 while (plusp count)
543 do (decf count)
544 do (res type))))
545 (process-types (values-type-required type))
546 (process-types (values-type-optional type))
547 (when (plusp count)
548 (loop with rest = (the ctype (values-type-rest type))
549 repeat count
550 do (res rest))))
551 (res))))
553 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
554 (defun values-type-in (type count)
555 (declare (type ctype type) (type unsigned-byte count))
556 (if (eq type *wild-type*)
557 (make-list count :initial-element *universal-type*)
558 (collect ((res))
559 (let ((null-type (specifier-type 'null)))
560 (loop for type in (values-type-required type)
561 while (plusp count)
562 do (decf count)
563 do (res type))
564 (loop for type in (values-type-optional type)
565 while (plusp count)
566 do (decf count)
567 do (res (type-union type null-type)))
568 (when (plusp count)
569 (loop with rest = (acond ((values-type-rest type)
570 (type-union it null-type))
571 (t null-type))
572 repeat count
573 do (res rest))))
574 (res))))
576 ;;; Return a list of OPERATION applied to the types in TYPES1 and
577 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
578 ;;; than TYPES2. The second value is T if OPERATION always returned a
579 ;;; true second value.
580 (defun fixed-values-op (types1 types2 rest2 operation)
581 (declare (list types1 types2) (type ctype rest2) (type function operation))
582 (let ((exact t))
583 (values (mapcar (lambda (t1 t2)
584 (multiple-value-bind (res win)
585 (funcall operation t1 t2)
586 (unless win
587 (setq exact nil))
588 res))
589 types1
590 (append types2
591 (make-list (- (length types1) (length types2))
592 :initial-element rest2)))
593 exact)))
595 ;;; If TYPE isn't a values type, then make it into one.
596 (defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-hash-value)
597 ((type eq))
598 (cond ((multiple-value-bind (res sure)
599 (csubtypep (specifier-type 'null) type)
600 (and (not res) sure))
601 ;; FIXME: What should we do with (NOT SURE)?
602 (make-values-type :required (list type) :rest *universal-type*))
604 (make-values-type :optional (list type) :rest *universal-type*))))
606 (defun coerce-to-values (type)
607 (declare (type ctype type))
608 (cond ((or (eq type *universal-type*)
609 (eq type *wild-type*))
610 *wild-type*)
611 ((values-type-p type)
612 type)
613 (t (%coerce-to-values type))))
615 ;;; Return type, corresponding to ANSI short form of VALUES type
616 ;;; specifier.
617 (defun make-short-values-type (types)
618 (declare (list types))
619 (let ((last-required (position-if
620 (lambda (type)
621 (not/type (csubtypep (specifier-type 'null) type)))
622 types
623 :from-end t)))
624 (if last-required
625 (make-values-type :required (subseq types 0 (1+ last-required))
626 :optional (subseq types (1+ last-required))
627 :rest *universal-type*)
628 (make-values-type :optional types :rest *universal-type*))))
630 (defun make-single-value-type (type)
631 (make-values-type :required (list type)))
633 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
634 ;;; type, including VALUES types. With VALUES types such as:
635 ;;; (VALUES a0 a1)
636 ;;; (VALUES b0 b1)
637 ;;; we compute the more useful result
638 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
639 ;;; rather than the precise result
640 ;;; (<operation> (values a0 a1) (values b0 b1))
641 ;;; This has the virtue of always keeping the VALUES type specifier
642 ;;; outermost, and retains all of the information that is really
643 ;;; useful for static type analysis. We want to know what is always
644 ;;; true of each value independently. It is worthless to know that if
645 ;;; the first value is B0 then the second will be B1.
647 ;;; If the VALUES count signatures differ, then we produce a result with
648 ;;; the required VALUE count chosen by NREQ when applied to the number
649 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
650 ;;; &REST T (anyone who uses keyword values deserves to lose.)
652 ;;; The second value is true if the result is definitely empty or if
653 ;;; OPERATION returned true as its second value each time we called
654 ;;; it. Since we approximate the intersection of VALUES types, the
655 ;;; second value being true doesn't mean the result is exact.
656 (defun args-type-op (type1 type2 operation nreq)
657 (declare (type ctype type1 type2)
658 (type function operation nreq))
659 (when (eq type1 type2)
660 (values type1 t))
661 (multiple-value-bind (types1 rest1)
662 (values-type-types type1)
663 (multiple-value-bind (types2 rest2)
664 (values-type-types type2)
665 (multiple-value-bind (rest rest-exact)
666 (funcall operation rest1 rest2)
667 (multiple-value-bind (res res-exact)
668 (if (< (length types1) (length types2))
669 (fixed-values-op types2 types1 rest1 operation)
670 (fixed-values-op types1 types2 rest2 operation))
671 (let* ((req (funcall nreq
672 (length (args-type-required type1))
673 (length (args-type-required type2))))
674 (required (subseq res 0 req))
675 (opt (subseq res req)))
676 (values required opt rest
677 (and rest-exact res-exact))))))))
679 (defun values-type-op (type1 type2 operation nreq)
680 (multiple-value-bind (required optional rest exactp)
681 (args-type-op type1 type2 operation nreq)
682 (values (make-values-type :required required
683 :optional optional
684 :rest rest)
685 exactp)))
687 (defun compare-key-args (type1 type2)
688 (let ((keys1 (args-type-keywords type1))
689 (keys2 (args-type-keywords type2)))
690 (and (= (length keys1) (length keys2))
691 (eq (args-type-allowp type1)
692 (args-type-allowp type2))
693 (loop for key1 in keys1
694 for match = (find (key-info-name key1)
695 keys2 :key #'key-info-name)
696 always (and match
697 (type= (key-info-type key1)
698 (key-info-type match)))))))
700 (defun type=-args (type1 type2)
701 (macrolet ((compare (comparator field)
702 (let ((reader (symbolicate '#:args-type- field)))
703 `(,comparator (,reader type1) (,reader type2)))))
704 (and/type
705 (cond ((null (args-type-rest type1))
706 (values (null (args-type-rest type2)) t))
707 ((null (args-type-rest type2))
708 (values nil t))
710 (compare type= rest)))
711 (and/type (and/type (compare type=-list required)
712 (compare type=-list optional))
713 (if (or (args-type-keyp type1) (args-type-keyp type2))
714 (values (compare-key-args type1 type2) t)
715 (values t t))))))
717 ;;; Do a union or intersection operation on types that might be values
718 ;;; types. The result is optimized for utility rather than exactness,
719 ;;; but it is guaranteed that it will be no smaller (more restrictive)
720 ;;; than the precise result.
722 ;;; The return convention seems to be analogous to
723 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
724 (defun-cached (values-type-union :hash-function #'type-cache-hash
725 :hash-bits 8)
726 ((type1 eq) (type2 eq))
727 (declare (type ctype type1 type2))
728 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
729 ((eq type1 *empty-type*) type2)
730 ((eq type2 *empty-type*) type1)
732 (values (values-type-op type1 type2 #'type-union #'min)))))
734 (defun-cached (values-type-intersection :hash-function #'type-cache-hash
735 :hash-bits 8)
736 ((type1 eq) (type2 eq))
737 (declare (type ctype type1 type2))
738 (cond ((eq type1 *wild-type*)
739 (coerce-to-values type2))
740 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
741 type1)
742 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
743 *empty-type*)
744 ((and (not (values-type-p type2))
745 (values-type-required type1))
746 (let ((req1 (values-type-required type1)))
747 (make-values-type :required (cons (type-intersection (first req1) type2)
748 (rest req1))
749 :optional (values-type-optional type1)
750 :rest (values-type-rest type1)
751 :allowp (values-type-allowp type1))))
753 (values (values-type-op type1 (coerce-to-values type2)
754 #'type-intersection
755 #'max)))))
757 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
758 ;;; works on VALUES types. Note that due to the semantics of
759 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
760 ;;; there isn't really any intersection.
761 (defun values-types-equal-or-intersect (type1 type2)
762 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
763 (values t t))
764 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
765 (values t t))
767 (let ((res (values-type-intersection type1 type2)))
768 (values (not (eq res *empty-type*))
769 t)))))
771 ;;; a SUBTYPEP-like operation that can be used on any types, including
772 ;;; VALUES types
773 (defun-cached (values-subtypep :hash-function #'type-cache-hash
774 :hash-bits 8
775 :values 2)
776 ((type1 eq) (type2 eq))
777 (declare (type ctype type1 type2))
778 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
779 (eq type1 *empty-type*))
780 (values t t))
781 ((eq type1 *wild-type*)
782 (values (eq type2 *wild-type*) t))
783 ((or (eq type2 *empty-type*)
784 (not (values-types-equal-or-intersect type1 type2)))
785 (values nil t))
786 ((and (not (values-type-p type2))
787 (values-type-required type1))
788 (csubtypep (first (values-type-required type1))
789 type2))
790 (t (setq type2 (coerce-to-values type2))
791 (multiple-value-bind (types1 rest1) (values-type-types type1)
792 (multiple-value-bind (types2 rest2) (values-type-types type2)
793 (cond ((< (length (values-type-required type1))
794 (length (values-type-required type2)))
795 (values nil t))
796 ((< (length types1) (length types2))
797 (values nil nil))
799 (do ((t1 types1 (rest t1))
800 (t2 types2 (rest t2)))
801 ((null t2)
802 (csubtypep rest1 rest2))
803 (multiple-value-bind (res win-p)
804 (csubtypep (first t1) (first t2))
805 (unless win-p
806 (return (values nil nil)))
807 (unless res
808 (return (values nil t))))))))))))
810 ;;;; type method interfaces
812 ;;; like SUBTYPEP, only works on CTYPE structures
813 (defun-cached (csubtypep :hash-function #'type-cache-hash
814 :hash-bits 10
815 :memoizer memoize
816 :values 2)
817 ((type1 eq) (type2 eq))
818 (declare (type ctype type1 type2))
819 (cond ((or (eq type1 type2)
820 (eq type1 *empty-type*)
821 (eq type2 *universal-type*))
822 (values t t))
823 #+nil
824 ((eq type1 *universal-type*)
825 (values nil t))
827 (memoize
828 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
829 type1 type2
830 :complex-arg1 :complex-subtypep-arg1)))))
832 ;;; Just parse the type specifiers and call CSUBTYPE.
833 (defun sb!xc:subtypep (type1 type2 &optional environment)
834 #!+sb-doc
835 "Return two values indicating the relationship between type1 and type2.
836 If values are T and T, type1 definitely is a subtype of type2.
837 If values are NIL and T, type1 definitely is not a subtype of type2.
838 If values are NIL and NIL, it couldn't be determined."
839 (declare (type lexenv-designator environment) (ignore environment))
840 (declare (explicit-check))
841 (csubtypep (specifier-type type1) (specifier-type type2)))
843 ;;; If two types are definitely equivalent, return true. The second
844 ;;; value indicates whether the first value is definitely correct.
845 ;;; This should only fail in the presence of HAIRY types.
846 (defun-cached (type= :hash-function #'type-cache-hash
847 :hash-bits 11
848 :memoizer memoize
849 :values 2)
850 ((type1 eq) (type2 eq))
851 (declare (type ctype type1 type2))
852 (cond ((eq type1 type2)
853 (values t t))
854 ;; If args are not EQ, but both allow TYPE= optimization,
855 ;; and at least one is interned, then return no and certainty.
856 ;; Most of the interned CTYPEs admit this optimization,
857 ;; NUMERIC and MEMBER types do as well.
858 ((and (minusp (logior (type-hash-value type1) (type-hash-value type2)))
859 (logtest (logand (type-hash-value type1) (type-hash-value type2))
860 +type-admits-type=-optimization+))
861 (values nil t))
863 (memoize (!invoke-type-method :simple-= :complex-= type1 type2)))))
865 ;;; Not exactly the negation of TYPE=, since when the relationship is
866 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
867 ;;; the conservative assumption is =.
868 (defun type/= (type1 type2)
869 (declare (type ctype type1 type2))
870 (multiple-value-bind (res win) (type= type1 type2)
871 (if win
872 (values (not res) t)
873 (values nil nil))))
875 ;;; the type method dispatch case of TYPE-UNION2
876 (defun %type-union2 (type1 type2)
877 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
878 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
879 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
880 ;; demonstrates this is actually necessary. Also unlike
881 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
882 ;; between not finding a method and having a method return NIL.
883 (flet ((1way (x y)
884 (!invoke-type-method :simple-union2 :complex-union2
886 :default nil)))
887 (declare (inline 1way))
888 (or (1way type1 type2)
889 (1way type2 type1))))
891 ;;; Find a type which includes both types. Any inexactness is
892 ;;; represented by the fuzzy element types; we return a single value
893 ;;; that is precise to the best of our knowledge. This result is
894 ;;; simplified into the canonical form, thus is not a UNION-TYPE
895 ;;; unless we find no other way to represent the result.
896 (defun-cached (type-union2 :hash-function #'type-cache-hash
897 :hash-bits 11
898 :memoizer memoize)
899 ((type1 eq) (type2 eq))
900 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
901 ;; Paste technique of programming. If it stays around (as opposed to
902 ;; e.g. fading away in favor of some CLOS solution) the shared logic
903 ;; should probably become shared code. -- WHN 2001-03-16
904 (declare (type ctype type1 type2))
905 (let ((t2 nil))
906 (if (eq type1 type2)
907 type1
908 (memoize
909 (cond
910 ;; CSUBTYPEP for array-types answers questions about the
911 ;; specialized type, yet for union we want to take the
912 ;; expressed type in account too.
913 ((and (not (and (array-type-p type1) (array-type-p type2)))
914 (or (setf t2 (csubtypep type1 type2))
915 (csubtypep type2 type1)))
916 (if t2 type2 type1))
917 ((or (union-type-p type1)
918 (union-type-p type2))
919 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
920 ;; values broken out and united separately. The full TYPE-UNION
921 ;; function knows how to do this, so let it handle it.
922 (type-union type1 type2))
924 ;; the ordinary case: we dispatch to type methods
925 (%type-union2 type1 type2)))))))
927 ;;; the type method dispatch case of TYPE-INTERSECTION2
928 (defun %type-intersection2 (type1 type2)
929 ;; We want to give both argument orders a chance at
930 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
931 ;; methods could give noncommutative results, e.g.
932 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
933 ;; => NIL, NIL
934 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
935 ;; => #<NAMED-TYPE NIL>, T
936 ;; We also need to distinguish between the case where we found a
937 ;; type method, and it returned NIL, and the case where we fell
938 ;; through without finding any type method. An example of the first
939 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
940 ;; An example of the second case is the intersection of two
941 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
942 ;; ARRAY.
944 ;; (Why yes, CLOS probably *would* be nicer..)
945 (flet ((1way (x y)
946 (!invoke-type-method :simple-intersection2 :complex-intersection2
948 :default :call-other-method)))
949 (declare (inline 1way))
950 (let ((xy (1way type1 type2)))
951 (or (and (not (eql xy :call-other-method)) xy)
952 (let ((yx (1way type2 type1)))
953 (or (and (not (eql yx :call-other-method)) yx)
954 (cond ((and (eql xy :call-other-method)
955 (eql yx :call-other-method))
956 *empty-type*)
958 nil))))))))
960 (defun-cached (type-intersection2 :hash-function #'type-cache-hash
961 :hash-bits 11
962 :memoizer memoize
963 :values 1)
964 ((type1 eq) (type2 eq))
965 (declare (type ctype type1 type2))
966 (if (eq type1 type2)
967 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
968 ;; type2 = (SPECIFIER-TYPE
969 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
970 type1
971 (memoize
972 (cond
973 ((or (intersection-type-p type1)
974 (intersection-type-p type2))
975 ;; Intersections of INTERSECTION-TYPE should have the
976 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
977 ;; separately. The full TYPE-INTERSECTION function knows how
978 ;; to do that, so let it handle it.
979 (type-intersection type1 type2))
981 ;; the ordinary case: we dispatch to type methods
982 (%type-intersection2 type1 type2))))))
984 ;;; Return as restrictive and simple a type as we can discover that is
985 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
986 ;;; worst, we arbitrarily return one of the arguments as the first
987 ;;; value (trying not to return a hairy type).
988 (defun type-approx-intersection2 (type1 type2)
989 (cond ((type-intersection2 type1 type2))
990 ((hairy-type-p type1) type2)
991 (t type1)))
993 ;;; a test useful for checking whether a derived type matches a
994 ;;; declared type
996 ;;; The first value is true unless the types don't intersect and
997 ;;; aren't equal. The second value is true if the first value is
998 ;;; definitely correct. NIL is considered to intersect with any type.
999 ;;; If T is a subtype of either type, then we also return T, T. This
1000 ;;; way we recognize that hairy types might intersect with T.
1002 ;;; Well now given the statement above that this is "useful for ..."
1003 ;;; a particular thing, I see how treating *empty-type* magically could
1004 ;;; be useful, however given all the _other_ calls to this function within
1005 ;;; this file, it seems suboptimal, because logically it is wrong.
1006 (defun types-equal-or-intersect (type1 type2)
1007 (declare (type ctype type1 type2))
1008 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
1009 (values t t)
1010 (let ((intersection2 (type-intersection2 type1 type2)))
1011 (cond ((not intersection2)
1012 (if (or (csubtypep *universal-type* type1)
1013 (csubtypep *universal-type* type2))
1014 (values t t)
1015 (values t nil)))
1016 ((eq intersection2 *empty-type*) (values nil t))
1017 (t (values t t))))))
1019 ;;; Return a Common Lisp type specifier corresponding to the TYPE
1020 ;;; object.
1021 (defun type-specifier (type)
1022 (declare (type ctype type))
1023 (funcall (type-class-unparse (type-class-info type)) type))
1025 ;;; Don't try to define a print method until it's actually gonna work!
1026 ;;; (Otherwise this would be near the DEFSTRUCT)
1027 (def!method print-object ((ctype ctype) stream)
1028 (print-unreadable-object (ctype stream :type t)
1029 (prin1 (type-specifier ctype) stream)))
1031 ;;; Same here.
1032 ;;; Just dump it as a specifier. (We'll convert it back upon loading.)
1033 (defun make-type-load-form (type)
1034 (declare (type ctype type))
1035 `(specifier-type ',(type-specifier type)))
1037 (defun-cached (type-negation :hash-function #'type-hash-value
1038 :hash-bits 8
1039 :values 1)
1040 ((type eq))
1041 (declare (type ctype type))
1042 (funcall (type-class-negate (type-class-info type)) type))
1044 (defun-cached (type-singleton-p :hash-function #'type-hash-value
1045 :hash-bits 8
1046 :values 2)
1047 ((type eq))
1048 (declare (type ctype type))
1049 (let ((function (type-class-singleton-p (type-class-info type))))
1050 (if function
1051 (funcall function type)
1052 (values nil nil))))
1054 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
1055 ;;; early-type.lisp by WHN ca. 19990201.)
1057 ;;; Take a list of type specifiers, computing the translation of each
1058 ;;; specifier and defining it as a builtin type.
1059 ;;; Seee the comments in 'type-init' for why this is a slightly
1060 ;;; screwy way to go about it.
1061 (declaim (ftype (function (list) (values)) !precompute-types))
1062 (defun !precompute-types (specs)
1063 (dolist (spec specs)
1064 (let ((res (handler-bind
1065 ((parse-unknown-type
1066 (lambda (c)
1067 (declare (ignore c))
1068 ;; We can handle conditions at this point,
1069 ;; but win32 can not perform i/o here because
1070 ;; !MAKE-COLD-STDERR-STREAM has no implementation.
1071 #!-win32
1072 (progn (write-string "//caught: parse-unknown ")
1073 (write spec)
1074 (terpri)))))
1075 (specifier-type spec))))
1076 (unless (unknown-type-p res)
1077 (setf (info :type :builtin spec) res)
1078 (setf (info :type :kind spec) :primitive))))
1079 (values))
1081 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
1082 ;;;;
1083 ;;;; These are fully general operations on CTYPEs: they'll always
1084 ;;;; return a CTYPE representing the result.
1086 ;;; shared logic for unions and intersections: Return a list of
1087 ;;; types representing the same types as INPUT-TYPES, but with
1088 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
1089 ;;; component types, and with any SIMPLY2 simplifications applied.
1090 (macrolet
1091 ((def (name compound-type-p simplify2)
1092 `(defun ,name (types)
1093 (when types
1094 (multiple-value-bind (first rest)
1095 (if (,compound-type-p (car types))
1096 (values (car (compound-type-types (car types)))
1097 (append (cdr (compound-type-types (car types)))
1098 (cdr types)))
1099 (values (car types) (cdr types)))
1100 (let ((rest (,name rest)) u)
1101 (dolist (r rest (cons first rest))
1102 (when (setq u (,simplify2 first r))
1103 (return (,name (nsubstitute u r rest)))))))))))
1104 (def simplify-intersections intersection-type-p type-intersection2)
1105 (def simplify-unions union-type-p type-union2))
1107 (defun maybe-distribute-one-union (union-type types)
1108 (let* ((intersection (apply #'type-intersection types))
1109 (union (mapcar (lambda (x) (type-intersection x intersection))
1110 (union-type-types union-type))))
1111 (if (notany (lambda (x) (or (hairy-type-p x)
1112 (intersection-type-p x)))
1113 union)
1114 union
1115 nil)))
1117 (defun type-intersection (&rest input-types)
1118 (%type-intersection input-types))
1119 (defun-cached (%type-intersection :hash-bits 10 :hash-function #'type-list-cache-hash)
1120 ((input-types equal))
1121 (let ((simplified-types (simplify-intersections input-types)))
1122 (declare (type list simplified-types))
1123 ;; We want to have a canonical representation of types (or failing
1124 ;; that, punt to HAIRY-TYPE). Canonical representation would have
1125 ;; intersections inside unions but not vice versa, since you can
1126 ;; always achieve that by the distributive rule. But we don't want
1127 ;; to just apply the distributive rule, since it would be too easy
1128 ;; to end up with unreasonably huge type expressions. So instead
1129 ;; we try to generate a simple type by distributing the union; if
1130 ;; the type can't be made simple, we punt to HAIRY-TYPE.
1131 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
1132 (let* ((first-union (find-if #'union-type-p simplified-types))
1133 (other-types (coerce (remove first-union simplified-types)
1134 'list))
1135 (distributed (maybe-distribute-one-union first-union
1136 other-types)))
1137 (if distributed
1138 (apply #'type-union distributed)
1139 (%make-hairy-type `(and ,@(map 'list #'type-specifier
1140 simplified-types)))))
1141 (cond
1142 ((null simplified-types) *universal-type*)
1143 ((null (cdr simplified-types)) (car simplified-types))
1144 (t (%make-intersection-type
1145 (some #'type-enumerable simplified-types)
1146 simplified-types))))))
1148 (defun type-union (&rest input-types)
1149 (%type-union input-types))
1150 (defun-cached (%type-union :hash-bits 8 :hash-function #'type-list-cache-hash)
1151 ((input-types equal))
1152 (let ((simplified-types (simplify-unions input-types)))
1153 (cond
1154 ((null simplified-types) *empty-type*)
1155 ((null (cdr simplified-types)) (car simplified-types))
1156 (t (make-union-type
1157 (every #'type-enumerable simplified-types)
1158 simplified-types)))))
1160 ;;;; built-in types
1162 (!define-type-method (named :simple-=) (type1 type2)
1163 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1164 (values (eq type1 type2) t))
1166 (defun cons-type-might-be-empty-type (type)
1167 (declare (type cons-type type))
1168 (let ((car-type (cons-type-car-type type))
1169 (cdr-type (cons-type-cdr-type type)))
1171 (if (cons-type-p car-type)
1172 (cons-type-might-be-empty-type car-type)
1173 (multiple-value-bind (yes surep)
1174 (type= car-type *empty-type*)
1175 (aver (not yes))
1176 (not surep)))
1177 (if (cons-type-p cdr-type)
1178 (cons-type-might-be-empty-type cdr-type)
1179 (multiple-value-bind (yes surep)
1180 (type= cdr-type *empty-type*)
1181 (aver (not yes))
1182 (not surep))))))
1184 (defun cons-type-length-info (type)
1185 (declare (type cons-type type))
1186 (do ((min 1 (1+ min))
1187 (cdr (cons-type-cdr-type type) (cons-type-cdr-type cdr)))
1188 ((not (cons-type-p cdr))
1189 (cond
1190 ((csubtypep cdr (specifier-type 'null))
1191 (values min t))
1192 ((csubtypep *universal-type* cdr)
1193 (values min nil))
1194 ((type/= (type-intersection (specifier-type 'cons) cdr) *empty-type*)
1195 (values min nil))
1196 ((type/= (type-intersection (specifier-type 'null) cdr) *empty-type*)
1197 (values min t))
1198 (t (values min :maybe))))
1199 ()))
1201 (!define-type-method (named :complex-=) (type1 type2)
1202 (cond
1203 ((and (eq type2 *empty-type*)
1204 (or (and (intersection-type-p type1)
1205 ;; not allowed to be unsure on these... FIXME: keep
1206 ;; the list of CL types that are intersection types
1207 ;; once and only once.
1208 (not (or (type= type1 (specifier-type 'ratio))
1209 (type= type1 (specifier-type 'keyword)))))
1210 (and (cons-type-p type1)
1211 (cons-type-might-be-empty-type type1))))
1212 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1213 ;; STREAM) can get here. In general, we can't really tell
1214 ;; whether these are equal to NIL or not, so
1215 (values nil nil))
1216 ((type-might-contain-other-types-p type1)
1217 (invoke-complex-=-other-method type1 type2))
1218 (t (values nil t))))
1220 (!define-type-method (named :simple-subtypep) (type1 type2)
1221 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1222 (aver (not (eq type1 type2)))
1223 (values (or (eq type1 *empty-type*)
1224 (eq type2 *wild-type*)
1225 (eq type2 *universal-type*)) t))
1227 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1228 ;; This AVER causes problems if we write accurate methods for the
1229 ;; union (and possibly intersection) types which then delegate to
1230 ;; us; while a user shouldn't get here, because of the odd status of
1231 ;; *wild-type* a type-intersection executed by the compiler can. -
1232 ;; CSR, 2002-04-10
1234 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1235 (cond ((eq type1 *empty-type*)
1237 (;; When TYPE2 might be the universal type in disguise
1238 (type-might-contain-other-types-p type2)
1239 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1240 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1241 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1242 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1243 ;; problem (where at least part of the problem is cases like
1244 ;; (SUBTYPEP T '(SATISFIES FOO))
1245 ;; or
1246 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1247 ;; where the second type is a hairy type like SATISFIES, or
1248 ;; is a compound type which might contain a hairy type) by
1249 ;; returning uncertainty.
1250 (values nil nil))
1251 ((eq type1 *funcallable-instance-type*)
1252 (values (eq type2 (specifier-type 'function)) t))
1254 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1255 ;; method, and so shouldn't appear here.
1256 (aver (not (named-type-p type2)))
1257 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1258 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1259 (values nil t))))
1261 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1262 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1263 (cond ((eq type2 *universal-type*)
1264 (values t t))
1265 ;; some CONS types can conceal danger
1266 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1267 (values nil nil))
1268 ((type-might-contain-other-types-p type1)
1269 ;; those types can be other types in disguise. So we'd
1270 ;; better delegate.
1271 (invoke-complex-subtypep-arg1-method type1 type2))
1272 ((and (or (eq type2 *instance-type*)
1273 (eq type2 *funcallable-instance-type*))
1274 (member-type-p type1))
1275 ;; member types can be subtypep INSTANCE and
1276 ;; FUNCALLABLE-INSTANCE in surprising ways.
1277 (invoke-complex-subtypep-arg1-method type1 type2))
1278 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1279 (let* ((layout (classoid-layout type1))
1280 (inherits (layout-inherits layout))
1281 (sequencep (find (classoid-layout (find-classoid 'sequence))
1282 inherits)))
1283 (values (if sequencep t nil) t)))
1284 ((and (eq type2 *instance-type*) (classoid-p type1))
1285 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1286 (values nil t)
1287 (let* ((layout (classoid-layout type1))
1288 (inherits (layout-inherits layout))
1289 (functionp (find (classoid-layout (find-classoid 'function))
1290 inherits)))
1291 (cond
1292 (functionp
1293 (values nil t))
1294 ((eq type1 (find-classoid 'function))
1295 (values nil t))
1296 ((or (structure-classoid-p type1)
1297 #+nil
1298 (condition-classoid-p type1))
1299 (values t t))
1300 (t (values nil nil))))))
1301 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1302 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1303 (values nil t)
1304 (let* ((layout (classoid-layout type1))
1305 (inherits (layout-inherits layout))
1306 (functionp (find (classoid-layout (find-classoid 'function))
1307 inherits)))
1308 (values (if functionp t nil) t))))
1310 ;; FIXME: This seems to rely on there only being 4 or 5
1311 ;; NAMED-TYPE values, and the exclusion of various
1312 ;; possibilities above. It would be good to explain it and/or
1313 ;; rewrite it so that it's clearer.
1314 (values nil t))))
1316 (!define-type-method (named :simple-intersection2) (type1 type2)
1317 (cond
1318 ((and (eq type1 *extended-sequence-type*)
1319 (or (eq type2 *instance-type*)
1320 (eq type2 *funcallable-instance-type*)))
1321 nil)
1322 ((and (or (eq type1 *instance-type*)
1323 (eq type1 *funcallable-instance-type*))
1324 (eq type2 *extended-sequence-type*))
1325 nil)
1327 (hierarchical-intersection2 type1 type2))))
1329 (!define-type-method (named :complex-intersection2) (type1 type2)
1330 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1331 ;; Perhaps when bug 85 is fixed it can be reenabled.
1332 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1333 (cond
1334 ((eq type2 *extended-sequence-type*)
1335 (typecase type1
1336 (structure-classoid *empty-type*)
1337 (classoid
1338 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1339 *empty-type*
1340 (if (find (classoid-layout (find-classoid 'sequence))
1341 (layout-inherits (classoid-layout type1)))
1342 type1
1343 nil)))
1345 (if (or (type-might-contain-other-types-p type1)
1346 (member-type-p type1))
1348 *empty-type*))))
1349 ((eq type2 *instance-type*)
1350 (typecase type1
1351 (structure-classoid type1)
1352 (classoid
1353 (if (and (not (member type1 *non-instance-classoid-types*
1354 :key #'find-classoid))
1355 (not (eq type1 (find-classoid 'function)))
1356 (not (find (classoid-layout (find-classoid 'function))
1357 (layout-inherits (classoid-layout type1)))))
1359 *empty-type*))
1361 (if (or (type-might-contain-other-types-p type1)
1362 (member-type-p type1))
1364 *empty-type*))))
1365 ((eq type2 *funcallable-instance-type*)
1366 (typecase type1
1367 (structure-classoid *empty-type*)
1368 (classoid
1369 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1370 *empty-type*
1371 (if (find (classoid-layout (find-classoid 'function))
1372 (layout-inherits (classoid-layout type1)))
1373 type1
1374 (if (type= type1 (find-classoid 'function))
1375 type2
1376 nil))))
1377 (fun-type nil)
1379 (if (or (type-might-contain-other-types-p type1)
1380 (member-type-p type1))
1382 *empty-type*))))
1383 (t (hierarchical-intersection2 type1 type2))))
1385 (!define-type-method (named :complex-union2) (type1 type2)
1386 ;; Perhaps when bug 85 is fixed this can be reenabled.
1387 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1388 (cond
1389 ((eq type2 *extended-sequence-type*)
1390 (if (classoid-p type1)
1391 (if (or (member type1 *non-instance-classoid-types*
1392 :key #'find-classoid)
1393 (not (find (classoid-layout (find-classoid 'sequence))
1394 (layout-inherits (classoid-layout type1)))))
1396 type2)
1397 nil))
1398 ((eq type2 *instance-type*)
1399 (if (classoid-p type1)
1400 (if (or (member type1 *non-instance-classoid-types*
1401 :key #'find-classoid)
1402 (find (classoid-layout (find-classoid 'function))
1403 (layout-inherits (classoid-layout type1))))
1405 type2)
1406 nil))
1407 ((eq type2 *funcallable-instance-type*)
1408 (if (classoid-p type1)
1409 (if (or (member type1 *non-instance-classoid-types*
1410 :key #'find-classoid)
1411 (not (find (classoid-layout (find-classoid 'function))
1412 (layout-inherits (classoid-layout type1)))))
1414 (if (eq type1 (specifier-type 'function))
1415 type1
1416 type2))
1417 nil))
1418 (t (hierarchical-union2 type1 type2))))
1420 (!define-type-method (named :negate) (x)
1421 (aver (not (eq x *wild-type*)))
1422 (cond
1423 ((eq x *universal-type*) *empty-type*)
1424 ((eq x *empty-type*) *universal-type*)
1425 ((or (eq x *instance-type*)
1426 (eq x *funcallable-instance-type*)
1427 (eq x *extended-sequence-type*))
1428 (make-negation-type x))
1429 (t (bug "NAMED type unexpected: ~S" x))))
1431 (!define-type-method (named :unparse) (x)
1432 (named-type-name x))
1434 ;;;; hairy and unknown types
1435 ;;;; DEFINE-TYPE-CLASS HAIRY is in 'early-type'
1437 (!define-type-method (hairy :negate) (x) (make-negation-type x))
1439 (!define-type-method (hairy :unparse) (x)
1440 (hairy-type-specifier x))
1442 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1443 (let ((hairy-spec1 (hairy-type-specifier type1))
1444 (hairy-spec2 (hairy-type-specifier type2)))
1445 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1446 (values t t))
1447 ((maybe-reparse-specifier! type1)
1448 (csubtypep type1 type2))
1449 ((maybe-reparse-specifier! type2)
1450 (csubtypep type1 type2))
1452 (values nil nil)))))
1454 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1455 (if (maybe-reparse-specifier! type2)
1456 (csubtypep type1 type2)
1457 (let ((specifier (hairy-type-specifier type2)))
1458 (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
1459 (case (cadr specifier)
1460 ((keywordp) (if (type= type1 (specifier-type 'symbol))
1461 (values nil t)
1462 (invoke-complex-subtypep-arg1-method type1 type2)))
1463 (t (invoke-complex-subtypep-arg1-method type1 type2))))
1465 (invoke-complex-subtypep-arg1-method type1 type2))))))
1467 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1468 (if (maybe-reparse-specifier! type1)
1469 (csubtypep type1 type2)
1470 (values nil nil)))
1472 (!define-type-method (hairy :complex-=) (type1 type2)
1473 (if (maybe-reparse-specifier! type2)
1474 (type= type1 type2)
1475 (values nil nil)))
1477 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1478 (type1 type2)
1479 (acond ((type= type1 type2)
1480 type1)
1481 ((eq type2 (literal-ctype *satisfies-keywordp-type*))
1482 ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
1483 ;; if A is re-homed as :A. However as a special case that really
1484 ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
1485 ;; is empty because of the illegality of changing NIL's package.
1486 (if (eq type1 (specifier-type 'null))
1487 *empty-type*
1488 (multiple-value-bind (answer certain)
1489 (types-equal-or-intersect type1 (specifier-type 'symbol))
1490 (and (not answer) certain *empty-type*))))
1491 ((eq type2 (literal-ctype *fun-name-type*))
1492 (multiple-value-bind (answer certain)
1493 (types-equal-or-intersect type1 (specifier-type 'symbol))
1494 (and (not answer)
1495 certain
1496 (multiple-value-bind (answer certain)
1497 (types-equal-or-intersect type1 (specifier-type 'cons))
1498 (and (not answer) certain *empty-type*)))))
1499 ((and (typep (hairy-type-specifier type2) '(cons (eql satisfies)))
1500 (info :function :predicate-truth-constraint
1501 (cadr (hairy-type-specifier type2))))
1502 (multiple-value-bind (answer certain)
1503 (types-equal-or-intersect type1 (specifier-type it))
1504 (and (not answer) certain *empty-type*)))))
1506 (!define-type-method (hairy :simple-union2)
1507 (type1 type2)
1508 (if (type= type1 type2)
1509 type1
1510 nil))
1512 (!define-type-method (hairy :simple-=) (type1 type2)
1513 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1514 (hairy-type-specifier type2))
1515 (values t t)
1516 (values nil nil)))
1518 (!def-type-translator satisfies :list (&whole whole predicate-name)
1519 (unless (symbolp predicate-name)
1520 (error 'simple-type-error
1521 :datum predicate-name
1522 :expected-type 'symbol
1523 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1524 :format-arguments (list predicate-name)))
1525 (case predicate-name
1526 (keywordp (literal-ctype *satisfies-keywordp-type*))
1527 (legal-fun-name-p (literal-ctype *fun-name-type*))
1528 (t (%make-hairy-type whole))))
1530 ;;;; negation types
1532 (!define-type-method (negation :negate) (x)
1533 (negation-type-type x))
1535 (!define-type-method (negation :unparse) (x)
1536 (if (type= (negation-type-type x) (specifier-type 'cons))
1537 'atom
1538 `(not ,(type-specifier (negation-type-type x)))))
1540 (!define-type-method (negation :simple-subtypep) (type1 type2)
1541 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1543 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1544 (let* ((complement-type2 (negation-type-type type2))
1545 (intersection2 (type-intersection2 type1
1546 complement-type2)))
1547 (if intersection2
1548 ;; FIXME: if uncertain, maybe try arg1?
1549 (type= intersection2 *empty-type*)
1550 (invoke-complex-subtypep-arg1-method type1 type2))))
1552 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1553 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1554 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1556 ;; You may not believe this. I couldn't either. But then I sat down
1557 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1558 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1559 (block nil
1560 ;; (Several logical truths in this block are true as long as
1561 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1562 ;; case with b=T where we actually reach this type method, but
1563 ;; we'll test for and exclude this case anyway, since future
1564 ;; maintenance might make it possible for it to end up in this
1565 ;; code.)
1566 (multiple-value-bind (equal certain)
1567 (type= type2 *universal-type*)
1568 (unless certain
1569 (return (values nil nil)))
1570 (when equal
1571 (return (values t t))))
1572 (let ((complement-type1 (negation-type-type type1)))
1573 ;; Do the special cases first, in order to give us a chance if
1574 ;; subtype/supertype relationships are hairy.
1575 (multiple-value-bind (equal certain)
1576 (type= complement-type1 type2)
1577 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1578 ;; excluded above).
1579 (unless certain
1580 (return (values nil nil)))
1581 (when equal
1582 (return (values nil t))))
1583 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1584 ;; two built-in atomic type specifiers never be uncertain. This
1585 ;; is hard to do cleanly for the built-in types whose
1586 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1587 ;; we can do it with this hack, which uses our global knowledge
1588 ;; that our implementation of the type system uses disjoint
1589 ;; implementation types to represent disjoint sets (except when
1590 ;; types are contained in other types). (This is a KLUDGE
1591 ;; because it's fragile. Various changes in internal
1592 ;; representation in the type system could make it start
1593 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1594 (unless (or (type-might-contain-other-types-p complement-type1)
1595 (type-might-contain-other-types-p type2))
1596 ;; Because of the way our types which don't contain other
1597 ;; types are disjoint subsets of the space of possible values,
1598 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1599 ;; is not T, as checked above).
1600 (return (values nil t)))
1601 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1602 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1603 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1604 ;; But a CSUBTYPEP relationship might still hold:
1605 (multiple-value-bind (equal certain)
1606 (csubtypep complement-type1 type2)
1607 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1608 ;; b=T, which was excluded above).
1609 (unless certain
1610 (return (values nil nil)))
1611 (when equal
1612 (return (values nil t))))
1613 (multiple-value-bind (equal certain)
1614 (csubtypep type2 complement-type1)
1615 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1616 ;; That's not true if a=T. Do we know at this point that a is
1617 ;; not T?)
1618 (unless certain
1619 (return (values nil nil)))
1620 (when equal
1621 (return (values nil t))))
1622 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1623 ;; KLUDGE case above: Other cases here would rely on being able
1624 ;; to catch all possible cases, which the fragility of this type
1625 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1626 ;; then we want T, T; if this is not the case and the types are
1627 ;; disjoint (have an intersection of *empty-type*) then we want
1628 ;; NIL, T; else if the union of a and b is the *universal-type*
1629 ;; then we want T, T. So currently we still claim to be unsure
1630 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1632 ;; OTOH we might still get here:
1633 (values nil nil))))
1635 (!define-type-method (negation :complex-=) (type1 type2)
1636 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1637 ;; type, except possibly a type that might contain it in disguise.
1638 (declare (ignore type2))
1639 (if (type-might-contain-other-types-p type1)
1640 (values nil nil)
1641 (values nil t)))
1643 (!define-type-method (negation :simple-intersection2) (type1 type2)
1644 (let ((not1 (negation-type-type type1))
1645 (not2 (negation-type-type type2)))
1646 (cond
1647 ((csubtypep not1 not2) type2)
1648 ((csubtypep not2 not1) type1)
1649 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1650 ;; method, below? The clause would read
1652 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1654 ;; but with proper canonicalization of negation types, there's
1655 ;; no way of constructing two negation types with union of their
1656 ;; negations being the universal type.
1658 (aver (not (eq (type-union not1 not2) *universal-type*)))
1659 nil))))
1661 (defun maybe-complex-array-refinement (type1 type2)
1662 (let* ((ntype (negation-type-type type2))
1663 (ndims (array-type-dimensions ntype))
1664 (ncomplexp (array-type-complexp ntype))
1665 (nseltype (array-type-specialized-element-type ntype))
1666 (neltype (array-type-element-type ntype)))
1667 (if (and (eql ndims '*) (null ncomplexp)
1668 (eq neltype *wild-type*) (eq nseltype *wild-type*))
1669 (make-array-type (array-type-dimensions type1)
1670 :complexp t
1671 :element-type (array-type-element-type type1)
1672 :specialized-element-type (array-type-specialized-element-type type1)))))
1674 (!define-type-method (negation :complex-intersection2) (type1 type2)
1675 (cond
1676 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1677 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1678 type1)
1679 ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
1680 (maybe-complex-array-refinement type1 type2))
1681 (t nil)))
1683 (!define-type-method (negation :simple-union2) (type1 type2)
1684 (let ((not1 (negation-type-type type1))
1685 (not2 (negation-type-type type2)))
1686 (cond
1687 ((csubtypep not1 not2) type1)
1688 ((csubtypep not2 not1) type2)
1689 ((eq (type-intersection not1 not2) *empty-type*)
1690 *universal-type*)
1691 (t nil))))
1693 (!define-type-method (negation :complex-union2) (type1 type2)
1694 (cond
1695 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1696 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1697 type2)
1698 (t nil)))
1700 (!define-type-method (negation :simple-=) (type1 type2)
1701 (type= (negation-type-type type1) (negation-type-type type2)))
1703 (!def-type-translator not :list ((:context context) typespec)
1704 (type-negation (specifier-type-r context typespec)))
1706 ;;;; numeric types
1708 (declaim (inline numeric-type-equal))
1709 (defun numeric-type-equal (type1 type2)
1710 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1711 (eq (numeric-type-format type1) (numeric-type-format type2))
1712 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1714 (!define-type-method (number :simple-=) (type1 type2)
1715 (values
1716 (and (numeric-type-equal type1 type2)
1717 (equalp (numeric-type-low type1) (numeric-type-low type2))
1718 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1721 (!define-type-method (number :negate) (type)
1722 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1723 (make-negation-type type)
1724 (type-union
1725 (make-negation-type (modified-numeric-type type :low nil :high nil))
1726 (cond
1727 ((null (numeric-type-low type))
1728 (modified-numeric-type
1729 type
1730 :low (let ((h (numeric-type-high type)))
1731 (if (consp h) (car h) (list h)))
1732 :high nil))
1733 ((null (numeric-type-high type))
1734 (modified-numeric-type
1735 type
1736 :low nil
1737 :high (let ((l (numeric-type-low type)))
1738 (if (consp l) (car l) (list l)))))
1739 (t (type-union
1740 (modified-numeric-type
1741 type
1742 :low nil
1743 :high (let ((l (numeric-type-low type)))
1744 (if (consp l) (car l) (list l))))
1745 (modified-numeric-type
1746 type
1747 :low (let ((h (numeric-type-high type)))
1748 (if (consp h) (car h) (list h)))
1749 :high nil)))))))
1751 (!define-type-method (number :unparse) (type)
1752 (let* ((complexp (numeric-type-complexp type))
1753 (low (numeric-type-low type))
1754 (high (numeric-type-high type))
1755 (base (case (numeric-type-class type)
1756 (integer 'integer)
1757 (rational 'rational)
1758 (float (or (numeric-type-format type) 'float))
1759 (t 'real))))
1760 (let ((base+bounds
1761 (cond ((and (eq base 'integer) high low)
1762 (let ((high-count (logcount high))
1763 (high-length (integer-length high)))
1764 (cond ((= low 0)
1765 (cond ((= high 0) '(integer 0 0))
1766 ((= high 1) 'bit)
1767 ((and (= high-count high-length)
1768 (plusp high-length))
1769 `(unsigned-byte ,high-length))
1771 `(mod ,(1+ high)))))
1772 ((and (= low sb!xc:most-negative-fixnum)
1773 (= high sb!xc:most-positive-fixnum))
1774 'fixnum)
1775 ((and (= low (lognot high))
1776 (= high-count high-length)
1777 (> high-count 0))
1778 `(signed-byte ,(1+ high-length)))
1780 `(integer ,low ,high)))))
1781 (high `(,base ,(or low '*) ,high))
1782 (low
1783 (if (and (eq base 'integer) (= low 0))
1784 'unsigned-byte
1785 `(,base ,low)))
1786 (t base))))
1787 (ecase complexp
1788 (:real
1789 base+bounds)
1790 (:complex
1791 (aver (neq base+bounds 'real))
1792 `(complex ,base+bounds))
1793 ((nil)
1794 (aver (eq base+bounds 'real))
1795 'number)))))
1797 (!define-type-method (number :singleton-p) (type)
1798 (let ((low (numeric-type-low type))
1799 (high (numeric-type-high type)))
1800 (if (and low
1801 (eql low high)
1802 (eql (numeric-type-complexp type) :real)
1803 (member (numeric-type-class type) '(integer rational
1804 #-sb-xc-host float)))
1805 (values t (numeric-type-low type))
1806 (values nil nil))))
1808 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1809 ;;; into consideration. CLOSED is the predicate used to test the bound
1810 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1811 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1812 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1813 ;;; whereas if X is infinite, then the test fails (unless Y is also
1814 ;;; infinite).
1816 ;;; This is for comparing bounds of the same kind, e.g. upper and
1817 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1818 (defmacro numeric-bound-test (x y closed open)
1819 `(cond ((not ,y) t)
1820 ((not ,x) nil)
1821 ((consp ,x)
1822 (if (consp ,y)
1823 (,closed (car ,x) (car ,y))
1824 (,closed (car ,x) ,y)))
1826 (if (consp ,y)
1827 (,open ,x (car ,y))
1828 (,closed ,x ,y)))))
1830 ;;; This is used to compare upper and lower bounds. This is different
1831 ;;; from the same-bound case:
1832 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1833 ;;; return true if *either* arg is NIL.
1834 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1835 ;;; causing us to use the OPEN test for those cases as well.
1836 (defmacro numeric-bound-test* (x y closed open)
1837 `(cond ((not ,y) t)
1838 ((not ,x) t)
1839 ((consp ,x)
1840 (if (consp ,y)
1841 (,open (car ,x) (car ,y))
1842 (,open (car ,x) ,y)))
1844 (if (consp ,y)
1845 (,open ,x (car ,y))
1846 (,closed ,x ,y)))))
1848 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1849 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1850 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1851 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1852 ;;; otherwise we return the other arg.
1853 (defmacro numeric-bound-max (x y closed open max-p)
1854 (once-only ((n-x x)
1855 (n-y y))
1856 `(cond ((not ,n-x) ,(if max-p nil n-y))
1857 ((not ,n-y) ,(if max-p nil n-x))
1858 ((consp ,n-x)
1859 (if (consp ,n-y)
1860 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1861 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1863 (if (consp ,n-y)
1864 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1865 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1867 (!define-type-method (number :simple-subtypep) (type1 type2)
1868 (let ((class1 (numeric-type-class type1))
1869 (class2 (numeric-type-class type2))
1870 (complexp2 (numeric-type-complexp type2))
1871 (format2 (numeric-type-format type2))
1872 (low1 (numeric-type-low type1))
1873 (high1 (numeric-type-high type1))
1874 (low2 (numeric-type-low type2))
1875 (high2 (numeric-type-high type2)))
1876 ;; If one is complex and the other isn't, they are disjoint.
1877 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1878 (null complexp2)))
1879 (values nil t))
1880 ;; If the classes are specified and different, the types are
1881 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1882 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1883 ;; X X) for integral X, but this is dealt with in the
1884 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1885 ((not (or (eq class1 class2)
1886 (null class2)
1887 (and (eq class1 'integer) (eq class2 'rational))))
1888 (values nil t))
1889 ;; If the float formats are specified and different, the types
1890 ;; are disjoint.
1891 ((not (or (eq (numeric-type-format type1) format2)
1892 (null format2)))
1893 (values nil t))
1894 ;; Check the bounds.
1895 ((and (numeric-bound-test low1 low2 >= >)
1896 (numeric-bound-test high1 high2 <= <))
1897 (values t t))
1899 (values nil t)))))
1901 (!define-superclasses number ((number)) !cold-init-forms)
1903 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1904 ;;; then return true, otherwise NIL.
1905 (defun numeric-types-adjacent (low high)
1906 (let ((low-bound (numeric-type-high low))
1907 (high-bound (numeric-type-low high)))
1908 (cond ((not (and low-bound high-bound)) nil)
1909 ((and (consp low-bound) (consp high-bound)) nil)
1910 ((consp low-bound)
1911 (let ((low-value (car low-bound)))
1912 (or (eql low-value high-bound)
1913 (and (eql low-value
1914 (load-time-value (make-unportable-float
1915 :single-float-negative-zero) t))
1916 (eql high-bound 0f0))
1917 (and (eql low-value 0f0)
1918 (eql high-bound
1919 (load-time-value (make-unportable-float
1920 :single-float-negative-zero) t)))
1921 (and (eql low-value
1922 (load-time-value (make-unportable-float
1923 :double-float-negative-zero) t))
1924 (eql high-bound 0d0))
1925 (and (eql low-value 0d0)
1926 (eql high-bound
1927 (load-time-value (make-unportable-float
1928 :double-float-negative-zero) t))))))
1929 ((consp high-bound)
1930 (let ((high-value (car high-bound)))
1931 (or (eql high-value low-bound)
1932 (and (eql high-value
1933 (load-time-value (make-unportable-float
1934 :single-float-negative-zero) t))
1935 (eql low-bound 0f0))
1936 (and (eql high-value 0f0)
1937 (eql low-bound
1938 (load-time-value (make-unportable-float
1939 :single-float-negative-zero) t)))
1940 (and (eql high-value
1941 (load-time-value (make-unportable-float
1942 :double-float-negative-zero) t))
1943 (eql low-bound 0d0))
1944 (and (eql high-value 0d0)
1945 (eql low-bound
1946 (load-time-value (make-unportable-float
1947 :double-float-negative-zero) t))))))
1948 ((and (eq (numeric-type-class low) 'integer)
1949 (eq (numeric-type-class high) 'integer))
1950 (eql (1+ low-bound) high-bound))
1952 nil))))
1954 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
1956 ;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
1957 ;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
1958 ;;; the compiler does this occasionally during type-derivation to avoid
1959 ;;; creating absurdly complex unions of numeric types.
1960 (defvar *approximate-numeric-unions* nil)
1962 (!define-type-method (number :simple-union2) (type1 type2)
1963 (declare (type numeric-type type1 type2))
1964 (cond ((csubtypep type1 type2) type2)
1965 ((csubtypep type2 type1) type1)
1967 (let ((class1 (numeric-type-class type1))
1968 (format1 (numeric-type-format type1))
1969 (complexp1 (numeric-type-complexp type1))
1970 (class2 (numeric-type-class type2))
1971 (format2 (numeric-type-format type2))
1972 (complexp2 (numeric-type-complexp type2)))
1973 (cond
1974 ((and (eq class1 class2)
1975 (eq format1 format2)
1976 (eq complexp1 complexp2)
1977 (or *approximate-numeric-unions*
1978 (numeric-types-intersect type1 type2)
1979 (numeric-types-adjacent type1 type2)
1980 (numeric-types-adjacent type2 type1)))
1981 (make-numeric-type
1982 :class class1
1983 :format format1
1984 :complexp complexp1
1985 :low (numeric-bound-max (numeric-type-low type1)
1986 (numeric-type-low type2)
1987 <= < t)
1988 :high (numeric-bound-max (numeric-type-high type1)
1989 (numeric-type-high type2)
1990 >= > t)))
1991 ;; FIXME: These two clauses are almost identical, and the
1992 ;; consequents are in fact identical in every respect.
1993 ((and (eq class1 'rational)
1994 (eq class2 'integer)
1995 (eq format1 format2)
1996 (eq complexp1 complexp2)
1997 (integerp (numeric-type-low type2))
1998 (integerp (numeric-type-high type2))
1999 (= (numeric-type-low type2) (numeric-type-high type2))
2000 (or *approximate-numeric-unions*
2001 (numeric-types-adjacent type1 type2)
2002 (numeric-types-adjacent type2 type1)))
2003 (make-numeric-type
2004 :class 'rational
2005 :format format1
2006 :complexp complexp1
2007 :low (numeric-bound-max (numeric-type-low type1)
2008 (numeric-type-low type2)
2009 <= < t)
2010 :high (numeric-bound-max (numeric-type-high type1)
2011 (numeric-type-high type2)
2012 >= > t)))
2013 ((and (eq class1 'integer)
2014 (eq class2 'rational)
2015 (eq format1 format2)
2016 (eq complexp1 complexp2)
2017 (integerp (numeric-type-low type1))
2018 (integerp (numeric-type-high type1))
2019 (= (numeric-type-low type1) (numeric-type-high type1))
2020 (or *approximate-numeric-unions*
2021 (numeric-types-adjacent type1 type2)
2022 (numeric-types-adjacent type2 type1)))
2023 (make-numeric-type
2024 :class 'rational
2025 :format format1
2026 :complexp complexp1
2027 :low (numeric-bound-max (numeric-type-low type1)
2028 (numeric-type-low type2)
2029 <= < t)
2030 :high (numeric-bound-max (numeric-type-high type1)
2031 (numeric-type-high type2)
2032 >= > t)))
2033 (t nil))))))
2036 (!cold-init-forms ;; is !PRECOMPUTE-TYPES not doing the right thing?
2037 (setf (info :type :kind 'number) :primitive)
2038 (setf (info :type :builtin 'number)
2039 (make-numeric-type :complexp nil)))
2041 (!def-type-translator complex ((:context context) &optional (typespec '*))
2042 (if (eq typespec '*)
2043 (specifier-type '(complex real))
2044 (labels ((not-numeric ()
2045 (error "The component type for COMPLEX is not numeric: ~S"
2046 typespec))
2047 (not-real ()
2048 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
2049 typespec))
2050 (complex1 (component-type)
2051 (unless (numeric-type-p component-type)
2052 (not-numeric))
2053 (when (eq (numeric-type-complexp component-type) :complex)
2054 (not-real))
2055 (if (csubtypep component-type (specifier-type '(eql 0)))
2056 *empty-type*
2057 (modified-numeric-type component-type
2058 :complexp :complex)))
2059 (do-complex (ctype)
2060 (cond
2061 ((eq ctype *empty-type*) *empty-type*)
2062 ((eq ctype *universal-type*) (not-real))
2063 ((typep ctype 'numeric-type) (complex1 ctype))
2064 ((typep ctype 'union-type)
2065 (apply #'type-union
2066 (mapcar #'do-complex (union-type-types ctype))))
2067 ((typep ctype 'member-type)
2068 (apply #'type-union
2069 (mapcar-member-type-members
2070 (lambda (x) (do-complex (ctype-of x)))
2071 ctype)))
2072 ((and (typep ctype 'intersection-type)
2073 ;; FIXME: This is very much a
2074 ;; not-quite-worst-effort, but we are required to do
2075 ;; something here because of our representation of
2076 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
2077 ;; allow users to ask about (COMPLEX RATIO). This
2078 ;; will of course fail to work right on such types
2079 ;; as (AND INTEGER (SATISFIES ZEROP))...
2080 (let ((numbers (remove-if-not
2081 #'numeric-type-p
2082 (intersection-type-types ctype))))
2083 (and (car numbers)
2084 (null (cdr numbers))
2085 (eq (numeric-type-complexp (car numbers)) :real)
2086 (complex1 (car numbers))))))
2088 (multiple-value-bind (subtypep certainly)
2089 (csubtypep ctype (specifier-type 'real))
2090 (if (and (not subtypep) certainly)
2091 (not-real)
2092 ;; ANSI just says that TYPESPEC is any subtype of
2093 ;; type REAL, not necessarily a NUMERIC-TYPE. In
2094 ;; particular, at this point TYPESPEC could legally
2095 ;; be a hairy type like (AND NUMBER (SATISFIES
2096 ;; REALP) (SATISFIES ZEROP)), in which case we fall
2097 ;; through the logic above and end up here,
2098 ;; stumped.
2099 ;; FIXME: (COMPLEX NUMBER) is not rejected but should
2100 ;; be, as NUMBER is clearly not a subtype of real.
2101 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
2102 used for a COMPLEX component.~:@>"
2103 typespec)))))))
2104 (let ((ctype (specifier-type-r context typespec)))
2105 (do-complex ctype)))))
2107 ;;; If X is *, return NIL, otherwise return the bound, which must be a
2108 ;;; member of TYPE or a one-element list of a member of TYPE.
2109 ;;; This is not necessarily the canonical bound. An integer bound
2110 ;;; should always be an atom, which we'll enforce later if needed.
2111 #!-sb-fluid (declaim (inline valid-bound))
2112 (defun valid-bound (bound type)
2113 (cond ((eq bound '*) nil)
2114 ((sb!xc:typep (if (singleton-p bound) (car bound) bound) type) bound)
2116 (error "Bound is not * or ~A ~S or list of one ~:*~S: ~S"
2117 (if (eq type 'integer) "an" "a") type bound))))
2119 (!def-type-translator integer (&optional (low '*) (high '*))
2120 (let ((lb (valid-bound low 'integer))
2121 (hb (valid-bound high 'integer)))
2122 (make-numeric-type :class 'integer :complexp :real
2123 :enumerable (not (null (and lb hb)))
2124 :low lb :high hb)))
2126 (defmacro !def-bounded-type (type class format)
2127 `(!def-type-translator ,type (&optional (low '*) (high '*))
2128 (let ((lb (valid-bound low ',type))
2129 (hb (valid-bound high ',type)))
2130 (make-numeric-type :class ',class :format ',format
2131 :low lb :high hb))))
2133 (!def-bounded-type rational rational nil)
2135 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
2136 ;;; UNION-TYPEs of more primitive types, in order to make
2137 ;;; type representation more unique, avoiding problems in the
2138 ;;; simplification of things like
2139 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
2140 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
2141 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
2142 ;;; it was too easy for the first argument to be simplified to
2143 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
2144 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
2145 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
2146 ;;; the first argument can't be seen to be a subtype of any of the
2147 ;;; terms in the second argument.
2149 ;;; The old CMU CL way was:
2150 ;;; (!def-bounded-type float float nil)
2151 ;;; (!def-bounded-type real nil nil)
2153 ;;; FIXME: If this new way works for a while with no weird new
2154 ;;; problems, we can go back and rip out support for separate FLOAT
2155 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
2156 ;;; sbcl-0.6.11.22, 2001-03-21.
2158 ;;; FIXME: It's probably necessary to do something to fix the
2159 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
2160 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
2161 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
2162 (declare (type function inner-coerce-bound-fun))
2163 (if (eql bound '*)
2164 bound
2165 (funcall inner-coerce-bound-fun bound type upperp)))
2166 (defun inner-coerce-real-bound (bound type upperp)
2167 #+sb-xc-host (declare (ignore upperp))
2168 (let #+sb-xc-host ()
2169 #-sb-xc-host
2170 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float) t))
2171 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float) t)))
2172 (let ((nbound (if (consp bound) (car bound) bound))
2173 (consp (consp bound)))
2174 (ecase type
2175 (rational
2176 (if consp
2177 (list (rational nbound))
2178 (rational nbound)))
2179 (float
2180 (cond
2181 ((floatp nbound) bound)
2183 ;; Coerce to the widest float format available, to avoid
2184 ;; unnecessary loss of precision, but don't coerce
2185 ;; unrepresentable numbers, except on the host where we
2186 ;; shouldn't be making these types (but KLUDGE: can't even
2187 ;; assert portably that we're not).
2188 #-sb-xc-host
2189 (ecase upperp
2190 ((nil)
2191 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2192 ((t)
2193 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2194 (let ((result (coerce nbound 'long-float)))
2195 (if consp (list result) result)))))))))
2196 (defun inner-coerce-float-bound (bound type upperp)
2197 #+sb-xc-host (declare (ignore upperp))
2198 (let #+sb-xc-host ()
2199 #-sb-xc-host
2200 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float) t))
2201 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float) t))
2202 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float) t))
2203 (ps (load-time-value (symbol-value 'sb!xc:most-positive-single-float) t)))
2204 (let ((nbound (if (consp bound) (car bound) bound))
2205 (consp (consp bound)))
2206 (ecase type
2207 (single-float
2208 (cond
2209 ((typep nbound 'single-float) bound)
2211 #-sb-xc-host
2212 (ecase upperp
2213 ((nil)
2214 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2215 ((t)
2216 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2217 (let ((result (coerce nbound 'single-float)))
2218 (if consp (list result) result)))))
2219 (double-float
2220 (cond
2221 ((typep nbound 'double-float) bound)
2223 #-sb-xc-host
2224 (ecase upperp
2225 ((nil)
2226 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2227 ((t)
2228 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2229 (let ((result (coerce nbound 'double-float)))
2230 (if consp (list result) result)))))))))
2231 (defun coerced-real-bound (bound type upperp)
2232 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2233 (defun coerced-float-bound (bound type upperp)
2234 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2235 (!def-type-translator real (&optional (low '*) (high '*))
2236 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2237 ,(coerced-real-bound high 'float t))
2238 (rational ,(coerced-real-bound low 'rational nil)
2239 ,(coerced-real-bound high 'rational t)))))
2240 (!def-type-translator float (&optional (low '*) (high '*))
2241 (specifier-type
2242 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2243 ,(coerced-float-bound high 'single-float t))
2244 (double-float ,(coerced-float-bound low 'double-float nil)
2245 ,(coerced-float-bound high 'double-float t))
2246 #!+long-float ,(error "stub: no long float support yet"))))
2248 (macrolet ((define-float-format (f) `(!def-bounded-type ,f float ,f)))
2249 (define-float-format single-float)
2250 (define-float-format double-float))
2252 (defun numeric-types-intersect (type1 type2)
2253 (declare (type numeric-type type1 type2))
2254 (let* ((class1 (numeric-type-class type1))
2255 (class2 (numeric-type-class type2))
2256 (complexp1 (numeric-type-complexp type1))
2257 (complexp2 (numeric-type-complexp type2))
2258 (format1 (numeric-type-format type1))
2259 (format2 (numeric-type-format type2))
2260 (low1 (numeric-type-low type1))
2261 (high1 (numeric-type-high type1))
2262 (low2 (numeric-type-low type2))
2263 (high2 (numeric-type-high type2)))
2264 ;; If one is complex and the other isn't, then they are disjoint.
2265 (cond ((not (or (eq complexp1 complexp2)
2266 (null complexp1) (null complexp2)))
2267 nil)
2268 ;; If either type is a float, then the other must either be
2269 ;; specified to be a float or unspecified. Otherwise, they
2270 ;; are disjoint.
2271 ((and (eq class1 'float)
2272 (not (member class2 '(float nil)))) nil)
2273 ((and (eq class2 'float)
2274 (not (member class1 '(float nil)))) nil)
2275 ;; If the float formats are specified and different, the
2276 ;; types are disjoint.
2277 ((not (or (eq format1 format2) (null format1) (null format2)))
2278 nil)
2280 ;; Check the bounds. This is a bit odd because we must
2281 ;; always have the outer bound of the interval as the
2282 ;; second arg.
2283 (if (numeric-bound-test high1 high2 <= <)
2284 (or (and (numeric-bound-test low1 low2 >= >)
2285 (numeric-bound-test* low1 high2 <= <))
2286 (and (numeric-bound-test low2 low1 >= >)
2287 (numeric-bound-test* low2 high1 <= <)))
2288 (or (and (numeric-bound-test* low2 high1 <= <)
2289 (numeric-bound-test low2 low1 >= >))
2290 (and (numeric-bound-test high2 high1 <= <)
2291 (numeric-bound-test* high2 low1 >= >))))))))
2293 ;;; Take the numeric bound X and convert it into something that can be
2294 ;;; used as a bound in a numeric type with the specified CLASS and
2295 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2296 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2298 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2299 ;;; the appropriate type number. X may only be a float when CLASS is
2300 ;;; FLOAT.
2302 ;;; ### Note: it is possible for the coercion to a float to overflow
2303 ;;; or underflow. This happens when the bound doesn't fit in the
2304 ;;; specified format. In this case, we should really return the
2305 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2306 ;;; of desired format. But these conditions aren't currently signalled
2307 ;;; in any useful way.
2309 ;;; Also, when converting an open rational bound into a float we
2310 ;;; should probably convert it to a closed bound of the closest float
2311 ;;; in the specified format. KLUDGE: In general, open float bounds are
2312 ;;; screwed up. -- (comment from original CMU CL)
2313 (defun round-numeric-bound (x class format up-p)
2314 (if x
2315 (let ((cx (if (consp x) (car x) x)))
2316 (ecase class
2317 ((nil rational) x)
2318 (integer
2319 (if (and (consp x) (integerp cx))
2320 (if up-p (1+ cx) (1- cx))
2321 (if up-p (ceiling cx) (floor cx))))
2322 (float
2323 (let ((res
2324 (cond
2325 ((and format (subtypep format 'double-float))
2326 (if (<= most-negative-double-float cx most-positive-double-float)
2327 (coerce cx format)
2328 nil))
2330 (if (<= most-negative-single-float cx most-positive-single-float)
2331 ;; FIXME: bug #389
2332 (coerce cx (or format 'single-float))
2333 nil)))))
2334 (if (consp x) (list res) res)))))
2335 nil))
2337 ;;; Handle the case of type intersection on two numeric types. We use
2338 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2339 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2340 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2341 ;;; types intersect, then the only attributes that can be specified
2342 ;;; and different are the class and the bounds.
2344 ;;; When the class differs, we use the more restrictive class. The
2345 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2346 ;;; INTEGER.
2348 ;;; We make the result lower (upper) bound the maximum (minimum) of
2349 ;;; the argument lower (upper) bounds. We convert the bounds into the
2350 ;;; appropriate numeric type before maximizing. This avoids possible
2351 ;;; confusion due to mixed-type comparisons (but I think the result is
2352 ;;; the same).
2353 (!define-type-method (number :simple-intersection2) (type1 type2)
2354 (declare (type numeric-type type1 type2))
2355 (if (numeric-types-intersect type1 type2)
2356 (let* ((class1 (numeric-type-class type1))
2357 (class2 (numeric-type-class type2))
2358 (class (ecase class1
2359 ((nil) class2)
2360 ((integer float) class1)
2361 (rational (if (eq class2 'integer)
2362 'integer
2363 'rational))))
2364 (format (or (numeric-type-format type1)
2365 (numeric-type-format type2))))
2366 (make-numeric-type
2367 :class class
2368 :format format
2369 :complexp (or (numeric-type-complexp type1)
2370 (numeric-type-complexp type2))
2371 :low (numeric-bound-max
2372 (round-numeric-bound (numeric-type-low type1)
2373 class format t)
2374 (round-numeric-bound (numeric-type-low type2)
2375 class format t)
2376 > >= nil)
2377 :high (numeric-bound-max
2378 (round-numeric-bound (numeric-type-high type1)
2379 class format nil)
2380 (round-numeric-bound (numeric-type-high type2)
2381 class format nil)
2382 < <= nil)))
2383 *empty-type*))
2385 ;;; Given two float formats, return the one with more precision. If
2386 ;;; either one is null, return NIL.
2387 (defun float-format-max (f1 f2)
2388 (when (and f1 f2)
2389 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2390 (when (or (eq f f1) (eq f f2))
2391 (return f)))))
2393 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2394 ;;; the rules of numeric contagion. This is always NUMBER, some float
2395 ;;; format (possibly complex) or RATIONAL. Due to rational
2396 ;;; canonicalization, there isn't much we can do here with integers or
2397 ;;; rational complex numbers.
2399 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2400 ;;; is useful mainly for allowing types that are technically numbers,
2401 ;;; but not a NUMERIC-TYPE.
2402 (defun numeric-contagion (type1 type2)
2403 (if (and (numeric-type-p type1) (numeric-type-p type2))
2404 (let ((class1 (numeric-type-class type1))
2405 (class2 (numeric-type-class type2))
2406 (format1 (numeric-type-format type1))
2407 (format2 (numeric-type-format type2))
2408 (complexp1 (numeric-type-complexp type1))
2409 (complexp2 (numeric-type-complexp type2)))
2410 (cond ((or (null complexp1)
2411 (null complexp2))
2412 (specifier-type 'number))
2413 ((eq class1 'float)
2414 (make-numeric-type
2415 :class 'float
2416 :format (ecase class2
2417 (float (float-format-max format1 format2))
2418 ((integer rational) format1)
2419 ((nil)
2420 ;; A double-float with any real number is a
2421 ;; double-float.
2422 #!-long-float
2423 (if (eq format1 'double-float)
2424 'double-float
2425 nil)
2426 ;; A long-float with any real number is a
2427 ;; long-float.
2428 #!+long-float
2429 (if (eq format1 'long-float)
2430 'long-float
2431 nil)))
2432 :complexp (if (or (eq complexp1 :complex)
2433 (eq complexp2 :complex))
2434 :complex
2435 :real)))
2436 ((eq class2 'float) (numeric-contagion type2 type1))
2437 ((and (eq complexp1 :real) (eq complexp2 :real))
2438 (make-numeric-type
2439 :class (and class1 class2 'rational)
2440 :complexp :real))
2442 (specifier-type 'number))))
2443 (specifier-type 'number)))
2445 ;;;; array types
2447 (!define-type-method (array :simple-=) (type1 type2)
2448 (cond ((not (and (equal (array-type-dimensions type1)
2449 (array-type-dimensions type2))
2450 (eq (array-type-complexp type1)
2451 (array-type-complexp type2))))
2452 (values nil t))
2453 ((or (unknown-type-p (array-type-element-type type1))
2454 (unknown-type-p (array-type-element-type type2)))
2455 (type= (array-type-element-type type1)
2456 (array-type-element-type type2)))
2458 (values (type= (array-type-specialized-element-type type1)
2459 (array-type-specialized-element-type type2))
2460 t))))
2462 (!define-type-method (array :negate) (type)
2463 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2464 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2465 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2466 ;; A symptom of the aforementioned is that the following are not TYPE=
2467 ;; (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
2468 ;; (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
2469 ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
2470 ;; only provide one additional bit of information: that the vector
2471 ;; is complex as opposed to simple. The rank and element-type are fixed.
2472 (if (and (eq (array-type-dimensions type) '*)
2473 (eq (array-type-complexp type) 't)
2474 (eq (array-type-element-type type) *wild-type*))
2475 ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
2476 ;; This is deliberately asymmetric - trying to say that NOT simple-array
2477 ;; equals hairy-array leads to infinite recursion.
2478 (type-union (make-array-type '* :complexp nil
2479 :element-type *wild-type*)
2480 (make-negation-type
2481 (make-array-type '* :element-type *wild-type*)))
2482 (make-negation-type type)))
2484 (!define-type-method (array :unparse) (type)
2485 (let* ((dims (array-type-dimensions type))
2486 ;; Compare the specialised element type and the
2487 ;; derived element type. If the derived type
2488 ;; is so small that it jumps to a smaller upgraded
2489 ;; element type, use the specialised element type.
2491 ;; This protects from unparsing
2492 ;; (and (vector (or bit symbol))
2493 ;; (vector (or bit character)))
2494 ;; i.e., the intersection of two T array types,
2495 ;; as a bit vector.
2496 (stype (array-type-specialized-element-type type))
2497 (dtype (array-type-element-type type))
2498 (utype (%upgraded-array-element-type dtype))
2499 (eltype (type-specifier (if (type= stype utype)
2500 dtype
2501 stype)))
2502 (complexp (array-type-complexp type)))
2503 (if (and (eq complexp t) (not *unparse-allow-negation*))
2504 (setq complexp :maybe))
2505 (cond ((eq dims '*)
2506 (if (eq eltype '*)
2507 (ecase complexp
2508 ((t) '(and array (not simple-array)))
2509 ((:maybe) 'array)
2510 ((nil) 'simple-array))
2511 (ecase complexp
2512 ((t) `(and (array ,eltype) (not simple-array)))
2513 ((:maybe) `(array ,eltype))
2514 ((nil) `(simple-array ,eltype)))))
2515 ((= (length dims) 1)
2516 (if complexp
2517 (let ((answer
2518 (if (eq (car dims) '*)
2519 (case eltype
2520 (bit 'bit-vector)
2521 ((base-char #!-sb-unicode character) 'base-string)
2522 (* 'vector)
2523 (t `(vector ,eltype)))
2524 (case eltype
2525 (bit `(bit-vector ,(car dims)))
2526 ((base-char #!-sb-unicode character)
2527 `(base-string ,(car dims)))
2528 (t `(vector ,eltype ,(car dims)))))))
2529 (if (eql complexp :maybe)
2530 answer
2531 `(and ,answer (not simple-array))))
2532 (if (eq (car dims) '*)
2533 (case eltype
2534 (bit 'simple-bit-vector)
2535 ((base-char #!-sb-unicode character) 'simple-base-string)
2536 ((t) 'simple-vector)
2537 (t `(simple-array ,eltype (*))))
2538 (case eltype
2539 (bit `(simple-bit-vector ,(car dims)))
2540 ((base-char #!-sb-unicode character)
2541 `(simple-base-string ,(car dims)))
2542 ((t) `(simple-vector ,(car dims)))
2543 (t `(simple-array ,eltype ,dims))))))
2545 (ecase complexp
2546 ((t) `(and (array ,eltype ,dims) (not simple-array)))
2547 ((:maybe) `(array ,eltype ,dims))
2548 ((nil) `(simple-array ,eltype ,dims)))))))
2550 (!define-type-method (array :simple-subtypep) (type1 type2)
2551 (let ((dims1 (array-type-dimensions type1))
2552 (dims2 (array-type-dimensions type2))
2553 (complexp2 (array-type-complexp type2)))
2554 (cond (;; not subtypep unless dimensions are compatible
2555 (not (or (eq dims2 '*)
2556 (and (not (eq dims1 '*))
2557 ;; (sbcl-0.6.4 has trouble figuring out that
2558 ;; DIMS1 and DIMS2 must be lists at this
2559 ;; point, and knowing that is important to
2560 ;; compiling EVERY efficiently.)
2561 (= (length (the list dims1))
2562 (length (the list dims2)))
2563 (every (lambda (x y)
2564 (or (eq y '*) (eql x y)))
2565 (the list dims1)
2566 (the list dims2)))))
2567 (values nil t))
2568 ;; not subtypep unless complexness is compatible
2569 ((not (or (eq complexp2 :maybe)
2570 (eq (array-type-complexp type1) complexp2)))
2571 (values nil t))
2572 ;; Since we didn't fail any of the tests above, we win
2573 ;; if the TYPE2 element type is wild.
2574 ((eq (array-type-element-type type2) *wild-type*)
2575 (values t t))
2576 (;; Since we didn't match any of the special cases above, if
2577 ;; either element type is unknown we can only give a good
2578 ;; answer if they are the same.
2579 (or (unknown-type-p (array-type-element-type type1))
2580 (unknown-type-p (array-type-element-type type2)))
2581 (if (type= (array-type-element-type type1)
2582 (array-type-element-type type2))
2583 (values t t)
2584 (values nil nil)))
2585 (;; Otherwise, the subtype relationship holds iff the
2586 ;; types are equal, and they're equal iff the specialized
2587 ;; element types are identical.
2589 (values (type= (array-type-specialized-element-type type1)
2590 (array-type-specialized-element-type type2))
2591 t)))))
2593 (!define-superclasses array ((vector vector) (array)) !cold-init-forms)
2595 (defun array-types-intersect (type1 type2)
2596 (declare (type array-type type1 type2))
2597 (let ((dims1 (array-type-dimensions type1))
2598 (dims2 (array-type-dimensions type2))
2599 (complexp1 (array-type-complexp type1))
2600 (complexp2 (array-type-complexp type2)))
2601 ;; See whether dimensions are compatible.
2602 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2603 (and (= (length dims1) (length dims2))
2604 (every (lambda (x y)
2605 (or (eq x '*) (eq y '*) (= x y)))
2606 dims1 dims2))))
2607 (values nil t))
2608 ;; See whether complexpness is compatible.
2609 ((not (or (eq complexp1 :maybe)
2610 (eq complexp2 :maybe)
2611 (eq complexp1 complexp2)))
2612 (values nil t))
2613 ;; Old comment:
2615 ;; If either element type is wild, then they intersect.
2616 ;; Otherwise, the types must be identical.
2618 ;; FIXME: There seems to have been a fair amount of
2619 ;; confusion about the distinction between requested element
2620 ;; type and specialized element type; here is one of
2621 ;; them. If we request an array to hold objects of an
2622 ;; unknown type, we can do no better than represent that
2623 ;; type as an array specialized on wild-type. We keep the
2624 ;; requested element-type in the -ELEMENT-TYPE slot, and
2625 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2626 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2627 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2628 ;; in that specific case should be T, NIL? Or maybe this
2629 ;; function should really be called
2630 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2631 ;; was responsible for bug #123, and this whole issue could
2632 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2633 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2634 (eq (array-type-specialized-element-type type2) *wild-type*)
2635 (type= (array-type-specialized-element-type type1)
2636 (array-type-specialized-element-type type2)))
2638 (values t t))
2640 (values nil t)))))
2642 (defun unite-array-types-complexp (type1 type2)
2643 (let ((complexp1 (array-type-complexp type1))
2644 (complexp2 (array-type-complexp type2)))
2645 (cond
2646 ((eq complexp1 complexp2)
2647 ;; both types are the same complexp-ity
2648 (values complexp1 t))
2649 ((eq complexp1 :maybe)
2650 ;; type1 is wild-complexp
2651 (values :maybe type1))
2652 ((eq complexp2 :maybe)
2653 ;; type2 is wild-complexp
2654 (values :maybe type2))
2656 ;; both types partition the complexp-space
2657 (values :maybe nil)))))
2659 (defun unite-array-types-dimensions (type1 type2)
2660 (let ((dims1 (array-type-dimensions type1))
2661 (dims2 (array-type-dimensions type2)))
2662 (cond ((equal dims1 dims2)
2663 ;; both types are same dimensionality
2664 (values dims1 t))
2665 ((eq dims1 '*)
2666 ;; type1 is wild-dimensions
2667 (values '* type1))
2668 ((eq dims2 '*)
2669 ;; type2 is wild-dimensions
2670 (values '* type2))
2671 ((not (= (length dims1) (length dims2)))
2672 ;; types have different number of dimensions
2673 (values :incompatible nil))
2675 ;; we need to check on a per-dimension basis
2676 (let* ((supertype1 t)
2677 (supertype2 t)
2678 (compatible t)
2679 (result (mapcar (lambda (dim1 dim2)
2680 (cond
2681 ((equal dim1 dim2)
2682 dim1)
2683 ((eq dim1 '*)
2684 (setf supertype2 nil)
2686 ((eq dim2 '*)
2687 (setf supertype1 nil)
2690 (setf compatible nil))))
2691 dims1 dims2)))
2692 (cond
2693 ((or (not compatible)
2694 (and (not supertype1)
2695 (not supertype2)))
2696 (values :incompatible nil))
2697 ((and supertype1 supertype2)
2698 (values result supertype1))
2700 (values result (if supertype1 type1 type2)))))))))
2702 (defun unite-array-types-element-types (type1 type2)
2703 ;; FIXME: We'd love to be able to unite the full set of specialized
2704 ;; array element types up to *wild-type*, but :simple-union2 is
2705 ;; performed pairwise, so we don't have a good hook for it and our
2706 ;; representation doesn't allow us to easily detect the situation
2707 ;; anyway.
2708 ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
2709 (let* ((eltype1 (array-type-element-type type1))
2710 (eltype2 (array-type-element-type type2))
2711 (stype1 (array-type-specialized-element-type type1))
2712 (stype2 (array-type-specialized-element-type type2))
2713 (wild1 (eq eltype1 *wild-type*))
2714 (wild2 (eq eltype2 *wild-type*)))
2715 (cond
2716 ((type= eltype1 eltype2)
2717 (values eltype1 stype1 t))
2718 (wild1
2719 (values eltype1 stype1 type1))
2720 (wild2
2721 (values eltype2 stype2 type2))
2722 ((not (type= stype1 stype2))
2723 ;; non-wild types that don't share UAET don't unite
2724 (values :incompatible nil nil))
2725 ((csubtypep eltype1 eltype2)
2726 (values eltype2 stype2 type2))
2727 ((csubtypep eltype2 eltype1)
2728 (values eltype1 stype1 type1))
2730 (values :incompatible nil nil)))))
2732 (defun unite-array-types-supertypes-compatible-p (&rest supertypes)
2733 ;; supertypes are compatible if they are all T, if there is a single
2734 ;; NIL and all the rest are T, or if all non-T supertypes are the
2735 ;; same and not NIL.
2736 (let ((interesting-supertypes
2737 (remove t supertypes)))
2738 (or (not interesting-supertypes)
2739 (equal interesting-supertypes '(nil))
2740 ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
2741 (typep (remove-duplicates interesting-supertypes)
2742 '(cons array-type null)))))
2744 (!define-type-method (array :simple-union2) (type1 type2)
2745 (multiple-value-bind
2746 (result-eltype result-stype eltype-supertype)
2747 (unite-array-types-element-types type1 type2)
2748 (multiple-value-bind
2749 (result-complexp complexp-supertype)
2750 (unite-array-types-complexp type1 type2)
2751 (multiple-value-bind
2752 (result-dimensions dimensions-supertype)
2753 (unite-array-types-dimensions type1 type2)
2754 (when (and (not (eq result-dimensions :incompatible))
2755 (not (eq result-eltype :incompatible))
2756 (unite-array-types-supertypes-compatible-p
2757 eltype-supertype complexp-supertype dimensions-supertype))
2758 (make-array-type result-dimensions
2759 :complexp result-complexp
2760 :element-type result-eltype
2761 :specialized-element-type result-stype))))))
2763 (!define-type-method (array :simple-intersection2) (type1 type2)
2764 (declare (type array-type type1 type2))
2765 (if (array-types-intersect type1 type2)
2766 (let ((dims1 (array-type-dimensions type1))
2767 (dims2 (array-type-dimensions type2))
2768 (complexp1 (array-type-complexp type1))
2769 (complexp2 (array-type-complexp type2))
2770 (eltype1 (array-type-element-type type1))
2771 (eltype2 (array-type-element-type type2))
2772 (stype1 (array-type-specialized-element-type type1))
2773 (stype2 (array-type-specialized-element-type type2)))
2774 (make-array-type (cond ((eq dims1 '*) dims2)
2775 ((eq dims2 '*) dims1)
2777 (mapcar (lambda (x y) (if (eq x '*) y x))
2778 dims1 dims2)))
2779 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2780 :element-type (cond
2781 ((eq eltype1 *wild-type*) eltype2)
2782 ((eq eltype2 *wild-type*) eltype1)
2783 (t (type-intersection eltype1 eltype2)))
2784 :specialized-element-type (cond
2785 ((eq stype1 *wild-type*) stype2)
2786 ((eq stype2 *wild-type*) stype1)
2788 (aver (type= stype1 stype2))
2789 stype1))))
2790 *empty-type*))
2792 ;;; Check a supplied dimension list to determine whether it is legal,
2793 ;;; and return it in canonical form (as either '* or a list).
2794 (defun canonical-array-dimensions (dims)
2795 (typecase dims
2796 ((member *) dims)
2797 (integer
2798 (when (minusp dims)
2799 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2800 (when (>= dims sb!xc:array-rank-limit)
2801 (error "array type with too many dimensions: ~S" dims))
2802 (make-list dims :initial-element '*))
2803 (list
2804 (when (>= (length dims) sb!xc:array-rank-limit)
2805 (error "array type with too many dimensions: ~S" dims))
2806 (dolist (dim dims)
2807 (unless (eq dim '*)
2808 (unless (and (integerp dim)
2809 (>= dim 0)
2810 (< dim sb!xc:array-dimension-limit))
2811 (error "bad dimension in array type: ~S" dim))))
2812 dims)
2814 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2816 ;;;; MEMBER types
2818 (!define-type-method (member :negate) (type)
2819 (let ((xset (member-type-xset type))
2820 (fp-zeroes (member-type-fp-zeroes type)))
2821 (if fp-zeroes
2822 ;; Hairy case, which needs to do a bit of float type
2823 ;; canonicalization.
2824 (apply #'type-intersection
2825 (if (xset-empty-p xset)
2826 *universal-type*
2827 (make-negation-type (make-member-type xset nil)))
2828 (mapcar
2829 (lambda (x)
2830 (let* ((opposite (neg-fp-zero x))
2831 (type (ctype-of opposite)))
2832 (type-union
2833 (make-negation-type
2834 (modified-numeric-type type :low nil :high nil))
2835 (modified-numeric-type type :low nil :high (list opposite))
2836 (make-eql-type opposite)
2837 (modified-numeric-type type :low (list opposite) :high nil))))
2838 fp-zeroes))
2839 ;; Easy case
2840 (make-negation-type type))))
2842 (!define-type-method (member :unparse) (type)
2843 (cond ((eq type (specifier-type 'null)) 'null) ; NULL type is EQ-comparable
2844 ((eq type (specifier-type 'boolean)) 'boolean) ; so is BOOLEAN
2845 (t `(member ,@(member-type-members type)))))
2847 (!define-type-method (member :singleton-p) (type)
2848 (if (eql 1 (member-type-size type))
2849 (values t (first (member-type-members type)))
2850 (values nil nil)))
2852 (!define-type-method (member :simple-subtypep) (type1 type2)
2853 (values (and (xset-subset-p (member-type-xset type1)
2854 (member-type-xset type2))
2855 (subsetp (member-type-fp-zeroes type1)
2856 (member-type-fp-zeroes type2)))
2859 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2860 (block punt
2861 (mapc-member-type-members
2862 (lambda (elt)
2863 (multiple-value-bind (ok surep) (ctypep elt type2)
2864 (unless surep
2865 (return-from punt (values nil nil)))
2866 (unless ok
2867 (return-from punt (values nil t)))))
2868 type1)
2869 (values t t)))
2871 ;;; We punt if the odd type is enumerable and intersects with the
2872 ;;; MEMBER type. If not enumerable, then it is definitely not a
2873 ;;; subtype of the MEMBER type.
2874 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2875 (cond ((not (type-enumerable type1)) (values nil t))
2876 ((types-equal-or-intersect type1 type2)
2877 (invoke-complex-subtypep-arg1-method type1 type2))
2878 (t (values nil t))))
2880 (!define-type-method (member :simple-intersection2) (type1 type2)
2881 (make-member-type (xset-intersection (member-type-xset type1)
2882 (member-type-xset type2))
2883 (intersection (member-type-fp-zeroes type1)
2884 (member-type-fp-zeroes type2))))
2886 (!define-type-method (member :complex-intersection2) (type1 type2)
2887 (block punt
2888 (let ((xset (alloc-xset))
2889 (fp-zeroes nil))
2890 (mapc-member-type-members
2891 (lambda (member)
2892 (multiple-value-bind (ok sure) (ctypep member type1)
2893 (unless sure
2894 (return-from punt nil))
2895 (when ok
2896 (if (fp-zero-p member)
2897 (pushnew member fp-zeroes)
2898 (add-to-xset member xset)))))
2899 type2)
2900 (if (and (xset-empty-p xset) (not fp-zeroes))
2901 *empty-type*
2902 (make-member-type xset fp-zeroes)))))
2904 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2905 ;;; a union type, and the member/union interaction is handled by the
2906 ;;; union type method.
2907 (!define-type-method (member :simple-union2) (type1 type2)
2908 (make-member-type (xset-union (member-type-xset type1)
2909 (member-type-xset type2))
2910 (union (member-type-fp-zeroes type1)
2911 (member-type-fp-zeroes type2))))
2913 (!define-type-method (member :simple-=) (type1 type2)
2914 (let ((xset1 (member-type-xset type1))
2915 (xset2 (member-type-xset type2))
2916 (l1 (member-type-fp-zeroes type1))
2917 (l2 (member-type-fp-zeroes type2)))
2918 (values (and (eql (xset-count xset1) (xset-count xset2))
2919 (xset-subset-p xset1 xset2)
2920 (xset-subset-p xset2 xset1)
2921 (subsetp l1 l2)
2922 (subsetp l2 l1))
2923 t)))
2925 (!define-type-method (member :complex-=) (type1 type2)
2926 (if (type-enumerable type1)
2927 (multiple-value-bind (val win) (csubtypep type2 type1)
2928 (if (or val (not win))
2929 (values nil nil)
2930 (values nil t)))
2931 (values nil t)))
2933 (!def-type-translator member :list (&rest members)
2934 (if members
2935 (let (ms numbers char-codes)
2936 (dolist (m (remove-duplicates members))
2937 (typecase m
2938 (character (push (sb!xc:char-code m) char-codes))
2939 (real (if (and (floatp m) (zerop m))
2940 (push m ms)
2941 (push (ctype-of m) numbers)))
2942 (t (push m ms))))
2943 (apply #'type-union
2944 (member-type-from-list ms)
2945 (make-character-set-type (mapcar (lambda (x) (cons x x))
2946 (sort char-codes #'<)))
2947 (nreverse numbers)))
2948 *empty-type*))
2950 ;;;; intersection types
2951 ;;;;
2952 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
2953 ;;;; of punting on all AND types, not just the unreasonably complicated
2954 ;;;; ones. The change was motivated by trying to get the KEYWORD type
2955 ;;;; to behave sensibly:
2956 ;;;; ;; reasonable definition
2957 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
2958 ;;;; ;; reasonable behavior
2959 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
2960 ;;;; Without understanding a little about the semantics of AND, we'd
2961 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
2962 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
2963 ;;;; not so good..)
2964 ;;;;
2965 ;;;; We still follow the example of CMU CL to some extent, by punting
2966 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
2967 ;;;; involving AND.
2969 (!define-type-class intersection
2970 :enumerable #'compound-type-enumerable
2971 :might-contain-other-types t)
2973 (!define-type-method (intersection :negate) (type)
2974 (apply #'type-union
2975 (mapcar #'type-negation (intersection-type-types type))))
2977 ;;; A few intersection types have special names. The others just get
2978 ;;; mechanically unparsed.
2979 (!define-type-method (intersection :unparse) (type)
2980 (declare (type ctype type))
2981 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
2982 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
2984 ;;; shared machinery for type equality: true if every type in the set
2985 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
2986 (defun type=-set (types1 types2)
2987 (flet ((type<=-set (x y)
2988 (declare (type list x y))
2989 (every/type (lambda (x y-element)
2990 (any/type #'type= y-element x))
2991 x y)))
2992 (and/type (type<=-set types1 types2)
2993 (type<=-set types2 types1))))
2995 ;;; Two intersection types are equal if their subtypes are equal sets.
2997 ;;; FIXME: Might it be better to use
2998 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
2999 ;;; instead, since SUBTYPEP is the usual relationship that we care
3000 ;;; most about, so it would be good to leverage any ingenuity there
3001 ;;; in this more obscure method?
3002 (!define-type-method (intersection :simple-=) (type1 type2)
3003 (type=-set (intersection-type-types type1)
3004 (intersection-type-types type2)))
3006 (defun %intersection-complex-subtypep-arg1 (type1 type2)
3007 (type= type1 (type-intersection type1 type2)))
3009 (defun %intersection-simple-subtypep (type1 type2)
3010 (every/type #'%intersection-complex-subtypep-arg1
3011 type1
3012 (intersection-type-types type2)))
3014 (!define-type-method (intersection :simple-subtypep) (type1 type2)
3015 (%intersection-simple-subtypep type1 type2))
3017 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
3018 (%intersection-complex-subtypep-arg1 type1 type2))
3020 (defun %intersection-complex-subtypep-arg2 (type1 type2)
3021 (every/type #'csubtypep type1 (intersection-type-types type2)))
3023 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
3024 (%intersection-complex-subtypep-arg2 type1 type2))
3026 ;;; FIXME: This will look eeriely familiar to readers of the UNION
3027 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
3028 ;;; because it was generated by cut'n'paste methods. Given that
3029 ;;; intersections and unions have all sorts of symmetries known to
3030 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
3031 ;;; reflect those symmetries in code in a way that ties them together
3032 ;;; more strongly than having two independent near-copies :-/
3033 (!define-type-method (intersection :simple-union2 :complex-union2)
3034 (type1 type2)
3035 ;; Within this method, type2 is guaranteed to be an intersection
3036 ;; type:
3037 (aver (intersection-type-p type2))
3038 ;; Make sure to call only the applicable methods...
3039 (cond ((and (intersection-type-p type1)
3040 (%intersection-simple-subtypep type1 type2)) type2)
3041 ((and (intersection-type-p type1)
3042 (%intersection-simple-subtypep type2 type1)) type1)
3043 ((and (not (intersection-type-p type1))
3044 (%intersection-complex-subtypep-arg2 type1 type2))
3045 type2)
3046 ((and (not (intersection-type-p type1))
3047 (%intersection-complex-subtypep-arg1 type2 type1))
3048 type1)
3049 ;; KLUDGE: This special (and somewhat hairy) magic is required
3050 ;; to deal with the RATIONAL/INTEGER special case. The UNION
3051 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
3052 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
3053 ((and (csubtypep type2 (specifier-type 'ratio))
3054 (numeric-type-p type1)
3055 (csubtypep type1 (specifier-type 'integer))
3056 (csubtypep type2
3057 (make-numeric-type
3058 :class 'rational
3059 :complexp nil
3060 :low (if (null (numeric-type-low type1))
3062 (list (1- (numeric-type-low type1))))
3063 :high (if (null (numeric-type-high type1))
3065 (list (1+ (numeric-type-high type1)))))))
3066 (let* ((intersected (intersection-type-types type2))
3067 (remaining (remove (specifier-type '(not integer))
3068 intersected
3069 :test #'type=)))
3070 (and (not (equal intersected remaining))
3071 (type-union type1 (apply #'type-intersection remaining)))))
3073 (let ((accumulator *universal-type*))
3074 (do ((t2s (intersection-type-types type2) (cdr t2s)))
3075 ((null t2s) accumulator)
3076 (let ((union (type-union type1 (car t2s))))
3077 (when (union-type-p union)
3078 ;; we have to give up here -- there are all sorts of
3079 ;; ordering worries, but it's better than before.
3080 ;; Doing exactly the same as in the UNION
3081 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
3082 ;; overflow with the mutual recursion never bottoming
3083 ;; out.
3084 (if (and (eq accumulator *universal-type*)
3085 (null (cdr t2s)))
3086 ;; KLUDGE: if we get here, we have a partially
3087 ;; simplified result. While this isn't by any
3088 ;; means a universal simplification, including
3089 ;; this logic here means that we can get (OR
3090 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
3091 (return union)
3092 (return nil)))
3093 (setf accumulator
3094 (type-intersection accumulator union))))))))
3096 (!def-type-translator and :list ((:context context) &rest type-specifiers)
3097 (apply #'type-intersection
3098 (mapcar (lambda (x) (specifier-type-r context x))
3099 type-specifiers)))
3101 ;;;; union types
3103 (!define-type-class union
3104 :enumerable #'compound-type-enumerable
3105 :might-contain-other-types t)
3107 (!define-type-method (union :negate) (type)
3108 (declare (type ctype type))
3109 (apply #'type-intersection
3110 (mapcar #'type-negation (union-type-types type))))
3112 ;;; The LIST, FLOAT and REAL types have special names. Other union
3113 ;;; types just get mechanically unparsed.
3114 (!define-type-method (union :unparse) (type)
3115 (declare (type ctype type))
3116 (cond
3117 ((type= type (specifier-type 'list)) 'list)
3118 ((type= type (specifier-type 'float)) 'float)
3119 ((type= type (specifier-type 'real)) 'real)
3120 ((type= type (specifier-type 'sequence)) 'sequence)
3121 ((type= type (specifier-type 'bignum)) 'bignum)
3122 ((type= type (specifier-type 'simple-string)) 'simple-string)
3123 ((type= type (specifier-type 'string)) 'string)
3124 ((type= type (specifier-type 'complex)) 'complex)
3125 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
3127 ;;; Two union types are equal if they are each subtypes of each
3128 ;;; other. We need to be this clever because our complex subtypep
3129 ;;; methods are now more accurate; we don't get infinite recursion
3130 ;;; because the simple-subtypep method delegates to complex-subtypep
3131 ;;; of the individual types of type1. - CSR, 2002-04-09
3133 ;;; Previous comment, now obsolete, but worth keeping around because
3134 ;;; it is true, though too strong a condition:
3136 ;;; Two union types are equal if their subtypes are equal sets.
3137 (!define-type-method (union :simple-=) (type1 type2)
3138 (multiple-value-bind (subtype certain?)
3139 (csubtypep type1 type2)
3140 (if subtype
3141 (csubtypep type2 type1)
3142 ;; we might as well become as certain as possible.
3143 (if certain?
3144 (values nil t)
3145 (multiple-value-bind (subtype certain?)
3146 (csubtypep type2 type1)
3147 (declare (ignore subtype))
3148 (values nil certain?))))))
3150 (!define-type-method (union :complex-=) (type1 type2)
3151 (declare (ignore type1))
3152 (if (some #'type-might-contain-other-types-p
3153 (union-type-types type2))
3154 (values nil nil)
3155 (values nil t)))
3157 ;;; Similarly, a union type is a subtype of another if and only if
3158 ;;; every element of TYPE1 is a subtype of TYPE2.
3159 (defun union-simple-subtypep (type1 type2)
3160 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
3161 type2
3162 (union-type-types type1)))
3164 (!define-type-method (union :simple-subtypep) (type1 type2)
3165 (union-simple-subtypep type1 type2))
3167 (defun union-complex-subtypep-arg1 (type1 type2)
3168 (every/type (swapped-args-fun #'csubtypep)
3169 type2
3170 (union-type-types type1)))
3172 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
3173 (union-complex-subtypep-arg1 type1 type2))
3175 (defun union-complex-subtypep-arg2 (type1 type2)
3176 ;; At this stage, we know that type2 is a union type and type1
3177 ;; isn't. We might as well check this, though:
3178 (aver (union-type-p type2))
3179 (aver (not (union-type-p type1)))
3180 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
3181 ;; turns out to be too restrictive, causing bug 91.
3183 ;; the following reimplementation might look dodgy. It is dodgy. It
3184 ;; depends on the union :complex-= method not doing very much work
3185 ;; -- certainly, not using subtypep. Reasoning:
3187 ;; A is a subset of (B1 u B2)
3188 ;; <=> A n (B1 u B2) = A
3189 ;; <=> (A n B1) u (A n B2) = A
3191 ;; But, we have to be careful not to delegate this type= to
3192 ;; something that could invoke subtypep, which might get us back
3193 ;; here -> stack explosion. We therefore ensure that the second type
3194 ;; (which is the one that's dispatched on) is either a union type
3195 ;; (where we've ensured that the complex-= method will not call
3196 ;; subtypep) or something with no union types involved, in which
3197 ;; case we'll never come back here.
3199 ;; If we don't do this, then e.g.
3200 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
3201 ;; would loop infinitely, as the member :complex-= method is
3202 ;; implemented in terms of subtypep.
3204 ;; Ouch. - CSR, 2002-04-10
3205 (multiple-value-bind (sub-value sub-certain?)
3206 (type= type1
3207 (apply #'type-union
3208 (mapcar (lambda (x) (type-intersection type1 x))
3209 (union-type-types type2))))
3210 (if sub-certain?
3211 (values sub-value sub-certain?)
3212 ;; The ANY/TYPE expression above is a sufficient condition for
3213 ;; subsetness, but not a necessary one, so we might get a more
3214 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
3215 ;; ANY/TYPE expression is uncertain.
3216 (invoke-complex-subtypep-arg1-method type1 type2))))
3218 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
3219 (union-complex-subtypep-arg2 type1 type2))
3221 (!define-type-method (union :simple-intersection2 :complex-intersection2)
3222 (type1 type2)
3223 ;; The CSUBTYPEP clauses here let us simplify e.g.
3224 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
3225 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
3226 ;; (where LIST is (OR CONS NULL)).
3228 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
3229 ;; versa, but it's important that we pre-expand them into
3230 ;; specialized operations on individual elements of
3231 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
3232 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
3233 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
3234 ;; cause infinite recursion.
3236 ;; Within this method, type2 is guaranteed to be a union type:
3237 (aver (union-type-p type2))
3238 ;; Make sure to call only the applicable methods...
3239 (cond ((and (union-type-p type1)
3240 (union-simple-subtypep type1 type2)) type1)
3241 ((and (union-type-p type1)
3242 (union-simple-subtypep type2 type1)) type2)
3243 ((and (not (union-type-p type1))
3244 (union-complex-subtypep-arg2 type1 type2))
3245 type1)
3246 ((and (not (union-type-p type1))
3247 (union-complex-subtypep-arg1 type2 type1))
3248 type2)
3250 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
3251 ;; operations in a particular order, and gives up if any of
3252 ;; the sub-unions turn out not to be simple. In other cases
3253 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
3254 ;; bad idea, since it can overlook simplifications which
3255 ;; might occur if the terms were accumulated in a different
3256 ;; order. It's possible that that will be a problem here too.
3257 ;; However, I can't think of a good example to demonstrate
3258 ;; it, and without an example to demonstrate it I can't write
3259 ;; test cases, and without test cases I don't want to
3260 ;; complicate the code to address what's still a hypothetical
3261 ;; problem. So I punted. -- WHN 2001-03-20
3262 (let ((accumulator *empty-type*))
3263 (dolist (t2 (union-type-types type2) accumulator)
3264 (setf accumulator
3265 (type-union accumulator
3266 (type-intersection type1 t2))))))))
3268 (!def-type-translator or :list ((:context context) &rest type-specifiers)
3269 (let ((type (apply #'type-union
3270 (mapcar (lambda (x) (specifier-type-r context x))
3271 type-specifiers))))
3272 (if (union-type-p type)
3273 (sb!kernel::simplify-array-unions type)
3274 type)))
3276 ;;;; CONS types
3278 (!def-type-translator cons ((:context context)
3279 &optional (car-type-spec '*) (cdr-type-spec '*))
3280 (let ((car-type (single-value-specifier-type-r context car-type-spec))
3281 (cdr-type (single-value-specifier-type-r context cdr-type-spec)))
3282 (make-cons-type car-type cdr-type)))
3284 (!define-type-method (cons :negate) (type)
3285 (if (and (eq (cons-type-car-type type) *universal-type*)
3286 (eq (cons-type-cdr-type type) *universal-type*))
3287 (make-negation-type type)
3288 (type-union
3289 (make-negation-type (specifier-type 'cons))
3290 (cond
3291 ((and (not (eq (cons-type-car-type type) *universal-type*))
3292 (not (eq (cons-type-cdr-type type) *universal-type*)))
3293 (type-union
3294 (make-cons-type
3295 (type-negation (cons-type-car-type type))
3296 *universal-type*)
3297 (make-cons-type
3298 *universal-type*
3299 (type-negation (cons-type-cdr-type type)))))
3300 ((not (eq (cons-type-car-type type) *universal-type*))
3301 (make-cons-type
3302 (type-negation (cons-type-car-type type))
3303 *universal-type*))
3304 ((not (eq (cons-type-cdr-type type) *universal-type*))
3305 (make-cons-type
3306 *universal-type*
3307 (type-negation (cons-type-cdr-type type))))
3308 (t (bug "Weird CONS type ~S" type))))))
3310 (!define-type-method (cons :unparse) (type)
3311 (if (eq type (specifier-type 'cons))
3312 'cons
3313 `(cons ,(type-specifier (cons-type-car-type type))
3314 ,(type-specifier (cons-type-cdr-type type)))))
3316 (!define-type-method (cons :simple-=) (type1 type2)
3317 (declare (type cons-type type1 type2))
3318 (multiple-value-bind (car-match car-win)
3319 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3320 (multiple-value-bind (cdr-match cdr-win)
3321 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3322 (cond ((and car-match cdr-match)
3323 (aver (and car-win cdr-win))
3324 (values t t))
3326 (values nil
3327 ;; FIXME: Ideally we would like to detect and handle
3328 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3329 ;; but just returning a secondary true on (and car-win cdr-win)
3330 ;; unfortunately breaks other things. --NS 2006-08-16
3331 (and (or (and (not car-match) car-win)
3332 (and (not cdr-match) cdr-win))
3333 (not (and (cons-type-might-be-empty-type type1)
3334 (cons-type-might-be-empty-type type2))))))))))
3336 (!define-type-method (cons :simple-subtypep) (type1 type2)
3337 (declare (type cons-type type1 type2))
3338 (multiple-value-bind (val-car win-car)
3339 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3340 (multiple-value-bind (val-cdr win-cdr)
3341 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3342 (if (and val-car val-cdr)
3343 (values t (and win-car win-cdr))
3344 (values nil (or (and (not val-car) win-car)
3345 (and (not val-cdr) win-cdr)))))))
3347 ;;; Give up if a precise type is not possible, to avoid returning
3348 ;;; overly general types.
3349 (!define-type-method (cons :simple-union2) (type1 type2)
3350 (declare (type cons-type type1 type2))
3351 (let ((car-type1 (cons-type-car-type type1))
3352 (car-type2 (cons-type-car-type type2))
3353 (cdr-type1 (cons-type-cdr-type type1))
3354 (cdr-type2 (cons-type-cdr-type type2))
3355 car-not1
3356 car-not2)
3357 ;; UGH. -- CSR, 2003-02-24
3358 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3359 &optional (not1 nil not1p))
3360 `(type-union
3361 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3362 (make-cons-type
3363 (type-intersection ,car2
3364 ,(if not1p
3365 not1
3366 `(type-negation ,car1)))
3367 ,cdr2))))
3368 (cond ((type= car-type1 car-type2)
3369 (make-cons-type car-type1
3370 (type-union cdr-type1 cdr-type2)))
3371 ((type= cdr-type1 cdr-type2)
3372 (make-cons-type (type-union car-type1 car-type2)
3373 cdr-type1))
3374 ((csubtypep car-type1 car-type2)
3375 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3376 ((csubtypep car-type2 car-type1)
3377 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3378 ;; more general case of the above, but harder to compute
3379 ((progn
3380 (setf car-not1 (type-negation car-type1))
3381 (multiple-value-bind (yes win)
3382 (csubtypep car-type2 car-not1)
3383 (and (not yes) win)))
3384 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3385 ((progn
3386 (setf car-not2 (type-negation car-type2))
3387 (multiple-value-bind (yes win)
3388 (csubtypep car-type1 car-not2)
3389 (and (not yes) win)))
3390 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3391 ;; Don't put these in -- consider the effect of taking the
3392 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3393 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3394 #+nil
3395 ((csubtypep cdr-type1 cdr-type2)
3396 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3397 #+nil
3398 ((csubtypep cdr-type2 cdr-type1)
3399 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3401 (!define-type-method (cons :simple-intersection2) (type1 type2)
3402 (declare (type cons-type type1 type2))
3403 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3404 (cons-type-car-type type2)))
3405 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3406 (cons-type-cdr-type type2))))
3407 (cond
3408 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3409 (car-int2 (make-cons-type car-int2
3410 (type-intersection
3411 (cons-type-cdr-type type1)
3412 (cons-type-cdr-type type2))))
3413 (cdr-int2 (make-cons-type
3414 (type-intersection (cons-type-car-type type1)
3415 (cons-type-car-type type2))
3416 cdr-int2)))))
3418 (!define-superclasses cons ((cons)) !cold-init-forms)
3420 ;;;; CHARACTER-SET types
3422 (!def-type-translator character-set
3423 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3424 (make-character-set-type pairs))
3426 (!define-type-method (character-set :negate) (type)
3427 (let ((pairs (character-set-type-pairs type)))
3428 (if (and (= (length pairs) 1)
3429 (= (caar pairs) 0)
3430 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3431 (make-negation-type type)
3432 (let ((not-character
3433 (make-negation-type
3434 (make-character-set-type
3435 '((0 . #.(1- sb!xc:char-code-limit)))))))
3436 (type-union
3437 not-character
3438 (make-character-set-type
3439 (let (not-pairs)
3440 (when (> (caar pairs) 0)
3441 (push (cons 0 (1- (caar pairs))) not-pairs))
3442 (do* ((tail pairs (cdr tail))
3443 (high1 (cdar tail) (cdar tail))
3444 (low2 (caadr tail) (caadr tail)))
3445 ((null (cdr tail))
3446 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3447 (push (cons (1+ (cdar tail))
3448 (1- sb!xc:char-code-limit))
3449 not-pairs))
3450 (nreverse not-pairs))
3451 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3453 (!define-type-method (character-set :unparse) (type)
3454 (cond
3455 ((eq type (specifier-type 'character)) 'character)
3456 ((eq type (specifier-type 'base-char)) 'base-char)
3457 ((eq type (specifier-type 'extended-char)) 'extended-char)
3458 ;; standard-char is not an interned type
3459 ((type= type (specifier-type 'standard-char)) 'standard-char)
3461 ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
3462 ;; are at most as many characters as there are character code ranges.
3463 ;; (basically saying to use MEMBER if each range is one character)
3464 (let* ((pairs (character-set-type-pairs type))
3465 (count (length pairs))
3466 (chars (loop named outer
3467 for (low . high) in pairs
3468 nconc (loop for code from low upto high
3469 collect (sb!xc:code-char code)
3470 when (minusp (decf count))
3471 do (return-from outer t)))))
3472 (if (eq chars t)
3473 `(character-set ,pairs)
3474 `(member ,@chars))))))
3476 (!define-type-method (character-set :singleton-p) (type)
3477 (let* ((pairs (character-set-type-pairs type))
3478 (pair (first pairs)))
3479 (if (and (typep pairs '(cons t null))
3480 (eql (car pair) (cdr pair)))
3481 (values t (code-char (car pair)))
3482 (values nil nil))))
3484 (!define-type-method (character-set :simple-=) (type1 type2)
3485 (let ((pairs1 (character-set-type-pairs type1))
3486 (pairs2 (character-set-type-pairs type2)))
3487 (values (equal pairs1 pairs2) t)))
3489 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3490 (values
3491 (dolist (pair (character-set-type-pairs type1) t)
3492 (unless (position pair (character-set-type-pairs type2)
3493 :test (lambda (x y) (and (>= (car x) (car y))
3494 (<= (cdr x) (cdr y)))))
3495 (return nil)))
3498 (!define-type-method (character-set :simple-union2) (type1 type2)
3499 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3500 ;; actually does the union for us. It might be a little fragile to
3501 ;; rely on it.
3502 (make-character-set-type
3503 (merge 'list
3504 (copy-alist (character-set-type-pairs type1))
3505 (copy-alist (character-set-type-pairs type2))
3506 #'< :key #'car)))
3508 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3509 ;; KLUDGE: brute force.
3511 (let (pairs)
3512 (dolist (pair1 (character-set-type-pairs type1)
3513 (make-character-set-type
3514 (sort pairs #'< :key #'car)))
3515 (dolist (pair2 (character-set-type-pairs type2))
3516 (cond
3517 ((<= (car pair1) (car pair2) (cdr pair1))
3518 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3519 ((<= (car pair2) (car pair1) (cdr pair2))
3520 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3522 (make-character-set-type
3523 (intersect-type-pairs
3524 (character-set-type-pairs type1)
3525 (character-set-type-pairs type2))))
3528 ;;; Intersect two ordered lists of pairs
3529 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3530 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3531 ;;; Each pair represents the integer interval start..end.
3533 (defun intersect-type-pairs (alist1 alist2)
3534 (if (and alist1 alist2)
3535 (let ((res nil)
3536 (pair1 (pop alist1))
3537 (pair2 (pop alist2)))
3538 (loop
3539 (when (> (car pair1) (car pair2))
3540 (rotatef pair1 pair2)
3541 (rotatef alist1 alist2))
3542 (let ((pair1-cdr (cdr pair1)))
3543 (cond
3544 ((> (car pair2) pair1-cdr)
3545 ;; No over lap -- discard pair1
3546 (unless alist1 (return))
3547 (setq pair1 (pop alist1)))
3548 ((<= (cdr pair2) pair1-cdr)
3549 (push (cons (car pair2) (cdr pair2)) res)
3550 (cond
3551 ((= (cdr pair2) pair1-cdr)
3552 (unless alist1 (return))
3553 (unless alist2 (return))
3554 (setq pair1 (pop alist1)
3555 pair2 (pop alist2)))
3556 (t ;; (< (cdr pair2) pair1-cdr)
3557 (unless alist2 (return))
3558 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3559 (setq pair2 (pop alist2)))))
3560 (t ;; (> (cdr pair2) (cdr pair1))
3561 (push (cons (car pair2) pair1-cdr) res)
3562 (unless alist1 (return))
3563 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3564 (setq pair1 (pop alist1))))))
3565 (nreverse res))
3566 nil))
3569 ;;; Return the type that describes all objects that are in X but not
3570 ;;; in Y. If we can't determine this type, then return NIL.
3572 ;;; For now, we only are clever dealing with union and member types.
3573 ;;; If either type is not a union type, then we pretend that it is a
3574 ;;; union of just one type. What we do is remove from X all the types
3575 ;;; that are a subtype any type in Y. If any type in X intersects with
3576 ;;; a type in Y but is not a subtype, then we give up.
3578 ;;; We must also special-case any member type that appears in the
3579 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3580 ;;; If Y has any members, we must be careful that none of those
3581 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3582 ;;; this case, since to compute that difference we would have to break
3583 ;;; the type from X into some collection of types that represents the
3584 ;;; type without that particular element. This seems too hairy to be
3585 ;;; worthwhile, given its low utility.
3586 (defun type-difference (x y)
3587 (if (and (numeric-type-p x) (numeric-type-p y))
3588 ;; Numeric types are easy. Are there any others we should handle like this?
3589 (type-intersection x (type-negation y))
3590 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3591 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3592 (collect ((res))
3593 (dolist (x-type x-types)
3594 (if (member-type-p x-type)
3595 (let ((xset (alloc-xset))
3596 (fp-zeroes nil))
3597 (mapc-member-type-members
3598 (lambda (elt)
3599 (multiple-value-bind (ok sure) (ctypep elt y)
3600 (unless sure
3601 (return-from type-difference nil))
3602 (unless ok
3603 (if (fp-zero-p elt)
3604 (pushnew elt fp-zeroes)
3605 (add-to-xset elt xset)))))
3606 x-type)
3607 (unless (and (xset-empty-p xset) (not fp-zeroes))
3608 (res (make-member-type xset fp-zeroes))))
3609 (dolist (y-type y-types (res x-type))
3610 (multiple-value-bind (val win) (csubtypep x-type y-type)
3611 (unless win (return-from type-difference nil))
3612 (when val (return))
3613 (when (types-equal-or-intersect x-type y-type)
3614 (return-from type-difference nil))))))
3615 (let ((y-mem (find-if #'member-type-p y-types)))
3616 (when y-mem
3617 (dolist (x-type x-types)
3618 (unless (member-type-p x-type)
3619 (mapc-member-type-members
3620 (lambda (member)
3621 (multiple-value-bind (ok sure) (ctypep member x-type)
3622 (when (or (not sure) ok)
3623 (return-from type-difference nil))))
3624 y-mem)))))
3625 (apply #'type-union (res))))))
3627 (!def-type-translator array ((:context context)
3628 &optional (element-type '*)
3629 (dimensions '*))
3630 (let ((eltype (if (eq element-type '*)
3631 *wild-type*
3632 (specifier-type-r context element-type))))
3633 (make-array-type (canonical-array-dimensions dimensions)
3634 :complexp :maybe
3635 :element-type eltype
3636 :specialized-element-type (%upgraded-array-element-type
3637 eltype))))
3639 (!def-type-translator simple-array ((:context context)
3640 &optional (element-type '*)
3641 (dimensions '*))
3642 (let ((eltype (if (eq element-type '*)
3643 *wild-type*
3644 (specifier-type-r context element-type))))
3645 (make-array-type (canonical-array-dimensions dimensions)
3646 :complexp nil
3647 :element-type eltype
3648 :specialized-element-type (%upgraded-array-element-type
3649 eltype))))
3651 ;;;; SIMD-PACK types
3652 #!+sb-simd-pack
3653 (progn
3654 (!define-type-class simd-pack :enumerable nil
3655 :might-contain-other-types nil)
3657 ;; Though this involves a recursive call to parser, parsing context need not
3658 ;; be passed down, because an unknown-type condition is an immediate failure.
3659 (!def-type-translator simd-pack (&optional (element-type-spec '*))
3660 (if (eql element-type-spec '*)
3661 (%make-simd-pack-type *simd-pack-element-types*)
3662 (make-simd-pack-type (single-value-specifier-type element-type-spec))))
3664 (!define-type-method (simd-pack :negate) (type)
3665 (let ((remaining (set-difference *simd-pack-element-types*
3666 (simd-pack-type-element-type type)))
3667 (not-simd-pack (make-negation-type (specifier-type 'simd-pack))))
3668 (if remaining
3669 (type-union not-simd-pack (%make-simd-pack-type remaining))
3670 not-simd-pack)))
3672 (!define-type-method (simd-pack :unparse) (type)
3673 (let ((eltypes (simd-pack-type-element-type type)))
3674 (cond ((equal eltypes *simd-pack-element-types*)
3675 'simd-pack)
3676 ((= 1 (length eltypes))
3677 `(simd-pack ,(first eltypes)))
3679 `(or ,@(mapcar (lambda (eltype)
3680 `(simd-pack ,eltype))
3681 eltypes))))))
3683 (!define-type-method (simd-pack :simple-=) (type1 type2)
3684 (declare (type simd-pack-type type1 type2))
3685 (null (set-exclusive-or (simd-pack-type-element-type type1)
3686 (simd-pack-type-element-type type2))))
3688 (!define-type-method (simd-pack :simple-subtypep) (type1 type2)
3689 (declare (type simd-pack-type type1 type2))
3690 (subsetp (simd-pack-type-element-type type1)
3691 (simd-pack-type-element-type type2)))
3693 (!define-type-method (simd-pack :simple-union2) (type1 type2)
3694 (declare (type simd-pack-type type1 type2))
3695 (%make-simd-pack-type (union (simd-pack-type-element-type type1)
3696 (simd-pack-type-element-type type2))))
3698 (!define-type-method (simd-pack :simple-intersection2) (type1 type2)
3699 (declare (type simd-pack-type type1 type2))
3700 (let ((intersection (intersection (simd-pack-type-element-type type1)
3701 (simd-pack-type-element-type type2))))
3702 (if intersection
3703 (%make-simd-pack-type intersection)
3704 *empty-type*)))
3706 (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
3708 ;;;; utilities shared between cross-compiler and target system
3710 ;;; Does the type derived from compilation of an actual function
3711 ;;; definition satisfy declarations of a function's type?
3712 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3713 (declare (type ctype defined-ftype declared-ftype))
3714 (flet ((is-built-in-class-function-p (ctype)
3715 (and (built-in-classoid-p ctype)
3716 (eq (built-in-classoid-name ctype) 'function))))
3717 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3718 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3719 (is-built-in-class-function-p declared-ftype)
3720 ;; In that case, any definition satisfies the declaration.
3722 (;; It's not clear whether or how DEFINED-FTYPE might be
3723 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3724 ;; invalid, so let's handle that case too, just in case.
3725 (is-built-in-class-function-p defined-ftype)
3726 ;; No matter what DECLARED-FTYPE might be, we can't prove
3727 ;; that an object of type FUNCTION doesn't satisfy it, so
3728 ;; we return success no matter what.
3730 (;; Otherwise both of them must be FUN-TYPE objects.
3732 ;; FIXME: For now we only check compatibility of the return
3733 ;; type, not argument types, and we don't even check the
3734 ;; return type very precisely (as per bug 94a). It would be
3735 ;; good to do a better job. Perhaps to check the
3736 ;; compatibility of the arguments, we should (1) redo
3737 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3738 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3739 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3740 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3741 (values-types-equal-or-intersect
3742 (fun-type-returns defined-ftype)
3743 (fun-type-returns declared-ftype))))))
3745 ;;; This messy case of CTYPE for NUMBER is shared between the
3746 ;;; cross-compiler and the target system.
3747 (defun ctype-of-number (x)
3748 (let ((num (if (complexp x) (realpart x) x)))
3749 (multiple-value-bind (complexp low high)
3750 (if (complexp x)
3751 (let ((imag (imagpart x)))
3752 (values :complex (min num imag) (max num imag)))
3753 (values :real num num))
3754 (make-numeric-type :class (etypecase num
3755 (integer (if (complexp x)
3756 (if (integerp (imagpart x))
3757 'integer
3758 'rational)
3759 'integer))
3760 (rational 'rational)
3761 (float 'float))
3762 :format (and (floatp num) (float-format-name num))
3763 :complexp complexp
3764 :low low
3765 :high high))))
3767 ;;; The following function is a generic driver for approximating
3768 ;;; set-valued functions over types. Putting this here because it'll
3769 ;;; probably be useful for a lot of type analyses.
3771 ;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
3773 ;;; We compute an over or under-approximation of the set
3775 ;;; F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
3777 ;;; via set-valued approximations of f, OVER and UNDER.
3779 ;;; These functions must have the property that
3780 ;;; Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
3781 ;;; Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
3783 ;;; The driver is also parameterised over the finite set
3784 ;;; representation.
3786 ;;; Union, intersection and difference are binary functions to compute
3787 ;;; set union, intersection and difference. Top and bottom are the
3788 ;;; concrete representations for the universe and empty sets; we never
3789 ;;; call the set functions on top or bottom, so it's safe to use
3790 ;;; special values there.
3792 ;;; Arguments:
3794 ;;; TYPE: the ctype for which we wish to approximate F(TYPE)
3795 ;;; OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
3796 ;;; You usually want T.
3797 ;;; UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
3798 ;;; Conform to cl::(union/intersection/set-difference). Passing NIL will
3799 ;;; disable some cleverness and result in quicker computation of coarser
3800 ;;; approximations. However, passing difference without union and intersection
3801 ;;; will probably not end well.
3802 ;;; TOP/BOTTOM: concrete representation of the universe and empty set. Finite
3803 ;;; set operations are never called on TOP/BOTTOM, so it's safe to use special
3804 ;;; values there.
3805 ;;; OVER/UNDER: the set-valued approximations of F.
3807 ;;; Implementation details.
3809 ;;; It's a straightforward walk down the type.
3810 ;;; Union types -> take the union of children, intersection ->
3811 ;;; intersect. There is some complication for negation types: we must
3812 ;;; not only negate the result, but also flip from overapproximating
3813 ;;; to underapproximating in the children (or vice versa).
3815 ;;; We represent sets as a pair of (negate-p finite-set) in order to
3816 ;;; support negation types.
3818 (declaim (inline generic-abstract-type-function))
3819 (defun generic-abstract-type-function
3820 (type overapproximate
3821 union intersection difference
3822 top bottom
3823 over under)
3824 (labels ((union* (x y)
3825 ;; wrappers to avoid calling union/intersection on
3826 ;; top/bottom.
3827 (cond ((or (eql x top)
3828 (eql y top))
3829 top)
3830 ((eql x bottom) y)
3831 ((eql y bottom) x)
3833 (funcall union x y))))
3834 (intersection* (x y)
3835 (cond ((or (eql x bottom)
3836 (eql y bottom))
3837 bottom)
3838 ((eql x top) y)
3839 ((eql y top) x)
3841 (funcall intersection x y))))
3842 (unite (not-x-p x not-y-p y)
3843 ;; if we only have one negated set, it's x.
3844 (when not-y-p
3845 (rotatef not-x-p not-y-p)
3846 (rotatef x y))
3847 (cond ((and not-x-p not-y-p)
3848 ;; -x \/ -y = -(x /\ y)
3849 (normalize t (intersection* x y)))
3850 (not-x-p
3851 ;; -x \/ y = -(x \ y)
3852 (cond ((eql x top)
3853 (values nil y))
3854 ((or (eql y top)
3855 (eql x bottom))
3856 (values nil top))
3857 ((eql y bottom)
3858 (values t x))
3860 (normalize t
3861 (funcall difference x y)))))
3863 (values nil (union* x y)))))
3864 (intersect (not-x-p x not-y-p y)
3865 (when not-y-p
3866 (rotatef not-x-p not-y-p)
3867 (rotatef x y))
3868 (cond ((and not-x-p not-y-p)
3869 ;; -x /\ -y = -(x \/ y)
3870 (normalize t (union* x y)))
3871 (not-x-p
3872 ;; -x /\ y = y \ x
3873 (cond ((or (eql x top) (eql y bottom))
3874 (values nil bottom))
3875 ((eql x bottom)
3876 (values nil y))
3877 ((eql y top)
3878 (values t x))
3880 (values nil (funcall difference y x)))))
3882 (values nil (intersection* x y)))))
3883 (normalize (not-x-p x)
3884 ;; catch some easy cases of redundant negation.
3885 (cond ((not not-x-p)
3886 (values nil x))
3887 ((eql x top)
3888 bottom)
3889 ((eql x bottom)
3890 top)
3892 (values t x))))
3893 (default (overapproximate)
3894 ;; default value
3895 (if overapproximate top bottom))
3896 (walk-union (types overapproximate)
3897 ;; Only do this if union is provided.
3898 (unless union
3899 (return-from walk-union (default overapproximate)))
3900 ;; Reduce/union from bottom.
3901 (let ((not-acc-p nil)
3902 (acc bottom))
3903 (dolist (type types (values not-acc-p acc))
3904 (multiple-value-bind (not x)
3905 (walk type overapproximate)
3906 (setf (values not-acc-p acc)
3907 (unite not-acc-p acc not x)))
3908 ;; Early exit on top set.
3909 (when (and (eql acc top)
3910 (not not-acc-p))
3911 (return (values nil top))))))
3912 (walk-intersection (types overapproximate)
3913 ;; Skip if we don't know how to intersect sets
3914 (unless intersection
3915 (return-from walk-intersection (default overapproximate)))
3916 ;; Reduce/intersection from top
3917 (let ((not-acc-p nil)
3918 (acc top))
3919 (dolist (type types (values not-acc-p acc))
3920 (multiple-value-bind (not x)
3921 (walk type overapproximate)
3922 (setf (values not-acc-p acc)
3923 (intersect not-acc-p acc not x)))
3924 (when (and (eql acc bottom)
3925 (not not-acc-p))
3926 (return (values nil bottom))))))
3927 (walk-negate (type overapproximate)
3928 ;; Don't introduce negated types if we don't know how to
3929 ;; subtract sets.
3930 (unless difference
3931 (return-from walk-negate (default overapproximate)))
3932 (multiple-value-bind (not x)
3933 (walk type (not overapproximate))
3934 (normalize (not not) x)))
3935 (walk (type overapproximate)
3936 (typecase type
3937 (union-type
3938 (walk-union (union-type-types type) overapproximate))
3939 ((cons (member or union))
3940 (walk-union (rest type) overapproximate))
3941 (intersection-type
3942 (walk-intersection (intersection-type-types type) overapproximate))
3943 ((cons (member and intersection))
3944 (walk-intersection (rest type) overapproximate))
3945 (negation-type
3946 (walk-negate (negation-type-type type) overapproximate))
3947 ((cons (eql not))
3948 (walk-negate (second type) overapproximate))
3950 (values nil
3951 (if overapproximate
3952 (if over
3953 (funcall over type)
3954 (default t))
3955 (if under
3956 (funcall under type)
3957 (default nil))))))))
3958 (multiple-value-call #'normalize (walk type overapproximate))))
3959 (declaim (notinline generic-abstract-type-function))
3961 ;;; Standard list representation of sets. Use CL:* for the universe.
3962 (defun list-abstract-type-function (type over &key under (overapproximate t))
3963 (declare (inline generic-abstract-type-function))
3964 (generic-abstract-type-function
3965 type overapproximate
3966 #'union #'intersection #'set-difference
3967 '* nil
3968 over under))
3970 (!defun-from-collected-cold-init-forms !late-type-cold-init)
3972 (/show0 "late-type.lisp end of file")