1 ;;;; arithmetic tests with no side effects
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; While most of SBCL is derived from the CMU CL system, the test
7 ;;;; files (like this one) were written from scratch after the fork
10 ;;;; This software is in the public domain and is provided with
11 ;;;; absolutely no warranty. See the COPYING and CREDITS files for
12 ;;;; more information.
14 (cl:in-package
:cl-user
)
16 ;;; Once upon a time, in the process of porting CMUCL's SPARC backend
17 ;;; to SBCL, multiplications were excitingly broken. While it's
18 ;;; unlikely that anything with such fundamental arithmetic errors as
19 ;;; these are going to get this far, it's probably worth checking.
20 (macrolet ((test (op res1 res2
)
22 (assert (= (,op
4 2) ,res1
))
23 (assert (= (,op
2 4) ,res2
))
24 (assert (= (funcall (compile nil
'(lambda (x y
) (,op x y
))) 4 2)
26 (assert (= (funcall (compile nil
'(lambda (x y
) (,op x y
))) 2 4)
34 ;;; In a bug reported by Wolfhard Buss on cmucl-imp 2002-06-18 (BUG
35 ;;; 184), sbcl didn't catch all divisions by zero, notably divisions
36 ;;; of bignums and ratios by 0. Fixed in sbcl-0.7.6.13.
37 (assert-error (/ 2/3 0) division-by-zero
)
38 (assert-error (/ (1+ most-positive-fixnum
) 0) division-by-zero
)
40 ;;; In a bug reported by Raymond Toy on cmucl-imp 2002-07-18, (COERCE
41 ;;; <RATIONAL> '(COMPLEX FLOAT)) was failing to return a complex
42 ;;; float; a patch was given by Wolfhard Buss cmucl-imp 2002-07-19.
43 (assert (= (coerce 1 '(complex float
)) #c
(1.0
0.0)))
44 (assert (= (coerce 1/2 '(complex float
)) #c
(0.5
0.0)))
45 (assert (= (coerce 1.0d0
'(complex float
)) #c
(1.0d0
0.0d0
)))
47 ;;; (COERCE #c(<RATIONAL> <RATIONAL>) '(complex float)) resulted in
48 ;;; an error up to 0.8.17.31
49 (assert (= (coerce #c
(1 2) '(complex float
)) #c
(1.0
2.0)))
51 ;;; COERCE also sometimes failed to verify that a particular coercion
52 ;;; was possible (in particular coercing rationals to bounded float
54 (assert-error (coerce 1 '(float 2.0 3.0)) type-error
)
55 (assert-error (coerce 1 '(single-float -
1.0 0.0)) type-error
)
56 (assert (eql (coerce 1 '(single-float -
1.0 2.0)) 1.0))
58 ;;; ANSI says MIN and MAX should signal TYPE-ERROR if any argument
59 ;;; isn't REAL. SBCL 0.7.7 didn't in the 1-arg case. (reported as a
60 ;;; bug in CMU CL on #lisp IRC by lrasinen 2002-09-01)
61 (assert (null (ignore-errors (min '(1 2 3)))))
62 (assert (= (min -
1) -
1))
63 (assert (null (ignore-errors (min 1 #(1 2 3)))))
64 (assert (= (min 10 11) 10))
65 (assert (null (ignore-errors (min (find-package "CL") -
5.0))))
66 (assert (= (min 5.0 -
3) -
3))
67 (assert (null (ignore-errors (max #c
(4 3)))))
68 (assert (= (max 0) 0))
69 (assert (null (ignore-errors (max "MIX" 3))))
70 (assert (= (max -
1 10.0) 10.0))
71 (assert (null (ignore-errors (max 3 #'max
))))
72 (assert (= (max -
3 0) 0))
74 (with-test (:name
:numeric-inequality-
&rest-arguments
)
75 (dolist (f '(= < <= > >=))
77 (assert-error (funcall f
'feep
) type-error
)
79 ;; = accepts complex numbers
80 (assert-error (funcall f
#c
(0s0 1s0
)) type-error
))
82 (assert-error (funcall f
3 'feep
) type-error
)
83 (assert-error (funcall f
'feep
3) type-error
)
85 (assert-error (funcall f
0 0 'feep
) type-error
)
86 (assert-error (funcall f
0 1 'feep
) type-error
)
87 (assert-error (funcall f
1 0 'feep
) type-error
)
89 (assert-error (funcall f
0 0 0 'feep
) type-error
))
90 ;; Also MIN,MAX operate only on REAL
91 (dolist (f '(min max
))
92 (assert-error (funcall f
#c
(1s0 -
2s0
)) type-error
)))
94 ;;; (CEILING x 2^k) was optimized incorrectly
95 (loop for divisor in
'(-4 4)
96 for ceiler
= (compile nil
`(lambda (x)
98 (declare (optimize (speed 3)))
99 (ceiling x
,divisor
)))
100 do
(loop for i from -
5 to
5
101 for exact-q
= (/ i divisor
)
102 do
(multiple-value-bind (q r
)
104 (assert (= (+ (* q divisor
) r
) i
))
105 (assert (<= exact-q q
))
106 (assert (< q
(1+ exact-q
))))))
108 ;;; (TRUNCATE x 2^k) was optimized incorrectly
109 (loop for divisor in
'(-4 4)
110 for truncater
= (compile nil
`(lambda (x)
112 (declare (optimize (speed 3)))
113 (truncate x
,divisor
)))
114 do
(loop for i from -
9 to
9
115 for exact-q
= (/ i divisor
)
116 do
(multiple-value-bind (q r
)
117 (funcall truncater i
)
118 (assert (= (+ (* q divisor
) r
) i
))
119 (assert (<= (abs q
) (abs exact-q
)))
120 (assert (< (abs exact-q
) (1+ (abs q
)))))))
122 ;;; CEILING had a corner case, spotted by Paul Dietz
123 (assert (= (ceiling most-negative-fixnum
(1+ most-positive-fixnum
)) -
1))
125 ;;; give any optimizers of constant multiplication a light testing.
126 ;;; 100 may seem low, but (a) it caught CSR's initial errors, and (b)
127 ;;; before checking in, CSR tested with 10000. So one hundred
128 ;;; checkins later, we'll have doubled the coverage.
130 (let* ((x (random most-positive-fixnum
))
133 (let ((fn (handler-bind ((sb-ext:compiler-note
135 (when (<= x3 most-positive-fixnum
)
139 (declare (optimize speed
) (type (integer 0 3) y
))
141 (unless (and (= (funcall fn
0) 0)
143 (= (funcall fn
2) x2
)
144 (= (funcall fn
3) x3
))
145 (error "bad results for ~D" x
)))))
147 ;;; Bugs reported by Paul Dietz:
149 ;;; (GCD 0 x) must return (abs x)
150 (dolist (x (list -
10 (* 3 most-negative-fixnum
)))
151 (assert (= (gcd 0 x
) (abs x
))))
152 ;;; LCM returns a non-negative number
153 (assert (= (lcm 4 -
10) 20))
154 (assert (= (lcm 0 0) 0))
156 ;;; PPC bignum arithmetic bug:
157 (multiple-value-bind (quo rem
)
158 (truncate 291351647815394962053040658028983955 10000000000000000000000000)
159 (assert (= quo
29135164781))
160 (assert (= rem
5394962053040658028983955)))
164 (compile nil
'(lambda (x) (declare (bit x
)) (+ x
#xf0000000
)))
168 ;;; LOGBITP on bignums:
169 (dolist (x '(((1+ most-positive-fixnum
) 1 nil
)
170 ((1+ most-positive-fixnum
) -
1 t
)
171 ((1+ most-positive-fixnum
) (1+ most-positive-fixnum
) nil
)
172 ((1+ most-positive-fixnum
) (1- most-negative-fixnum
) t
)
173 (1 (ash most-negative-fixnum
1) nil
)
174 (#.
(- sb-vm
:n-word-bits sb-vm
:n-fixnum-tag-bits
1) most-negative-fixnum t
)
175 (#.
(1+ (- sb-vm
:n-word-bits sb-vm
:n-fixnum-tag-bits
1)) (ash most-negative-fixnum
1) t
)
176 (#.
(+ 2 (- sb-vm
:n-word-bits sb-vm
:n-fixnum-tag-bits
1)) (ash most-negative-fixnum
1) t
)
177 (#.
(+ sb-vm
:n-word-bits
32) (ash most-negative-fixnum
#.
(+ 32 sb-vm
:n-fixnum-tag-bits
2)) nil
)
178 (#.
(+ sb-vm
:n-word-bits
33) (ash most-negative-fixnum
#.
(+ 32 sb-vm
:n-fixnum-tag-bits
2)) t
)))
179 (destructuring-bind (index int result
) x
180 (assert (eq (eval `(logbitp ,index
,int
)) result
))))
182 ;;; off-by-1 type inference error for %DPB and %DEPOSIT-FIELD:
183 (let ((f (compile nil
'(lambda (b)
184 (integer-length (dpb b
(byte 4 28) -
1005))))))
185 (assert (= (funcall f
1230070) 32)))
186 (let ((f (compile nil
'(lambda (b)
187 (integer-length (deposit-field b
(byte 4 28) -
1005))))))
188 (assert (= (funcall f
1230070) 32)))
190 ;;; type inference leading to an internal compiler error:
191 (let ((f (compile nil
'(lambda (x)
192 (declare (type fixnum x
))
193 (ldb (byte 0 0) x
)))))
194 (assert (= (funcall f
1) 0))
195 (assert (= (funcall f most-positive-fixnum
) 0))
196 (assert (= (funcall f -
1) 0)))
198 ;;; Alpha bignum arithmetic bug:
199 (assert (= (* 966082078641 419216044685) 404997107848943140073085))
201 ;;; Alpha smallnum arithmetic bug:
202 (assert (= (ash -
129876 -
1026) -
1))
204 ;;; Alpha middlenum (yes, really! Affecting numbers between 2^32 and
205 ;;; 2^64 :) arithmetic bug
206 (let ((fn (compile nil
'(LAMBDA (A B C D
)
207 (DECLARE (TYPE (INTEGER -
1621 -
513) A
)
208 (TYPE (INTEGER -
3 34163) B
)
209 (TYPE (INTEGER -
9485132993 81272960) C
)
210 (TYPE (INTEGER -
255340814 519943) D
)
212 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
213 (TRUNCATE C
(MIN -
100 4149605))))))
214 (assert (= (funcall fn -
1332 5864 -
6963328729 -
43789079) 69633287)))
216 ;;; Here's another fantastic Alpha backend bug: the code to load
217 ;;; immediate 64-bit constants into a register was wrong.
218 (let ((fn (compile nil
'(LAMBDA (A B C D
)
219 (DECLARE (TYPE (INTEGER -
3563 2733564) A
)
220 (TYPE (INTEGER -
548947 7159) B
)
221 (TYPE (INTEGER -
19 0) C
)
222 (TYPE (INTEGER -
2546009 0) D
)
224 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
226 ((89 125 16) (ASH A
(MIN 18 -
706)))
227 (T (DPB -
3 (BYTE 30 30) -
1)))))))
228 (assert (= (funcall fn
1227072 -
529823 -
18 -
792831) -
2147483649)))
230 ;;; ASH of a negative bignum by a bignum count would erroneously
231 ;;; return 0 prior to sbcl-0.8.4.4
232 (assert (= (ash (1- most-negative-fixnum
) (1- most-negative-fixnum
)) -
1))
234 ;;; Whoops. Too much optimization in division operators for 0
236 (macrolet ((frob (name)
237 `(let ((fn (compile nil
'(lambda (x)
238 (declare (optimize speed
) (fixnum x
))
240 (assert-error (funcall fn
1) division-by-zero
))))
248 ;; Check that the logic in SB-KERNEL::BASIC-COMPARE for doing fixnum/float
249 ;; comparisons without rationalizing the floats still gives the right anwers
250 ;; in the edge cases (had a fencepost error).
251 (macrolet ((test (range type sign
)
254 (start (- ,(find-symbol (format nil
255 "MOST-~A-EXACTLY-~A-FIXNUM"
259 (dotimes (i (1+ (* ,range
2)))
260 (let* ((x (+ start i
))
261 (y (coerce x
',type
)))
266 (dolist (op '(< <= = >= >))
267 (unless (eq (funcall op i f
)
268 (funcall op i
(rationalize f
)))
269 (error "(not (eq (~a ~a ~f) (~a ~a ~a)))~%"
271 op i
(rationalize f
)))
272 (unless (eq (funcall op f i
)
273 (funcall op
(rationalize f
) i
))
274 (error "(not (eq (~a ~f ~a) (~a ~a ~a)))~%"
276 op
(rationalize f
) i
))))))))
277 (test 32 double-float negative
)
278 (test 32 double-float positive
)
279 (test 32 single-float negative
)
280 (test 32 single-float positive
))
282 ;; x86-64 sign-extension bug found using pfdietz's random tester.
285 (declare (notinline logxor
))
286 (min (logxor 0 0 0 286142502))))))
288 ;; Small bugs in LOGCOUNT can still allow SBCL to be built and thus go
289 ;; unnoticed, so check more thoroughly here.
290 (with-test (:name
:logcount
)
292 (unless (= (logcount x
) n
)
293 (error "logcount failure for ~a" x
))))
294 ;; Test with some patterns with well known number of ones/zeroes ...
300 ;; ... and with some random integers of varying length.
301 (flet ((test-logcount (x)
302 (declare (type integer x
))
303 (do ((result 0 (1+ result
))
308 ((zerop x
) result
))))
310 (let ((x (random (ash 1 i
))))
311 (test x
(test-logcount x
))
312 (test (- x
) (test-logcount (- x
))))))))
314 ;; 1.0 had a broken ATANH on win32
315 (with-test (:name
:atanh
)
316 (assert (= (atanh 0.9d0
) 1.4722194895832204d0
)))
318 ;; Test some cases of integer operations with constant arguments
319 (with-test (:name
:constant-integers
)
320 (labels ((test-forms (op x y header
&rest forms
)
321 (let ((val (funcall op x y
)))
323 (let ((new-val (funcall (compile nil
(append header form
)) x y
)))
324 (unless (eql val new-val
)
325 (error "~S /= ~S: ~S ~S ~S~%" val new-val
(append header form
) x y
))))))
326 (test-case (op x y type
)
327 (test-forms op x y
`(lambda (x y
&aux z
)
328 (declare (type ,type x y
)
331 (optimize speed
(safety 0))))
333 `((setf z
(,op x
,y
))
336 `((values (,op x
,y
) x
))
338 `((setf z
(,op
,x y
))
341 `((values (,op
,x y
) y
))
350 (values (,op x
,y
) x
))
358 (values (,op
,x y
) y
))))
360 (let ((ub `(unsigned-byte ,sb-vm
:n-word-bits
))
361 (sb `(signed-byte ,sb-vm
:n-word-bits
)))
366 (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum
)
367 (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub
)
368 (,(- -
2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb
)
369 ,@(when (> sb-vm
:n-word-bits
32)
370 `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum
)
371 (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub
)
372 (,(- -
2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb
)
373 (,(ash 1 40) ,(ash 1 39) fixnum
)
374 (,(ash 1 40) ,(ash 1 39) ,ub
)
375 (,(ash 1 40) ,(ash 1 39) ,sb
)))
376 ;; fixnums that can be represented as 32-bit
377 ;; sign-extended immediates on x86-64
378 ,@(when (and (> sb-vm
:n-word-bits
32)
379 (< sb-vm
:n-fixnum-tag-bits
3))
380 `((,(1+ (ash 1 (- 31 sb-vm
:n-fixnum-tag-bits
)))
381 ,(1- (ash 1 (- 32 sb-vm
:n-fixnum-tag-bits
)))
384 (test-case op x y type
)
385 (test-case op x x type
)))))
386 (mapc #'test-op
'(+ -
* truncate
391 ;; GCD used to sometimes return negative values. The following did, on 32 bit
393 (with-test (:name
:gcd
)
395 (assert (plusp (gcd 20286123923750474264166990598656
396 680564733841876926926749214863536422912)))
398 (assert (plusp (gcd 2596102012663483082521318626691873
399 2596148429267413814265248164610048))))
401 (with-test (:name
:expt-zero-zero
)
402 ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0)
404 (assert-error (expt 0.0 0.0) sb-int
:arguments-out-of-domain-error
)
405 (assert-error (expt 0 0.0) sb-int
:arguments-out-of-domain-error
)
406 (assert (eql (expt 0.0 0) 1.0)))
408 (with-test (:name
:multiple-constant-folding
)
409 (let ((*random-state
* (make-random-state t
)))
412 (loop repeat
(1+ (random 12))
413 do
(if (zerop (random 2))
414 (let ((var (gensym)))
417 (push (- (random 21) 10) args
)))
418 (values args vars
))))
419 (dolist (op '(+ * logior logxor logand logeqv gcd lcm -
/))
421 do
(multiple-value-bind (args vars
) (make-args)
422 (let ((fast (compile nil
`(lambda ,vars
424 (slow (compile nil
`(lambda ,vars
425 (declare (notinline ,op
))
428 do
(let* ((call-args (loop repeat
(length vars
)
429 collect
(- (random 21) 10)))
430 (fast-result (handler-case
431 (apply fast call-args
)
432 (division-by-zero () :div0
)))
433 (slow-result (handler-case
434 (apply slow call-args
)
435 (division-by-zero () :div0
))))
436 (if (eql fast-result slow-result
)
437 (print (list :ok
`(,op
,@args
) :=> fast-result
))
438 (error "oops: ~S, ~S" args call-args
)))))))))))
440 ;;; (TRUNCATE <unsigned-word> <constant unsigned-word>) is optimized
441 ;;; to use multiplication instead of division. This propagates to FLOOR,
442 ;;; MOD and REM. Test that the transform is indeed triggered and test
443 ;;; several cases for correct results.
444 (with-test (:name
(:integer-division-using-multiplication
:used
)
445 :skipped-on
'(not (or :x86-64
:x86
)))
446 (dolist (fun '(truncate floor ceiling mod rem
))
447 (let* ((foo (compile nil
`(lambda (x)
448 (declare (optimize (speed 3)
450 (compilation-speed 0))
452 ,sb-vm
:n-word-bits
) x
))
454 (disassembly (with-output-to-string (s)
455 (disassemble foo
:stream s
))))
456 ;; KLUDGE copied from test :float-division-using-exact-reciprocal
457 ;; in compiler.pure.lisp.
458 (assert (and (not (search "DIV" disassembly
))
459 (search "MUL" disassembly
))))))
461 (with-test (:name
(:integer-division-using-multiplication
:correctness
))
462 (let ((*random-state
* (make-random-state t
)))
463 (dolist (dividend-type `((unsigned-byte ,sb-vm
:n-word-bits
)
464 (and fixnum unsigned-byte
)
465 (integer 10000 10100)))
466 (dolist (divisor `(;; Some special cases from the paper
470 ,most-positive-fixnum
471 ,(1- (expt 2 sb-vm
:n-word-bits
))
472 ;; Some random values
473 ,@(loop for i from
8 to sb-vm
:n-word-bits
474 for r
= (random (expt 2 i
))
475 ;; We don't want 0, 1 and powers of 2.
476 when
(not (zerop (logand r
(1- r
))))
478 (dolist (fun '(truncate ceiling floor mod rem
))
479 (let ((foo (compile nil
`(lambda (x)
480 (declare (optimize (speed 3)
482 (compilation-speed 0))
483 (type ,dividend-type x
))
484 (,fun x
,divisor
)))))
485 (dolist (dividend `(0 1 ,most-positive-fixnum
486 ,(1- divisor
) ,divisor
487 ,(1- (* divisor
2)) ,(* divisor
2)
489 collect
(+ 10000 (random 101)))
490 ,@(loop for i from
4 to sb-vm
:n-word-bits
491 for pow
= (expt 2 (1- i
))
492 for r
= (+ pow
(random pow
))
494 (when (typep dividend dividend-type
)
495 (multiple-value-bind (q1 r1
)
496 (funcall foo dividend
)
497 (multiple-value-bind (q2 r2
)
498 (funcall fun dividend divisor
)
499 (unless (and (= q1 q2
)
501 (error "bad results for ~s with dividend type ~s"
502 (list fun dividend divisor
)
503 dividend-type
))))))))))))
505 ;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits
506 ;; for > 61 bit fixnums.
507 (with-test (:name
:logbitp-wide-fixnum
)
508 (assert (not (logbitp (1- (integer-length most-positive-fixnum
))
509 most-negative-fixnum
))))
511 ;; EXPT dispatches in a complicated way on the types of its arguments.
512 ;; Check that all possible combinations are covered.
513 (with-test (:name
(:expt
:argument-type-combinations
))
514 (let ((numbers '(2 ; fixnum
518 #c
(3/5 1/7) ; complex rational
519 #c
(1.2f0
1.3f0
) ; complex single-float
520 #c
(2.0d0
3.0d0
))) ; complex double-float
523 (dolist (base (cons bignum numbers
))
524 (dolist (power numbers
)
525 (format t
"(expt ~s ~s) => " base power
)
526 (let ((result (expt base power
)))
527 (format t
"~s~%" result
)
528 (push result results
))))
529 (assert (every #'numberp results
))))
531 (with-test (:name
:bug-741564
)
532 ;; The bug was that in (expt <fixnum> <(complex double-float)>) the
533 ;; calculation was partially done only to single-float precision,
534 ;; making the complex double-float result too unprecise. Some other
535 ;; combinations of argument types were affected, too; test that all
536 ;; of them are good to double-float precision.
537 (labels ((nearly-equal-p (x y
)
538 "Are the arguments equal to nearly double-float precision?"
539 (declare (type double-float x y
))
540 (< (/ (abs (- x y
)) (abs y
))
541 (* double-float-epsilon
4))) ; Differences in the two least
542 ; significant mantissa bits
545 (and (nearly-equal-p (realpart x
) (realpart y
))
546 (nearly-equal-p (imagpart x
) (imagpart y
))))
547 (print-result (msg base power got expected
)
548 (format t
"~a (expt ~s ~s)~%got ~s~%expected ~s~%"
549 msg base power got expected
)))
551 (flet ((test (base power coerce-to-type
)
552 (let* ((got (expt base power
))
553 (expected (expt (coerce base coerce-to-type
) power
))
554 (result (test-complex got expected
)))
555 (print-result (if result
"Good:" "Bad:")
556 base power got expected
)
559 (dolist (base (list 2 ; fixnum
562 2.0f0
)) ; single-float
563 (let ((power #c
(-2.5d0 -
4.5d0
))) ; complex double-float
564 (test base power
'double-float
)))
565 (dolist (base (list #c
(2.0f0
3.0f0
) ; complex single-float
566 #c
(2 3) ; complex fixnum
567 (complex (expt 2 64) (expt 2 65))
569 #c
(3/5 1/7))) ; complex ratio
570 (dolist (power (list #c
(-2.5d0 -
4.5d0
) ; complex double-float
571 -
2.5d0
)) ; double-float
572 (test base power
'(complex double-float
)))))
574 (error "Number of broken combinations: ~a" n-broken
)))))
576 (with-test (:name
(:ldb
:rlwinm
:ppc
))
577 (let ((one (compile nil
'(lambda (a) (ldb (byte 9 27) a
))))
578 (two (compile nil
'(lambda (a)
579 (declare (type (integer -
3 57216651) a
))
580 (ldb (byte 9 27) a
)))))
581 (assert (= 0 (- (funcall one
10) (funcall two
10))))))
583 ;; The ISQRT implementation is sufficiently complicated that it should
585 (with-test (:name
:isqrt
)
589 (s2 (expt (1+ r
) 2)))
590 (unless (and (<= r2 x
)
592 (error "isqrt failure for ~a" x
))))
595 (let ((x2 (expt x
2)))
599 (test most-positive-fixnum
)
600 (test (1+ most-positive-fixnum
))
601 (loop for i from
1 to
200
602 for pow
= (expt 2 (1- i
))
603 for j
= (+ pow
(random pow
))
608 (tests (random (expt 2 (+ 1000 (random 10000))))))))
610 ;; bug 1026634 (reported by Eric Marsden on sbcl-devel)
611 (with-test (:name
:recursive-cut-to-width
)
612 (assert (eql (funcall
615 (declare (optimize (space 3))
616 (type (integer 12417236377505266230
617 12417274239874990070) x
))
618 (logand 8459622733968096971 x
)))
619 12417237222845306758)
620 2612793697039849090)))
622 ;; Also reported by Eric Marsden on sbcl-devel (2013-06-06)
623 (with-test (:name
:more-recursive-cut-to-width
)
624 (assert (eql (funcall
625 (compile nil
`(lambda (a b
)
626 (declare (optimize (speed 2) (safety 0)))
627 (logand (the (eql 16779072918521075607) a
)
628 (the (integer 21371810342718833225 21371810343571293860) b
))))
629 16779072918521075607 21371810342718833263)
630 2923729245085762055)))
632 (with-test (:name
:complicated-logand-identity
)
633 (loop for k from -
8 upto
8 do
634 (loop for min from -
16 upto
16 do
635 (loop for max from min upto
16 do
636 (let ((f (compile nil
`(lambda (x)
637 (declare (type (integer ,min
,max
) x
))
639 (loop for x from min upto max do
640 (assert (eql (logand x k
) (funcall f x
)))))))))
642 (with-test (:name
:complicated-logior-identity
)
643 (loop for k from -
8 upto
8 do
644 (loop for min from -
16 upto
16 do
645 (loop for max from min upto
16 do
646 (let ((f (compile nil
`(lambda (x)
647 (declare (type (integer ,min
,max
) x
))
649 (loop for x from min upto max do
650 (assert (eql (logior x k
) (funcall f x
)))))))))
652 (with-test (:name
:ldb-negative-index-no-error
)
654 (funcall (compile nil
656 (ldb (byte x y
) 100)))
659 (funcall (compile nil
661 (mask-field (byte x y
) 100)))
664 (funcall (compile nil
666 (dpb 0 (byte x y
) 100)))
669 (funcall (compile nil
671 (deposit-field 0 (byte x y
) 100)))
674 (with-test (:name
:setf-mask-field
)
678 (setf (mask-field (byte 2 0) a
) 1) a
))