Minor improvements in code/timer.lisp
[sbcl.git] / tests / arith.pure.lisp
blobae53a7dfd2982e9075bb60dba3c18b4e52ccf150
1 ;;;; arithmetic tests with no side effects
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; While most of SBCL is derived from the CMU CL system, the test
7 ;;;; files (like this one) were written from scratch after the fork
8 ;;;; from CMU CL.
9 ;;;;
10 ;;;; This software is in the public domain and is provided with
11 ;;;; absolutely no warranty. See the COPYING and CREDITS files for
12 ;;;; more information.
14 (cl:in-package :cl-user)
16 ;;; Once upon a time, in the process of porting CMUCL's SPARC backend
17 ;;; to SBCL, multiplications were excitingly broken. While it's
18 ;;; unlikely that anything with such fundamental arithmetic errors as
19 ;;; these are going to get this far, it's probably worth checking.
20 (macrolet ((test (op res1 res2)
21 `(progn
22 (assert (= (,op 4 2) ,res1))
23 (assert (= (,op 2 4) ,res2))
24 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 4 2)
25 ,res1))
26 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 2 4)
27 ,res2)))))
28 (test + 6 6)
29 (test - 2 -2)
30 (test * 8 8)
31 (test / 2 1/2)
32 (test expt 16 16))
34 ;;; In a bug reported by Wolfhard Buss on cmucl-imp 2002-06-18 (BUG
35 ;;; 184), sbcl didn't catch all divisions by zero, notably divisions
36 ;;; of bignums and ratios by 0. Fixed in sbcl-0.7.6.13.
37 (assert-error (/ 2/3 0) division-by-zero)
38 (assert-error (/ (1+ most-positive-fixnum) 0) division-by-zero)
40 ;;; In a bug reported by Raymond Toy on cmucl-imp 2002-07-18, (COERCE
41 ;;; <RATIONAL> '(COMPLEX FLOAT)) was failing to return a complex
42 ;;; float; a patch was given by Wolfhard Buss cmucl-imp 2002-07-19.
43 (assert (= (coerce 1 '(complex float)) #c(1.0 0.0)))
44 (assert (= (coerce 1/2 '(complex float)) #c(0.5 0.0)))
45 (assert (= (coerce 1.0d0 '(complex float)) #c(1.0d0 0.0d0)))
47 ;;; (COERCE #c(<RATIONAL> <RATIONAL>) '(complex float)) resulted in
48 ;;; an error up to 0.8.17.31
49 (assert (= (coerce #c(1 2) '(complex float)) #c(1.0 2.0)))
51 ;;; COERCE also sometimes failed to verify that a particular coercion
52 ;;; was possible (in particular coercing rationals to bounded float
53 ;;; types.
54 (assert-error (coerce 1 '(float 2.0 3.0)) type-error)
55 (assert-error (coerce 1 '(single-float -1.0 0.0)) type-error)
56 (assert (eql (coerce 1 '(single-float -1.0 2.0)) 1.0))
58 ;;; ANSI says MIN and MAX should signal TYPE-ERROR if any argument
59 ;;; isn't REAL. SBCL 0.7.7 didn't in the 1-arg case. (reported as a
60 ;;; bug in CMU CL on #lisp IRC by lrasinen 2002-09-01)
61 (assert (null (ignore-errors (min '(1 2 3)))))
62 (assert (= (min -1) -1))
63 (assert (null (ignore-errors (min 1 #(1 2 3)))))
64 (assert (= (min 10 11) 10))
65 (assert (null (ignore-errors (min (find-package "CL") -5.0))))
66 (assert (= (min 5.0 -3) -3))
67 (assert (null (ignore-errors (max #c(4 3)))))
68 (assert (= (max 0) 0))
69 (assert (null (ignore-errors (max "MIX" 3))))
70 (assert (= (max -1 10.0) 10.0))
71 (assert (null (ignore-errors (max 3 #'max))))
72 (assert (= (max -3 0) 0))
74 (with-test (:name :numeric-inequality-&rest-arguments)
75 (dolist (f '(= < <= > >=))
76 ;; 1 arg
77 (assert-error (funcall f 'feep) type-error)
78 (unless (eq f '=)
79 ;; = accepts complex numbers
80 (assert-error (funcall f #c(0s0 1s0)) type-error))
81 ;; 2 arg
82 (assert-error (funcall f 3 'feep) type-error)
83 (assert-error (funcall f 'feep 3) type-error)
84 ;; 3 arg
85 (assert-error (funcall f 0 0 'feep) type-error)
86 (assert-error (funcall f 0 1 'feep) type-error)
87 (assert-error (funcall f 1 0 'feep) type-error)
88 ;; 4 arg
89 (assert-error (funcall f 0 0 0 'feep) type-error))
90 ;; Also MIN,MAX operate only on REAL
91 (dolist (f '(min max))
92 (assert-error (funcall f #c(1s0 -2s0)) type-error)))
94 ;;; (CEILING x 2^k) was optimized incorrectly
95 (loop for divisor in '(-4 4)
96 for ceiler = (compile nil `(lambda (x)
97 (declare (fixnum x))
98 (declare (optimize (speed 3)))
99 (ceiling x ,divisor)))
100 do (loop for i from -5 to 5
101 for exact-q = (/ i divisor)
102 do (multiple-value-bind (q r)
103 (funcall ceiler i)
104 (assert (= (+ (* q divisor) r) i))
105 (assert (<= exact-q q))
106 (assert (< q (1+ exact-q))))))
108 ;;; (TRUNCATE x 2^k) was optimized incorrectly
109 (loop for divisor in '(-4 4)
110 for truncater = (compile nil `(lambda (x)
111 (declare (fixnum x))
112 (declare (optimize (speed 3)))
113 (truncate x ,divisor)))
114 do (loop for i from -9 to 9
115 for exact-q = (/ i divisor)
116 do (multiple-value-bind (q r)
117 (funcall truncater i)
118 (assert (= (+ (* q divisor) r) i))
119 (assert (<= (abs q) (abs exact-q)))
120 (assert (< (abs exact-q) (1+ (abs q)))))))
122 ;;; CEILING had a corner case, spotted by Paul Dietz
123 (assert (= (ceiling most-negative-fixnum (1+ most-positive-fixnum)) -1))
125 ;;; give any optimizers of constant multiplication a light testing.
126 ;;; 100 may seem low, but (a) it caught CSR's initial errors, and (b)
127 ;;; before checking in, CSR tested with 10000. So one hundred
128 ;;; checkins later, we'll have doubled the coverage.
129 (dotimes (i 100)
130 (let* ((x (random most-positive-fixnum))
131 (x2 (* x 2))
132 (x3 (* x 3)))
133 (let ((fn (handler-bind ((sb-ext:compiler-note
134 (lambda (c)
135 (when (<= x3 most-positive-fixnum)
136 (error c)))))
137 (compile nil
138 `(lambda (y)
139 (declare (optimize speed) (type (integer 0 3) y))
140 (* y ,x))))))
141 (unless (and (= (funcall fn 0) 0)
142 (= (funcall fn 1) x)
143 (= (funcall fn 2) x2)
144 (= (funcall fn 3) x3))
145 (error "bad results for ~D" x)))))
147 ;;; Bugs reported by Paul Dietz:
149 ;;; (GCD 0 x) must return (abs x)
150 (dolist (x (list -10 (* 3 most-negative-fixnum)))
151 (assert (= (gcd 0 x) (abs x))))
152 ;;; LCM returns a non-negative number
153 (assert (= (lcm 4 -10) 20))
154 (assert (= (lcm 0 0) 0))
156 ;;; PPC bignum arithmetic bug:
157 (multiple-value-bind (quo rem)
158 (truncate 291351647815394962053040658028983955 10000000000000000000000000)
159 (assert (= quo 29135164781))
160 (assert (= rem 5394962053040658028983955)))
162 ;;; x86 LEA bug:
163 (assert (= (funcall
164 (compile nil '(lambda (x) (declare (bit x)) (+ x #xf0000000)))
166 #xf0000001))
168 ;;; LOGBITP on bignums:
169 (dolist (x '(((1+ most-positive-fixnum) 1 nil)
170 ((1+ most-positive-fixnum) -1 t)
171 ((1+ most-positive-fixnum) (1+ most-positive-fixnum) nil)
172 ((1+ most-positive-fixnum) (1- most-negative-fixnum) t)
173 (1 (ash most-negative-fixnum 1) nil)
174 (#.(- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1) most-negative-fixnum t)
175 (#.(1+ (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
176 (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
177 (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) nil)
178 (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) t)))
179 (destructuring-bind (index int result) x
180 (assert (eq (eval `(logbitp ,index ,int)) result))))
182 ;;; off-by-1 type inference error for %DPB and %DEPOSIT-FIELD:
183 (let ((f (compile nil '(lambda (b)
184 (integer-length (dpb b (byte 4 28) -1005))))))
185 (assert (= (funcall f 1230070) 32)))
186 (let ((f (compile nil '(lambda (b)
187 (integer-length (deposit-field b (byte 4 28) -1005))))))
188 (assert (= (funcall f 1230070) 32)))
190 ;;; type inference leading to an internal compiler error:
191 (let ((f (compile nil '(lambda (x)
192 (declare (type fixnum x))
193 (ldb (byte 0 0) x)))))
194 (assert (= (funcall f 1) 0))
195 (assert (= (funcall f most-positive-fixnum) 0))
196 (assert (= (funcall f -1) 0)))
198 ;;; Alpha bignum arithmetic bug:
199 (assert (= (* 966082078641 419216044685) 404997107848943140073085))
201 ;;; Alpha smallnum arithmetic bug:
202 (assert (= (ash -129876 -1026) -1))
204 ;;; Alpha middlenum (yes, really! Affecting numbers between 2^32 and
205 ;;; 2^64 :) arithmetic bug
206 (let ((fn (compile nil '(LAMBDA (A B C D)
207 (DECLARE (TYPE (INTEGER -1621 -513) A)
208 (TYPE (INTEGER -3 34163) B)
209 (TYPE (INTEGER -9485132993 81272960) C)
210 (TYPE (INTEGER -255340814 519943) D)
211 (IGNORABLE A B C D)
212 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
213 (TRUNCATE C (MIN -100 4149605))))))
214 (assert (= (funcall fn -1332 5864 -6963328729 -43789079) 69633287)))
216 ;;; Here's another fantastic Alpha backend bug: the code to load
217 ;;; immediate 64-bit constants into a register was wrong.
218 (let ((fn (compile nil '(LAMBDA (A B C D)
219 (DECLARE (TYPE (INTEGER -3563 2733564) A)
220 (TYPE (INTEGER -548947 7159) B)
221 (TYPE (INTEGER -19 0) C)
222 (TYPE (INTEGER -2546009 0) D)
223 (IGNORABLE A B C D)
224 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
225 (CASE A
226 ((89 125 16) (ASH A (MIN 18 -706)))
227 (T (DPB -3 (BYTE 30 30) -1)))))))
228 (assert (= (funcall fn 1227072 -529823 -18 -792831) -2147483649)))
230 ;;; ASH of a negative bignum by a bignum count would erroneously
231 ;;; return 0 prior to sbcl-0.8.4.4
232 (assert (= (ash (1- most-negative-fixnum) (1- most-negative-fixnum)) -1))
234 ;;; Whoops. Too much optimization in division operators for 0
235 ;;; divisor.
236 (macrolet ((frob (name)
237 `(let ((fn (compile nil '(lambda (x)
238 (declare (optimize speed) (fixnum x))
239 (,name x 0)))))
240 (assert-error (funcall fn 1) division-by-zero))))
241 (frob mod)
242 (frob truncate)
243 (frob rem)
244 (frob /)
245 (frob floor)
246 (frob ceiling))
248 ;; Check that the logic in SB-KERNEL::BASIC-COMPARE for doing fixnum/float
249 ;; comparisons without rationalizing the floats still gives the right anwers
250 ;; in the edge cases (had a fencepost error).
251 (macrolet ((test (range type sign)
252 `(let (ints
253 floats
254 (start (- ,(find-symbol (format nil
255 "MOST-~A-EXACTLY-~A-FIXNUM"
256 sign type)
257 :sb-kernel)
258 ,range)))
259 (dotimes (i (1+ (* ,range 2)))
260 (let* ((x (+ start i))
261 (y (coerce x ',type)))
262 (push x ints)
263 (push y floats)))
264 (dolist (i ints)
265 (dolist (f floats)
266 (dolist (op '(< <= = >= >))
267 (unless (eq (funcall op i f)
268 (funcall op i (rationalize f)))
269 (error "(not (eq (~a ~a ~f) (~a ~a ~a)))~%"
270 op i f
271 op i (rationalize f)))
272 (unless (eq (funcall op f i)
273 (funcall op (rationalize f) i))
274 (error "(not (eq (~a ~f ~a) (~a ~a ~a)))~%"
275 op f i
276 op (rationalize f) i))))))))
277 (test 32 double-float negative)
278 (test 32 double-float positive)
279 (test 32 single-float negative)
280 (test 32 single-float positive))
282 ;; x86-64 sign-extension bug found using pfdietz's random tester.
283 (assert (= 286142502
284 (funcall (lambda ()
285 (declare (notinline logxor))
286 (min (logxor 0 0 0 286142502))))))
288 ;; Small bugs in LOGCOUNT can still allow SBCL to be built and thus go
289 ;; unnoticed, so check more thoroughly here.
290 (with-test (:name :logcount)
291 (flet ((test (x n)
292 (unless (= (logcount x) n)
293 (error "logcount failure for ~a" x))))
294 ;; Test with some patterns with well known number of ones/zeroes ...
295 (dotimes (i 128)
296 (let ((x (ash 1 i)))
297 (test x 1)
298 (test (- x) i)
299 (test (1- x) i)))
300 ;; ... and with some random integers of varying length.
301 (flet ((test-logcount (x)
302 (declare (type integer x))
303 (do ((result 0 (1+ result))
304 (x (if (minusp x)
305 (lognot x)
307 (logand x (1- x))))
308 ((zerop x) result))))
309 (dotimes (i 200)
310 (let ((x (random (ash 1 i))))
311 (test x (test-logcount x))
312 (test (- x) (test-logcount (- x))))))))
314 ;; 1.0 had a broken ATANH on win32
315 (with-test (:name :atanh)
316 (assert (= (atanh 0.9d0) 1.4722194895832204d0)))
318 ;; Test some cases of integer operations with constant arguments
319 (with-test (:name :constant-integers)
320 (labels ((test-forms (op x y header &rest forms)
321 (let ((val (funcall op x y)))
322 (dolist (form forms)
323 (let ((new-val (funcall (compile nil (append header form)) x y)))
324 (unless (eql val new-val)
325 (error "~S /= ~S: ~S ~S ~S~%" val new-val (append header form) x y))))))
326 (test-case (op x y type)
327 (test-forms op x y `(lambda (x y &aux z)
328 (declare (type ,type x y)
329 (ignorable x y z)
330 (notinline identity)
331 (optimize speed (safety 0))))
332 `((,op x ,y))
333 `((setf z (,op x ,y))
334 (identity x)
336 `((values (,op x ,y) x))
337 `((,op ,x y))
338 `((setf z (,op ,x y))
339 (identity y)
341 `((values (,op ,x y) y))
343 `((identity x)
344 (,op x ,y))
345 `((identity x)
346 (setf z (,op x ,y))
347 (identity x)
349 `((identity x)
350 (values (,op x ,y) x))
351 `((identity y)
352 (,op ,x y))
353 `((identity y)
354 (setf z (,op ,x y))
355 (identity y)
357 `((identity y)
358 (values (,op ,x y) y))))
359 (test-op (op)
360 (let ((ub `(unsigned-byte ,sb-vm:n-word-bits))
361 (sb `(signed-byte ,sb-vm:n-word-bits)))
362 (loop for (x y type)
363 in `((2 1 fixnum)
364 (2 1 ,ub)
365 (2 1 ,sb)
366 (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum)
367 (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub)
368 (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb)
369 ,@(when (> sb-vm:n-word-bits 32)
370 `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum)
371 (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub)
372 (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb)
373 (,(ash 1 40) ,(ash 1 39) fixnum)
374 (,(ash 1 40) ,(ash 1 39) ,ub)
375 (,(ash 1 40) ,(ash 1 39) ,sb)))
376 ;; fixnums that can be represented as 32-bit
377 ;; sign-extended immediates on x86-64
378 ,@(when (and (> sb-vm:n-word-bits 32)
379 (< sb-vm:n-fixnum-tag-bits 3))
380 `((,(1+ (ash 1 (- 31 sb-vm:n-fixnum-tag-bits)))
381 ,(1- (ash 1 (- 32 sb-vm:n-fixnum-tag-bits)))
382 fixnum))))
384 (test-case op x y type)
385 (test-case op x x type)))))
386 (mapc #'test-op '(+ - * truncate
387 < <= = >= >
389 eq))))
391 ;; GCD used to sometimes return negative values. The following did, on 32 bit
392 ;; builds.
393 (with-test (:name :gcd)
394 ;; from lp#413680
395 (assert (plusp (gcd 20286123923750474264166990598656
396 680564733841876926926749214863536422912)))
397 ;; from lp#516750
398 (assert (plusp (gcd 2596102012663483082521318626691873
399 2596148429267413814265248164610048))))
401 (with-test (:name :expt-zero-zero)
402 ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0)
403 ;; returns 1.0
404 (assert-error (expt 0.0 0.0) sb-int:arguments-out-of-domain-error)
405 (assert-error (expt 0 0.0) sb-int:arguments-out-of-domain-error)
406 (assert (eql (expt 0.0 0) 1.0)))
408 (with-test (:name :multiple-constant-folding)
409 (let ((*random-state* (make-random-state t)))
410 (flet ((make-args ()
411 (let (args vars)
412 (loop repeat (1+ (random 12))
413 do (if (zerop (random 2))
414 (let ((var (gensym)))
415 (push var args)
416 (push var vars))
417 (push (- (random 21) 10) args)))
418 (values args vars))))
419 (dolist (op '(+ * logior logxor logand logeqv gcd lcm - /))
420 (loop repeat 10
421 do (multiple-value-bind (args vars) (make-args)
422 (let ((fast (compile nil `(lambda ,vars
423 (,op ,@args))))
424 (slow (compile nil `(lambda ,vars
425 (declare (notinline ,op))
426 (,op ,@args)))))
427 (loop repeat 3
428 do (let* ((call-args (loop repeat (length vars)
429 collect (- (random 21) 10)))
430 (fast-result (handler-case
431 (apply fast call-args)
432 (division-by-zero () :div0)))
433 (slow-result (handler-case
434 (apply slow call-args)
435 (division-by-zero () :div0))))
436 (if (eql fast-result slow-result)
437 (print (list :ok `(,op ,@args) :=> fast-result))
438 (error "oops: ~S, ~S" args call-args)))))))))))
440 ;;; (TRUNCATE <unsigned-word> <constant unsigned-word>) is optimized
441 ;;; to use multiplication instead of division. This propagates to FLOOR,
442 ;;; MOD and REM. Test that the transform is indeed triggered and test
443 ;;; several cases for correct results.
444 (with-test (:name (:integer-division-using-multiplication :used)
445 :skipped-on '(not (or :x86-64 :x86)))
446 (dolist (fun '(truncate floor ceiling mod rem))
447 (let* ((foo (compile nil `(lambda (x)
448 (declare (optimize (speed 3)
449 (space 1)
450 (compilation-speed 0))
451 (type (unsigned-byte
452 ,sb-vm:n-word-bits) x))
453 (,fun x 9))))
454 (disassembly (with-output-to-string (s)
455 (disassemble foo :stream s))))
456 ;; KLUDGE copied from test :float-division-using-exact-reciprocal
457 ;; in compiler.pure.lisp.
458 (assert (and (not (search "DIV" disassembly))
459 (search "MUL" disassembly))))))
461 (with-test (:name (:integer-division-using-multiplication :correctness))
462 (let ((*random-state* (make-random-state t)))
463 (dolist (dividend-type `((unsigned-byte ,sb-vm:n-word-bits)
464 (and fixnum unsigned-byte)
465 (integer 10000 10100)))
466 (dolist (divisor `(;; Some special cases from the paper
467 7 10 14 641 274177
468 ;; Range extremes
470 ,most-positive-fixnum
471 ,(1- (expt 2 sb-vm:n-word-bits))
472 ;; Some random values
473 ,@(loop for i from 8 to sb-vm:n-word-bits
474 for r = (random (expt 2 i))
475 ;; We don't want 0, 1 and powers of 2.
476 when (not (zerop (logand r (1- r))))
477 collect r)))
478 (dolist (fun '(truncate ceiling floor mod rem))
479 (let ((foo (compile nil `(lambda (x)
480 (declare (optimize (speed 3)
481 (space 1)
482 (compilation-speed 0))
483 (type ,dividend-type x))
484 (,fun x ,divisor)))))
485 (dolist (dividend `(0 1 ,most-positive-fixnum
486 ,(1- divisor) ,divisor
487 ,(1- (* divisor 2)) ,(* divisor 2)
488 ,@(loop repeat 4
489 collect (+ 10000 (random 101)))
490 ,@(loop for i from 4 to sb-vm:n-word-bits
491 for pow = (expt 2 (1- i))
492 for r = (+ pow (random pow))
493 collect r)))
494 (when (typep dividend dividend-type)
495 (multiple-value-bind (q1 r1)
496 (funcall foo dividend)
497 (multiple-value-bind (q2 r2)
498 (funcall fun dividend divisor)
499 (unless (and (= q1 q2)
500 (eql r1 r2))
501 (error "bad results for ~s with dividend type ~s"
502 (list fun dividend divisor)
503 dividend-type))))))))))))
505 ;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits
506 ;; for > 61 bit fixnums.
507 (with-test (:name :logbitp-wide-fixnum)
508 (assert (not (logbitp (1- (integer-length most-positive-fixnum))
509 most-negative-fixnum))))
511 ;; EXPT dispatches in a complicated way on the types of its arguments.
512 ;; Check that all possible combinations are covered.
513 (with-test (:name (:expt :argument-type-combinations))
514 (let ((numbers '(2 ; fixnum
515 3/5 ; ratio
516 1.2f0 ; single-float
517 2.0d0 ; double-float
518 #c(3/5 1/7) ; complex rational
519 #c(1.2f0 1.3f0) ; complex single-float
520 #c(2.0d0 3.0d0))) ; complex double-float
521 (bignum (expt 2 64))
522 results)
523 (dolist (base (cons bignum numbers))
524 (dolist (power numbers)
525 (format t "(expt ~s ~s) => " base power)
526 (let ((result (expt base power)))
527 (format t "~s~%" result)
528 (push result results))))
529 (assert (every #'numberp results))))
531 (with-test (:name :bug-741564)
532 ;; The bug was that in (expt <fixnum> <(complex double-float)>) the
533 ;; calculation was partially done only to single-float precision,
534 ;; making the complex double-float result too unprecise. Some other
535 ;; combinations of argument types were affected, too; test that all
536 ;; of them are good to double-float precision.
537 (labels ((nearly-equal-p (x y)
538 "Are the arguments equal to nearly double-float precision?"
539 (declare (type double-float x y))
540 (< (/ (abs (- x y)) (abs y))
541 (* double-float-epsilon 4))) ; Differences in the two least
542 ; significant mantissa bits
543 ; are OK.
544 (test-complex (x y)
545 (and (nearly-equal-p (realpart x) (realpart y))
546 (nearly-equal-p (imagpart x) (imagpart y))))
547 (print-result (msg base power got expected)
548 (format t "~a (expt ~s ~s)~%got ~s~%expected ~s~%"
549 msg base power got expected)))
550 (let ((n-broken 0))
551 (flet ((test (base power coerce-to-type)
552 (let* ((got (expt base power))
553 (expected (expt (coerce base coerce-to-type) power))
554 (result (test-complex got expected)))
555 (print-result (if result "Good:" "Bad:")
556 base power got expected)
557 (unless result
558 (incf n-broken)))))
559 (dolist (base (list 2 ; fixnum
560 (expt 2 64) ; bignum
561 3/5 ; ratio
562 2.0f0)) ; single-float
563 (let ((power #c(-2.5d0 -4.5d0))) ; complex double-float
564 (test base power 'double-float)))
565 (dolist (base (list #c(2.0f0 3.0f0) ; complex single-float
566 #c(2 3) ; complex fixnum
567 (complex (expt 2 64) (expt 2 65))
568 ; complex bignum
569 #c(3/5 1/7))) ; complex ratio
570 (dolist (power (list #c(-2.5d0 -4.5d0) ; complex double-float
571 -2.5d0)) ; double-float
572 (test base power '(complex double-float)))))
573 (when (> n-broken 0)
574 (error "Number of broken combinations: ~a" n-broken)))))
576 (with-test (:name (:ldb :rlwinm :ppc))
577 (let ((one (compile nil '(lambda (a) (ldb (byte 9 27) a))))
578 (two (compile nil '(lambda (a)
579 (declare (type (integer -3 57216651) a))
580 (ldb (byte 9 27) a)))))
581 (assert (= 0 (- (funcall one 10) (funcall two 10))))))
583 ;; The ISQRT implementation is sufficiently complicated that it should
584 ;; be tested.
585 (with-test (:name :isqrt)
586 (labels ((test (x)
587 (let* ((r (isqrt x))
588 (r2 (expt r 2))
589 (s2 (expt (1+ r) 2)))
590 (unless (and (<= r2 x)
591 (> s2 x))
592 (error "isqrt failure for ~a" x))))
593 (tests (x)
594 (test x)
595 (let ((x2 (expt x 2)))
596 (test x2)
597 (test (1+ x2))
598 (test (1- x2)))))
599 (test most-positive-fixnum)
600 (test (1+ most-positive-fixnum))
601 (loop for i from 1 to 200
602 for pow = (expt 2 (1- i))
603 for j = (+ pow (random pow))
605 (tests i)
606 (tests j))
607 (dotimes (i 10)
608 (tests (random (expt 2 (+ 1000 (random 10000))))))))
610 ;; bug 1026634 (reported by Eric Marsden on sbcl-devel)
611 (with-test (:name :recursive-cut-to-width)
612 (assert (eql (funcall
613 (compile nil
614 `(lambda (x)
615 (declare (optimize (space 3))
616 (type (integer 12417236377505266230
617 12417274239874990070) x))
618 (logand 8459622733968096971 x)))
619 12417237222845306758)
620 2612793697039849090)))
622 ;; Also reported by Eric Marsden on sbcl-devel (2013-06-06)
623 (with-test (:name :more-recursive-cut-to-width)
624 (assert (eql (funcall
625 (compile nil `(lambda (a b)
626 (declare (optimize (speed 2) (safety 0)))
627 (logand (the (eql 16779072918521075607) a)
628 (the (integer 21371810342718833225 21371810343571293860) b))))
629 16779072918521075607 21371810342718833263)
630 2923729245085762055)))
632 (with-test (:name :complicated-logand-identity)
633 (loop for k from -8 upto 8 do
634 (loop for min from -16 upto 16 do
635 (loop for max from min upto 16 do
636 (let ((f (compile nil `(lambda (x)
637 (declare (type (integer ,min ,max) x))
638 (logand x ,k)))))
639 (loop for x from min upto max do
640 (assert (eql (logand x k) (funcall f x)))))))))
642 (with-test (:name :complicated-logior-identity)
643 (loop for k from -8 upto 8 do
644 (loop for min from -16 upto 16 do
645 (loop for max from min upto 16 do
646 (let ((f (compile nil `(lambda (x)
647 (declare (type (integer ,min ,max) x))
648 (logior x ,k)))))
649 (loop for x from min upto max do
650 (assert (eql (logior x k) (funcall f x)))))))))
652 (with-test (:name :ldb-negative-index-no-error)
653 (assert-error
654 (funcall (compile nil
655 `(lambda (x y)
656 (ldb (byte x y) 100)))
657 -1 -2))
658 (assert-error
659 (funcall (compile nil
660 `(lambda (x y)
661 (mask-field (byte x y) 100)))
662 -1 -2))
663 (assert-error
664 (funcall (compile nil
665 `(lambda (x y)
666 (dpb 0 (byte x y) 100)))
667 -1 -2))
668 (assert-error
669 (funcall (compile nil
670 `(lambda (x y)
671 (deposit-field 0 (byte x y) 100)))
672 -1 -2)))
674 (with-test (:name :setf-mask-field)
675 (assert (= (funcall
676 (compile nil
677 `(lambda (a)
678 (setf (mask-field (byte 2 0) a) 1) a))
679 15))))