2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
58 #include "interrupt.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
70 static void run_deferred_handler(struct interrupt_data
*data
, void *v_context
);
71 #ifndef LISP_FEATURE_WIN32
72 static void store_signal_data_for_later (struct interrupt_data
*data
,
73 void *handler
, int signal
,
75 os_context_t
*context
);
78 sigaddset_deferrable(sigset_t
*s
)
82 sigaddset(s
, SIGQUIT
);
83 sigaddset(s
, SIGPIPE
);
84 sigaddset(s
, SIGALRM
);
86 sigaddset(s
, SIGTSTP
);
87 sigaddset(s
, SIGCHLD
);
89 sigaddset(s
, SIGXCPU
);
90 sigaddset(s
, SIGXFSZ
);
91 sigaddset(s
, SIGVTALRM
);
92 sigaddset(s
, SIGPROF
);
93 sigaddset(s
, SIGWINCH
);
95 #if !((defined(LISP_FEATURE_DARWIN) || defined(LISP_FEATURE_FREEBSD)) && defined(LISP_FEATURE_SB_THREAD))
96 sigaddset(s
, SIGUSR1
);
97 sigaddset(s
, SIGUSR2
);
100 #ifdef LISP_FEATURE_SB_THREAD
101 sigaddset(s
, SIG_INTERRUPT_THREAD
);
106 sigaddset_blockable(sigset_t
*s
)
108 sigaddset_deferrable(s
);
109 #ifdef LISP_FEATURE_SB_THREAD
110 #ifdef SIG_RESUME_FROM_GC
111 sigaddset(s
, SIG_RESUME_FROM_GC
);
113 sigaddset(s
, SIG_STOP_FOR_GC
);
117 /* initialized in interrupt_init */
118 static sigset_t deferrable_sigset
;
119 static sigset_t blockable_sigset
;
123 check_blockables_blocked_or_lose(void)
125 #if !defined(LISP_FEATURE_WIN32)
126 /* Get the current sigmask, by blocking the empty set. */
127 sigset_t empty
,current
;
130 thread_sigmask(SIG_BLOCK
, &empty
, ¤t
);
131 for(i
= 1; i
< NSIG
; i
++) {
132 if (sigismember(&blockable_sigset
, i
) && !sigismember(¤t
, i
))
133 lose("blockable signal %d not blocked\n",i
);
139 unblock_gc_signals(void)
141 #ifdef LISP_FEATURE_SB_THREAD
144 #if defined(SIG_RESUME_FROM_GC)
145 sigaddset(&new,SIG_RESUME_FROM_GC
);
147 sigaddset(&new,SIG_STOP_FOR_GC
);
148 thread_sigmask(SIG_UNBLOCK
,&new,0);
153 check_interrupts_enabled_or_lose(os_context_t
*context
)
155 struct thread
*thread
=arch_os_get_current_thread();
156 if (SymbolValue(INTERRUPTS_ENABLED
,thread
) == NIL
)
157 lose("interrupts not enabled\n");
158 if (arch_pseudo_atomic_atomic(context
))
159 lose ("in pseudo atomic section\n");
162 /* When we catch an internal error, should we pass it back to Lisp to
163 * be handled in a high-level way? (Early in cold init, the answer is
164 * 'no', because Lisp is still too brain-dead to handle anything.
165 * After sufficient initialization has been completed, the answer
167 boolean internal_errors_enabled
= 0;
169 #ifndef LISP_FEATURE_WIN32
170 static void (*interrupt_low_level_handlers
[NSIG
]) (int, siginfo_t
*, void*);
172 union interrupt_handler interrupt_handlers
[NSIG
];
174 /* At the toplevel repl we routinely call this function. The signal
175 * mask ought to be clear anyway most of the time, but may be non-zero
176 * if we were interrupted e.g. while waiting for a queue. */
179 reset_signal_mask(void)
181 #ifndef LISP_FEATURE_WIN32
184 thread_sigmask(SIG_SETMASK
,&new,0);
189 block_blockable_signals(void)
191 #ifndef LISP_FEATURE_WIN32
192 thread_sigmask(SIG_BLOCK
, &blockable_sigset
, 0);
197 block_deferrable_signals(void)
199 #ifndef LISP_FEATURE_WIN32
200 thread_sigmask(SIG_BLOCK
, &deferrable_sigset
, 0);
206 * utility routines used by various signal handlers
210 build_fake_control_stack_frames(struct thread
*th
,os_context_t
*context
)
212 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
216 /* Build a fake stack frame or frames */
218 current_control_frame_pointer
=
219 (lispobj
*)(unsigned long)
220 (*os_context_register_addr(context
, reg_CSP
));
221 if ((lispobj
*)(unsigned long)
222 (*os_context_register_addr(context
, reg_CFP
))
223 == current_control_frame_pointer
) {
224 /* There is a small window during call where the callee's
225 * frame isn't built yet. */
226 if (lowtag_of(*os_context_register_addr(context
, reg_CODE
))
227 == FUN_POINTER_LOWTAG
) {
228 /* We have called, but not built the new frame, so
229 * build it for them. */
230 current_control_frame_pointer
[0] =
231 *os_context_register_addr(context
, reg_OCFP
);
232 current_control_frame_pointer
[1] =
233 *os_context_register_addr(context
, reg_LRA
);
234 current_control_frame_pointer
+= 8;
235 /* Build our frame on top of it. */
236 oldcont
= (lispobj
)(*os_context_register_addr(context
, reg_CFP
));
239 /* We haven't yet called, build our frame as if the
240 * partial frame wasn't there. */
241 oldcont
= (lispobj
)(*os_context_register_addr(context
, reg_OCFP
));
244 /* We can't tell whether we are still in the caller if it had to
245 * allocate a stack frame due to stack arguments. */
246 /* This observation provoked some past CMUCL maintainer to ask
247 * "Can anything strange happen during return?" */
250 oldcont
= (lispobj
)(*os_context_register_addr(context
, reg_CFP
));
253 current_control_stack_pointer
= current_control_frame_pointer
+ 8;
255 current_control_frame_pointer
[0] = oldcont
;
256 current_control_frame_pointer
[1] = NIL
;
257 current_control_frame_pointer
[2] =
258 (lispobj
)(*os_context_register_addr(context
, reg_CODE
));
262 /* Stores the context for gc to scavange and builds fake stack
265 fake_foreign_function_call(os_context_t
*context
)
268 struct thread
*thread
=arch_os_get_current_thread();
270 /* context_index incrementing must not be interrupted */
271 check_blockables_blocked_or_lose();
273 /* Get current Lisp state from context. */
275 dynamic_space_free_pointer
=
276 (lispobj
*)(unsigned long)
277 (*os_context_register_addr(context
, reg_ALLOC
));
278 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", dynamic_space_free_pointer); */
279 #if defined(LISP_FEATURE_ALPHA)
280 if ((long)dynamic_space_free_pointer
& 1) {
281 lose("dead in fake_foreign_function_call, context = %x\n", context
);
286 current_binding_stack_pointer
=
287 (lispobj
*)(unsigned long)
288 (*os_context_register_addr(context
, reg_BSP
));
291 build_fake_control_stack_frames(thread
,context
);
293 /* Do dynamic binding of the active interrupt context index
294 * and save the context in the context array. */
296 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX
,thread
));
298 if (context_index
>= MAX_INTERRUPTS
) {
299 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS
);
302 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX
,
303 make_fixnum(context_index
+ 1),thread
);
305 thread
->interrupt_contexts
[context_index
] = context
;
307 #ifdef FOREIGN_FUNCTION_CALL_FLAG
308 foreign_function_call_active
= 1;
312 /* blocks all blockable signals. If you are calling from a signal handler,
313 * the usual signal mask will be restored from the context when the handler
314 * finishes. Otherwise, be careful */
316 undo_fake_foreign_function_call(os_context_t
*context
)
318 struct thread
*thread
=arch_os_get_current_thread();
319 /* Block all blockable signals. */
320 block_blockable_signals();
322 #ifdef FOREIGN_FUNCTION_CALL_FLAG
323 foreign_function_call_active
= 0;
326 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
330 /* Put the dynamic space free pointer back into the context. */
331 *os_context_register_addr(context
, reg_ALLOC
) =
332 (unsigned long) dynamic_space_free_pointer
333 | (*os_context_register_addr(context
, reg_ALLOC
)
336 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC)) & ~LOWTAG_MASK)
337 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
342 /* a handler for the signal caused by execution of a trap opcode
343 * signalling an internal error */
345 interrupt_internal_error(os_context_t
*context
, boolean continuable
)
349 fake_foreign_function_call(context
);
351 if (!internal_errors_enabled
) {
352 describe_internal_error(context
);
353 /* There's no good way to recover from an internal error
354 * before the Lisp error handling mechanism is set up. */
355 lose("internal error too early in init, can't recover\n");
358 /* Allocate the SAP object while the interrupts are still
360 context_sap
= alloc_sap(context
);
362 #ifndef LISP_FEATURE_WIN32
363 thread_sigmask(SIG_SETMASK
, os_context_sigmask_addr(context
), 0);
366 SHOW("in interrupt_internal_error");
368 /* Display some rudimentary debugging information about the
369 * error, so that even if the Lisp error handler gets badly
370 * confused, we have a chance to determine what's going on. */
371 describe_internal_error(context
);
373 funcall2(SymbolFunction(INTERNAL_ERROR
), context_sap
,
374 continuable
? T
: NIL
);
376 undo_fake_foreign_function_call(context
); /* blocks signals again */
378 arch_skip_instruction(context
);
382 interrupt_handle_pending(os_context_t
*context
)
384 /* There are three ways we can get here. First, if an interrupt
385 * occurs within pseudo-atomic, it will be deferred, and we'll
386 * trap to here at the end of the pseudo-atomic block. Second, if
387 * the GC (in alloc()) decides that a GC is required, it will set
388 * *GC-PENDING* and pseudo-atomic-interrupted, and alloc() is
389 * always called from within pseudo-atomic, and thus we end up
390 * here again. Third, when calling GC-ON or at the end of a
391 * WITHOUT-GCING, MAYBE-HANDLE-PENDING-GC will trap to here if
392 * there is a pending GC. */
394 /* Win32 only needs to handle the GC cases (for now?) */
396 struct thread
*thread
;
398 /* Punt if in PA section, marking it as interrupted. This can
399 * happenat least if we pick up a GC request while in a
400 * WITHOUT-GCING with an outer PA -- it is not immediately clear
401 * to me that this should/could ever happen, but better safe then
402 * sorry. --NS 2007-05-15 */
403 if (arch_pseudo_atomic_atomic(context
)) {
404 arch_set_pseudo_atomic_interrupted(context
);
408 thread
= arch_os_get_current_thread();
410 FSHOW_SIGNAL((stderr
, "/entering interrupt_handle_pending\n"));
412 check_blockables_blocked_or_lose();
414 /* If pseudo_atomic_interrupted is set then the interrupt is going
415 * to be handled now, ergo it's safe to clear it. */
416 arch_clear_pseudo_atomic_interrupted(context
);
418 if (SymbolValue(GC_INHIBIT
,thread
)==NIL
) {
419 #ifdef LISP_FEATURE_SB_THREAD
420 if (SymbolValue(STOP_FOR_GC_PENDING
,thread
) != NIL
) {
421 /* STOP_FOR_GC_PENDING and GC_PENDING are cleared by
422 * the signal handler if it actually stops us. */
423 sig_stop_for_gc_handler(SIG_STOP_FOR_GC
,NULL
,context
);
426 if (SymbolValue(GC_PENDING
,thread
) != NIL
) {
427 /* GC_PENDING is cleared in SUB-GC, or if another thread
428 * is doing a gc already we will get a SIG_STOP_FOR_GC and
429 * that will clear it. */
432 check_blockables_blocked_or_lose();
435 #ifndef LISP_FEATURE_WIN32
436 /* we may be here only to do the gc stuff, if interrupts are
437 * enabled run the pending handler */
438 if (SymbolValue(INTERRUPTS_ENABLED
,thread
) != NIL
) {
439 struct interrupt_data
*data
= thread
->interrupt_data
;
441 /* There may be no pending handler, because it was only a gc
442 * that had to be executed or because pseudo atomic triggered
443 * twice for a single interrupt. For the interested reader,
444 * that may happen if an interrupt hits after the interrupted
445 * flag is cleared but before pseduo-atomic is set and a
446 * pseudo atomic is interrupted in that interrupt. */
447 if (data
->pending_handler
) {
449 /* If we're here as the result of a pseudo-atomic as opposed
450 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
451 * NIL, because maybe_defer_handler sets
452 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
453 SetSymbolValue(INTERRUPT_PENDING
, NIL
, thread
);
455 /* restore the saved signal mask from the original signal (the
456 * one that interrupted us during the critical section) into the
457 * os_context for the signal we're currently in the handler for.
458 * This should ensure that when we return from the handler the
459 * blocked signals are unblocked */
460 sigcopyset(os_context_sigmask_addr(context
), &data
->pending_mask
);
462 sigemptyset(&data
->pending_mask
);
463 /* This will break on sparc linux: the deferred handler really wants
464 * to be called with a void_context */
465 run_deferred_handler(data
,(void *)context
);
472 * the two main signal handlers:
473 * interrupt_handle_now(..)
474 * maybe_now_maybe_later(..)
476 * to which we have added interrupt_handle_now_handler(..). Why?
477 * Well, mostly because the SPARC/Linux platform doesn't quite do
478 * signals the way we want them done. The third argument in the
479 * handler isn't filled in by the kernel properly, so we fix it up
480 * ourselves in the arch_os_get_context(..) function; however, we only
481 * want to do this when we first hit the handler, and not when
482 * interrupt_handle_now(..) is being called from some other handler
483 * (when the fixup will already have been done). -- CSR, 2002-07-23
487 interrupt_handle_now(int signal
, siginfo_t
*info
, os_context_t
*context
)
489 #ifdef FOREIGN_FUNCTION_CALL_FLAG
490 boolean were_in_lisp
;
492 union interrupt_handler handler
;
494 check_blockables_blocked_or_lose();
496 #ifndef LISP_FEATURE_WIN32
497 if (sigismember(&deferrable_sigset
,signal
))
498 check_interrupts_enabled_or_lose(context
);
501 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
502 /* Under Linux on some architectures, we appear to have to restore
503 the FPU control word from the context, as after the signal is
504 delivered we appear to have a null FPU control word. */
505 os_restore_fp_control(context
);
508 handler
= interrupt_handlers
[signal
];
510 if (ARE_SAME_HANDLER(handler
.c
, SIG_IGN
)) {
514 #ifdef FOREIGN_FUNCTION_CALL_FLAG
515 were_in_lisp
= !foreign_function_call_active
;
519 fake_foreign_function_call(context
);
522 FSHOW_SIGNAL((stderr
,
523 "/entering interrupt_handle_now(%d, info, context)\n",
526 if (ARE_SAME_HANDLER(handler
.c
, SIG_DFL
)) {
528 /* This can happen if someone tries to ignore or default one
529 * of the signals we need for runtime support, and the runtime
530 * support decides to pass on it. */
531 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal
);
533 } else if (lowtag_of(handler
.lisp
) == FUN_POINTER_LOWTAG
) {
534 /* Once we've decided what to do about contexts in a
535 * return-elsewhere world (the original context will no longer
536 * be available; should we copy it or was nobody using it anyway?)
537 * then we should convert this to return-elsewhere */
539 /* CMUCL comment said "Allocate the SAPs while the interrupts
540 * are still disabled.". I (dan, 2003.08.21) assume this is
541 * because we're not in pseudoatomic and allocation shouldn't
542 * be interrupted. In which case it's no longer an issue as
543 * all our allocation from C now goes through a PA wrapper,
544 * but still, doesn't hurt.
546 * Yeah, but non-gencgc platforms don't really wrap allocation
547 * in PA. MG - 2005-08-29 */
549 lispobj info_sap
,context_sap
= alloc_sap(context
);
550 info_sap
= alloc_sap(info
);
551 /* Leave deferrable signals blocked, the handler itself will
552 * allow signals again when it sees fit. */
553 #ifdef LISP_FEATURE_SB_THREAD
556 sigemptyset(&unblock
);
557 sigaddset(&unblock
, SIG_STOP_FOR_GC
);
558 #ifdef SIG_RESUME_FROM_GC
559 sigaddset(&unblock
, SIG_RESUME_FROM_GC
);
561 thread_sigmask(SIG_UNBLOCK
, &unblock
, 0);
565 FSHOW_SIGNAL((stderr
,"/calling Lisp-level handler\n"));
567 funcall3(handler
.lisp
,
573 FSHOW_SIGNAL((stderr
,"/calling C-level handler\n"));
575 #ifndef LISP_FEATURE_WIN32
576 /* Allow signals again. */
577 thread_sigmask(SIG_SETMASK
, os_context_sigmask_addr(context
), 0);
579 (*handler
.c
)(signal
, info
, context
);
582 #ifdef FOREIGN_FUNCTION_CALL_FLAG
586 undo_fake_foreign_function_call(context
); /* block signals again */
589 FSHOW_SIGNAL((stderr
,
590 "/returning from interrupt_handle_now(%d, info, context)\n",
594 /* This is called at the end of a critical section if the indications
595 * are that some signal was deferred during the section. Note that as
596 * far as C or the kernel is concerned we dealt with the signal
597 * already; we're just doing the Lisp-level processing now that we
600 run_deferred_handler(struct interrupt_data
*data
, void *v_context
)
602 /* The pending_handler may enable interrupts and then another
603 * interrupt may hit, overwrite interrupt_data, so reset the
604 * pending handler before calling it. Trust the handler to finish
605 * with the siginfo before enabling interrupts. */
606 void (*pending_handler
) (int, siginfo_t
*, void*)=data
->pending_handler
;
608 data
->pending_handler
=0;
609 (*pending_handler
)(data
->pending_signal
,&(data
->pending_info
), v_context
);
612 #ifndef LISP_FEATURE_WIN32
614 maybe_defer_handler(void *handler
, struct interrupt_data
*data
,
615 int signal
, siginfo_t
*info
, os_context_t
*context
)
617 struct thread
*thread
=arch_os_get_current_thread();
619 check_blockables_blocked_or_lose();
621 if (SymbolValue(INTERRUPT_PENDING
,thread
) != NIL
)
622 lose("interrupt already pending\n");
623 /* If interrupts are disabled then INTERRUPT_PENDING is set and
624 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
625 * atomic section inside a WITHOUT-INTERRUPTS.
627 if (SymbolValue(INTERRUPTS_ENABLED
,thread
) == NIL
) {
628 store_signal_data_for_later(data
,handler
,signal
,info
,context
);
629 SetSymbolValue(INTERRUPT_PENDING
, T
,thread
);
630 FSHOW_SIGNAL((stderr
,
631 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
632 (unsigned int)handler
,signal
,
633 (unsigned long)thread
->os_thread
));
636 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
637 * actually use its argument for anything on x86, so this branch
638 * may succeed even when context is null (gencgc alloc()) */
639 if (arch_pseudo_atomic_atomic(context
)) {
640 store_signal_data_for_later(data
,handler
,signal
,info
,context
);
641 arch_set_pseudo_atomic_interrupted(context
);
642 FSHOW_SIGNAL((stderr
,
643 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
644 (unsigned int)handler
,signal
,
645 (unsigned long)thread
->os_thread
));
648 FSHOW_SIGNAL((stderr
,
649 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
650 (unsigned int)handler
,signal
,
651 (unsigned long)thread
->os_thread
));
656 store_signal_data_for_later (struct interrupt_data
*data
, void *handler
,
658 siginfo_t
*info
, os_context_t
*context
)
660 if (data
->pending_handler
)
661 lose("tried to overwrite pending interrupt handler %x with %x\n",
662 data
->pending_handler
, handler
);
664 lose("tried to defer null interrupt handler\n");
665 data
->pending_handler
= handler
;
666 data
->pending_signal
= signal
;
668 memcpy(&(data
->pending_info
), info
, sizeof(siginfo_t
));
670 FSHOW_SIGNAL((stderr
, "/store_signal_data_for_later: signal: %d\n", signal
));
673 /* the signal mask in the context (from before we were
674 * interrupted) is copied to be restored when
675 * run_deferred_handler happens. Then the usually-blocked
676 * signals are added to the mask in the context so that we are
677 * running with blocked signals when the handler returns */
678 sigcopyset(&(data
->pending_mask
),os_context_sigmask_addr(context
));
679 sigaddset_deferrable(os_context_sigmask_addr(context
));
684 maybe_now_maybe_later(int signal
, siginfo_t
*info
, void *void_context
)
686 os_context_t
*context
= arch_os_get_context(&void_context
);
687 struct thread
*thread
= arch_os_get_current_thread();
688 struct interrupt_data
*data
= thread
->interrupt_data
;
690 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
691 os_restore_fp_control(context
);
694 if(!maybe_defer_handler(interrupt_handle_now
,data
,signal
,info
,context
))
695 interrupt_handle_now(signal
, info
, context
);
697 #ifdef LISP_FEATURE_DARWIN
698 DARWIN_FIX_CONTEXT(context
);
703 low_level_interrupt_handle_now(int signal
, siginfo_t
*info
, os_context_t
*context
)
705 /* No FP control fixage needed, caller has done that. */
706 check_blockables_blocked_or_lose();
707 check_interrupts_enabled_or_lose(context
);
708 interrupt_low_level_handlers
[signal
](signal
, info
, context
);
709 /* No Darwin context fixage needed, caller does that. */
713 low_level_maybe_now_maybe_later(int signal
, siginfo_t
*info
, void *void_context
)
715 os_context_t
*context
= arch_os_get_context(&void_context
);
716 struct thread
*thread
= arch_os_get_current_thread();
717 struct interrupt_data
*data
= thread
->interrupt_data
;
719 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
720 os_restore_fp_control(context
);
723 if(!maybe_defer_handler(low_level_interrupt_handle_now
,data
,
724 signal
,info
,context
))
725 low_level_interrupt_handle_now(signal
, info
, context
);
727 #ifdef LISP_FEATURE_DARWIN
728 DARWIN_FIX_CONTEXT(context
);
733 #ifdef LISP_FEATURE_SB_THREAD
736 sig_stop_for_gc_handler(int signal
, siginfo_t
*info
, void *void_context
)
738 os_context_t
*context
= arch_os_get_context(&void_context
);
740 struct thread
*thread
=arch_os_get_current_thread();
743 if (arch_pseudo_atomic_atomic(context
)) {
744 SetSymbolValue(STOP_FOR_GC_PENDING
,T
,thread
);
745 arch_set_pseudo_atomic_interrupted(context
);
746 FSHOW_SIGNAL((stderr
,"thread=%lu sig_stop_for_gc deferred (PA)\n",
750 else if (SymbolValue(GC_INHIBIT
,thread
) != NIL
) {
751 SetSymbolValue(STOP_FOR_GC_PENDING
,T
,thread
);
752 FSHOW_SIGNAL((stderr
,
753 "thread=%lu sig_stop_for_gc deferred (*GC-INHIBIT*)\n",
758 /* Not PA and GC not inhibited -- we can stop now. */
760 /* need the context stored so it can have registers scavenged */
761 fake_foreign_function_call(context
);
763 /* Block everything. */
765 thread_sigmask(SIG_BLOCK
,&ss
,0);
767 /* Not pending anymore. */
768 SetSymbolValue(GC_PENDING
,NIL
,thread
);
769 SetSymbolValue(STOP_FOR_GC_PENDING
,NIL
,thread
);
771 if(thread
->state
!=STATE_RUNNING
) {
772 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
773 fixnum_value(thread
->state
));
776 thread
->state
=STATE_SUSPENDED
;
777 FSHOW_SIGNAL((stderr
,"thread=%lu suspended\n",thread
->os_thread
));
780 #if defined(SIG_RESUME_FROM_GC)
781 sigaddset(&ss
,SIG_RESUME_FROM_GC
);
783 sigaddset(&ss
,SIG_STOP_FOR_GC
);
786 /* It is possible to get SIGCONT (and probably other non-blockable
788 #ifdef SIG_RESUME_FROM_GC
791 do { sigwait(&ss
, &sigret
); }
792 while (sigret
!= SIG_RESUME_FROM_GC
);
795 while (sigwaitinfo(&ss
,0) != SIG_STOP_FOR_GC
);
798 FSHOW_SIGNAL((stderr
,"thread=%lu resumed\n",thread
->os_thread
));
799 if(thread
->state
!=STATE_RUNNING
) {
800 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
801 fixnum_value(thread
->state
));
804 undo_fake_foreign_function_call(context
);
809 interrupt_handle_now_handler(int signal
, siginfo_t
*info
, void *void_context
)
811 os_context_t
*context
= arch_os_get_context(&void_context
);
812 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
813 os_restore_fp_control(context
);
815 interrupt_handle_now(signal
, info
, context
);
816 #ifdef LISP_FEATURE_DARWIN
817 DARWIN_FIX_CONTEXT(context
);
821 /* manipulate the signal context and stack such that when the handler
822 * returns, it will call function instead of whatever it was doing
826 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
827 extern int *context_eflags_addr(os_context_t
*context
);
830 extern lispobj
call_into_lisp(lispobj fun
, lispobj
*args
, int nargs
);
831 extern void post_signal_tramp(void);
832 extern void call_into_lisp_tramp(void);
834 arrange_return_to_lisp_function(os_context_t
*context
, lispobj function
)
836 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
837 void * fun
=native_pointer(function
);
838 void *code
= &(((struct simple_fun
*) fun
)->code
);
841 /* Build a stack frame showing `interrupted' so that the
842 * user's backtrace makes (as much) sense (as usual) */
844 /* FIXME: what about restoring fp state? */
845 /* FIXME: what about restoring errno? */
846 #ifdef LISP_FEATURE_X86
847 /* Suppose the existence of some function that saved all
848 * registers, called call_into_lisp, then restored GP registers and
849 * returned. It would look something like this:
857 pushl {address of function to call}
858 call 0x8058db0 <call_into_lisp>
865 * What we do here is set up the stack that call_into_lisp would
866 * expect to see if it had been called by this code, and frob the
867 * signal context so that signal return goes directly to call_into_lisp,
868 * and when that function (and the lisp function it invoked) returns,
869 * it returns to the second half of this imaginary function which
870 * restores all registers and returns to C
872 * For this to work, the latter part of the imaginary function
873 * must obviously exist in reality. That would be post_signal_tramp
876 u32
*sp
=(u32
*)*os_context_register_addr(context
,reg_ESP
);
878 #if defined(LISP_FEATURE_DARWIN)
879 u32
*register_save_area
= (u32
*)os_validate(0, 0x40);
881 FSHOW_SIGNAL((stderr
, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function
, sp
));
882 FSHOW_SIGNAL((stderr
, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context
, &context
));
884 /* 1. os_validate (malloc/mmap) register_save_block
885 * 2. copy register state into register_save_block
886 * 3. put a pointer to register_save_block in a register in the context
887 * 4. set the context's EIP to point to a trampoline which:
888 * a. builds the fake stack frame from the block
890 * c. calls the function
893 *register_save_area
= *os_context_pc_addr(context
);
894 *(register_save_area
+ 1) = function
;
895 *(register_save_area
+ 2) = *os_context_register_addr(context
,reg_EDI
);
896 *(register_save_area
+ 3) = *os_context_register_addr(context
,reg_ESI
);
897 *(register_save_area
+ 4) = *os_context_register_addr(context
,reg_EDX
);
898 *(register_save_area
+ 5) = *os_context_register_addr(context
,reg_ECX
);
899 *(register_save_area
+ 6) = *os_context_register_addr(context
,reg_EBX
);
900 *(register_save_area
+ 7) = *os_context_register_addr(context
,reg_EAX
);
901 *(register_save_area
+ 8) = *context_eflags_addr(context
);
903 *os_context_pc_addr(context
) =
904 (os_context_register_t
) call_into_lisp_tramp
;
905 *os_context_register_addr(context
,reg_ECX
) =
906 (os_context_register_t
) register_save_area
;
909 /* return address for call_into_lisp: */
910 *(sp
-15) = (u32
)post_signal_tramp
;
911 *(sp
-14) = function
; /* args for call_into_lisp : function*/
912 *(sp
-13) = 0; /* arg array */
913 *(sp
-12) = 0; /* no. args */
914 /* this order matches that used in POPAD */
915 *(sp
-11)=*os_context_register_addr(context
,reg_EDI
);
916 *(sp
-10)=*os_context_register_addr(context
,reg_ESI
);
918 *(sp
-9)=*os_context_register_addr(context
,reg_ESP
)-8;
919 /* POPAD ignores the value of ESP: */
921 *(sp
-7)=*os_context_register_addr(context
,reg_EBX
);
923 *(sp
-6)=*os_context_register_addr(context
,reg_EDX
);
924 *(sp
-5)=*os_context_register_addr(context
,reg_ECX
);
925 *(sp
-4)=*os_context_register_addr(context
,reg_EAX
);
926 *(sp
-3)=*context_eflags_addr(context
);
927 *(sp
-2)=*os_context_register_addr(context
,reg_EBP
);
928 *(sp
-1)=*os_context_pc_addr(context
);
932 #elif defined(LISP_FEATURE_X86_64)
933 u64
*sp
=(u64
*)*os_context_register_addr(context
,reg_RSP
);
935 /* return address for call_into_lisp: */
936 *(sp
-18) = (u64
)post_signal_tramp
;
938 *(sp
-17)=*os_context_register_addr(context
,reg_R15
);
939 *(sp
-16)=*os_context_register_addr(context
,reg_R14
);
940 *(sp
-15)=*os_context_register_addr(context
,reg_R13
);
941 *(sp
-14)=*os_context_register_addr(context
,reg_R12
);
942 *(sp
-13)=*os_context_register_addr(context
,reg_R11
);
943 *(sp
-12)=*os_context_register_addr(context
,reg_R10
);
944 *(sp
-11)=*os_context_register_addr(context
,reg_R9
);
945 *(sp
-10)=*os_context_register_addr(context
,reg_R8
);
946 *(sp
-9)=*os_context_register_addr(context
,reg_RDI
);
947 *(sp
-8)=*os_context_register_addr(context
,reg_RSI
);
948 /* skip RBP and RSP */
949 *(sp
-7)=*os_context_register_addr(context
,reg_RBX
);
950 *(sp
-6)=*os_context_register_addr(context
,reg_RDX
);
951 *(sp
-5)=*os_context_register_addr(context
,reg_RCX
);
952 *(sp
-4)=*os_context_register_addr(context
,reg_RAX
);
953 *(sp
-3)=*context_eflags_addr(context
);
954 *(sp
-2)=*os_context_register_addr(context
,reg_RBP
);
955 *(sp
-1)=*os_context_pc_addr(context
);
957 *os_context_register_addr(context
,reg_RDI
) =
958 (os_context_register_t
)function
; /* function */
959 *os_context_register_addr(context
,reg_RSI
) = 0; /* arg. array */
960 *os_context_register_addr(context
,reg_RDX
) = 0; /* no. args */
962 struct thread
*th
=arch_os_get_current_thread();
963 build_fake_control_stack_frames(th
,context
);
966 #ifdef LISP_FEATURE_X86
968 #if !defined(LISP_FEATURE_DARWIN)
969 *os_context_pc_addr(context
) = (os_context_register_t
)call_into_lisp
;
970 *os_context_register_addr(context
,reg_ECX
) = 0;
971 *os_context_register_addr(context
,reg_EBP
) = (os_context_register_t
)(sp
-2);
973 *os_context_register_addr(context
,reg_UESP
) =
974 (os_context_register_t
)(sp
-15);
976 *os_context_register_addr(context
,reg_ESP
) = (os_context_register_t
)(sp
-15);
977 #endif /* __NETBSD__ */
978 #endif /* LISP_FEATURE_DARWIN */
980 #elif defined(LISP_FEATURE_X86_64)
981 *os_context_pc_addr(context
) = (os_context_register_t
)call_into_lisp
;
982 *os_context_register_addr(context
,reg_RCX
) = 0;
983 *os_context_register_addr(context
,reg_RBP
) = (os_context_register_t
)(sp
-2);
984 *os_context_register_addr(context
,reg_RSP
) = (os_context_register_t
)(sp
-18);
986 /* this much of the calling convention is common to all
988 *os_context_pc_addr(context
) = (os_context_register_t
)(unsigned long)code
;
989 *os_context_register_addr(context
,reg_NARGS
) = 0;
990 *os_context_register_addr(context
,reg_LIP
) =
991 (os_context_register_t
)(unsigned long)code
;
992 *os_context_register_addr(context
,reg_CFP
) =
993 (os_context_register_t
)(unsigned long)current_control_frame_pointer
;
995 #ifdef ARCH_HAS_NPC_REGISTER
996 *os_context_npc_addr(context
) =
997 4 + *os_context_pc_addr(context
);
999 #ifdef LISP_FEATURE_SPARC
1000 *os_context_register_addr(context
,reg_CODE
) =
1001 (os_context_register_t
)(fun
+ FUN_POINTER_LOWTAG
);
1005 #ifdef LISP_FEATURE_SB_THREAD
1007 /* FIXME: this function can go away when all lisp handlers are invoked
1008 * via arrange_return_to_lisp_function. */
1010 interrupt_thread_handler(int num
, siginfo_t
*info
, void *v_context
)
1012 os_context_t
*context
= (os_context_t
*)arch_os_get_context(&v_context
);
1014 /* let the handler enable interrupts again when it sees fit */
1015 sigaddset_deferrable(os_context_sigmask_addr(context
));
1016 arrange_return_to_lisp_function(context
, SymbolFunction(RUN_INTERRUPTION
));
1021 /* KLUDGE: Theoretically the approach we use for undefined alien
1022 * variables should work for functions as well, but on PPC/Darwin
1023 * we get bus error at bogus addresses instead, hence this workaround,
1024 * that has the added benefit of automatically discriminating between
1025 * functions and variables.
1028 undefined_alien_function(void)
1030 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR
));
1034 handle_guard_page_triggered(os_context_t
*context
,os_vm_address_t addr
)
1036 struct thread
*th
=arch_os_get_current_thread();
1038 /* note the os_context hackery here. When the signal handler returns,
1039 * it won't go back to what it was doing ... */
1040 if(addr
>= CONTROL_STACK_GUARD_PAGE(th
) &&
1041 addr
< CONTROL_STACK_GUARD_PAGE(th
) + os_vm_page_size
) {
1042 /* We hit the end of the control stack: disable guard page
1043 * protection so the error handler has some headroom, protect the
1044 * previous page so that we can catch returns from the guard page
1045 * and restore it. */
1046 protect_control_stack_guard_page(0);
1047 protect_control_stack_return_guard_page(1);
1049 arrange_return_to_lisp_function
1050 (context
, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR
));
1053 else if(addr
>= CONTROL_STACK_RETURN_GUARD_PAGE(th
) &&
1054 addr
< CONTROL_STACK_RETURN_GUARD_PAGE(th
) + os_vm_page_size
) {
1055 /* We're returning from the guard page: reprotect it, and
1056 * unprotect this one. This works even if we somehow missed
1057 * the return-guard-page, and hit it on our way to new
1058 * exhaustion instead. */
1059 protect_control_stack_guard_page(1);
1060 protect_control_stack_return_guard_page(0);
1063 else if (addr
>= undefined_alien_address
&&
1064 addr
< undefined_alien_address
+ os_vm_page_size
) {
1065 arrange_return_to_lisp_function
1066 (context
, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR
));
1073 * noise to install handlers
1076 #ifndef LISP_FEATURE_WIN32
1077 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1078 * they are blocked, in Linux 2.6 the default handler is invoked
1079 * instead that usually coredumps. One might hastily think that adding
1080 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1081 * the whole sa_mask is ignored and instead of not adding the signal
1082 * in question to the mask. That means if it's not blockable the
1083 * signal must be unblocked at the beginning of signal handlers.
1085 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1086 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1087 * will be unblocked in the sigmask during the signal handler. -- RMK
1090 static volatile int sigaction_nodefer_works
= -1;
1092 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1093 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1096 sigaction_nodefer_test_handler(int signal
, siginfo_t
*info
, void *void_context
)
1098 sigset_t empty
, current
;
1100 sigemptyset(&empty
);
1101 thread_sigmask(SIG_BLOCK
, &empty
, ¤t
);
1102 /* There should be exactly two blocked signals: the two we added
1103 * to sa_mask when setting up the handler. NetBSD doesn't block
1104 * the signal we're handling when SA_NODEFER is set; Linux before
1105 * 2.6.13 or so also doesn't block the other signal when
1106 * SA_NODEFER is set. */
1107 for(i
= 1; i
< NSIG
; i
++)
1108 if (sigismember(¤t
, i
) !=
1109 (((i
== SA_NODEFER_TEST_BLOCK_SIGNAL
) || (i
== signal
)) ? 1 : 0)) {
1110 FSHOW_SIGNAL((stderr
, "SA_NODEFER doesn't work, signal %d\n", i
));
1111 sigaction_nodefer_works
= 0;
1113 if (sigaction_nodefer_works
== -1)
1114 sigaction_nodefer_works
= 1;
1118 see_if_sigaction_nodefer_works(void)
1120 struct sigaction sa
, old_sa
;
1122 sa
.sa_flags
= SA_SIGINFO
| SA_NODEFER
;
1123 sa
.sa_sigaction
= sigaction_nodefer_test_handler
;
1124 sigemptyset(&sa
.sa_mask
);
1125 sigaddset(&sa
.sa_mask
, SA_NODEFER_TEST_BLOCK_SIGNAL
);
1126 sigaddset(&sa
.sa_mask
, SA_NODEFER_TEST_KILL_SIGNAL
);
1127 sigaction(SA_NODEFER_TEST_KILL_SIGNAL
, &sa
, &old_sa
);
1128 /* Make sure no signals are blocked. */
1131 sigemptyset(&empty
);
1132 thread_sigmask(SIG_SETMASK
, &empty
, 0);
1134 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL
);
1135 while (sigaction_nodefer_works
== -1);
1136 sigaction(SA_NODEFER_TEST_KILL_SIGNAL
, &old_sa
, NULL
);
1139 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1140 #undef SA_NODEFER_TEST_KILL_SIGNAL
1143 unblock_me_trampoline(int signal
, siginfo_t
*info
, void *void_context
)
1147 sigemptyset(&unblock
);
1148 sigaddset(&unblock
, signal
);
1149 thread_sigmask(SIG_UNBLOCK
, &unblock
, 0);
1150 interrupt_handle_now_handler(signal
, info
, void_context
);
1154 low_level_unblock_me_trampoline(int signal
, siginfo_t
*info
, void *void_context
)
1158 sigemptyset(&unblock
);
1159 sigaddset(&unblock
, signal
);
1160 thread_sigmask(SIG_UNBLOCK
, &unblock
, 0);
1161 (*interrupt_low_level_handlers
[signal
])(signal
, info
, void_context
);
1165 undoably_install_low_level_interrupt_handler (int signal
,
1166 interrupt_handler_t handler
)
1168 struct sigaction sa
;
1170 if (0 > signal
|| signal
>= NSIG
) {
1171 lose("bad signal number %d\n", signal
);
1174 if (ARE_SAME_HANDLER(handler
, SIG_DFL
))
1175 sa
.sa_sigaction
= handler
;
1176 else if (sigismember(&deferrable_sigset
,signal
))
1177 sa
.sa_sigaction
= low_level_maybe_now_maybe_later
;
1178 /* The use of a trampoline appears to break the
1179 arch_os_get_context() workaround for SPARC/Linux. For now,
1180 don't use the trampoline (and so be vulnerable to the problems
1181 that SA_NODEFER is meant to solve. */
1182 #if !(defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_LINUX))
1183 else if (!sigaction_nodefer_works
&&
1184 !sigismember(&blockable_sigset
, signal
))
1185 sa
.sa_sigaction
= low_level_unblock_me_trampoline
;
1188 sa
.sa_sigaction
= handler
;
1190 sigcopyset(&sa
.sa_mask
, &blockable_sigset
);
1191 sa
.sa_flags
= SA_SIGINFO
| SA_RESTART
1192 | (sigaction_nodefer_works
? SA_NODEFER
: 0);
1193 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1194 if((signal
==SIG_MEMORY_FAULT
)
1195 #ifdef SIG_INTERRUPT_THREAD
1196 || (signal
==SIG_INTERRUPT_THREAD
)
1199 sa
.sa_flags
|= SA_ONSTACK
;
1202 sigaction(signal
, &sa
, NULL
);
1203 interrupt_low_level_handlers
[signal
] =
1204 (ARE_SAME_HANDLER(handler
, SIG_DFL
) ? 0 : handler
);
1208 /* This is called from Lisp. */
1210 install_handler(int signal
, void handler(int, siginfo_t
*, void*))
1212 #ifndef LISP_FEATURE_WIN32
1213 struct sigaction sa
;
1215 union interrupt_handler oldhandler
;
1217 FSHOW((stderr
, "/entering POSIX install_handler(%d, ..)\n", signal
));
1220 sigaddset(&new, signal
);
1221 thread_sigmask(SIG_BLOCK
, &new, &old
);
1223 FSHOW((stderr
, "/interrupt_low_level_handlers[signal]=%x\n",
1224 (unsigned int)interrupt_low_level_handlers
[signal
]));
1225 if (interrupt_low_level_handlers
[signal
]==0) {
1226 if (ARE_SAME_HANDLER(handler
, SIG_DFL
) ||
1227 ARE_SAME_HANDLER(handler
, SIG_IGN
))
1228 sa
.sa_sigaction
= handler
;
1229 else if (sigismember(&deferrable_sigset
, signal
))
1230 sa
.sa_sigaction
= maybe_now_maybe_later
;
1231 else if (!sigaction_nodefer_works
&&
1232 !sigismember(&blockable_sigset
, signal
))
1233 sa
.sa_sigaction
= unblock_me_trampoline
;
1235 sa
.sa_sigaction
= interrupt_handle_now_handler
;
1237 sigcopyset(&sa
.sa_mask
, &blockable_sigset
);
1238 sa
.sa_flags
= SA_SIGINFO
| SA_RESTART
|
1239 (sigaction_nodefer_works
? SA_NODEFER
: 0);
1240 sigaction(signal
, &sa
, NULL
);
1243 oldhandler
= interrupt_handlers
[signal
];
1244 interrupt_handlers
[signal
].c
= handler
;
1246 thread_sigmask(SIG_SETMASK
, &old
, 0);
1248 FSHOW((stderr
, "/leaving POSIX install_handler(%d, ..)\n", signal
));
1250 return (unsigned long)oldhandler
.lisp
;
1252 /* Probably-wrong Win32 hack */
1258 interrupt_init(void)
1260 #ifndef LISP_FEATURE_WIN32
1262 SHOW("entering interrupt_init()");
1263 see_if_sigaction_nodefer_works();
1264 sigemptyset(&deferrable_sigset
);
1265 sigemptyset(&blockable_sigset
);
1266 sigaddset_deferrable(&deferrable_sigset
);
1267 sigaddset_blockable(&blockable_sigset
);
1269 /* Set up high level handler information. */
1270 for (i
= 0; i
< NSIG
; i
++) {
1271 interrupt_handlers
[i
].c
=
1272 /* (The cast here blasts away the distinction between
1273 * SA_SIGACTION-style three-argument handlers and
1274 * signal(..)-style one-argument handlers, which is OK
1275 * because it works to call the 1-argument form where the
1276 * 3-argument form is expected.) */
1277 (void (*)(int, siginfo_t
*, void*))SIG_DFL
;
1280 SHOW("returning from interrupt_init()");
1284 #ifndef LISP_FEATURE_WIN32
1286 siginfo_code(siginfo_t
*info
)
1288 return info
->si_code
;
1290 os_vm_address_t current_memory_fault_address
;
1293 lisp_memory_fault_error(os_context_t
*context
, os_vm_address_t addr
)
1295 /* FIXME: This is lossy: if we get another memory fault (eg. from
1296 * another thread) before lisp has read this, we lose the information.
1297 * However, since this is mostly informative, we'll live with that for
1298 * now -- some address is better then no address in this case.
1300 current_memory_fault_address
= addr
;
1301 arrange_return_to_lisp_function(context
, SymbolFunction(MEMORY_FAULT_ERROR
));
1306 unhandled_trap_error(os_context_t
*context
)
1308 lispobj context_sap
;
1309 fake_foreign_function_call(context
);
1310 context_sap
= alloc_sap(context
);
1311 #ifndef LISP_FEATURE_WIN32
1312 thread_sigmask(SIG_SETMASK
, os_context_sigmask_addr(context
), 0);
1314 funcall1(SymbolFunction(UNHANDLED_TRAP_ERROR
), context_sap
);
1315 lose("UNHANDLED-TRAP-ERROR fell through");
1318 /* Common logic for trapping instructions. How we actually handle each
1319 * case is highly architecture dependent, but the overall shape is
1322 handle_trap(os_context_t
*context
, int trap
)
1325 case trap_PendingInterrupt
:
1326 FSHOW((stderr
, "/<trap pending interrupt>\n"));
1327 arch_skip_instruction(context
);
1328 interrupt_handle_pending(context
);
1332 FSHOW((stderr
, "/<trap error/cerror %d>\n", trap
));
1333 interrupt_internal_error(context
, trap
==trap_Cerror
);
1335 case trap_Breakpoint
:
1336 arch_handle_breakpoint(context
);
1338 case trap_FunEndBreakpoint
:
1339 arch_handle_fun_end_breakpoint(context
);
1341 #ifdef trap_AfterBreakpoint
1342 case trap_AfterBreakpoint
:
1343 arch_handle_after_breakpoint(context
);
1346 #ifdef trap_SingleStepAround
1347 case trap_SingleStepAround
:
1348 case trap_SingleStepBefore
:
1349 arch_handle_single_step_trap(context
, trap
);
1353 fake_foreign_function_call(context
);
1354 lose("%%PRIMITIVE HALT called; the party is over.\n");
1356 unhandled_trap_error(context
);