Section on writing tests in HACKING
[sbcl.git] / src / compiler / array-tran.lisp
blobbc7c23c9faa4213f18fe1daa40cb3491ba27eb0a
1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!C")
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
18 ;;; determined.
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let ((element-type-specifier (upgraded-element-type-specifier lvar)))
21 (if (eq element-type-specifier '*)
22 (give-up-ir1-transform
23 "upgraded array element type not known at compile time")
24 element-type-specifier)))
26 (defun upgraded-element-type-specifier (lvar)
27 (type-specifier (array-type-upgraded-element-type (lvar-type lvar))))
29 ;;; Array access functions return an object from the array, hence its type is
30 ;;; going to be the array upgraded element type. Secondary return value is the
31 ;;; known supertype of the upgraded-array-element-type, if if the exact
32 ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good
33 ;;; as it gets.)
34 (defun array-type-upgraded-element-type (type)
35 (typecase type
36 ;; Note that this IF mightn't be satisfied even if the runtime
37 ;; value is known to be a subtype of some specialized ARRAY, because
38 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
39 ;; which are represented in the compiler as INTERSECTION-TYPE, not
40 ;; array type.
41 (array-type
42 (values (array-type-specialized-element-type type) nil))
43 ;; Deal with intersection types (bug #316078)
44 (intersection-type
45 (let ((intersection-types (intersection-type-types type))
46 (element-type *wild-type*)
47 (element-supertypes nil))
48 (dolist (intersection-type intersection-types)
49 (multiple-value-bind (cur-type cur-supertype)
50 (array-type-upgraded-element-type intersection-type)
51 ;; According to ANSI, an array may have only one specialized
52 ;; element type - e.g. '(and (array foo) (array bar))
53 ;; is not a valid type unless foo and bar upgrade to the
54 ;; same element type.
55 (cond
56 ((eq cur-type *wild-type*)
57 nil)
58 ((eq element-type *wild-type*)
59 (setf element-type cur-type))
60 ((or (not (csubtypep cur-type element-type))
61 (not (csubtypep element-type cur-type)))
62 ;; At least two different element types where given, the array
63 ;; is valid iff they represent the same type.
65 ;; FIXME: TYPE-INTERSECTION already takes care of disjoint array
66 ;; types, so I believe this code should be unreachable. Maybe
67 ;; signal a warning / error instead?
68 (setf element-type *empty-type*)))
69 (push (or cur-supertype (type-*-to-t cur-type))
70 element-supertypes)))
71 (values element-type
72 (when (and (eq *wild-type* element-type) element-supertypes)
73 (apply #'type-intersection element-supertypes)))))
74 (union-type
75 (let ((union-types (union-type-types type))
76 (element-type nil)
77 (element-supertypes nil))
78 (dolist (union-type union-types)
79 (multiple-value-bind (cur-type cur-supertype)
80 (array-type-upgraded-element-type union-type)
81 (cond
82 ((eq element-type *wild-type*)
83 nil)
84 ((eq element-type nil)
85 (setf element-type cur-type))
86 ((or (eq cur-type *wild-type*)
87 ;; If each of the two following tests fail, it is not
88 ;; possible to determine the element-type of the array
89 ;; because more than one kind of element-type was provided
90 ;; like in '(or (array foo) (array bar)) although a
91 ;; supertype (or foo bar) may be provided as the second
92 ;; returned value returned. See also the KLUDGE below.
93 (not (csubtypep cur-type element-type))
94 (not (csubtypep element-type cur-type)))
95 (setf element-type *wild-type*)))
96 (push (or cur-supertype (type-*-to-t cur-type))
97 element-supertypes)))
98 (values element-type
99 (when (eq *wild-type* element-type)
100 (apply #'type-union element-supertypes)))))
101 (member-type
102 ;; Convert member-type to an union-type.
103 (array-type-upgraded-element-type
104 (apply #'type-union (mapcar #'ctype-of (member-type-members type)))))
106 ;; KLUDGE: there is no good answer here, but at least
107 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
108 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
109 ;; 2002-08-21
110 (values *wild-type* nil))))
112 (defun array-type-declared-element-type (type)
113 (if (array-type-p type)
114 (array-type-element-type type)
115 *wild-type*))
117 ;;; The ``new-value'' for array setters must fit in the array, and the
118 ;;; return type is going to be the same as the new-value for SETF
119 ;;; functions.
120 (defun assert-new-value-type (new-value array)
121 (let ((type (lvar-type array)))
122 (when (array-type-p type)
123 (assert-lvar-type
124 new-value
125 (array-type-specialized-element-type type)
126 (lexenv-policy (node-lexenv (lvar-dest new-value))))))
127 (lvar-type new-value))
129 ;;; Return true if ARG is NIL, or is a constant-lvar whose
130 ;;; value is NIL, false otherwise.
131 (defun unsupplied-or-nil (arg)
132 (declare (type (or lvar null) arg))
133 (or (not arg)
134 (and (constant-lvar-p arg)
135 (not (lvar-value arg)))))
137 (defun supplied-and-true (arg)
138 (and arg
139 (constant-lvar-p arg)
140 (lvar-value arg)
143 ;;;; DERIVE-TYPE optimizers
145 ;;; Array operations that use a specific number of indices implicitly
146 ;;; assert that the array is of that rank.
147 (defun assert-array-rank (array rank)
148 (assert-lvar-type
149 array
150 (specifier-type `(array * ,(make-list rank :initial-element '*)))
151 (lexenv-policy (node-lexenv (lvar-dest array)))))
153 (defun derive-aref-type (array)
154 (multiple-value-bind (uaet other)
155 (array-type-upgraded-element-type (lvar-type array))
156 (or other uaet)))
158 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
159 (assert-array-rank array (length indices))
160 *universal-type*)
162 (deftransform array-in-bounds-p ((array &rest subscripts))
163 (flet ((give-up ()
164 (give-up-ir1-transform
165 "~@<lower array bounds unknown or negative and upper bounds not ~
166 negative~:@>"))
167 (bound-known-p (x)
168 (integerp x))) ; might be NIL or *
169 (block nil
170 (let ((dimensions (array-type-dimensions-or-give-up
171 (lvar-conservative-type array))))
172 ;; Might be *. (Note: currently this is never true, because the type
173 ;; derivation infers the rank from the call to ARRAY-IN-BOUNDS-P, but
174 ;; let's keep this future proof.)
175 (when (eq '* dimensions)
176 (give-up-ir1-transform "array bounds unknown"))
177 ;; shortcut for zero dimensions
178 (when (some (lambda (dim)
179 (and (bound-known-p dim) (zerop dim)))
180 dimensions)
181 (return nil))
182 ;; we first collect the subscripts LVARs' bounds and see whether
183 ;; we can already decide on the result of the optimization without
184 ;; even taking a look at the dimensions.
185 (flet ((subscript-bounds (subscript)
186 (let* ((type1 (lvar-type subscript))
187 (type2 (if (csubtypep type1 (specifier-type 'integer))
188 (weaken-integer-type type1 :range-only t)
189 (give-up)))
190 (low (if (integer-type-p type2)
191 (numeric-type-low type2)
192 (give-up)))
193 (high (numeric-type-high type2)))
194 (cond
195 ((and (or (not (bound-known-p low)) (minusp low))
196 (or (not (bound-known-p high)) (not (minusp high))))
197 ;; can't be sure about the lower bound and the upper bound
198 ;; does not give us a definite clue either.
199 (give-up))
200 ((and (bound-known-p high) (minusp high))
201 (return nil)) ; definitely below lower bound (zero).
203 (cons low high))))))
204 (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts))
205 (subscripts-lower-bound (mapcar #'car subscripts-bounds))
206 (subscripts-upper-bound (mapcar #'cdr subscripts-bounds))
207 (in-bounds 0))
208 (mapcar (lambda (low high dim)
209 (cond
210 ;; first deal with infinite bounds
211 ((some (complement #'bound-known-p) (list low high dim))
212 (when (and (bound-known-p dim) (bound-known-p low) (<= dim low))
213 (return nil)))
214 ;; now we know all bounds
215 ((>= low dim)
216 (return nil))
217 ((< high dim)
218 (aver (not (minusp low)))
219 (incf in-bounds))
221 (give-up))))
222 subscripts-lower-bound
223 subscripts-upper-bound
224 dimensions)
225 (if (eql in-bounds (length dimensions))
227 (give-up))))))))
229 (defoptimizer (aref derive-type) ((array &rest indices) node)
230 (assert-array-rank array (length indices))
231 (derive-aref-type array))
233 (defoptimizer ((setf aref) derive-type) ((new-value array &rest subscripts))
234 (assert-array-rank array (length subscripts))
235 (assert-new-value-type new-value array))
237 (macrolet ((define (name)
238 `(defoptimizer (,name derive-type) ((array index))
239 (derive-aref-type array))))
240 (define hairy-data-vector-ref)
241 (define hairy-data-vector-ref/check-bounds)
242 (define data-vector-ref))
244 #!+(or x86 x86-64)
245 (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset))
246 (derive-aref-type array))
248 (macrolet ((define (name)
249 `(defoptimizer (,name derive-type) ((array index new-value))
250 (assert-new-value-type new-value array))))
251 (define hairy-data-vector-set)
252 (define hairy-data-vector-set/check-bounds)
253 (define data-vector-set))
255 #!+(or x86 x86-64)
256 (defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value))
257 (assert-new-value-type new-value array))
259 ;;; Figure out the type of the data vector if we know the argument
260 ;;; element type.
261 (defun derive-%with-array-data/mumble-type (array)
262 (let ((atype (lvar-type array)))
263 (when (array-type-p atype)
264 (specifier-type
265 `(simple-array ,(type-specifier
266 (array-type-specialized-element-type atype))
267 (*))))))
268 (defoptimizer (%with-array-data derive-type) ((array start end))
269 (derive-%with-array-data/mumble-type array))
270 (defoptimizer (%with-array-data/fp derive-type) ((array start end))
271 (derive-%with-array-data/mumble-type array))
273 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
274 (assert-array-rank array (length indices))
275 *universal-type*)
277 (defoptimizer (row-major-aref derive-type) ((array index))
278 (derive-aref-type array))
280 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
281 (assert-new-value-type new-value array))
283 (defun derive-make-array-type (dims element-type adjustable
284 fill-pointer displaced-to)
285 (let* ((simple (and (unsupplied-or-nil adjustable)
286 (unsupplied-or-nil displaced-to)
287 (unsupplied-or-nil fill-pointer)))
288 (spec
289 (or `(,(if simple 'simple-array 'array)
290 ,(cond ((not element-type) t)
291 ((ctype-p element-type)
292 (type-specifier element-type))
293 ((constant-lvar-p element-type)
294 (let ((ctype (careful-specifier-type
295 (lvar-value element-type))))
296 (cond
297 ((or (null ctype) (contains-unknown-type-p ctype)) '*)
298 (t (sb!xc:upgraded-array-element-type
299 (lvar-value element-type))))))
301 '*))
302 ,(cond ((constant-lvar-p dims)
303 (let* ((val (lvar-value dims))
304 (cdims (if (listp val) val (list val))))
305 (if simple
306 cdims
307 (length cdims))))
308 ((csubtypep (lvar-type dims)
309 (specifier-type 'integer))
310 '(*))
312 '*)))
313 'array)))
314 (if (and (not simple)
315 (or (supplied-and-true adjustable)
316 (supplied-and-true displaced-to)
317 (supplied-and-true fill-pointer)))
318 (careful-specifier-type `(and ,spec (not simple-array)))
319 (careful-specifier-type spec))))
321 (defoptimizer (make-array derive-type)
322 ((dims &key element-type adjustable fill-pointer displaced-to))
323 (derive-make-array-type dims element-type adjustable
324 fill-pointer displaced-to))
326 (defoptimizer (%make-array derive-type)
327 ((dims widetag n-bits &key adjustable fill-pointer displaced-to))
328 (declare (ignore n-bits))
329 (let ((saetp (and (constant-lvar-p widetag)
330 (find (lvar-value widetag)
331 sb!vm:*specialized-array-element-type-properties*
332 :key #'sb!vm:saetp-typecode))))
333 (derive-make-array-type dims (if saetp
334 (sb!vm:saetp-ctype saetp)
335 *wild-type*)
336 adjustable fill-pointer displaced-to)))
339 ;;;; constructors
341 ;;; Convert VECTOR into a MAKE-ARRAY.
342 (define-source-transform vector (&rest elements)
343 `(make-array ,(length elements) :initial-contents (list ,@elements)))
345 ;;; Just convert it into a MAKE-ARRAY.
346 (deftransform make-string ((length &key
347 (element-type 'character)
348 (initial-element
349 #.*default-init-char-form*)))
350 `(the simple-string (make-array (the index length)
351 :element-type element-type
352 ,@(when initial-element
353 '(:initial-element initial-element)))))
355 ;; Traverse the :INTIAL-CONTENTS argument to an array constructor call,
356 ;; changing the skeleton of the data to be constructed by calls to LIST
357 ;; and wrapping some declarations around each array cell's constructor.
358 ;; If a macro is involved, expand it before traversing.
359 ;; Known bugs:
360 ;; - Despite the effort to handle multidimensional arrays here,
361 ;; an array-header will not be stack-allocated, so the data won't be either.
362 ;; - inline functions whose behavior is merely to call LIST don't work
363 ;; e.g. :INITIAL-CONTENTS (MY-LIST a b) ; where MY-LIST is inline
364 ;; ; and effectively just (LIST ...)
365 ;; - in the current implementation it is only with difficulty that
366 ;; backquoted vectors could be used as initializers because BACKQ-VECTOR
367 ;; is not the analogous function to VECTOR. (New backq macro fixes that.)
368 (defun rewrite-initial-contents (rank initial-contents env)
369 (named-let recurse ((rank rank) (data initial-contents))
370 (declare (index rank))
371 (if (plusp rank)
372 (flet ((sequence-constructor-p (form)
373 (member (car form) '(list vector sb!impl::backq-list))))
374 (let (expanded)
375 (cond ((not (listp data)) data)
376 ((sequence-constructor-p data)
377 `(list ,@(mapcar (lambda (dim) (recurse (1- rank) dim))
378 (cdr data))))
379 ((and (sb!xc:macro-function (car data) env)
380 (listp (setq expanded (sb!xc:macroexpand data env)))
381 (sequence-constructor-p expanded))
382 (recurse rank expanded))
383 (t data))))
384 ;; This is the important bit: once we are past the level of
385 ;; :INITIAL-CONTENTS that relates to the array structure, reinline LIST
386 ;; and VECTOR so that nested DX isn't screwed up.
387 `(locally (declare (inline list vector)) ,data))))
389 ;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments, so that we
390 ;;; can pick them apart in the DEFTRANSFORMS, and transform '(3) style
391 ;;; dimensions to integer args directly.
392 (define-source-transform make-array (dimensions &rest keyargs &environment env)
393 (if (or (and (fun-lexically-notinline-p 'list)
394 (fun-lexically-notinline-p 'vector))
395 (oddp (length keyargs)))
396 (values nil t)
397 (multiple-value-bind (new-dimensions rank)
398 (flet ((constant-dims (dimensions)
399 (let* ((dims (constant-form-value dimensions env))
400 (canon (if (listp dims) dims (list dims)))
401 (rank (length canon)))
402 (values (if (= rank 1)
403 (list 'quote (car canon))
404 (list 'quote canon))
405 rank))))
406 (cond ((sb!xc:constantp dimensions env)
407 (constant-dims dimensions))
408 ((and (consp dimensions) (eq 'list dimensions))
409 (values dimensions (length (cdr dimensions))))
411 (values dimensions nil))))
412 (let ((initial-contents (getf keyargs :initial-contents)))
413 (when (and initial-contents rank)
414 (setf keyargs (copy-list keyargs)
415 (getf keyargs :initial-contents)
416 (rewrite-initial-contents rank initial-contents env))))
417 `(locally (declare (notinline list vector))
418 (make-array ,new-dimensions ,@keyargs)))))
420 ;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY
421 ;;; call which creates a vector with a known element type -- and tries
422 ;;; to do a good job with all the different ways it can happen.
423 (defun transform-make-array-vector (length element-type initial-element
424 initial-contents call)
425 (aver (or (not element-type) (constant-lvar-p element-type)))
426 (let* ((c-length (when (constant-lvar-p length)
427 (lvar-value length)))
428 (elt-spec (if element-type
429 (lvar-value element-type)
431 (elt-ctype (ir1-transform-specifier-type elt-spec))
432 (saetp (if (unknown-type-p elt-ctype)
433 (give-up-ir1-transform "~S is an unknown type: ~S"
434 :element-type elt-spec)
435 (find-saetp-by-ctype elt-ctype)))
436 (default-initial-element (sb!vm:saetp-initial-element-default saetp))
437 (n-bits (sb!vm:saetp-n-bits saetp))
438 (typecode (sb!vm:saetp-typecode saetp))
439 (n-pad-elements (sb!vm:saetp-n-pad-elements saetp))
440 (n-words-form
441 (if c-length
442 (ceiling (* (+ c-length n-pad-elements) n-bits)
443 sb!vm:n-word-bits)
444 (let ((padded-length-form (if (zerop n-pad-elements)
445 'length
446 `(+ length ,n-pad-elements))))
447 (cond
448 ((= n-bits 0) 0)
449 ((>= n-bits sb!vm:n-word-bits)
450 `(* ,padded-length-form
451 ;; i.e., not RATIO
452 ,(the fixnum (/ n-bits sb!vm:n-word-bits))))
454 (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits)))
455 (declare (type index n-elements-per-word)) ; i.e., not RATIO
456 `(ceiling (truly-the index ,padded-length-form)
457 ,n-elements-per-word)))))))
458 (result-spec
459 `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*))))
460 (alloc-form
461 `(truly-the ,result-spec
462 (allocate-vector ,typecode (the index length) ,n-words-form))))
463 (cond ((and initial-element initial-contents)
464 (abort-ir1-transform "Both ~S and ~S specified."
465 :initial-contents :initial-element))
466 ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a
467 ;; constant LENGTH.
468 ((and initial-contents c-length
469 (lvar-matches initial-contents
470 :fun-names '(list vector sb!impl::backq-list)
471 :arg-count c-length))
472 (let ((parameters (eliminate-keyword-args
473 call 1 '((:element-type element-type)
474 (:initial-contents initial-contents))))
475 (elt-vars (make-gensym-list c-length))
476 (lambda-list '(length)))
477 (splice-fun-args initial-contents :any c-length)
478 (dolist (p parameters)
479 (setf lambda-list
480 (append lambda-list
481 (if (eq p 'initial-contents)
482 elt-vars
483 (list p)))))
484 `(lambda ,lambda-list
485 (declare (type ,elt-spec ,@elt-vars)
486 (ignorable ,@lambda-list))
487 (truly-the ,result-spec
488 (initialize-vector ,alloc-form ,@elt-vars)))))
489 ;; constant :INITIAL-CONTENTS and LENGTH
490 ((and initial-contents c-length (constant-lvar-p initial-contents))
491 (let ((contents (lvar-value initial-contents)))
492 (unless (= c-length (length contents))
493 (abort-ir1-transform "~S has ~S elements, vector length is ~S."
494 :initial-contents (length contents) c-length))
495 (let ((parameters (eliminate-keyword-args
496 call 1 '((:element-type element-type)
497 (:initial-contents initial-contents)))))
498 `(lambda (length ,@parameters)
499 (declare (ignorable ,@parameters))
500 (truly-the ,result-spec
501 (initialize-vector ,alloc-form
502 ,@(map 'list (lambda (elt)
503 `(the ,elt-spec ',elt))
504 contents)))))))
505 ;; any other :INITIAL-CONTENTS
506 (initial-contents
507 (let ((parameters (eliminate-keyword-args
508 call 1 '((:element-type element-type)
509 (:initial-contents initial-contents)))))
510 `(lambda (length ,@parameters)
511 (declare (ignorable ,@parameters))
512 (unless (= length (length initial-contents))
513 (error "~S has ~S elements, vector length is ~S."
514 :initial-contents (length initial-contents) length))
515 (truly-the ,result-spec
516 (replace ,alloc-form initial-contents)))))
517 ;; :INITIAL-ELEMENT, not EQL to the default
518 ((and initial-element
519 (or (not (constant-lvar-p initial-element))
520 (not (eql default-initial-element (lvar-value initial-element)))))
521 (let ((parameters (eliminate-keyword-args
522 call 1 '((:element-type element-type)
523 (:initial-element initial-element))))
524 (init (if (constant-lvar-p initial-element)
525 (list 'quote (lvar-value initial-element))
526 'initial-element)))
527 `(lambda (length ,@parameters)
528 (declare (ignorable ,@parameters))
529 (truly-the ,result-spec
530 (fill ,alloc-form (the ,elt-spec ,init))))))
531 ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the
532 ;; default
534 #-sb-xc-host
535 (unless (ctypep default-initial-element elt-ctype)
536 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
537 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
538 ;; INITIAL-ELEMENT is not supplied, the consequences of later
539 ;; reading an uninitialized element of new-array are undefined,"
540 ;; so this could be legal code as long as the user plans to
541 ;; write before he reads, and if he doesn't we're free to do
542 ;; anything we like. But in case the user doesn't know to write
543 ;; elements before he reads elements (or to read manuals before
544 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
545 ;; didn't realize this.
546 (if initial-element
547 (compiler-warn "~S ~S is not a ~S"
548 :initial-element default-initial-element
549 elt-spec)
550 (compiler-style-warn "The default initial element ~S is not a ~S."
551 default-initial-element
552 elt-spec)))
553 (let ((parameters (eliminate-keyword-args
554 call 1 '((:element-type element-type)
555 (:initial-element initial-element)))))
556 `(lambda (length ,@parameters)
557 (declare (ignorable ,@parameters))
558 ,alloc-form))))))
560 ;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least
561 ;;; specific must come first, otherwise suboptimal transforms will result for
562 ;;; some forms.
564 (deftransform make-array ((dims &key initial-element element-type
565 adjustable fill-pointer)
566 (t &rest *) *
567 :node node)
568 (delay-ir1-transform node :constraint)
569 (let* ((eltype (cond ((not element-type) t)
570 ((not (constant-lvar-p element-type))
571 (give-up-ir1-transform
572 "ELEMENT-TYPE is not constant."))
574 (lvar-value element-type))))
575 (eltype-type (ir1-transform-specifier-type eltype))
576 (saetp (if (unknown-type-p eltype-type)
577 (give-up-ir1-transform
578 "ELEMENT-TYPE ~s is not a known type"
579 eltype-type)
580 (find eltype-type
581 sb!vm:*specialized-array-element-type-properties*
582 :key #'sb!vm:saetp-ctype
583 :test #'csubtypep)))
584 (creation-form `(%make-array
585 dims
586 ,(if saetp
587 (sb!vm:saetp-typecode saetp)
588 (give-up-ir1-transform))
589 ,(sb!vm:saetp-n-bits saetp)
590 ,@(when fill-pointer
591 '(:fill-pointer fill-pointer))
592 ,@(when adjustable
593 '(:adjustable adjustable)))))
594 (cond ((or (not initial-element)
595 (and (constant-lvar-p initial-element)
596 (eql (lvar-value initial-element)
597 (sb!vm:saetp-initial-element-default saetp))))
598 creation-form)
600 ;; error checking for target, disabled on the host because
601 ;; (CTYPE-OF #\Null) is not possible.
602 #-sb-xc-host
603 (when (constant-lvar-p initial-element)
604 (let ((value (lvar-value initial-element)))
605 (cond
606 ((not (ctypep value (sb!vm:saetp-ctype saetp)))
607 ;; this case will cause an error at runtime, so we'd
608 ;; better WARN about it now.
609 (warn 'array-initial-element-mismatch
610 :format-control "~@<~S is not a ~S (which is the ~
611 ~S of ~S).~@:>"
612 :format-arguments
613 (list
614 value
615 (type-specifier (sb!vm:saetp-ctype saetp))
616 'upgraded-array-element-type
617 eltype)))
618 ((not (ctypep value eltype-type))
619 ;; this case will not cause an error at runtime, but
620 ;; it's still worth STYLE-WARNing about.
621 (compiler-style-warn "~S is not a ~S."
622 value eltype)))))
623 `(let ((array ,creation-form))
624 (multiple-value-bind (vector)
625 (%data-vector-and-index array 0)
626 (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element)))
627 array)))))
629 ;;; The list type restriction does not ensure that the result will be a
630 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
631 ;;; and displaced-to keywords ensures that it will be simple.
633 ;;; FIXME: should we generalize this transform to non-simple (though
634 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
635 ;;; deal with those? Maybe when the DEFTRANSFORM
636 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
637 ;;; CSR, 2002-07-01
638 (deftransform make-array ((dims &key
639 element-type initial-element initial-contents)
640 (list &key
641 (:element-type (constant-arg *))
642 (:initial-element *)
643 (:initial-contents *))
645 :node call)
646 (block make-array
647 (when (lvar-matches dims :fun-names '(list) :arg-count 1)
648 (let ((length (car (splice-fun-args dims :any 1))))
649 (return-from make-array
650 (transform-make-array-vector length
651 element-type
652 initial-element
653 initial-contents
654 call))))
655 (unless (constant-lvar-p dims)
656 (give-up-ir1-transform
657 "The dimension list is not constant; cannot open code array creation."))
658 (let ((dims (lvar-value dims))
659 (element-type-ctype (and (constant-lvar-p element-type)
660 (ir1-transform-specifier-type
661 (lvar-value element-type)))))
662 (when (contains-unknown-type-p element-type-ctype)
663 (give-up-ir1-transform))
664 (unless (every #'integerp dims)
665 (give-up-ir1-transform
666 "The dimension list contains something other than an integer: ~S"
667 dims))
668 (if (= (length dims) 1)
669 `(make-array ',(car dims)
670 ,@(when element-type
671 '(:element-type element-type))
672 ,@(when initial-element
673 '(:initial-element initial-element))
674 ,@(when initial-contents
675 '(:initial-contents initial-contents)))
676 (let* ((total-size (reduce #'* dims))
677 (rank (length dims))
678 (spec `(simple-array
679 ,(cond ((null element-type) t)
680 (element-type-ctype
681 (sb!xc:upgraded-array-element-type
682 (lvar-value element-type)))
683 (t '*))
684 ,(make-list rank :initial-element '*))))
685 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))
686 (data (make-array ,total-size
687 ,@(when element-type
688 '(:element-type element-type))
689 ,@(when initial-element
690 '(:initial-element initial-element)))))
691 ,@(when initial-contents
692 ;; FIXME: This is could be open coded at least a bit too
693 `((sb!impl::fill-data-vector data ',dims initial-contents)))
694 (setf (%array-fill-pointer header) ,total-size)
695 (setf (%array-fill-pointer-p header) nil)
696 (setf (%array-available-elements header) ,total-size)
697 (setf (%array-data-vector header) data)
698 (setf (%array-displaced-p header) nil)
699 (setf (%array-displaced-from header) nil)
700 ,@(let ((axis -1))
701 (mapcar (lambda (dim)
702 `(setf (%array-dimension header ,(incf axis))
703 ,dim))
704 dims))
705 (truly-the ,spec header)))))))
707 (deftransform make-array ((dims &key element-type initial-element initial-contents)
708 (integer &key
709 (:element-type (constant-arg *))
710 (:initial-element *)
711 (:initial-contents *))
713 :node call)
714 (transform-make-array-vector dims
715 element-type
716 initial-element
717 initial-contents
718 call))
720 ;;;; miscellaneous properties of arrays
722 ;;; Transforms for various array properties. If the property is know
723 ;;; at compile time because of a type spec, use that constant value.
725 ;;; Most of this logic may end up belonging in code/late-type.lisp;
726 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
727 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
728 ;;; 2004-02-18
729 (defun array-type-dimensions-or-give-up (type)
730 (labels ((maybe-array-type-dimensions (type)
731 (typecase type
732 (array-type
733 (array-type-dimensions type))
734 (union-type
735 (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions
736 (union-type-types type))))
737 (result (car types)))
738 (dolist (other (cdr types) result)
739 (unless (equal result other)
740 (give-up-ir1-transform
741 "~@<dimensions of arrays in union type ~S do not match~:@>"
742 (type-specifier type))))))
743 (intersection-type
744 (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions
745 (intersection-type-types type))))
746 (result (car types)))
747 (dolist (other (cdr types) result)
748 (unless (equal result other)
749 (abort-ir1-transform
750 "~@<dimensions of arrays in intersection type ~S do not match~:@>"
751 (type-specifier type)))))))))
752 (or (maybe-array-type-dimensions type)
753 (give-up-ir1-transform
754 "~@<don't know how to extract array dimensions from type ~S~:@>"
755 (type-specifier type)))))
757 (defun conservative-array-type-complexp (type)
758 (typecase type
759 (array-type (array-type-complexp type))
760 (union-type
761 (let ((types (union-type-types type)))
762 (aver (> (length types) 1))
763 (let ((result (conservative-array-type-complexp (car types))))
764 (dolist (type (cdr types) result)
765 (unless (eq (conservative-array-type-complexp type) result)
766 (return-from conservative-array-type-complexp :maybe))))))
767 ;; FIXME: intersection type
768 (t :maybe)))
770 ;; Let type derivation handle constant cases. We only do easy strength
771 ;; reduction.
772 (deftransform array-rank ((array) (array) * :node node)
773 (let ((array-type (lvar-type array)))
774 (cond ((eq t (and (array-type-p array-type)
775 (array-type-complexp array-type)))
776 '(%array-rank array))
778 (delay-ir1-transform node :constraint)
779 `(if (array-header-p array)
780 (%array-rank array)
781 1)))))
783 (defun derive-array-rank (ctype)
784 (let ((array (specifier-type 'array)))
785 (flet ((over (x)
786 (cond ((not (types-equal-or-intersect x array))
787 '()) ; Definitely not an array!
788 ((array-type-p x)
789 (let ((dims (array-type-dimensions x)))
790 (if (eql dims '*)
792 (list (length dims)))))
793 (t '*)))
794 (under (x)
795 ;; Might as well catch some easy negation cases.
796 (typecase x
797 (array-type
798 (let ((dims (array-type-dimensions x)))
799 (cond ((eql dims '*)
801 ((every (lambda (dim)
802 (eql dim '*))
803 dims)
804 (list (length dims)))
806 '()))))
807 (t '()))))
808 (declare (dynamic-extent #'over #'under))
809 (multiple-value-bind (not-p ranks)
810 (list-abstract-type-function ctype #'over :under #'under)
811 (cond ((eql ranks '*)
812 (aver (not not-p))
813 nil)
814 (not-p
815 (specifier-type `(not (member ,@ranks))))
817 (specifier-type `(member ,@ranks))))))))
819 (defoptimizer (array-rank derive-type) ((array))
820 (derive-array-rank (lvar-type array)))
822 (defoptimizer (%array-rank derive-type) ((array))
823 (derive-array-rank (lvar-type array)))
825 ;;; If we know the dimensions at compile time, just use it. Otherwise,
826 ;;; if we can tell that the axis is in bounds, convert to
827 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
828 ;;; (if it's simple and a vector).
829 (deftransform array-dimension ((array axis)
830 (array index))
831 (unless (constant-lvar-p axis)
832 (give-up-ir1-transform "The axis is not constant."))
833 ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the
834 ;; conservative type.
835 (let ((array-type (lvar-conservative-type array))
836 (axis (lvar-value axis)))
837 (let ((dims (array-type-dimensions-or-give-up array-type)))
838 (unless (listp dims)
839 (give-up-ir1-transform
840 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
841 (unless (> (length dims) axis)
842 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
843 dims
844 axis))
845 (let ((dim (nth axis dims)))
846 (cond ((integerp dim)
847 dim)
848 ((= (length dims) 1)
849 (ecase (conservative-array-type-complexp array-type)
850 ((t)
851 '(%array-dimension array 0))
852 ((nil)
853 '(vector-length array))
854 ((:maybe)
855 `(if (array-header-p array)
856 (%array-dimension array axis)
857 (vector-length array)))))
859 '(%array-dimension array axis)))))))
861 ;;; If the length has been declared and it's simple, just return it.
862 (deftransform length ((vector)
863 ((simple-array * (*))))
864 (let ((type (lvar-type vector)))
865 (let ((dims (array-type-dimensions-or-give-up type)))
866 (unless (and (listp dims) (integerp (car dims)))
867 (give-up-ir1-transform
868 "Vector length is unknown, must call LENGTH at runtime."))
869 (car dims))))
871 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
872 ;;; simple, it will extract the length slot from the vector. It it's
873 ;;; complex, it will extract the fill pointer slot from the array
874 ;;; header.
875 (deftransform length ((vector) (vector))
876 '(vector-length vector))
878 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
879 ;;; compile-time constant.
880 (deftransform vector-length ((vector))
881 (let ((vtype (lvar-type vector)))
882 (let ((dim (first (array-type-dimensions-or-give-up vtype))))
883 (when (eq dim '*)
884 (give-up-ir1-transform))
885 (when (conservative-array-type-complexp vtype)
886 (give-up-ir1-transform))
887 dim)))
889 ;;; Again, if we can tell the results from the type, just use it.
890 ;;; Otherwise, if we know the rank, convert into a computation based
891 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
892 ;;; multiplications because we know that the total size must be an
893 ;;; INDEX.
894 (deftransform array-total-size ((array)
895 (array))
896 (let ((array-type (lvar-type array)))
897 (let ((dims (array-type-dimensions-or-give-up array-type)))
898 (unless (listp dims)
899 (give-up-ir1-transform "can't tell the rank at compile time"))
900 (if (member '* dims)
901 (do ((form 1 `(truly-the index
902 (* (array-dimension array ,i) ,form)))
903 (i 0 (1+ i)))
904 ((= i (length dims)) form))
905 (reduce #'* dims)))))
907 ;;; Only complex vectors have fill pointers.
908 (deftransform array-has-fill-pointer-p ((array))
909 (let ((array-type (lvar-type array)))
910 (let ((dims (array-type-dimensions-or-give-up array-type)))
911 (if (and (listp dims) (not (= (length dims) 1)))
913 (ecase (conservative-array-type-complexp array-type)
914 ((t)
916 ((nil)
917 nil)
918 ((:maybe)
919 (give-up-ir1-transform
920 "The array type is ambiguous; must call ~
921 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
923 ;;; Primitive used to verify indices into arrays. If we can tell at
924 ;;; compile-time or we are generating unsafe code, don't bother with
925 ;;; the VOP.
926 (deftransform %check-bound ((array dimension index) * * :node node)
927 (cond ((policy node (= insert-array-bounds-checks 0))
928 'index)
929 ((not (constant-lvar-p dimension))
930 (give-up-ir1-transform))
932 (let ((dim (lvar-value dimension)))
933 ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER?
934 `(the (integer 0 (,dim)) index)))))
936 ;;;; WITH-ARRAY-DATA
938 ;;; This checks to see whether the array is simple and the start and
939 ;;; end are in bounds. If so, it proceeds with those values.
940 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
941 ;;; may be further optimized.
943 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
944 ;;; START-VAR and END-VAR to the start and end of the designated
945 ;;; portion of the data vector. SVALUE and EVALUE are any start and
946 ;;; end specified to the original operation, and are factored into the
947 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
948 ;;; offset of all displacements encountered, and does not include
949 ;;; SVALUE.
951 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
952 ;;; forced to be inline, overriding the ordinary judgment of the
953 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
954 ;;; fairly picky about their arguments, figuring that if you haven't
955 ;;; bothered to get all your ducks in a row, you probably don't care
956 ;;; that much about speed anyway! But in some cases it makes sense to
957 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
958 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
959 ;;; sense to use FORCE-INLINE option in that case.
960 (def!macro with-array-data (((data-var array &key offset-var)
961 (start-var &optional (svalue 0))
962 (end-var &optional (evalue nil))
963 &key force-inline check-fill-pointer)
964 &body forms
965 &environment env)
966 (once-only ((n-array array)
967 (n-svalue `(the index ,svalue))
968 (n-evalue `(the (or index null) ,evalue)))
969 (let ((check-bounds (policy env (plusp insert-array-bounds-checks))))
970 `(multiple-value-bind (,data-var
971 ,start-var
972 ,end-var
973 ,@(when offset-var `(,offset-var)))
974 (if (not (array-header-p ,n-array))
975 (let ((,n-array ,n-array))
976 (declare (type (simple-array * (*)) ,n-array))
977 ,(once-only ((n-len (if check-fill-pointer
978 `(length ,n-array)
979 `(array-total-size ,n-array)))
980 (n-end `(or ,n-evalue ,n-len)))
981 (if check-bounds
982 `(if (<= 0 ,n-svalue ,n-end ,n-len)
983 (values ,n-array ,n-svalue ,n-end 0)
984 ,(if check-fill-pointer
985 `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)
986 `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)))
987 `(values ,n-array ,n-svalue ,n-end 0))))
988 ,(if force-inline
989 `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue
990 :check-bounds ,check-bounds
991 :check-fill-pointer ,check-fill-pointer)
992 (if check-fill-pointer
993 `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue)
994 `(%with-array-data ,n-array ,n-svalue ,n-evalue))))
995 ,@forms))))
997 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
998 ;;; DEFTRANSFORMs and DEFUNs.
999 (def!macro %with-array-data-macro (array
1000 start
1002 &key
1003 (element-type '*)
1004 check-bounds
1005 check-fill-pointer)
1006 (with-unique-names (size defaulted-end data cumulative-offset)
1007 `(let* ((,size ,(if check-fill-pointer
1008 `(length ,array)
1009 `(array-total-size ,array)))
1010 (,defaulted-end (or ,end ,size)))
1011 ,@(when check-bounds
1012 `((unless (<= ,start ,defaulted-end ,size)
1013 ,(if check-fill-pointer
1014 `(sequence-bounding-indices-bad-error ,array ,start ,end)
1015 `(array-bounding-indices-bad-error ,array ,start ,end)))))
1016 (do ((,data ,array (%array-data-vector ,data))
1017 (,cumulative-offset 0
1018 (+ ,cumulative-offset
1019 (%array-displacement ,data))))
1020 ((not (array-header-p ,data))
1021 (values (the (simple-array ,element-type 1) ,data)
1022 (the index (+ ,cumulative-offset ,start))
1023 (the index (+ ,cumulative-offset ,defaulted-end))
1024 (the index ,cumulative-offset)))
1025 (declare (type index ,cumulative-offset))))))
1027 (defun transform-%with-array-data/muble (array node check-fill-pointer)
1028 (let ((element-type (upgraded-element-type-specifier-or-give-up array))
1029 (type (lvar-type array))
1030 (check-bounds (policy node (plusp insert-array-bounds-checks))))
1031 (if (and (array-type-p type)
1032 (not (array-type-complexp type))
1033 (listp (array-type-dimensions type))
1034 (not (null (cdr (array-type-dimensions type)))))
1035 ;; If it's a simple multidimensional array, then just return
1036 ;; its data vector directly rather than going through
1037 ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate
1038 ;; code that would use this currently, but we have encouraged
1039 ;; users to use WITH-ARRAY-DATA and we may use it ourselves at
1040 ;; some point in the future for optimized libraries or
1041 ;; similar.
1042 (if check-bounds
1043 `(let* ((data (truly-the (simple-array ,element-type (*))
1044 (%array-data-vector array)))
1045 (len (length data))
1046 (real-end (or end len)))
1047 (unless (<= 0 start data-end lend)
1048 (sequence-bounding-indices-bad-error array start end))
1049 (values data 0 real-end 0))
1050 `(let ((data (truly-the (simple-array ,element-type (*))
1051 (%array-data-vector array))))
1052 (values data 0 (or end (length data)) 0)))
1053 `(%with-array-data-macro array start end
1054 :check-fill-pointer ,check-fill-pointer
1055 :check-bounds ,check-bounds
1056 :element-type ,element-type))))
1058 ;; It might very well be reasonable to allow general ARRAY here, I
1059 ;; just haven't tried to understand the performance issues involved.
1060 ;; -- WHN, and also CSR 2002-05-26
1061 (deftransform %with-array-data ((array start end)
1062 ((or vector simple-array) index (or index null) t)
1064 :node node
1065 :policy (> speed space))
1066 "inline non-SIMPLE-vector-handling logic"
1067 (transform-%with-array-data/muble array node nil))
1068 (deftransform %with-array-data/fp ((array start end)
1069 ((or vector simple-array) index (or index null) t)
1071 :node node
1072 :policy (> speed space))
1073 "inline non-SIMPLE-vector-handling logic"
1074 (transform-%with-array-data/muble array node t))
1076 ;;;; array accessors
1078 ;;; We convert all typed array accessors into AREF and (SETF AREF) with type
1079 ;;; assertions on the array.
1080 (macrolet ((define-bit-frob (reffer simplep)
1081 `(progn
1082 (define-source-transform ,reffer (a &rest i)
1083 `(aref (the (,',(if simplep 'simple-array 'array)
1085 ,(mapcar (constantly '*) i))
1086 ,a) ,@i))
1087 (define-source-transform (setf ,reffer) (value a &rest i)
1088 `(setf (aref (the (,',(if simplep 'simple-array 'array)
1090 ,(mapcar (constantly '*) i))
1091 ,a) ,@i)
1092 ,value)))))
1093 (define-bit-frob sbit t)
1094 (define-bit-frob bit nil))
1096 (macrolet ((define-frob (reffer setter type)
1097 `(progn
1098 (define-source-transform ,reffer (a i)
1099 `(aref (the ,',type ,a) ,i))
1100 (define-source-transform ,setter (a i v)
1101 `(setf (aref (the ,',type ,a) ,i) ,v)))))
1102 (define-frob schar %scharset simple-string)
1103 (define-frob char %charset string))
1105 ;;; We transform SVREF and %SVSET directly into DATA-VECTOR-REF/SET: this is
1106 ;;; around 100 times faster than going through the general-purpose AREF
1107 ;;; transform which ends up doing a lot of work -- and introducing many
1108 ;;; intermediate lambdas, each meaning a new trip through the compiler -- to
1109 ;;; get the same result.
1111 ;;; FIXME: [S]CHAR, and [S]BIT above would almost certainly benefit from a similar
1112 ;;; treatment.
1113 (define-source-transform svref (vector index)
1114 (let ((elt-type (or (when (symbolp vector)
1115 (let ((var (lexenv-find vector vars)))
1116 (when (lambda-var-p var)
1117 (type-specifier
1118 (array-type-declared-element-type (lambda-var-type var))))))
1119 t)))
1120 (with-unique-names (n-vector)
1121 `(let ((,n-vector ,vector))
1122 (the ,elt-type (data-vector-ref
1123 (the simple-vector ,n-vector)
1124 (%check-bound ,n-vector (length ,n-vector) ,index)))))))
1126 (define-source-transform %svset (vector index value)
1127 (let ((elt-type (or (when (symbolp vector)
1128 (let ((var (lexenv-find vector vars)))
1129 (when (lambda-var-p var)
1130 (type-specifier
1131 (array-type-declared-element-type (lambda-var-type var))))))
1132 t)))
1133 (with-unique-names (n-vector)
1134 `(let ((,n-vector ,vector))
1135 (truly-the ,elt-type (data-vector-set
1136 (the simple-vector ,n-vector)
1137 (%check-bound ,n-vector (length ,n-vector) ,index)
1138 (the ,elt-type ,value)))))))
1140 (macrolet (;; This is a handy macro for computing the row-major index
1141 ;; given a set of indices. We wrap each index with a call
1142 ;; to %CHECK-BOUND to ensure that everything works out
1143 ;; correctly. We can wrap all the interior arithmetic with
1144 ;; TRULY-THE INDEX because we know the resultant
1145 ;; row-major index must be an index.
1146 (with-row-major-index ((array indices index &optional new-value)
1147 &rest body)
1148 `(let (n-indices dims)
1149 (dotimes (i (length ,indices))
1150 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
1151 (push (make-symbol (format nil "DIM-~D" i)) dims))
1152 (setf n-indices (nreverse n-indices))
1153 (setf dims (nreverse dims))
1154 `(lambda (,@',(when new-value (list new-value))
1155 ,',array ,@n-indices)
1156 (declare (ignorable ,',array))
1157 (let* (,@(let ((,index -1))
1158 (mapcar (lambda (name)
1159 `(,name (array-dimension
1160 ,',array
1161 ,(incf ,index))))
1162 dims))
1163 (,',index
1164 ,(if (null dims)
1166 (do* ((dims dims (cdr dims))
1167 (indices n-indices (cdr indices))
1168 (last-dim nil (car dims))
1169 (form `(%check-bound ,',array
1170 ,(car dims)
1171 ,(car indices))
1172 `(truly-the
1173 index
1174 (+ (truly-the index
1175 (* ,form
1176 ,last-dim))
1177 (%check-bound
1178 ,',array
1179 ,(car dims)
1180 ,(car indices))))))
1181 ((null (cdr dims)) form)))))
1182 ,',@body)))))
1184 ;; Just return the index after computing it.
1185 (deftransform array-row-major-index ((array &rest indices))
1186 (with-row-major-index (array indices index)
1187 index))
1189 ;; Convert AREF and (SETF AREF) into a HAIRY-DATA-VECTOR-REF (or
1190 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
1191 ;; expression for the row major index.
1192 (deftransform aref ((array &rest indices))
1193 (with-row-major-index (array indices index)
1194 (hairy-data-vector-ref array index)))
1196 (deftransform (setf aref) ((new-value array &rest subscripts))
1197 (with-row-major-index (array subscripts index new-value)
1198 (hairy-data-vector-set array index new-value))))
1200 ;; For AREF of vectors we do the bounds checking in the callee. This
1201 ;; lets us do a significantly more efficient check for simple-arrays
1202 ;; without bloating the code. If we already know the type of the array
1203 ;; with sufficient precision, skip directly to DATA-VECTOR-REF.
1204 (deftransform aref ((array index) (t t) * :node node)
1205 (let* ((type (lvar-type array))
1206 (element-ctype (array-type-upgraded-element-type type)))
1207 (cond
1208 ((eql element-ctype *empty-type*)
1209 `(data-nil-vector-ref array index))
1210 ((and (array-type-p type)
1211 (null (array-type-complexp type))
1212 (not (eql element-ctype *wild-type*))
1213 (eql (length (array-type-dimensions type)) 1))
1214 (let* ((declared-element-ctype (array-type-declared-element-type type))
1215 (bare-form
1216 `(data-vector-ref array
1217 (%check-bound array (array-dimension array 0) index))))
1218 (if (type= declared-element-ctype element-ctype)
1219 bare-form
1220 `(the ,(type-specifier declared-element-ctype) ,bare-form))))
1221 ((policy node (zerop insert-array-bounds-checks))
1222 `(hairy-data-vector-ref array index))
1223 (t `(hairy-data-vector-ref/check-bounds array index)))))
1225 (deftransform (setf aref) ((new-value array index) (t t t) * :node node)
1226 (if (policy node (zerop insert-array-bounds-checks))
1227 `(hairy-data-vector-set array index new-value)
1228 `(hairy-data-vector-set/check-bounds array index new-value)))
1230 ;;; But if we find out later that there's some useful type information
1231 ;;; available, switch back to the normal one to give other transforms
1232 ;;; a stab at it.
1233 (macrolet ((define (name transform-to extra extra-type)
1234 (declare (ignore extra-type))
1235 `(deftransform ,name ((array index ,@extra))
1236 (let* ((type (lvar-type array))
1237 (element-type (array-type-upgraded-element-type type))
1238 (declared-type (type-specifier
1239 (array-type-declared-element-type type))))
1240 ;; If an element type has been declared, we want to
1241 ;; use that information it for type checking (even
1242 ;; if the access can't be optimized due to the array
1243 ;; not being simple).
1244 (when (and (eql element-type *wild-type*)
1245 ;; This type logic corresponds to the special
1246 ;; case for strings in HAIRY-DATA-VECTOR-REF
1247 ;; (generic/vm-tran.lisp)
1248 (not (csubtypep type (specifier-type 'simple-string))))
1249 (when (or (not (array-type-p type))
1250 ;; If it's a simple array, we might be able
1251 ;; to inline the access completely.
1252 (not (null (array-type-complexp type))))
1253 (give-up-ir1-transform
1254 "Upgraded element type of array is not known at compile time.")))
1255 ,(if extra
1256 ``(truly-the ,declared-type
1257 (,',transform-to array
1258 (%check-bound array
1259 (array-dimension array 0)
1260 index)
1261 (the ,declared-type ,@',extra)))
1262 ``(the ,declared-type
1263 (,',transform-to array
1264 (%check-bound array
1265 (array-dimension array 0)
1266 index))))))))
1267 (define hairy-data-vector-ref/check-bounds
1268 hairy-data-vector-ref nil nil)
1269 (define hairy-data-vector-set/check-bounds
1270 hairy-data-vector-set (new-value) (*)))
1272 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
1273 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
1274 ;;; array total size.
1275 (deftransform row-major-aref ((array index))
1276 `(hairy-data-vector-ref array
1277 (%check-bound array (array-total-size array) index)))
1278 (deftransform %set-row-major-aref ((array index new-value))
1279 `(hairy-data-vector-set array
1280 (%check-bound array (array-total-size array) index)
1281 new-value))
1283 ;;;; bit-vector array operation canonicalization
1284 ;;;;
1285 ;;;; We convert all bit-vector operations to have the result array
1286 ;;;; specified. This allows any result allocation to be open-coded,
1287 ;;;; and eliminates the need for any VM-dependent transforms to handle
1288 ;;;; these cases.
1290 (macrolet ((def (fun)
1291 `(progn
1292 (deftransform ,fun ((bit-array-1 bit-array-2
1293 &optional result-bit-array)
1294 (bit-vector bit-vector &optional null) *
1295 :policy (>= speed space))
1296 `(,',fun bit-array-1 bit-array-2
1297 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1298 ;; If result is T, make it the first arg.
1299 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
1300 (bit-vector bit-vector (eql t)) *)
1301 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
1302 (def bit-and)
1303 (def bit-ior)
1304 (def bit-xor)
1305 (def bit-eqv)
1306 (def bit-nand)
1307 (def bit-nor)
1308 (def bit-andc1)
1309 (def bit-andc2)
1310 (def bit-orc1)
1311 (def bit-orc2))
1313 ;;; Similar for BIT-NOT, but there is only one arg...
1314 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
1315 (bit-vector &optional null) *
1316 :policy (>= speed space))
1317 '(bit-not bit-array-1
1318 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1319 (deftransform bit-not ((bit-array-1 result-bit-array)
1320 (bit-vector (eql t)))
1321 '(bit-not bit-array-1 bit-array-1))
1323 ;;; Pick off some constant cases.
1324 (defoptimizer (array-header-p derive-type) ((array))
1325 (let ((type (lvar-type array)))
1326 (cond ((not (array-type-p type))
1327 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
1328 nil)
1330 (let ((dims (array-type-dimensions type)))
1331 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
1332 ;; no array header
1333 (specifier-type 'null))
1334 ((and (listp dims) (/= (length dims) 1))
1335 ;; multi-dimensional array, will have a header
1336 (specifier-type '(eql t)))
1337 ((eql (array-type-complexp type) t)
1338 (specifier-type '(eql t)))
1340 nil)))))))