Remove more disassembler bogosity
[sbcl.git] / src / runtime / gencgc.c
blobb6e7296fd403f48a21077315c44abc9cff8add20
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include "sbcl.h"
32 #if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
33 #include "pthreads_win32.h"
34 #else
35 #include <signal.h>
36 #endif
37 #include "runtime.h"
38 #include "os.h"
39 #include "interr.h"
40 #include "globals.h"
41 #include "interrupt.h"
42 #include "validate.h"
43 #include "lispregs.h"
44 #include "arch.h"
45 #include "gc.h"
46 #include "gc-internal.h"
47 #include "thread.h"
48 #include "pseudo-atomic.h"
49 #include "alloc.h"
50 #include "genesis/vector.h"
51 #include "genesis/weak-pointer.h"
52 #include "genesis/fdefn.h"
53 #include "genesis/simple-fun.h"
54 #include "save.h"
55 #include "genesis/hash-table.h"
56 #include "genesis/instance.h"
57 #include "genesis/layout.h"
58 #include "gencgc.h"
59 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
60 #include "genesis/cons.h"
61 #endif
63 /* forward declarations */
64 page_index_t gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
65 int page_type_flag);
69 * GC parameters
72 /* As usually configured, generations 0-5 are normal collected generations,
73 6 is pseudo-static (the objects in which are never moved nor reclaimed),
74 and 7 is scratch space used when collecting a generation without promotion,
75 wherein it is moved to generation 7 and back again.
77 enum {
78 SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
79 NUM_GENERATIONS
82 /* Should we use page protection to help avoid the scavenging of pages
83 * that don't have pointers to younger generations? */
84 boolean enable_page_protection = 1;
86 /* Largest allocation seen since last GC. */
87 os_vm_size_t large_allocation = 0;
91 * debugging
94 /* the verbosity level. All non-error messages are disabled at level 0;
95 * and only a few rare messages are printed at level 1. */
96 #if QSHOW == 2
97 boolean gencgc_verbose = 1;
98 #else
99 boolean gencgc_verbose = 0;
100 #endif
102 /* FIXME: At some point enable the various error-checking things below
103 * and see what they say. */
105 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
106 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
107 * check. */
108 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
110 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
111 boolean pre_verify_gen_0 = 0;
113 /* Should we check for bad pointers after gc_free_heap is called
114 * from Lisp PURIFY? */
115 boolean verify_after_free_heap = 0;
117 /* Should we print a note when code objects are found in the dynamic space
118 * during a heap verify? */
119 boolean verify_dynamic_code_check = 0;
121 #ifdef LISP_FEATURE_X86
122 /* Should we check code objects for fixup errors after they are transported? */
123 boolean check_code_fixups = 0;
124 #endif
126 /* Should we check that newly allocated regions are zero filled? */
127 boolean gencgc_zero_check = 0;
129 /* Should we check that the free space is zero filled? */
130 boolean gencgc_enable_verify_zero_fill = 0;
132 /* Should we check that free pages are zero filled during gc_free_heap
133 * called after Lisp PURIFY? */
134 boolean gencgc_zero_check_during_free_heap = 0;
136 /* When loading a core, don't do a full scan of the memory for the
137 * memory region boundaries. (Set to true by coreparse.c if the core
138 * contained a pagetable entry).
140 boolean gencgc_partial_pickup = 0;
142 /* If defined, free pages are read-protected to ensure that nothing
143 * accesses them.
146 /* #define READ_PROTECT_FREE_PAGES */
150 * GC structures and variables
153 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
154 os_vm_size_t bytes_allocated = 0;
155 os_vm_size_t auto_gc_trigger = 0;
157 /* the source and destination generations. These are set before a GC starts
158 * scavenging. */
159 generation_index_t from_space;
160 generation_index_t new_space;
162 /* Set to 1 when in GC */
163 boolean gc_active_p = 0;
165 /* should the GC be conservative on stack. If false (only right before
166 * saving a core), don't scan the stack / mark pages dont_move. */
167 static boolean conservative_stack = 1;
169 /* An array of page structures is allocated on gc initialization.
170 * This helps to quickly map between an address and its page structure.
171 * page_table_pages is set from the size of the dynamic space. */
172 page_index_t page_table_pages;
173 struct page *page_table;
175 in_use_marker_t *page_table_pinned_dwords;
176 size_t pins_map_size_in_bytes;
178 /* In GC cards that have conservative pointers to them, should we wipe out
179 * dwords in there that are not used, so that they do not act as false
180 * root to other things in the heap from then on? This is a new feature
181 * but in testing it is both reliable and no noticeable slowdown. */
182 int do_wipe_p = 1;
184 static inline boolean page_allocated_p(page_index_t page) {
185 return (page_table[page].allocated != FREE_PAGE_FLAG);
188 static inline boolean page_no_region_p(page_index_t page) {
189 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
192 static inline boolean page_allocated_no_region_p(page_index_t page) {
193 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
194 && page_no_region_p(page));
197 static inline boolean page_free_p(page_index_t page) {
198 return (page_table[page].allocated == FREE_PAGE_FLAG);
201 static inline boolean page_boxed_p(page_index_t page) {
202 return (page_table[page].allocated & BOXED_PAGE_FLAG);
205 static inline boolean page_boxed_no_region_p(page_index_t page) {
206 return page_boxed_p(page) && page_no_region_p(page);
209 static inline boolean page_unboxed_p(page_index_t page) {
210 /* Both flags set == boxed code page */
211 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
212 && !page_boxed_p(page));
215 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
216 return (page_boxed_no_region_p(page)
217 && (page_table[page].bytes_used != 0)
218 && !page_table[page].dont_move
219 && (page_table[page].gen == generation));
222 /* To map addresses to page structures the address of the first page
223 * is needed. */
224 void *heap_base = NULL;
226 /* Calculate the start address for the given page number. */
227 inline void *
228 page_address(page_index_t page_num)
230 return (heap_base + (page_num * GENCGC_CARD_BYTES));
233 /* Calculate the address where the allocation region associated with
234 * the page starts. */
235 static inline void *
236 page_scan_start(page_index_t page_index)
238 return page_address(page_index)-page_table[page_index].scan_start_offset;
241 /* True if the page starts a contiguous block. */
242 static inline boolean
243 page_starts_contiguous_block_p(page_index_t page_index)
245 return page_table[page_index].scan_start_offset == 0;
248 /* True if the page is the last page in a contiguous block. */
249 static inline boolean
250 page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
252 return (/* page doesn't fill block */
253 (page_table[page_index].bytes_used < GENCGC_CARD_BYTES)
254 /* page is last allocated page */
255 || ((page_index + 1) >= last_free_page)
256 /* next page free */
257 || page_free_p(page_index + 1)
258 /* next page contains no data */
259 || (page_table[page_index + 1].bytes_used == 0)
260 /* next page is in different generation */
261 || (page_table[page_index + 1].gen != gen)
262 /* next page starts its own contiguous block */
263 || (page_starts_contiguous_block_p(page_index + 1)));
266 /* Find the page index within the page_table for the given
267 * address. Return -1 on failure. */
268 inline page_index_t
269 find_page_index(void *addr)
271 if (addr >= heap_base) {
272 page_index_t index = ((pointer_sized_uint_t)addr -
273 (pointer_sized_uint_t)heap_base) / GENCGC_CARD_BYTES;
274 if (index < page_table_pages)
275 return (index);
277 return (-1);
280 static os_vm_size_t
281 npage_bytes(page_index_t npages)
283 gc_assert(npages>=0);
284 return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
287 /* Check that X is a higher address than Y and return offset from Y to
288 * X in bytes. */
289 static inline os_vm_size_t
290 void_diff(void *x, void *y)
292 gc_assert(x >= y);
293 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
296 /* a structure to hold the state of a generation
298 * CAUTION: If you modify this, make sure to touch up the alien
299 * definition in src/code/gc.lisp accordingly. ...or better yes,
300 * deal with the FIXME there...
302 struct generation {
304 /* the first page that gc_alloc() checks on its next call */
305 page_index_t alloc_start_page;
307 /* the first page that gc_alloc_unboxed() checks on its next call */
308 page_index_t alloc_unboxed_start_page;
310 /* the first page that gc_alloc_large (boxed) considers on its next
311 * call. (Although it always allocates after the boxed_region.) */
312 page_index_t alloc_large_start_page;
314 /* the first page that gc_alloc_large (unboxed) considers on its
315 * next call. (Although it always allocates after the
316 * current_unboxed_region.) */
317 page_index_t alloc_large_unboxed_start_page;
319 /* the bytes allocated to this generation */
320 os_vm_size_t bytes_allocated;
322 /* the number of bytes at which to trigger a GC */
323 os_vm_size_t gc_trigger;
325 /* to calculate a new level for gc_trigger */
326 os_vm_size_t bytes_consed_between_gc;
328 /* the number of GCs since the last raise */
329 int num_gc;
331 /* the number of GCs to run on the generations before raising objects to the
332 * next generation */
333 int number_of_gcs_before_promotion;
335 /* the cumulative sum of the bytes allocated to this generation. It is
336 * cleared after a GC on this generations, and update before new
337 * objects are added from a GC of a younger generation. Dividing by
338 * the bytes_allocated will give the average age of the memory in
339 * this generation since its last GC. */
340 os_vm_size_t cum_sum_bytes_allocated;
342 /* a minimum average memory age before a GC will occur helps
343 * prevent a GC when a large number of new live objects have been
344 * added, in which case a GC could be a waste of time */
345 double minimum_age_before_gc;
348 /* an array of generation structures. There needs to be one more
349 * generation structure than actual generations as the oldest
350 * generation is temporarily raised then lowered. */
351 struct generation generations[NUM_GENERATIONS];
353 /* the oldest generation that is will currently be GCed by default.
354 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
356 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
358 * Setting this to 0 effectively disables the generational nature of
359 * the GC. In some applications generational GC may not be useful
360 * because there are no long-lived objects.
362 * An intermediate value could be handy after moving long-lived data
363 * into an older generation so an unnecessary GC of this long-lived
364 * data can be avoided. */
365 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
367 /* META: Is nobody aside from me bothered by this especially misleading
368 * use of the word "last"? It could mean either "ultimate" or "prior",
369 * but in fact means neither. It is the *FIRST* page that should be grabbed
370 * for more space, so it is min free page, or 1+ the max used page. */
371 /* The maximum free page in the heap is maintained and used to update
372 * ALLOCATION_POINTER which is used by the room function to limit its
373 * search of the heap. XX Gencgc obviously needs to be better
374 * integrated with the Lisp code. */
376 page_index_t last_free_page;
378 #ifdef LISP_FEATURE_SB_THREAD
379 /* This lock is to prevent multiple threads from simultaneously
380 * allocating new regions which overlap each other. Note that the
381 * majority of GC is single-threaded, but alloc() may be called from
382 * >1 thread at a time and must be thread-safe. This lock must be
383 * seized before all accesses to generations[] or to parts of
384 * page_table[] that other threads may want to see */
385 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
386 /* This lock is used to protect non-thread-local allocation. */
387 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
388 #endif
390 extern os_vm_size_t gencgc_release_granularity;
391 os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
393 extern os_vm_size_t gencgc_alloc_granularity;
394 os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
398 * miscellaneous heap functions
401 /* Count the number of pages which are write-protected within the
402 * given generation. */
403 static page_index_t
404 count_write_protect_generation_pages(generation_index_t generation)
406 page_index_t i, count = 0;
408 for (i = 0; i < last_free_page; i++)
409 if (page_allocated_p(i)
410 && (page_table[i].gen == generation)
411 && (page_table[i].write_protected == 1))
412 count++;
413 return count;
416 /* Count the number of pages within the given generation. */
417 static page_index_t
418 count_generation_pages(generation_index_t generation)
420 page_index_t i;
421 page_index_t count = 0;
423 for (i = 0; i < last_free_page; i++)
424 if (page_allocated_p(i)
425 && (page_table[i].gen == generation))
426 count++;
427 return count;
430 #if QSHOW
431 static page_index_t
432 count_dont_move_pages(void)
434 page_index_t i;
435 page_index_t count = 0;
436 for (i = 0; i < last_free_page; i++) {
437 if (page_allocated_p(i)
438 && (page_table[i].dont_move != 0)) {
439 ++count;
442 return count;
444 #endif /* QSHOW */
446 /* Work through the pages and add up the number of bytes used for the
447 * given generation. */
448 static os_vm_size_t
449 count_generation_bytes_allocated (generation_index_t gen)
451 page_index_t i;
452 os_vm_size_t result = 0;
453 for (i = 0; i < last_free_page; i++) {
454 if (page_allocated_p(i)
455 && (page_table[i].gen == gen))
456 result += page_table[i].bytes_used;
458 return result;
461 /* Return the average age of the memory in a generation. */
462 extern double
463 generation_average_age(generation_index_t gen)
465 if (generations[gen].bytes_allocated == 0)
466 return 0.0;
468 return
469 ((double)generations[gen].cum_sum_bytes_allocated)
470 / ((double)generations[gen].bytes_allocated);
473 #ifdef LISP_FEATURE_X86
474 extern void fpu_save(void *);
475 extern void fpu_restore(void *);
476 #endif
478 extern void
479 write_generation_stats(FILE *file)
481 generation_index_t i;
483 #ifdef LISP_FEATURE_X86
484 int fpu_state[27];
486 /* Can end up here after calling alloc_tramp which doesn't prepare
487 * the x87 state, and the C ABI uses a different mode */
488 fpu_save(fpu_state);
489 #endif
491 /* Print the heap stats. */
492 fprintf(file,
493 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
495 for (i = 0; i < SCRATCH_GENERATION; i++) {
496 page_index_t j;
497 page_index_t boxed_cnt = 0;
498 page_index_t unboxed_cnt = 0;
499 page_index_t large_boxed_cnt = 0;
500 page_index_t large_unboxed_cnt = 0;
501 page_index_t pinned_cnt=0;
503 for (j = 0; j < last_free_page; j++)
504 if (page_table[j].gen == i) {
506 /* Count the number of boxed pages within the given
507 * generation. */
508 if (page_boxed_p(j)) {
509 if (page_table[j].large_object)
510 large_boxed_cnt++;
511 else
512 boxed_cnt++;
514 if(page_table[j].dont_move) pinned_cnt++;
515 /* Count the number of unboxed pages within the given
516 * generation. */
517 if (page_unboxed_p(j)) {
518 if (page_table[j].large_object)
519 large_unboxed_cnt++;
520 else
521 unboxed_cnt++;
525 gc_assert(generations[i].bytes_allocated
526 == count_generation_bytes_allocated(i));
527 fprintf(file,
528 " %1d: %5ld %5ld %5ld %5ld",
530 generations[i].alloc_start_page,
531 generations[i].alloc_unboxed_start_page,
532 generations[i].alloc_large_start_page,
533 generations[i].alloc_large_unboxed_start_page);
534 fprintf(file,
535 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
536 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
537 boxed_cnt, unboxed_cnt, large_boxed_cnt,
538 large_unboxed_cnt, pinned_cnt);
539 fprintf(file,
540 " %8"OS_VM_SIZE_FMT
541 " %5"OS_VM_SIZE_FMT
542 " %8"OS_VM_SIZE_FMT
543 " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
544 generations[i].bytes_allocated,
545 (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
546 generations[i].gc_trigger,
547 count_write_protect_generation_pages(i),
548 generations[i].num_gc,
549 generation_average_age(i));
551 fprintf(file," Total bytes allocated = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
552 fprintf(file," Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
554 #ifdef LISP_FEATURE_X86
555 fpu_restore(fpu_state);
556 #endif
559 extern void
560 write_heap_exhaustion_report(FILE *file, long available, long requested,
561 struct thread *thread)
563 fprintf(file,
564 "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
565 gc_active_p ? "garbage collection" : "allocation",
566 available,
567 requested);
568 write_generation_stats(file);
569 fprintf(file, "GC control variables:\n");
570 fprintf(file, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
571 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
572 (SymbolValue(GC_PENDING, thread) == T) ?
573 "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
574 "false" : "in progress"));
575 #ifdef LISP_FEATURE_SB_THREAD
576 fprintf(file, " *STOP-FOR-GC-PENDING* = %s\n",
577 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
578 #endif
581 extern void
582 print_generation_stats(void)
584 write_generation_stats(stderr);
587 extern char* gc_logfile;
588 char * gc_logfile = NULL;
590 extern void
591 log_generation_stats(char *logfile, char *header)
593 if (logfile) {
594 FILE * log = fopen(logfile, "a");
595 if (log) {
596 fprintf(log, "%s\n", header);
597 write_generation_stats(log);
598 fclose(log);
599 } else {
600 fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
601 fflush(stderr);
606 extern void
607 report_heap_exhaustion(long available, long requested, struct thread *th)
609 if (gc_logfile) {
610 FILE * log = fopen(gc_logfile, "a");
611 if (log) {
612 write_heap_exhaustion_report(log, available, requested, th);
613 fclose(log);
614 } else {
615 fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
616 fflush(stderr);
619 /* Always to stderr as well. */
620 write_heap_exhaustion_report(stderr, available, requested, th);
624 #if defined(LISP_FEATURE_X86)
625 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
626 #endif
628 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
629 * if zeroing it ourselves, i.e. in practice give the memory back to the
630 * OS. Generally done after a large GC.
632 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
633 page_index_t i;
634 void *addr = page_address(start), *new_addr;
635 os_vm_size_t length = npage_bytes(1+end-start);
637 if (start > end)
638 return;
640 gc_assert(length >= gencgc_release_granularity);
641 gc_assert((length % gencgc_release_granularity) == 0);
643 os_invalidate(addr, length);
644 new_addr = os_validate(addr, length);
645 if (new_addr == NULL || new_addr != addr) {
646 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
647 start, new_addr);
650 for (i = start; i <= end; i++) {
651 page_table[i].need_to_zero = 0;
655 /* Zero the pages from START to END (inclusive). Generally done just after
656 * a new region has been allocated.
658 static void
659 zero_pages(page_index_t start, page_index_t end) {
660 if (start > end)
661 return;
663 #if defined(LISP_FEATURE_X86)
664 fast_bzero(page_address(start), npage_bytes(1+end-start));
665 #else
666 bzero(page_address(start), npage_bytes(1+end-start));
667 #endif
671 static void
672 zero_and_mark_pages(page_index_t start, page_index_t end) {
673 page_index_t i;
675 zero_pages(start, end);
676 for (i = start; i <= end; i++)
677 page_table[i].need_to_zero = 0;
680 /* Zero the pages from START to END (inclusive), except for those
681 * pages that are known to already zeroed. Mark all pages in the
682 * ranges as non-zeroed.
684 static void
685 zero_dirty_pages(page_index_t start, page_index_t end) {
686 page_index_t i, j;
688 for (i = start; i <= end; i++) {
689 if (!page_table[i].need_to_zero) continue;
690 for (j = i+1; (j <= end) && (page_table[j].need_to_zero); j++);
691 zero_pages(i, j-1);
692 i = j;
695 for (i = start; i <= end; i++) {
696 page_table[i].need_to_zero = 1;
702 * To support quick and inline allocation, regions of memory can be
703 * allocated and then allocated from with just a free pointer and a
704 * check against an end address.
706 * Since objects can be allocated to spaces with different properties
707 * e.g. boxed/unboxed, generation, ages; there may need to be many
708 * allocation regions.
710 * Each allocation region may start within a partly used page. Many
711 * features of memory use are noted on a page wise basis, e.g. the
712 * generation; so if a region starts within an existing allocated page
713 * it must be consistent with this page.
715 * During the scavenging of the newspace, objects will be transported
716 * into an allocation region, and pointers updated to point to this
717 * allocation region. It is possible that these pointers will be
718 * scavenged again before the allocation region is closed, e.g. due to
719 * trans_list which jumps all over the place to cleanup the list. It
720 * is important to be able to determine properties of all objects
721 * pointed to when scavenging, e.g to detect pointers to the oldspace.
722 * Thus it's important that the allocation regions have the correct
723 * properties set when allocated, and not just set when closed. The
724 * region allocation routines return regions with the specified
725 * properties, and grab all the pages, setting their properties
726 * appropriately, except that the amount used is not known.
728 * These regions are used to support quicker allocation using just a
729 * free pointer. The actual space used by the region is not reflected
730 * in the pages tables until it is closed. It can't be scavenged until
731 * closed.
733 * When finished with the region it should be closed, which will
734 * update the page tables for the actual space used returning unused
735 * space. Further it may be noted in the new regions which is
736 * necessary when scavenging the newspace.
738 * Large objects may be allocated directly without an allocation
739 * region, the page tables are updated immediately.
741 * Unboxed objects don't contain pointers to other objects and so
742 * don't need scavenging. Further they can't contain pointers to
743 * younger generations so WP is not needed. By allocating pages to
744 * unboxed objects the whole page never needs scavenging or
745 * write-protecting. */
747 /* We are only using two regions at present. Both are for the current
748 * newspace generation. */
749 struct alloc_region boxed_region;
750 struct alloc_region unboxed_region;
752 /* The generation currently being allocated to. */
753 static generation_index_t gc_alloc_generation;
755 static inline page_index_t
756 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
758 if (large) {
759 if (UNBOXED_PAGE_FLAG == page_type_flag) {
760 return generations[generation].alloc_large_unboxed_start_page;
761 } else if (BOXED_PAGE_FLAG & page_type_flag) {
762 /* Both code and data. */
763 return generations[generation].alloc_large_start_page;
764 } else {
765 lose("bad page type flag: %d", page_type_flag);
767 } else {
768 if (UNBOXED_PAGE_FLAG == page_type_flag) {
769 return generations[generation].alloc_unboxed_start_page;
770 } else if (BOXED_PAGE_FLAG & page_type_flag) {
771 /* Both code and data. */
772 return generations[generation].alloc_start_page;
773 } else {
774 lose("bad page_type_flag: %d", page_type_flag);
779 static inline void
780 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
781 page_index_t page)
783 if (large) {
784 if (UNBOXED_PAGE_FLAG == page_type_flag) {
785 generations[generation].alloc_large_unboxed_start_page = page;
786 } else if (BOXED_PAGE_FLAG & page_type_flag) {
787 /* Both code and data. */
788 generations[generation].alloc_large_start_page = page;
789 } else {
790 lose("bad page type flag: %d", page_type_flag);
792 } else {
793 if (UNBOXED_PAGE_FLAG == page_type_flag) {
794 generations[generation].alloc_unboxed_start_page = page;
795 } else if (BOXED_PAGE_FLAG & page_type_flag) {
796 /* Both code and data. */
797 generations[generation].alloc_start_page = page;
798 } else {
799 lose("bad page type flag: %d", page_type_flag);
804 const int n_dwords_in_card = GENCGC_CARD_BYTES / N_WORD_BYTES / 2;
805 in_use_marker_t *
806 pinned_dwords(page_index_t page)
808 if (page_table[page].has_pin_map)
809 return &page_table_pinned_dwords[page * (n_dwords_in_card/N_WORD_BITS)];
810 return NULL;
813 /* Find a new region with room for at least the given number of bytes.
815 * It starts looking at the current generation's alloc_start_page. So
816 * may pick up from the previous region if there is enough space. This
817 * keeps the allocation contiguous when scavenging the newspace.
819 * The alloc_region should have been closed by a call to
820 * gc_alloc_update_page_tables(), and will thus be in an empty state.
822 * To assist the scavenging functions write-protected pages are not
823 * used. Free pages should not be write-protected.
825 * It is critical to the conservative GC that the start of regions be
826 * known. To help achieve this only small regions are allocated at a
827 * time.
829 * During scavenging, pointers may be found to within the current
830 * region and the page generation must be set so that pointers to the
831 * from space can be recognized. Therefore the generation of pages in
832 * the region are set to gc_alloc_generation. To prevent another
833 * allocation call using the same pages, all the pages in the region
834 * are allocated, although they will initially be empty.
836 static void
837 gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
839 page_index_t first_page;
840 page_index_t last_page;
841 os_vm_size_t bytes_found;
842 page_index_t i;
843 int ret;
846 FSHOW((stderr,
847 "/alloc_new_region for %d bytes from gen %d\n",
848 nbytes, gc_alloc_generation));
851 /* Check that the region is in a reset state. */
852 gc_assert((alloc_region->first_page == 0)
853 && (alloc_region->last_page == -1)
854 && (alloc_region->free_pointer == alloc_region->end_addr));
855 ret = thread_mutex_lock(&free_pages_lock);
856 gc_assert(ret == 0);
857 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
858 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
859 bytes_found=(GENCGC_CARD_BYTES - page_table[first_page].bytes_used)
860 + npage_bytes(last_page-first_page);
862 /* Set up the alloc_region. */
863 alloc_region->first_page = first_page;
864 alloc_region->last_page = last_page;
865 alloc_region->start_addr = page_table[first_page].bytes_used
866 + page_address(first_page);
867 alloc_region->free_pointer = alloc_region->start_addr;
868 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
870 /* Set up the pages. */
872 /* The first page may have already been in use. */
873 if (page_table[first_page].bytes_used == 0) {
874 page_table[first_page].allocated = page_type_flag;
875 page_table[first_page].gen = gc_alloc_generation;
876 page_table[first_page].large_object = 0;
877 page_table[first_page].scan_start_offset = 0;
878 // wiping should have free()ed and :=NULL
879 gc_assert(pinned_dwords(first_page) == NULL);
882 gc_assert(page_table[first_page].allocated == page_type_flag);
883 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
885 gc_assert(page_table[first_page].gen == gc_alloc_generation);
886 gc_assert(page_table[first_page].large_object == 0);
888 for (i = first_page+1; i <= last_page; i++) {
889 page_table[i].allocated = page_type_flag;
890 page_table[i].gen = gc_alloc_generation;
891 page_table[i].large_object = 0;
892 /* This may not be necessary for unboxed regions (think it was
893 * broken before!) */
894 page_table[i].scan_start_offset =
895 void_diff(page_address(i),alloc_region->start_addr);
896 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
898 /* Bump up last_free_page. */
899 if (last_page+1 > last_free_page) {
900 last_free_page = last_page+1;
901 /* do we only want to call this on special occasions? like for
902 * boxed_region? */
903 set_alloc_pointer((lispobj)page_address(last_free_page));
905 ret = thread_mutex_unlock(&free_pages_lock);
906 gc_assert(ret == 0);
908 #ifdef READ_PROTECT_FREE_PAGES
909 os_protect(page_address(first_page),
910 npage_bytes(1+last_page-first_page),
911 OS_VM_PROT_ALL);
912 #endif
914 /* If the first page was only partial, don't check whether it's
915 * zeroed (it won't be) and don't zero it (since the parts that
916 * we're interested in are guaranteed to be zeroed).
918 if (page_table[first_page].bytes_used) {
919 first_page++;
922 zero_dirty_pages(first_page, last_page);
924 /* we can do this after releasing free_pages_lock */
925 if (gencgc_zero_check) {
926 word_t *p;
927 for (p = (word_t *)alloc_region->start_addr;
928 p < (word_t *)alloc_region->end_addr; p++) {
929 if (*p != 0) {
930 lose("The new region is not zero at %p (start=%p, end=%p).\n",
931 p, alloc_region->start_addr, alloc_region->end_addr);
937 /* If the record_new_objects flag is 2 then all new regions created
938 * are recorded.
940 * If it's 1 then then it is only recorded if the first page of the
941 * current region is <= new_areas_ignore_page. This helps avoid
942 * unnecessary recording when doing full scavenge pass.
944 * The new_object structure holds the page, byte offset, and size of
945 * new regions of objects. Each new area is placed in the array of
946 * these structures pointer to by new_areas. new_areas_index holds the
947 * offset into new_areas.
949 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
950 * later code must detect this and handle it, probably by doing a full
951 * scavenge of a generation. */
952 #define NUM_NEW_AREAS 512
953 static int record_new_objects = 0;
954 static page_index_t new_areas_ignore_page;
955 struct new_area {
956 page_index_t page;
957 size_t offset;
958 size_t size;
960 static struct new_area (*new_areas)[];
961 static size_t new_areas_index;
962 size_t max_new_areas;
964 /* Add a new area to new_areas. */
965 static void
966 add_new_area(page_index_t first_page, size_t offset, size_t size)
968 size_t new_area_start, c;
969 ssize_t i;
971 /* Ignore if full. */
972 if (new_areas_index >= NUM_NEW_AREAS)
973 return;
975 switch (record_new_objects) {
976 case 0:
977 return;
978 case 1:
979 if (first_page > new_areas_ignore_page)
980 return;
981 break;
982 case 2:
983 break;
984 default:
985 gc_abort();
988 new_area_start = npage_bytes(first_page) + offset;
990 /* Search backwards for a prior area that this follows from. If
991 found this will save adding a new area. */
992 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
993 size_t area_end =
994 npage_bytes((*new_areas)[i].page)
995 + (*new_areas)[i].offset
996 + (*new_areas)[i].size;
997 /*FSHOW((stderr,
998 "/add_new_area S1 %d %d %d %d\n",
999 i, c, new_area_start, area_end));*/
1000 if (new_area_start == area_end) {
1001 /*FSHOW((stderr,
1002 "/adding to [%d] %d %d %d with %d %d %d:\n",
1004 (*new_areas)[i].page,
1005 (*new_areas)[i].offset,
1006 (*new_areas)[i].size,
1007 first_page,
1008 offset,
1009 size);*/
1010 (*new_areas)[i].size += size;
1011 return;
1015 (*new_areas)[new_areas_index].page = first_page;
1016 (*new_areas)[new_areas_index].offset = offset;
1017 (*new_areas)[new_areas_index].size = size;
1018 /*FSHOW((stderr,
1019 "/new_area %d page %d offset %d size %d\n",
1020 new_areas_index, first_page, offset, size));*/
1021 new_areas_index++;
1023 /* Note the max new_areas used. */
1024 if (new_areas_index > max_new_areas)
1025 max_new_areas = new_areas_index;
1028 /* Update the tables for the alloc_region. The region may be added to
1029 * the new_areas.
1031 * When done the alloc_region is set up so that the next quick alloc
1032 * will fail safely and thus a new region will be allocated. Further
1033 * it is safe to try to re-update the page table of this reset
1034 * alloc_region. */
1035 void
1036 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
1038 boolean more;
1039 page_index_t first_page;
1040 page_index_t next_page;
1041 os_vm_size_t bytes_used;
1042 os_vm_size_t region_size;
1043 os_vm_size_t byte_cnt;
1044 page_bytes_t orig_first_page_bytes_used;
1045 int ret;
1048 first_page = alloc_region->first_page;
1050 /* Catch an unused alloc_region. */
1051 if ((first_page == 0) && (alloc_region->last_page == -1))
1052 return;
1054 next_page = first_page+1;
1056 ret = thread_mutex_lock(&free_pages_lock);
1057 gc_assert(ret == 0);
1058 if (alloc_region->free_pointer != alloc_region->start_addr) {
1059 /* some bytes were allocated in the region */
1060 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1062 gc_assert(alloc_region->start_addr ==
1063 (page_address(first_page)
1064 + page_table[first_page].bytes_used));
1066 /* All the pages used need to be updated */
1068 /* Update the first page. */
1070 /* If the page was free then set up the gen, and
1071 * scan_start_offset. */
1072 if (page_table[first_page].bytes_used == 0)
1073 gc_assert(page_starts_contiguous_block_p(first_page));
1074 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1076 gc_assert(page_table[first_page].allocated & page_type_flag);
1077 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1078 gc_assert(page_table[first_page].large_object == 0);
1080 byte_cnt = 0;
1082 /* Calculate the number of bytes used in this page. This is not
1083 * always the number of new bytes, unless it was free. */
1084 more = 0;
1085 if ((bytes_used = void_diff(alloc_region->free_pointer,
1086 page_address(first_page)))
1087 >GENCGC_CARD_BYTES) {
1088 bytes_used = GENCGC_CARD_BYTES;
1089 more = 1;
1091 page_table[first_page].bytes_used = bytes_used;
1092 byte_cnt += bytes_used;
1095 /* All the rest of the pages should be free. We need to set
1096 * their scan_start_offset pointer to the start of the
1097 * region, and set the bytes_used. */
1098 while (more) {
1099 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1100 gc_assert(page_table[next_page].allocated & page_type_flag);
1101 gc_assert(page_table[next_page].bytes_used == 0);
1102 gc_assert(page_table[next_page].gen == gc_alloc_generation);
1103 gc_assert(page_table[next_page].large_object == 0);
1105 gc_assert(page_table[next_page].scan_start_offset ==
1106 void_diff(page_address(next_page),
1107 alloc_region->start_addr));
1109 /* Calculate the number of bytes used in this page. */
1110 more = 0;
1111 if ((bytes_used = void_diff(alloc_region->free_pointer,
1112 page_address(next_page)))>GENCGC_CARD_BYTES) {
1113 bytes_used = GENCGC_CARD_BYTES;
1114 more = 1;
1116 page_table[next_page].bytes_used = bytes_used;
1117 byte_cnt += bytes_used;
1119 next_page++;
1122 region_size = void_diff(alloc_region->free_pointer,
1123 alloc_region->start_addr);
1124 bytes_allocated += region_size;
1125 generations[gc_alloc_generation].bytes_allocated += region_size;
1127 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1129 /* Set the generations alloc restart page to the last page of
1130 * the region. */
1131 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1133 /* Add the region to the new_areas if requested. */
1134 if (BOXED_PAGE_FLAG & page_type_flag)
1135 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1138 FSHOW((stderr,
1139 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1140 region_size,
1141 gc_alloc_generation));
1143 } else {
1144 /* There are no bytes allocated. Unallocate the first_page if
1145 * there are 0 bytes_used. */
1146 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1147 if (page_table[first_page].bytes_used == 0)
1148 page_table[first_page].allocated = FREE_PAGE_FLAG;
1151 /* Unallocate any unused pages. */
1152 while (next_page <= alloc_region->last_page) {
1153 gc_assert(page_table[next_page].bytes_used == 0);
1154 page_table[next_page].allocated = FREE_PAGE_FLAG;
1155 next_page++;
1157 ret = thread_mutex_unlock(&free_pages_lock);
1158 gc_assert(ret == 0);
1160 /* alloc_region is per-thread, we're ok to do this unlocked */
1161 gc_set_region_empty(alloc_region);
1164 /* Allocate a possibly large object. */
1165 void *
1166 gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
1168 boolean more;
1169 page_index_t first_page, next_page, last_page;
1170 page_bytes_t orig_first_page_bytes_used;
1171 os_vm_size_t byte_cnt;
1172 os_vm_size_t bytes_used;
1173 int ret;
1175 ret = thread_mutex_lock(&free_pages_lock);
1176 gc_assert(ret == 0);
1178 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1179 if (first_page <= alloc_region->last_page) {
1180 first_page = alloc_region->last_page+1;
1183 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1185 gc_assert(first_page > alloc_region->last_page);
1187 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1189 /* Set up the pages. */
1190 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1192 /* If the first page was free then set up the gen, and
1193 * scan_start_offset. */
1194 if (page_table[first_page].bytes_used == 0) {
1195 page_table[first_page].allocated = page_type_flag;
1196 page_table[first_page].gen = gc_alloc_generation;
1197 page_table[first_page].scan_start_offset = 0;
1198 page_table[first_page].large_object = 1;
1201 gc_assert(page_table[first_page].allocated == page_type_flag);
1202 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1203 gc_assert(page_table[first_page].large_object == 1);
1205 byte_cnt = 0;
1207 /* Calc. the number of bytes used in this page. This is not
1208 * always the number of new bytes, unless it was free. */
1209 more = 0;
1210 if ((bytes_used = nbytes+orig_first_page_bytes_used) > GENCGC_CARD_BYTES) {
1211 bytes_used = GENCGC_CARD_BYTES;
1212 more = 1;
1214 page_table[first_page].bytes_used = bytes_used;
1215 byte_cnt += bytes_used;
1217 next_page = first_page+1;
1219 /* All the rest of the pages should be free. We need to set their
1220 * scan_start_offset pointer to the start of the region, and set
1221 * the bytes_used. */
1222 while (more) {
1223 gc_assert(page_free_p(next_page));
1224 gc_assert(page_table[next_page].bytes_used == 0);
1225 page_table[next_page].allocated = page_type_flag;
1226 page_table[next_page].gen = gc_alloc_generation;
1227 page_table[next_page].large_object = 1;
1229 page_table[next_page].scan_start_offset =
1230 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1232 /* Calculate the number of bytes used in this page. */
1233 more = 0;
1234 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1235 if (bytes_used > GENCGC_CARD_BYTES) {
1236 bytes_used = GENCGC_CARD_BYTES;
1237 more = 1;
1239 page_table[next_page].bytes_used = bytes_used;
1240 page_table[next_page].write_protected=0;
1241 page_table[next_page].dont_move=0;
1242 byte_cnt += bytes_used;
1243 next_page++;
1246 gc_assert((byte_cnt-orig_first_page_bytes_used) == (size_t)nbytes);
1248 bytes_allocated += nbytes;
1249 generations[gc_alloc_generation].bytes_allocated += nbytes;
1251 /* Add the region to the new_areas if requested. */
1252 if (BOXED_PAGE_FLAG & page_type_flag)
1253 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1255 /* Bump up last_free_page */
1256 if (last_page+1 > last_free_page) {
1257 last_free_page = last_page+1;
1258 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1260 ret = thread_mutex_unlock(&free_pages_lock);
1261 gc_assert(ret == 0);
1263 #ifdef READ_PROTECT_FREE_PAGES
1264 os_protect(page_address(first_page),
1265 npage_bytes(1+last_page-first_page),
1266 OS_VM_PROT_ALL);
1267 #endif
1269 zero_dirty_pages(first_page, last_page);
1271 return page_address(first_page);
1274 static page_index_t gencgc_alloc_start_page = -1;
1276 void
1277 gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
1279 struct thread *thread = arch_os_get_current_thread();
1280 /* Write basic information before doing anything else: if we don't
1281 * call to lisp this is a must, and even if we do there is always
1282 * the danger that we bounce back here before the error has been
1283 * handled, or indeed even printed.
1285 report_heap_exhaustion(available, requested, thread);
1286 if (gc_active_p || (available == 0)) {
1287 /* If we are in GC, or totally out of memory there is no way
1288 * to sanely transfer control to the lisp-side of things.
1290 lose("Heap exhausted, game over.");
1292 else {
1293 /* FIXME: assert free_pages_lock held */
1294 (void)thread_mutex_unlock(&free_pages_lock);
1295 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
1296 gc_assert(get_pseudo_atomic_atomic(thread));
1297 clear_pseudo_atomic_atomic(thread);
1298 if (get_pseudo_atomic_interrupted(thread))
1299 do_pending_interrupt();
1300 #endif
1301 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1302 * to running user code at arbitrary places, even in a
1303 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1304 * running out of the heap. So at this point all bets are
1305 * off. */
1306 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1307 corruption_warning_and_maybe_lose
1308 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1309 /* available and requested should be double word aligned, thus
1310 they can passed as fixnums and shifted later. */
1311 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR), available, requested);
1312 lose("HEAP-EXHAUSTED-ERROR fell through");
1316 page_index_t
1317 gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
1318 int page_type_flag)
1320 page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
1321 page_index_t first_page, last_page, restart_page = *restart_page_ptr;
1322 os_vm_size_t nbytes = bytes;
1323 os_vm_size_t nbytes_goal = nbytes;
1324 os_vm_size_t bytes_found = 0;
1325 os_vm_size_t most_bytes_found = 0;
1326 boolean small_object = nbytes < GENCGC_CARD_BYTES;
1327 /* FIXME: assert(free_pages_lock is held); */
1329 if (nbytes_goal < gencgc_alloc_granularity)
1330 nbytes_goal = gencgc_alloc_granularity;
1332 /* Toggled by gc_and_save for heap compaction, normally -1. */
1333 if (gencgc_alloc_start_page != -1) {
1334 restart_page = gencgc_alloc_start_page;
1337 /* FIXME: This is on bytes instead of nbytes pending cleanup of
1338 * long from the interface. */
1339 gc_assert(bytes>=0);
1340 /* Search for a page with at least nbytes of space. We prefer
1341 * not to split small objects on multiple pages, to reduce the
1342 * number of contiguous allocation regions spaning multiple
1343 * pages: this helps avoid excessive conservativism.
1345 * For other objects, we guarantee that they start on their own
1346 * page boundary.
1348 first_page = restart_page;
1349 while (first_page < page_table_pages) {
1350 bytes_found = 0;
1351 if (page_free_p(first_page)) {
1352 gc_assert(0 == page_table[first_page].bytes_used);
1353 bytes_found = GENCGC_CARD_BYTES;
1354 } else if (small_object &&
1355 (page_table[first_page].allocated == page_type_flag) &&
1356 (page_table[first_page].large_object == 0) &&
1357 (page_table[first_page].gen == gc_alloc_generation) &&
1358 (page_table[first_page].write_protected == 0) &&
1359 (page_table[first_page].dont_move == 0)) {
1360 bytes_found = GENCGC_CARD_BYTES - page_table[first_page].bytes_used;
1361 if (bytes_found < nbytes) {
1362 if (bytes_found > most_bytes_found)
1363 most_bytes_found = bytes_found;
1364 first_page++;
1365 continue;
1367 } else {
1368 first_page++;
1369 continue;
1372 gc_assert(page_table[first_page].write_protected == 0);
1373 for (last_page = first_page+1;
1374 ((last_page < page_table_pages) &&
1375 page_free_p(last_page) &&
1376 (bytes_found < nbytes_goal));
1377 last_page++) {
1378 bytes_found += GENCGC_CARD_BYTES;
1379 gc_assert(0 == page_table[last_page].bytes_used);
1380 gc_assert(0 == page_table[last_page].write_protected);
1383 if (bytes_found > most_bytes_found) {
1384 most_bytes_found = bytes_found;
1385 most_bytes_found_from = first_page;
1386 most_bytes_found_to = last_page;
1388 if (bytes_found >= nbytes_goal)
1389 break;
1391 first_page = last_page;
1394 bytes_found = most_bytes_found;
1395 restart_page = first_page + 1;
1397 /* Check for a failure */
1398 if (bytes_found < nbytes) {
1399 gc_assert(restart_page >= page_table_pages);
1400 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1403 gc_assert(most_bytes_found_to);
1404 *restart_page_ptr = most_bytes_found_from;
1405 return most_bytes_found_to-1;
1408 /* Allocate bytes. All the rest of the special-purpose allocation
1409 * functions will eventually call this */
1411 void *
1412 gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
1413 int quick_p)
1415 void *new_free_pointer;
1417 if (nbytes>=LARGE_OBJECT_SIZE)
1418 return gc_alloc_large(nbytes, page_type_flag, my_region);
1420 /* Check whether there is room in the current alloc region. */
1421 new_free_pointer = my_region->free_pointer + nbytes;
1423 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1424 my_region->free_pointer, new_free_pointer); */
1426 if (new_free_pointer <= my_region->end_addr) {
1427 /* If so then allocate from the current alloc region. */
1428 void *new_obj = my_region->free_pointer;
1429 my_region->free_pointer = new_free_pointer;
1431 /* Unless a `quick' alloc was requested, check whether the
1432 alloc region is almost empty. */
1433 if (!quick_p &&
1434 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1435 /* If so, finished with the current region. */
1436 gc_alloc_update_page_tables(page_type_flag, my_region);
1437 /* Set up a new region. */
1438 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1441 return((void *)new_obj);
1444 /* Else not enough free space in the current region: retry with a
1445 * new region. */
1447 gc_alloc_update_page_tables(page_type_flag, my_region);
1448 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1449 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1452 /* Copy a large object. If the object is in a large object region then
1453 * it is simply promoted, else it is copied. If it's large enough then
1454 * it's copied to a large object region.
1456 * Bignums and vectors may have shrunk. If the object is not copied
1457 * the space needs to be reclaimed, and the page_tables corrected. */
1458 static lispobj
1459 general_copy_large_object(lispobj object, word_t nwords, boolean boxedp)
1461 int tag;
1462 lispobj *new;
1463 page_index_t first_page;
1465 gc_assert(is_lisp_pointer(object));
1466 gc_assert(from_space_p(object));
1467 gc_assert((nwords & 0x01) == 0);
1469 if ((nwords > 1024*1024) && gencgc_verbose) {
1470 FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
1471 nwords*N_WORD_BYTES));
1474 /* Check whether it's a large object. */
1475 first_page = find_page_index((void *)object);
1476 gc_assert(first_page >= 0);
1478 if (page_table[first_page].large_object) {
1479 /* Promote the object. Note: Unboxed objects may have been
1480 * allocated to a BOXED region so it may be necessary to
1481 * change the region to UNBOXED. */
1482 os_vm_size_t remaining_bytes;
1483 os_vm_size_t bytes_freed;
1484 page_index_t next_page;
1485 page_bytes_t old_bytes_used;
1487 /* FIXME: This comment is somewhat stale.
1489 * Note: Any page write-protection must be removed, else a
1490 * later scavenge_newspace may incorrectly not scavenge these
1491 * pages. This would not be necessary if they are added to the
1492 * new areas, but let's do it for them all (they'll probably
1493 * be written anyway?). */
1495 gc_assert(page_starts_contiguous_block_p(first_page));
1496 next_page = first_page;
1497 remaining_bytes = nwords*N_WORD_BYTES;
1499 while (remaining_bytes > GENCGC_CARD_BYTES) {
1500 gc_assert(page_table[next_page].gen == from_space);
1501 gc_assert(page_table[next_page].large_object);
1502 gc_assert(page_table[next_page].scan_start_offset ==
1503 npage_bytes(next_page-first_page));
1504 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
1505 /* Should have been unprotected by unprotect_oldspace()
1506 * for boxed objects, and after promotion unboxed ones
1507 * should not be on protected pages at all. */
1508 gc_assert(!page_table[next_page].write_protected);
1510 if (boxedp)
1511 gc_assert(page_boxed_p(next_page));
1512 else {
1513 gc_assert(page_allocated_no_region_p(next_page));
1514 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1516 page_table[next_page].gen = new_space;
1518 remaining_bytes -= GENCGC_CARD_BYTES;
1519 next_page++;
1522 /* Now only one page remains, but the object may have shrunk so
1523 * there may be more unused pages which will be freed. */
1525 /* Object may have shrunk but shouldn't have grown - check. */
1526 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1528 page_table[next_page].gen = new_space;
1530 if (boxedp)
1531 gc_assert(page_boxed_p(next_page));
1532 else
1533 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1535 /* Adjust the bytes_used. */
1536 old_bytes_used = page_table[next_page].bytes_used;
1537 page_table[next_page].bytes_used = remaining_bytes;
1539 bytes_freed = old_bytes_used - remaining_bytes;
1541 /* Free any remaining pages; needs care. */
1542 next_page++;
1543 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1544 (page_table[next_page].gen == from_space) &&
1545 /* FIXME: It is not obvious to me why this is necessary
1546 * as a loop condition: it seems to me that the
1547 * scan_start_offset test should be sufficient, but
1548 * experimentally that is not the case. --NS
1549 * 2011-11-28 */
1550 (boxedp ?
1551 page_boxed_p(next_page) :
1552 page_allocated_no_region_p(next_page)) &&
1553 page_table[next_page].large_object &&
1554 (page_table[next_page].scan_start_offset ==
1555 npage_bytes(next_page - first_page))) {
1556 /* Checks out OK, free the page. Don't need to both zeroing
1557 * pages as this should have been done before shrinking the
1558 * object. These pages shouldn't be write-protected, even if
1559 * boxed they should be zero filled. */
1560 gc_assert(page_table[next_page].write_protected == 0);
1562 old_bytes_used = page_table[next_page].bytes_used;
1563 page_table[next_page].allocated = FREE_PAGE_FLAG;
1564 page_table[next_page].bytes_used = 0;
1565 bytes_freed += old_bytes_used;
1566 next_page++;
1569 if ((bytes_freed > 0) && gencgc_verbose) {
1570 FSHOW((stderr,
1571 "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
1572 bytes_freed));
1575 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
1576 + bytes_freed;
1577 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1578 bytes_allocated -= bytes_freed;
1580 /* Add the region to the new_areas if requested. */
1581 if (boxedp)
1582 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1584 return(object);
1586 } else {
1587 /* Get tag of object. */
1588 tag = lowtag_of(object);
1590 /* Allocate space. */
1591 new = gc_general_alloc(nwords*N_WORD_BYTES,
1592 (boxedp ? BOXED_PAGE_FLAG : UNBOXED_PAGE_FLAG),
1593 ALLOC_QUICK);
1595 /* Copy the object. */
1596 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1598 /* Return Lisp pointer of new object. */
1599 return ((lispobj) new) | tag;
1603 lispobj
1604 copy_large_object(lispobj object, sword_t nwords)
1606 return general_copy_large_object(object, nwords, 1);
1609 lispobj
1610 copy_large_unboxed_object(lispobj object, sword_t nwords)
1612 return general_copy_large_object(object, nwords, 0);
1615 /* to copy unboxed objects */
1616 lispobj
1617 copy_unboxed_object(lispobj object, sword_t nwords)
1619 return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
1624 * code and code-related objects
1627 static lispobj trans_fun_header(lispobj object);
1628 static lispobj trans_boxed(lispobj object);
1631 /* Scan a x86 compiled code object, looking for possible fixups that
1632 * have been missed after a move.
1634 * Two types of fixups are needed:
1635 * 1. Absolute fixups to within the code object.
1636 * 2. Relative fixups to outside the code object.
1638 * Currently only absolute fixups to the constant vector, or to the
1639 * code area are checked. */
1640 #ifdef LISP_FEATURE_X86
1641 void
1642 sniff_code_object(struct code *code, os_vm_size_t displacement)
1644 sword_t nheader_words, ncode_words, nwords;
1645 os_vm_address_t constants_start_addr = NULL, constants_end_addr, p;
1646 os_vm_address_t code_start_addr, code_end_addr;
1647 os_vm_address_t code_addr = (os_vm_address_t)code;
1648 int fixup_found = 0;
1650 if (!check_code_fixups)
1651 return;
1653 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1655 ncode_words = code_instruction_words(code->code_size);
1656 nheader_words = code_header_words(*(lispobj *)code);
1657 nwords = ncode_words + nheader_words;
1659 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1660 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1661 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1662 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1664 /* Work through the unboxed code. */
1665 for (p = code_start_addr; p < code_end_addr; p++) {
1666 void *data = *(void **)p;
1667 unsigned d1 = *((unsigned char *)p - 1);
1668 unsigned d2 = *((unsigned char *)p - 2);
1669 unsigned d3 = *((unsigned char *)p - 3);
1670 unsigned d4 = *((unsigned char *)p - 4);
1671 #if QSHOW
1672 unsigned d5 = *((unsigned char *)p - 5);
1673 unsigned d6 = *((unsigned char *)p - 6);
1674 #endif
1676 /* Check for code references. */
1677 /* Check for a 32 bit word that looks like an absolute
1678 reference to within the code adea of the code object. */
1679 if ((data >= (void*)(code_start_addr-displacement))
1680 && (data < (void*)(code_end_addr-displacement))) {
1681 /* function header */
1682 if ((d4 == 0x5e)
1683 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1684 (unsigned)code)) {
1685 /* Skip the function header */
1686 p += 6*4 - 4 - 1;
1687 continue;
1689 /* the case of PUSH imm32 */
1690 if (d1 == 0x68) {
1691 fixup_found = 1;
1692 FSHOW((stderr,
1693 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1694 p, d6, d5, d4, d3, d2, d1, data));
1695 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1697 /* the case of MOV [reg-8],imm32 */
1698 if ((d3 == 0xc7)
1699 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1700 || d2==0x45 || d2==0x46 || d2==0x47)
1701 && (d1 == 0xf8)) {
1702 fixup_found = 1;
1703 FSHOW((stderr,
1704 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1705 p, d6, d5, d4, d3, d2, d1, data));
1706 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1708 /* the case of LEA reg,[disp32] */
1709 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1710 fixup_found = 1;
1711 FSHOW((stderr,
1712 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1713 p, d6, d5, d4, d3, d2, d1, data));
1714 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1718 /* Check for constant references. */
1719 /* Check for a 32 bit word that looks like an absolute
1720 reference to within the constant vector. Constant references
1721 will be aligned. */
1722 if ((data >= (void*)(constants_start_addr-displacement))
1723 && (data < (void*)(constants_end_addr-displacement))
1724 && (((unsigned)data & 0x3) == 0)) {
1725 /* Mov eax,m32 */
1726 if (d1 == 0xa1) {
1727 fixup_found = 1;
1728 FSHOW((stderr,
1729 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1730 p, d6, d5, d4, d3, d2, d1, data));
1731 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1734 /* the case of MOV m32,EAX */
1735 if (d1 == 0xa3) {
1736 fixup_found = 1;
1737 FSHOW((stderr,
1738 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1739 p, d6, d5, d4, d3, d2, d1, data));
1740 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1743 /* the case of CMP m32,imm32 */
1744 if ((d1 == 0x3d) && (d2 == 0x81)) {
1745 fixup_found = 1;
1746 FSHOW((stderr,
1747 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1748 p, d6, d5, d4, d3, d2, d1, data));
1749 /* XX Check this */
1750 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1753 /* Check for a mod=00, r/m=101 byte. */
1754 if ((d1 & 0xc7) == 5) {
1755 /* Cmp m32,reg */
1756 if (d2 == 0x39) {
1757 fixup_found = 1;
1758 FSHOW((stderr,
1759 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1760 p, d6, d5, d4, d3, d2, d1, data));
1761 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1763 /* the case of CMP reg32,m32 */
1764 if (d2 == 0x3b) {
1765 fixup_found = 1;
1766 FSHOW((stderr,
1767 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1768 p, d6, d5, d4, d3, d2, d1, data));
1769 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1771 /* the case of MOV m32,reg32 */
1772 if (d2 == 0x89) {
1773 fixup_found = 1;
1774 FSHOW((stderr,
1775 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1776 p, d6, d5, d4, d3, d2, d1, data));
1777 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1779 /* the case of MOV reg32,m32 */
1780 if (d2 == 0x8b) {
1781 fixup_found = 1;
1782 FSHOW((stderr,
1783 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1784 p, d6, d5, d4, d3, d2, d1, data));
1785 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1787 /* the case of LEA reg32,m32 */
1788 if (d2 == 0x8d) {
1789 fixup_found = 1;
1790 FSHOW((stderr,
1791 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1792 p, d6, d5, d4, d3, d2, d1, data));
1793 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1799 /* If anything was found, print some information on the code
1800 * object. */
1801 if (fixup_found) {
1802 FSHOW((stderr,
1803 "/compiled code object at %x: header words = %d, code words = %d\n",
1804 code, nheader_words, ncode_words));
1805 FSHOW((stderr,
1806 "/const start = %x, end = %x\n",
1807 constants_start_addr, constants_end_addr));
1808 FSHOW((stderr,
1809 "/code start = %x, end = %x\n",
1810 code_start_addr, code_end_addr));
1813 #endif
1815 #ifdef LISP_FEATURE_X86
1816 void
1817 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1819 sword_t nheader_words, ncode_words, nwords;
1820 os_vm_address_t constants_start_addr, constants_end_addr;
1821 os_vm_address_t code_start_addr, code_end_addr;
1822 os_vm_address_t code_addr = (os_vm_address_t)new_code;
1823 os_vm_address_t old_addr = (os_vm_address_t)old_code;
1824 os_vm_size_t displacement = code_addr - old_addr;
1825 lispobj fixups = NIL;
1826 struct vector *fixups_vector;
1828 ncode_words = code_instruction_words(new_code->code_size);
1829 nheader_words = code_header_words(*(lispobj *)new_code);
1830 nwords = ncode_words + nheader_words;
1831 /* FSHOW((stderr,
1832 "/compiled code object at %x: header words = %d, code words = %d\n",
1833 new_code, nheader_words, ncode_words)); */
1834 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1835 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1836 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1837 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1839 FSHOW((stderr,
1840 "/const start = %x, end = %x\n",
1841 constants_start_addr,constants_end_addr));
1842 FSHOW((stderr,
1843 "/code start = %x; end = %x\n",
1844 code_start_addr,code_end_addr));
1847 /* The first constant should be a pointer to the fixups for this
1848 code objects. Check. */
1849 fixups = new_code->constants[0];
1851 /* It will be 0 or the unbound-marker if there are no fixups (as
1852 * will be the case if the code object has been purified, for
1853 * example) and will be an other pointer if it is valid. */
1854 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1855 !is_lisp_pointer(fixups)) {
1856 /* Check for possible errors. */
1857 if (check_code_fixups)
1858 sniff_code_object(new_code, displacement);
1860 return;
1863 fixups_vector = (struct vector *)native_pointer(fixups);
1865 /* Could be pointing to a forwarding pointer. */
1866 /* FIXME is this always in from_space? if so, could replace this code with
1867 * forwarding_pointer_p/forwarding_pointer_value */
1868 if (is_lisp_pointer(fixups) &&
1869 (find_page_index((void*)fixups_vector) != -1) &&
1870 (fixups_vector->header == 0x01)) {
1871 /* If so, then follow it. */
1872 /*SHOW("following pointer to a forwarding pointer");*/
1873 fixups_vector =
1874 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1877 /*SHOW("got fixups");*/
1879 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1880 /* Got the fixups for the code block. Now work through the vector,
1881 and apply a fixup at each address. */
1882 sword_t length = fixnum_value(fixups_vector->length);
1883 sword_t i;
1884 for (i = 0; i < length; i++) {
1885 long offset = fixups_vector->data[i];
1886 /* Now check the current value of offset. */
1887 os_vm_address_t old_value = *(os_vm_address_t *)(code_start_addr + offset);
1889 /* If it's within the old_code object then it must be an
1890 * absolute fixup (relative ones are not saved) */
1891 if ((old_value >= old_addr)
1892 && (old_value < (old_addr + nwords*N_WORD_BYTES)))
1893 /* So add the dispacement. */
1894 *(os_vm_address_t *)(code_start_addr + offset) =
1895 old_value + displacement;
1896 else
1897 /* It is outside the old code object so it must be a
1898 * relative fixup (absolute fixups are not saved). So
1899 * subtract the displacement. */
1900 *(os_vm_address_t *)(code_start_addr + offset) =
1901 old_value - displacement;
1903 } else {
1904 /* This used to just print a note to stderr, but a bogus fixup seems to
1905 * indicate real heap corruption, so a hard hailure is in order. */
1906 lose("fixup vector %p has a bad widetag: %d\n",
1907 fixups_vector, widetag_of(fixups_vector->header));
1910 /* Check for possible errors. */
1911 if (check_code_fixups) {
1912 sniff_code_object(new_code,displacement);
1915 #endif
1917 static lispobj
1918 trans_boxed_large(lispobj object)
1920 lispobj header;
1921 uword_t length;
1923 gc_assert(is_lisp_pointer(object));
1925 header = *((lispobj *) native_pointer(object));
1926 length = HeaderValue(header) + 1;
1927 length = CEILING(length, 2);
1929 return copy_large_object(object, length);
1933 * weak pointers
1936 /* XX This is a hack adapted from cgc.c. These don't work too
1937 * efficiently with the gencgc as a list of the weak pointers is
1938 * maintained within the objects which causes writes to the pages. A
1939 * limited attempt is made to avoid unnecessary writes, but this needs
1940 * a re-think. */
1941 #define WEAK_POINTER_NWORDS \
1942 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
1944 static sword_t
1945 scav_weak_pointer(lispobj *where, lispobj object)
1947 /* Since we overwrite the 'next' field, we have to make
1948 * sure not to do so for pointers already in the list.
1949 * Instead of searching the list of weak_pointers each
1950 * time, we ensure that next is always NULL when the weak
1951 * pointer isn't in the list, and not NULL otherwise.
1952 * Since we can't use NULL to denote end of list, we
1953 * use a pointer back to the same weak_pointer.
1955 struct weak_pointer * wp = (struct weak_pointer*)where;
1957 if (NULL == wp->next) {
1958 wp->next = weak_pointers;
1959 weak_pointers = wp;
1960 if (NULL == wp->next)
1961 wp->next = wp;
1964 /* Do not let GC scavenge the value slot of the weak pointer.
1965 * (That is why it is a weak pointer.) */
1967 return WEAK_POINTER_NWORDS;
1971 lispobj *
1972 search_read_only_space(void *pointer)
1974 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
1975 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1976 if ((pointer < (void *)start) || (pointer >= (void *)end))
1977 return NULL;
1978 return (gc_search_space(start,
1979 (((lispobj *)pointer)+2)-start,
1980 (lispobj *) pointer));
1983 lispobj *
1984 search_static_space(void *pointer)
1986 lispobj *start = (lispobj *)STATIC_SPACE_START;
1987 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1988 if ((pointer < (void *)start) || (pointer >= (void *)end))
1989 return NULL;
1990 return (gc_search_space(start,
1991 (((lispobj *)pointer)+2)-start,
1992 (lispobj *) pointer));
1995 /* a faster version for searching the dynamic space. This will work even
1996 * if the object is in a current allocation region. */
1997 lispobj *
1998 search_dynamic_space(void *pointer)
2000 page_index_t page_index = find_page_index(pointer);
2001 lispobj *start;
2003 /* The address may be invalid, so do some checks. */
2004 if ((page_index == -1) || page_free_p(page_index))
2005 return NULL;
2006 start = (lispobj *)page_scan_start(page_index);
2007 return (gc_search_space(start,
2008 (((lispobj *)pointer)+2)-start,
2009 (lispobj *)pointer));
2012 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2014 /* Is there any possibility that pointer is a valid Lisp object
2015 * reference, and/or something else (e.g. subroutine call return
2016 * address) which should prevent us from moving the referred-to thing?
2017 * This is called from preserve_pointers() */
2018 static int
2019 possibly_valid_dynamic_space_pointer_s(lispobj *pointer,
2020 page_index_t addr_page_index,
2021 lispobj **store_here)
2023 lispobj *start_addr;
2025 /* Find the object start address. */
2026 start_addr = search_dynamic_space(pointer);
2028 if (start_addr == NULL) {
2029 return 0;
2031 if (store_here) {
2032 *store_here = start_addr;
2035 /* If the containing object is a code object, presume that the
2036 * pointer is valid, simply because it could be an unboxed return
2037 * address. */
2038 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG)
2039 return 1;
2041 /* Large object pages only contain ONE object, and it will never
2042 * be a CONS. However, arrays and bignums can be allocated larger
2043 * than necessary and then shrunk to fit, leaving what look like
2044 * (0 . 0) CONSes at the end. These appear valid to
2045 * looks_like_valid_lisp_pointer_p(), so pick them off here. */
2046 if (page_table[addr_page_index].large_object &&
2047 (lowtag_of((lispobj)pointer) == LIST_POINTER_LOWTAG))
2048 return 0;
2050 return looks_like_valid_lisp_pointer_p((lispobj)pointer, start_addr);
2053 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2055 static int
2056 valid_conservative_root_p(void *addr, page_index_t addr_page_index,
2057 lispobj **begin_ptr)
2059 #ifdef GENCGC_IS_PRECISE
2060 /* If we're in precise gencgc (non-x86oid as of this writing) then
2061 * we are only called on valid object pointers in the first place,
2062 * so we just have to do a bounds-check against the heap, a
2063 * generation check, and the already-pinned check. */
2064 if ((addr_page_index == -1)
2065 || (page_table[addr_page_index].gen != from_space)
2066 || (page_table[addr_page_index].dont_move != 0))
2067 return 0;
2068 #else
2069 /* quick check 1: Address is quite likely to have been invalid. */
2070 if ((addr_page_index == -1)
2071 || page_free_p(addr_page_index)
2072 || (page_table[addr_page_index].bytes_used == 0)
2073 || (page_table[addr_page_index].gen != from_space))
2074 return 0;
2075 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2077 /* quick check 2: Check the offset within the page.
2080 if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) >
2081 page_table[addr_page_index].bytes_used)
2082 return 0;
2084 /* Filter out anything which can't be a pointer to a Lisp object
2085 * (or, as a special case which also requires dont_move, a return
2086 * address referring to something in a CodeObject). This is
2087 * expensive but important, since it vastly reduces the
2088 * probability that random garbage will be bogusly interpreted as
2089 * a pointer which prevents a page from moving. */
2090 if (!possibly_valid_dynamic_space_pointer_s(addr, addr_page_index,
2091 begin_ptr))
2092 return 0;
2093 #endif
2095 return 1;
2098 boolean
2099 in_dontmove_nativeptr_p(page_index_t page_index, lispobj *native_ptr)
2101 in_use_marker_t *markers = pinned_dwords(page_index);
2102 if (markers) {
2103 lispobj *begin = page_address(page_index);
2104 int dword_in_page = (native_ptr - begin) / 2;
2105 return (markers[dword_in_page / N_WORD_BITS] >> (dword_in_page % N_WORD_BITS)) & 1;
2106 } else {
2107 return 0;
2111 /* Adjust large bignum and vector objects. This will adjust the
2112 * allocated region if the size has shrunk, and move unboxed objects
2113 * into unboxed pages. The pages are not promoted here, and the
2114 * promoted region is not added to the new_regions; this is really
2115 * only designed to be called from preserve_pointer(). Shouldn't fail
2116 * if this is missed, just may delay the moving of objects to unboxed
2117 * pages, and the freeing of pages. */
2118 static void
2119 maybe_adjust_large_object(lispobj *where)
2121 page_index_t first_page;
2122 page_index_t next_page;
2123 sword_t nwords;
2125 uword_t remaining_bytes;
2126 uword_t bytes_freed;
2127 uword_t old_bytes_used;
2129 int boxed;
2131 /* Check whether it's a vector or bignum object. */
2132 switch (widetag_of(where[0])) {
2133 case SIMPLE_VECTOR_WIDETAG:
2134 boxed = BOXED_PAGE_FLAG;
2135 break;
2136 case BIGNUM_WIDETAG:
2137 case SIMPLE_BASE_STRING_WIDETAG:
2138 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2139 case SIMPLE_CHARACTER_STRING_WIDETAG:
2140 #endif
2141 case SIMPLE_BIT_VECTOR_WIDETAG:
2142 case SIMPLE_ARRAY_NIL_WIDETAG:
2143 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2144 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2145 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2146 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2147 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2148 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2150 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
2152 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2153 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2154 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2155 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2156 #endif
2157 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2158 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2159 #endif
2160 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2161 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2162 #endif
2163 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2164 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2165 #endif
2167 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
2169 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2170 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2171 #endif
2172 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2173 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2174 #endif
2175 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2176 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2177 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2178 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2179 #endif
2180 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2181 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2182 #endif
2183 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2184 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2185 #endif
2186 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2187 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2188 #endif
2189 boxed = UNBOXED_PAGE_FLAG;
2190 break;
2191 default:
2192 return;
2195 /* Find its current size. */
2196 nwords = (sizetab[widetag_of(where[0])])(where);
2198 first_page = find_page_index((void *)where);
2199 gc_assert(first_page >= 0);
2201 /* Note: Any page write-protection must be removed, else a later
2202 * scavenge_newspace may incorrectly not scavenge these pages.
2203 * This would not be necessary if they are added to the new areas,
2204 * but lets do it for them all (they'll probably be written
2205 * anyway?). */
2207 gc_assert(page_starts_contiguous_block_p(first_page));
2209 next_page = first_page;
2210 remaining_bytes = nwords*N_WORD_BYTES;
2211 while (remaining_bytes > GENCGC_CARD_BYTES) {
2212 gc_assert(page_table[next_page].gen == from_space);
2213 gc_assert(page_allocated_no_region_p(next_page));
2214 gc_assert(page_table[next_page].large_object);
2215 gc_assert(page_table[next_page].scan_start_offset ==
2216 npage_bytes(next_page-first_page));
2217 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
2219 page_table[next_page].allocated = boxed;
2221 /* Shouldn't be write-protected at this stage. Essential that the
2222 * pages aren't. */
2223 gc_assert(!page_table[next_page].write_protected);
2224 remaining_bytes -= GENCGC_CARD_BYTES;
2225 next_page++;
2228 /* Now only one page remains, but the object may have shrunk so
2229 * there may be more unused pages which will be freed. */
2231 /* Object may have shrunk but shouldn't have grown - check. */
2232 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2234 page_table[next_page].allocated = boxed;
2235 gc_assert(page_table[next_page].allocated ==
2236 page_table[first_page].allocated);
2238 /* Adjust the bytes_used. */
2239 old_bytes_used = page_table[next_page].bytes_used;
2240 page_table[next_page].bytes_used = remaining_bytes;
2242 bytes_freed = old_bytes_used - remaining_bytes;
2244 /* Free any remaining pages; needs care. */
2245 next_page++;
2246 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
2247 (page_table[next_page].gen == from_space) &&
2248 page_allocated_no_region_p(next_page) &&
2249 page_table[next_page].large_object &&
2250 (page_table[next_page].scan_start_offset ==
2251 npage_bytes(next_page - first_page))) {
2252 /* It checks out OK, free the page. We don't need to both zeroing
2253 * pages as this should have been done before shrinking the
2254 * object. These pages shouldn't be write protected as they
2255 * should be zero filled. */
2256 gc_assert(page_table[next_page].write_protected == 0);
2258 old_bytes_used = page_table[next_page].bytes_used;
2259 page_table[next_page].allocated = FREE_PAGE_FLAG;
2260 page_table[next_page].bytes_used = 0;
2261 bytes_freed += old_bytes_used;
2262 next_page++;
2265 if ((bytes_freed > 0) && gencgc_verbose) {
2266 FSHOW((stderr,
2267 "/maybe_adjust_large_object() freed %d\n",
2268 bytes_freed));
2271 generations[from_space].bytes_allocated -= bytes_freed;
2272 bytes_allocated -= bytes_freed;
2274 return;
2278 * Why is this restricted to protected objects only?
2279 * Because the rest of the page has been scavenged already,
2280 * and since that leaves forwarding pointers in the unprotected
2281 * areas you cannot scavenge it again until those are gone.
2283 static void
2284 scavenge_pinned_range(void* page_base, int start, int count)
2286 // 'start' and 'count' are expressed in units of dwords
2287 scavenge((lispobj*)page_base + 2*start, 2*count);
2290 static void
2291 scavenge_pinned_ranges()
2293 page_index_t page;
2294 for (page = 0; page < last_free_page; page++) {
2295 in_use_marker_t* bitmap = pinned_dwords(page);
2296 if (bitmap)
2297 bitmap_scan(bitmap,
2298 GENCGC_CARD_BYTES / (2*N_WORD_BYTES) / N_WORD_BITS,
2299 0, scavenge_pinned_range, page_address(page));
2303 static void wipe_range(void* page_base, int start, int count)
2305 bzero((lispobj*)page_base + 2*start, count*2*N_WORD_BYTES);
2308 static void
2309 wipe_nonpinned_words()
2311 page_index_t i;
2312 in_use_marker_t* bitmap;
2314 for (i = 0; i < last_free_page; i++) {
2315 if (page_table[i].dont_move && (bitmap = pinned_dwords(i)) != 0) {
2316 bitmap_scan(bitmap,
2317 GENCGC_CARD_BYTES / (2*N_WORD_BYTES) / N_WORD_BITS,
2318 BIT_SCAN_INVERT | BIT_SCAN_CLEAR,
2319 wipe_range, page_address(i));
2320 page_table[i].has_pin_map = 0;
2321 // move the page to newspace
2322 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2323 generations[page_table[i].gen].bytes_allocated -= page_table[i].bytes_used;
2324 page_table[i].gen = new_space;
2327 #ifndef LISP_FEATURE_WIN32
2328 madvise(page_table_pinned_dwords, pins_map_size_in_bytes, MADV_DONTNEED);
2329 #endif
2332 static void
2333 pin_words(page_index_t pageindex, lispobj *mark_which_pointer)
2335 struct page *page = &page_table[pageindex];
2337 if (!do_wipe_p)
2338 return;
2340 gc_assert(mark_which_pointer);
2341 if (!page->has_pin_map) {
2342 page->has_pin_map = 1;
2343 #ifdef DEBUG
2345 int i;
2346 in_use_marker_t* map = pinned_dwords(pageindex);
2347 for (i=0; i<n_dwords_in_card/N_WORD_BITS; ++i)
2348 gc_assert(map[i] == 0);
2350 #endif
2352 lispobj header = *mark_which_pointer;
2353 int size = 2;
2354 // Don't bother calling a sizing function for fixnums or pointers.
2355 // The object pointed to must be a cons.
2356 if (!fixnump(header) && !is_lisp_pointer(header)) {
2357 size = (sizetab[widetag_of(header)])(mark_which_pointer);
2358 if (size == 1 && (lowtag_of(header) == 9 || lowtag_of(header) == 2))
2359 size = 2;
2361 gc_assert(size % 2 == 0);
2362 lispobj *page_base = page_address(pageindex);
2363 unsigned int begin_dword_index = (mark_which_pointer - page_base) / 2;
2364 unsigned int end_dword_index = begin_dword_index + size / 2;
2365 unsigned int index;
2366 in_use_marker_t *bitmap = pinned_dwords(pageindex);
2367 for (index = begin_dword_index; index < end_dword_index; index++)
2368 bitmap[index/N_WORD_BITS] |= 1LU << (index % N_WORD_BITS);
2371 /* Take a possible pointer to a Lisp object and mark its page in the
2372 * page_table so that it will not be relocated during a GC.
2374 * This involves locating the page it points to, then backing up to
2375 * the start of its region, then marking all pages dont_move from there
2376 * up to the first page that's not full or has a different generation
2378 * It is assumed that all the page static flags have been cleared at
2379 * the start of a GC.
2381 * It is also assumed that the current gc_alloc() region has been
2382 * flushed and the tables updated. */
2384 static void
2385 preserve_pointer(void *addr)
2387 page_index_t addr_page_index = find_page_index(addr);
2388 page_index_t first_page;
2389 page_index_t i;
2390 unsigned int region_allocation;
2391 lispobj *begin_ptr = NULL;
2393 if (!valid_conservative_root_p(addr, addr_page_index, &begin_ptr))
2394 return;
2396 /* (Now that we know that addr_page_index is in range, it's
2397 * safe to index into page_table[] with it.) */
2398 region_allocation = page_table[addr_page_index].allocated;
2400 /* Find the beginning of the region. Note that there may be
2401 * objects in the region preceding the one that we were passed a
2402 * pointer to: if this is the case, we will write-protect all the
2403 * previous objects' pages too. */
2405 #if 0
2406 /* I think this'd work just as well, but without the assertions.
2407 * -dan 2004.01.01 */
2408 first_page = find_page_index(page_scan_start(addr_page_index))
2409 #else
2410 first_page = addr_page_index;
2411 while (!page_starts_contiguous_block_p(first_page)) {
2412 --first_page;
2413 /* Do some checks. */
2414 gc_assert(page_table[first_page].bytes_used == GENCGC_CARD_BYTES);
2415 gc_assert(page_table[first_page].gen == from_space);
2416 gc_assert(page_table[first_page].allocated == region_allocation);
2418 #endif
2420 /* Adjust any large objects before promotion as they won't be
2421 * copied after promotion. */
2422 if (page_table[first_page].large_object) {
2423 maybe_adjust_large_object(page_address(first_page));
2424 /* It may have moved to unboxed pages. */
2425 region_allocation = page_table[first_page].allocated;
2428 /* Now work forward until the end of this contiguous area is found,
2429 * marking all pages as dont_move. */
2430 for (i = first_page; ;i++) {
2431 gc_assert(page_table[i].allocated == region_allocation);
2433 /* Mark the page static. */
2434 page_table[i].dont_move = 1;
2436 /* It is essential that the pages are not write protected as
2437 * they may have pointers into the old-space which need
2438 * scavenging. They shouldn't be write protected at this
2439 * stage. */
2440 gc_assert(!page_table[i].write_protected);
2442 /* Check whether this is the last page in this contiguous block.. */
2443 if (page_ends_contiguous_block_p(i, from_space))
2444 break;
2447 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2448 /* Do not do this for multi-page objects. Those pages do not need
2449 * object wipeout anyway.
2451 if (i == first_page) {
2452 /* We need the pointer to the beginning of the object
2453 * We might have gotten it above but maybe not, so make sure
2455 if (begin_ptr == NULL) {
2456 possibly_valid_dynamic_space_pointer_s(addr, first_page,
2457 &begin_ptr);
2459 pin_words(first_page, begin_ptr);
2461 #endif
2463 /* Check that the page is now static. */
2464 gc_assert(page_table[addr_page_index].dont_move != 0);
2467 /* If the given page is not write-protected, then scan it for pointers
2468 * to younger generations or the top temp. generation, if no
2469 * suspicious pointers are found then the page is write-protected.
2471 * Care is taken to check for pointers to the current gc_alloc()
2472 * region if it is a younger generation or the temp. generation. This
2473 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2474 * the gc_alloc_generation does not need to be checked as this is only
2475 * called from scavenge_generation() when the gc_alloc generation is
2476 * younger, so it just checks if there is a pointer to the current
2477 * region.
2479 * We return 1 if the page was write-protected, else 0. */
2480 static int
2481 update_page_write_prot(page_index_t page)
2483 generation_index_t gen = page_table[page].gen;
2484 sword_t j;
2485 int wp_it = 1;
2486 void **page_addr = (void **)page_address(page);
2487 sword_t num_words = page_table[page].bytes_used / N_WORD_BYTES;
2489 /* Shouldn't be a free page. */
2490 gc_assert(page_allocated_p(page));
2491 gc_assert(page_table[page].bytes_used != 0);
2493 /* Skip if it's already write-protected, pinned, or unboxed */
2494 if (page_table[page].write_protected
2495 /* FIXME: What's the reason for not write-protecting pinned pages? */
2496 || page_table[page].dont_move
2497 || page_unboxed_p(page))
2498 return (0);
2500 /* Scan the page for pointers to younger generations or the
2501 * top temp. generation. */
2503 /* This is conservative: any word satisfying is_lisp_pointer() is
2504 * assumed to be a pointer despite that it might be machine code
2505 * or part of an unboxed array */
2506 for (j = 0; j < num_words; j++) {
2507 void *ptr = *(page_addr+j);
2508 page_index_t index;
2510 /* Check that it's in the dynamic space */
2511 if (is_lisp_pointer((lispobj)ptr) && (index = find_page_index(ptr)) != -1)
2512 if (/* Does it point to a younger or the temp. generation? */
2513 (page_allocated_p(index)
2514 && (page_table[index].bytes_used != 0)
2515 && ((page_table[index].gen < gen)
2516 || (page_table[index].gen == SCRATCH_GENERATION)))
2518 /* Or does it point within a current gc_alloc() region? */
2519 || ((boxed_region.start_addr <= ptr)
2520 && (ptr <= boxed_region.free_pointer))
2521 || ((unboxed_region.start_addr <= ptr)
2522 && (ptr <= unboxed_region.free_pointer))) {
2523 wp_it = 0;
2524 break;
2528 if (wp_it == 1) {
2529 /* Write-protect the page. */
2530 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2532 os_protect((void *)page_addr,
2533 GENCGC_CARD_BYTES,
2534 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2536 /* Note the page as protected in the page tables. */
2537 page_table[page].write_protected = 1;
2540 return (wp_it);
2543 /* Scavenge all generations from FROM to TO, inclusive, except for
2544 * new_space which needs special handling, as new objects may be
2545 * added which are not checked here - use scavenge_newspace generation.
2547 * Write-protected pages should not have any pointers to the
2548 * from_space so do need scavenging; thus write-protected pages are
2549 * not always scavenged. There is some code to check that these pages
2550 * are not written; but to check fully the write-protected pages need
2551 * to be scavenged by disabling the code to skip them.
2553 * Under the current scheme when a generation is GCed the younger
2554 * generations will be empty. So, when a generation is being GCed it
2555 * is only necessary to scavenge the older generations for pointers
2556 * not the younger. So a page that does not have pointers to younger
2557 * generations does not need to be scavenged.
2559 * The write-protection can be used to note pages that don't have
2560 * pointers to younger pages. But pages can be written without having
2561 * pointers to younger generations. After the pages are scavenged here
2562 * they can be scanned for pointers to younger generations and if
2563 * there are none the page can be write-protected.
2565 * One complication is when the newspace is the top temp. generation.
2567 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2568 * that none were written, which they shouldn't be as they should have
2569 * no pointers to younger generations. This breaks down for weak
2570 * pointers as the objects contain a link to the next and are written
2571 * if a weak pointer is scavenged. Still it's a useful check. */
2572 static void
2573 scavenge_generations(generation_index_t from, generation_index_t to)
2575 page_index_t i;
2576 page_index_t num_wp = 0;
2578 #define SC_GEN_CK 0
2579 #if SC_GEN_CK
2580 /* Clear the write_protected_cleared flags on all pages. */
2581 for (i = 0; i < page_table_pages; i++)
2582 page_table[i].write_protected_cleared = 0;
2583 #endif
2585 for (i = 0; i < last_free_page; i++) {
2586 generation_index_t generation = page_table[i].gen;
2587 if (page_boxed_p(i)
2588 && (page_table[i].bytes_used != 0)
2589 && (generation != new_space)
2590 && (generation >= from)
2591 && (generation <= to)) {
2592 page_index_t last_page,j;
2593 int write_protected=1;
2595 /* This should be the start of a region */
2596 gc_assert(page_starts_contiguous_block_p(i));
2598 /* Now work forward until the end of the region */
2599 for (last_page = i; ; last_page++) {
2600 write_protected =
2601 write_protected && page_table[last_page].write_protected;
2602 if (page_ends_contiguous_block_p(last_page, generation))
2603 break;
2605 if (!write_protected) {
2606 scavenge(page_address(i),
2607 ((uword_t)(page_table[last_page].bytes_used
2608 + npage_bytes(last_page-i)))
2609 /N_WORD_BYTES);
2611 /* Now scan the pages and write protect those that
2612 * don't have pointers to younger generations. */
2613 if (enable_page_protection) {
2614 for (j = i; j <= last_page; j++) {
2615 num_wp += update_page_write_prot(j);
2618 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2619 FSHOW((stderr,
2620 "/write protected %d pages within generation %d\n",
2621 num_wp, generation));
2624 i = last_page;
2628 #if SC_GEN_CK
2629 /* Check that none of the write_protected pages in this generation
2630 * have been written to. */
2631 for (i = 0; i < page_table_pages; i++) {
2632 if (page_allocated_p(i)
2633 && (page_table[i].bytes_used != 0)
2634 && (page_table[i].gen == generation)
2635 && (page_table[i].write_protected_cleared != 0)) {
2636 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2637 FSHOW((stderr,
2638 "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
2639 page_table[i].bytes_used,
2640 page_table[i].scan_start_offset,
2641 page_table[i].dont_move));
2642 lose("write to protected page %d in scavenge_generation()\n", i);
2645 #endif
2649 /* Scavenge a newspace generation. As it is scavenged new objects may
2650 * be allocated to it; these will also need to be scavenged. This
2651 * repeats until there are no more objects unscavenged in the
2652 * newspace generation.
2654 * To help improve the efficiency, areas written are recorded by
2655 * gc_alloc() and only these scavenged. Sometimes a little more will be
2656 * scavenged, but this causes no harm. An easy check is done that the
2657 * scavenged bytes equals the number allocated in the previous
2658 * scavenge.
2660 * Write-protected pages are not scanned except if they are marked
2661 * dont_move in which case they may have been promoted and still have
2662 * pointers to the from space.
2664 * Write-protected pages could potentially be written by alloc however
2665 * to avoid having to handle re-scavenging of write-protected pages
2666 * gc_alloc() does not write to write-protected pages.
2668 * New areas of objects allocated are recorded alternatively in the two
2669 * new_areas arrays below. */
2670 static struct new_area new_areas_1[NUM_NEW_AREAS];
2671 static struct new_area new_areas_2[NUM_NEW_AREAS];
2673 /* Do one full scan of the new space generation. This is not enough to
2674 * complete the job as new objects may be added to the generation in
2675 * the process which are not scavenged. */
2676 static void
2677 scavenge_newspace_generation_one_scan(generation_index_t generation)
2679 page_index_t i;
2681 FSHOW((stderr,
2682 "/starting one full scan of newspace generation %d\n",
2683 generation));
2684 for (i = 0; i < last_free_page; i++) {
2685 /* Note that this skips over open regions when it encounters them. */
2686 if (page_boxed_p(i)
2687 && (page_table[i].bytes_used != 0)
2688 && (page_table[i].gen == generation)
2689 && ((page_table[i].write_protected == 0)
2690 /* (This may be redundant as write_protected is now
2691 * cleared before promotion.) */
2692 || (page_table[i].dont_move == 1))) {
2693 page_index_t last_page;
2694 int all_wp=1;
2696 /* The scavenge will start at the scan_start_offset of
2697 * page i.
2699 * We need to find the full extent of this contiguous
2700 * block in case objects span pages.
2702 * Now work forward until the end of this contiguous area
2703 * is found. A small area is preferred as there is a
2704 * better chance of its pages being write-protected. */
2705 for (last_page = i; ;last_page++) {
2706 /* If all pages are write-protected and movable,
2707 * then no need to scavenge */
2708 all_wp=all_wp && page_table[last_page].write_protected &&
2709 !page_table[last_page].dont_move;
2711 /* Check whether this is the last page in this
2712 * contiguous block */
2713 if (page_ends_contiguous_block_p(last_page, generation))
2714 break;
2717 /* Do a limited check for write-protected pages. */
2718 if (!all_wp) {
2719 sword_t nwords = (((uword_t)
2720 (page_table[last_page].bytes_used
2721 + npage_bytes(last_page-i)
2722 + page_table[i].scan_start_offset))
2723 / N_WORD_BYTES);
2724 new_areas_ignore_page = last_page;
2726 scavenge(page_scan_start(i), nwords);
2729 i = last_page;
2732 FSHOW((stderr,
2733 "/done with one full scan of newspace generation %d\n",
2734 generation));
2737 /* Do a complete scavenge of the newspace generation. */
2738 static void
2739 scavenge_newspace_generation(generation_index_t generation)
2741 size_t i;
2743 /* the new_areas array currently being written to by gc_alloc() */
2744 struct new_area (*current_new_areas)[] = &new_areas_1;
2745 size_t current_new_areas_index;
2747 /* the new_areas created by the previous scavenge cycle */
2748 struct new_area (*previous_new_areas)[] = NULL;
2749 size_t previous_new_areas_index;
2751 /* Flush the current regions updating the tables. */
2752 gc_alloc_update_all_page_tables();
2754 /* Turn on the recording of new areas by gc_alloc(). */
2755 new_areas = current_new_areas;
2756 new_areas_index = 0;
2758 /* Don't need to record new areas that get scavenged anyway during
2759 * scavenge_newspace_generation_one_scan. */
2760 record_new_objects = 1;
2762 /* Start with a full scavenge. */
2763 scavenge_newspace_generation_one_scan(generation);
2765 /* Record all new areas now. */
2766 record_new_objects = 2;
2768 /* Give a chance to weak hash tables to make other objects live.
2769 * FIXME: The algorithm implemented here for weak hash table gcing
2770 * is O(W^2+N) as Bruno Haible warns in
2771 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
2772 * see "Implementation 2". */
2773 scav_weak_hash_tables();
2775 /* Flush the current regions updating the tables. */
2776 gc_alloc_update_all_page_tables();
2778 /* Grab new_areas_index. */
2779 current_new_areas_index = new_areas_index;
2781 /*FSHOW((stderr,
2782 "The first scan is finished; current_new_areas_index=%d.\n",
2783 current_new_areas_index));*/
2785 while (current_new_areas_index > 0) {
2786 /* Move the current to the previous new areas */
2787 previous_new_areas = current_new_areas;
2788 previous_new_areas_index = current_new_areas_index;
2790 /* Scavenge all the areas in previous new areas. Any new areas
2791 * allocated are saved in current_new_areas. */
2793 /* Allocate an array for current_new_areas; alternating between
2794 * new_areas_1 and 2 */
2795 if (previous_new_areas == &new_areas_1)
2796 current_new_areas = &new_areas_2;
2797 else
2798 current_new_areas = &new_areas_1;
2800 /* Set up for gc_alloc(). */
2801 new_areas = current_new_areas;
2802 new_areas_index = 0;
2804 /* Check whether previous_new_areas had overflowed. */
2805 if (previous_new_areas_index >= NUM_NEW_AREAS) {
2807 /* New areas of objects allocated have been lost so need to do a
2808 * full scan to be sure! If this becomes a problem try
2809 * increasing NUM_NEW_AREAS. */
2810 if (gencgc_verbose) {
2811 SHOW("new_areas overflow, doing full scavenge");
2814 /* Don't need to record new areas that get scavenged
2815 * anyway during scavenge_newspace_generation_one_scan. */
2816 record_new_objects = 1;
2818 scavenge_newspace_generation_one_scan(generation);
2820 /* Record all new areas now. */
2821 record_new_objects = 2;
2823 scav_weak_hash_tables();
2825 /* Flush the current regions updating the tables. */
2826 gc_alloc_update_all_page_tables();
2828 } else {
2830 /* Work through previous_new_areas. */
2831 for (i = 0; i < previous_new_areas_index; i++) {
2832 page_index_t page = (*previous_new_areas)[i].page;
2833 size_t offset = (*previous_new_areas)[i].offset;
2834 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
2835 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
2836 scavenge(page_address(page)+offset, size);
2839 scav_weak_hash_tables();
2841 /* Flush the current regions updating the tables. */
2842 gc_alloc_update_all_page_tables();
2845 current_new_areas_index = new_areas_index;
2847 /*FSHOW((stderr,
2848 "The re-scan has finished; current_new_areas_index=%d.\n",
2849 current_new_areas_index));*/
2852 /* Turn off recording of areas allocated by gc_alloc(). */
2853 record_new_objects = 0;
2855 #if SC_NS_GEN_CK
2857 page_index_t i;
2858 /* Check that none of the write_protected pages in this generation
2859 * have been written to. */
2860 for (i = 0; i < page_table_pages; i++) {
2861 if (page_allocated_p(i)
2862 && (page_table[i].bytes_used != 0)
2863 && (page_table[i].gen == generation)
2864 && (page_table[i].write_protected_cleared != 0)
2865 && (page_table[i].dont_move == 0)) {
2866 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
2867 i, generation, page_table[i].dont_move);
2871 #endif
2874 /* Un-write-protect all the pages in from_space. This is done at the
2875 * start of a GC else there may be many page faults while scavenging
2876 * the newspace (I've seen drive the system time to 99%). These pages
2877 * would need to be unprotected anyway before unmapping in
2878 * free_oldspace; not sure what effect this has on paging.. */
2879 static void
2880 unprotect_oldspace(void)
2882 page_index_t i;
2883 void *region_addr = 0;
2884 void *page_addr = 0;
2885 uword_t region_bytes = 0;
2887 for (i = 0; i < last_free_page; i++) {
2888 if (page_allocated_p(i)
2889 && (page_table[i].bytes_used != 0)
2890 && (page_table[i].gen == from_space)) {
2892 /* Remove any write-protection. We should be able to rely
2893 * on the write-protect flag to avoid redundant calls. */
2894 if (page_table[i].write_protected) {
2895 page_table[i].write_protected = 0;
2896 page_addr = page_address(i);
2897 if (!region_addr) {
2898 /* First region. */
2899 region_addr = page_addr;
2900 region_bytes = GENCGC_CARD_BYTES;
2901 } else if (region_addr + region_bytes == page_addr) {
2902 /* Region continue. */
2903 region_bytes += GENCGC_CARD_BYTES;
2904 } else {
2905 /* Unprotect previous region. */
2906 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2907 /* First page in new region. */
2908 region_addr = page_addr;
2909 region_bytes = GENCGC_CARD_BYTES;
2914 if (region_addr) {
2915 /* Unprotect last region. */
2916 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2920 /* Work through all the pages and free any in from_space. This
2921 * assumes that all objects have been copied or promoted to an older
2922 * generation. Bytes_allocated and the generation bytes_allocated
2923 * counter are updated. The number of bytes freed is returned. */
2924 static uword_t
2925 free_oldspace(void)
2927 uword_t bytes_freed = 0;
2928 page_index_t first_page, last_page;
2930 first_page = 0;
2932 do {
2933 /* Find a first page for the next region of pages. */
2934 while ((first_page < last_free_page)
2935 && (page_free_p(first_page)
2936 || (page_table[first_page].bytes_used == 0)
2937 || (page_table[first_page].gen != from_space)))
2938 first_page++;
2940 if (first_page >= last_free_page)
2941 break;
2943 /* Find the last page of this region. */
2944 last_page = first_page;
2946 do {
2947 /* Free the page. */
2948 bytes_freed += page_table[last_page].bytes_used;
2949 generations[page_table[last_page].gen].bytes_allocated -=
2950 page_table[last_page].bytes_used;
2951 page_table[last_page].allocated = FREE_PAGE_FLAG;
2952 page_table[last_page].bytes_used = 0;
2953 /* Should already be unprotected by unprotect_oldspace(). */
2954 gc_assert(!page_table[last_page].write_protected);
2955 last_page++;
2957 while ((last_page < last_free_page)
2958 && page_allocated_p(last_page)
2959 && (page_table[last_page].bytes_used != 0)
2960 && (page_table[last_page].gen == from_space));
2962 #ifdef READ_PROTECT_FREE_PAGES
2963 os_protect(page_address(first_page),
2964 npage_bytes(last_page-first_page),
2965 OS_VM_PROT_NONE);
2966 #endif
2967 first_page = last_page;
2968 } while (first_page < last_free_page);
2970 bytes_allocated -= bytes_freed;
2971 return bytes_freed;
2974 #if 0
2975 /* Print some information about a pointer at the given address. */
2976 static void
2977 print_ptr(lispobj *addr)
2979 /* If addr is in the dynamic space then out the page information. */
2980 page_index_t pi1 = find_page_index((void*)addr);
2982 if (pi1 != -1)
2983 fprintf(stderr," %p: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
2984 addr,
2985 pi1,
2986 page_table[pi1].allocated,
2987 page_table[pi1].gen,
2988 page_table[pi1].bytes_used,
2989 page_table[pi1].scan_start_offset,
2990 page_table[pi1].dont_move);
2991 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
2992 *(addr-4),
2993 *(addr-3),
2994 *(addr-2),
2995 *(addr-1),
2996 *(addr-0),
2997 *(addr+1),
2998 *(addr+2),
2999 *(addr+3),
3000 *(addr+4));
3002 #endif
3004 static int
3005 is_in_stack_space(lispobj ptr)
3007 /* For space verification: Pointers can be valid if they point
3008 * to a thread stack space. This would be faster if the thread
3009 * structures had page-table entries as if they were part of
3010 * the heap space. */
3011 struct thread *th;
3012 for_each_thread(th) {
3013 if ((th->control_stack_start <= (lispobj *)ptr) &&
3014 (th->control_stack_end >= (lispobj *)ptr)) {
3015 return 1;
3018 return 0;
3021 static void
3022 verify_space(lispobj *start, size_t words)
3024 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3025 int is_in_readonly_space =
3026 (READ_ONLY_SPACE_START <= (uword_t)start &&
3027 (uword_t)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3029 while (words > 0) {
3030 size_t count = 1;
3031 lispobj thing = *(lispobj*)start;
3033 if (is_lisp_pointer(thing)) {
3034 page_index_t page_index = find_page_index((void*)thing);
3035 sword_t to_readonly_space =
3036 (READ_ONLY_SPACE_START <= thing &&
3037 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3038 sword_t to_static_space =
3039 (STATIC_SPACE_START <= thing &&
3040 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3042 /* Does it point to the dynamic space? */
3043 if (page_index != -1) {
3044 /* If it's within the dynamic space it should point to a used
3045 * page. XX Could check the offset too. */
3046 if (page_allocated_p(page_index)
3047 && (page_table[page_index].bytes_used == 0))
3048 lose ("Ptr %p @ %p sees free page.\n", thing, start);
3049 /* Check that it doesn't point to a forwarding pointer! */
3050 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3051 lose("Ptr %p @ %p sees forwarding ptr.\n", thing, start);
3053 /* Check that its not in the RO space as it would then be a
3054 * pointer from the RO to the dynamic space. */
3055 if (is_in_readonly_space) {
3056 lose("ptr to dynamic space %p from RO space %x\n",
3057 thing, start);
3059 /* Does it point to a plausible object? This check slows
3060 * it down a lot (so it's commented out).
3062 * "a lot" is serious: it ate 50 minutes cpu time on
3063 * my duron 950 before I came back from lunch and
3064 * killed it.
3066 * FIXME: Add a variable to enable this
3067 * dynamically. */
3069 if (!possibly_valid_dynamic_space_pointer_s((lispobj *)thing, page_index, NULL)) {
3070 lose("ptr %p to invalid object %p\n", thing, start);
3073 } else {
3074 extern char __attribute__((unused)) funcallable_instance_tramp;
3075 /* Verify that it points to another valid space. */
3076 if (!to_readonly_space && !to_static_space
3077 #ifndef LISP_FEATURE_READ_ONLY_TRAMPS
3078 && (thing != (lispobj)&funcallable_instance_tramp)
3079 #endif
3080 && !is_in_stack_space(thing)) {
3081 lose("Ptr %p @ %p sees junk.\n", thing, start);
3084 } else {
3085 if (!(fixnump(thing))) {
3086 /* skip fixnums */
3087 switch(widetag_of(*start)) {
3089 /* boxed objects */
3090 case SIMPLE_VECTOR_WIDETAG:
3091 case RATIO_WIDETAG:
3092 case COMPLEX_WIDETAG:
3093 case SIMPLE_ARRAY_WIDETAG:
3094 case COMPLEX_BASE_STRING_WIDETAG:
3095 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3096 case COMPLEX_CHARACTER_STRING_WIDETAG:
3097 #endif
3098 case COMPLEX_VECTOR_NIL_WIDETAG:
3099 case COMPLEX_BIT_VECTOR_WIDETAG:
3100 case COMPLEX_VECTOR_WIDETAG:
3101 case COMPLEX_ARRAY_WIDETAG:
3102 case CLOSURE_HEADER_WIDETAG:
3103 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3104 case VALUE_CELL_HEADER_WIDETAG:
3105 case SYMBOL_HEADER_WIDETAG:
3106 case CHARACTER_WIDETAG:
3107 #if N_WORD_BITS == 64
3108 case SINGLE_FLOAT_WIDETAG:
3109 #endif
3110 case UNBOUND_MARKER_WIDETAG:
3111 case FDEFN_WIDETAG:
3112 count = 1;
3113 break;
3115 case INSTANCE_HEADER_WIDETAG:
3117 sword_t ntotal = instance_length(thing);
3118 lispobj layout = instance_layout(start);
3119 if (!layout) {
3120 count = 1;
3121 break;
3123 instance_scan_interleaved(verify_space,
3124 start, ntotal,
3125 native_pointer(layout));
3126 count = ntotal + 1;
3127 break;
3129 case CODE_HEADER_WIDETAG:
3131 lispobj object = *start;
3132 struct code *code;
3133 sword_t nheader_words, ncode_words, nwords;
3134 lispobj fheaderl;
3135 struct simple_fun *fheaderp;
3137 code = (struct code *) start;
3139 /* Check that it's not in the dynamic space.
3140 * FIXME: Isn't is supposed to be OK for code
3141 * objects to be in the dynamic space these days? */
3142 /* It is for byte compiled code, but there's
3143 * no byte compilation in SBCL anymore. */
3144 if (is_in_dynamic_space
3145 /* Only when enabled */
3146 && verify_dynamic_code_check) {
3147 FSHOW((stderr,
3148 "/code object at %p in the dynamic space\n",
3149 start));
3152 ncode_words = code_instruction_words(code->code_size);
3153 nheader_words = code_header_words(object);
3154 nwords = ncode_words + nheader_words;
3155 nwords = CEILING(nwords, 2);
3156 /* Scavenge the boxed section of the code data block */
3157 verify_space(start + 1, nheader_words - 1);
3159 /* Scavenge the boxed section of each function
3160 * object in the code data block. */
3161 fheaderl = code->entry_points;
3162 while (fheaderl != NIL) {
3163 fheaderp =
3164 (struct simple_fun *) native_pointer(fheaderl);
3165 gc_assert(widetag_of(fheaderp->header) ==
3166 SIMPLE_FUN_HEADER_WIDETAG);
3167 verify_space(SIMPLE_FUN_SCAV_START(fheaderp),
3168 SIMPLE_FUN_SCAV_NWORDS(fheaderp));
3169 fheaderl = fheaderp->next;
3171 count = nwords;
3172 break;
3175 /* unboxed objects */
3176 case BIGNUM_WIDETAG:
3177 #if N_WORD_BITS != 64
3178 case SINGLE_FLOAT_WIDETAG:
3179 #endif
3180 case DOUBLE_FLOAT_WIDETAG:
3181 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3182 case LONG_FLOAT_WIDETAG:
3183 #endif
3184 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3185 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3186 #endif
3187 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3188 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3189 #endif
3190 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3191 case COMPLEX_LONG_FLOAT_WIDETAG:
3192 #endif
3193 #ifdef SIMD_PACK_WIDETAG
3194 case SIMD_PACK_WIDETAG:
3195 #endif
3196 case SIMPLE_BASE_STRING_WIDETAG:
3197 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3198 case SIMPLE_CHARACTER_STRING_WIDETAG:
3199 #endif
3200 case SIMPLE_BIT_VECTOR_WIDETAG:
3201 case SIMPLE_ARRAY_NIL_WIDETAG:
3202 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3203 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3204 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3205 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3206 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3207 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3209 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
3211 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3212 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3213 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3214 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3215 #endif
3216 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3217 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3218 #endif
3219 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3220 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3221 #endif
3222 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3223 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3224 #endif
3226 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
3228 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3229 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3230 #endif
3231 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3232 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3233 #endif
3234 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3235 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3236 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3237 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3238 #endif
3239 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3240 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3241 #endif
3242 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3243 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3244 #endif
3245 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3246 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3247 #endif
3248 case SAP_WIDETAG:
3249 case WEAK_POINTER_WIDETAG:
3250 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3251 case NO_TLS_VALUE_MARKER_WIDETAG:
3252 #endif
3253 count = (sizetab[widetag_of(*start)])(start);
3254 break;
3256 default:
3257 lose("Unhandled widetag %p at %p\n",
3258 widetag_of(*start), start);
3262 start += count;
3263 words -= count;
3267 static void
3268 verify_gc(void)
3270 /* FIXME: It would be nice to make names consistent so that
3271 * foo_size meant size *in* *bytes* instead of size in some
3272 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3273 * Some counts of lispobjs are called foo_count; it might be good
3274 * to grep for all foo_size and rename the appropriate ones to
3275 * foo_count. */
3276 sword_t read_only_space_size =
3277 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3278 - (lispobj*)READ_ONLY_SPACE_START;
3279 sword_t static_space_size =
3280 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3281 - (lispobj*)STATIC_SPACE_START;
3282 struct thread *th;
3283 for_each_thread(th) {
3284 sword_t binding_stack_size =
3285 (lispobj*)get_binding_stack_pointer(th)
3286 - (lispobj*)th->binding_stack_start;
3287 verify_space(th->binding_stack_start, binding_stack_size);
3289 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3290 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3293 static void
3294 verify_generation(generation_index_t generation)
3296 page_index_t i;
3298 for (i = 0; i < last_free_page; i++) {
3299 if (page_allocated_p(i)
3300 && (page_table[i].bytes_used != 0)
3301 && (page_table[i].gen == generation)) {
3302 page_index_t last_page;
3304 /* This should be the start of a contiguous block */
3305 gc_assert(page_starts_contiguous_block_p(i));
3307 /* Need to find the full extent of this contiguous block in case
3308 objects span pages. */
3310 /* Now work forward until the end of this contiguous area is
3311 found. */
3312 for (last_page = i; ;last_page++)
3313 /* Check whether this is the last page in this contiguous
3314 * block. */
3315 if (page_ends_contiguous_block_p(last_page, generation))
3316 break;
3318 verify_space(page_address(i),
3319 ((uword_t)
3320 (page_table[last_page].bytes_used
3321 + npage_bytes(last_page-i)))
3322 / N_WORD_BYTES);
3323 i = last_page;
3328 /* Check that all the free space is zero filled. */
3329 static void
3330 verify_zero_fill(void)
3332 page_index_t page;
3334 for (page = 0; page < last_free_page; page++) {
3335 if (page_free_p(page)) {
3336 /* The whole page should be zero filled. */
3337 sword_t *start_addr = (sword_t *)page_address(page);
3338 sword_t size = 1024;
3339 sword_t i;
3340 for (i = 0; i < size; i++) {
3341 if (start_addr[i] != 0) {
3342 lose("free page not zero at %x\n", start_addr + i);
3345 } else {
3346 sword_t free_bytes = GENCGC_CARD_BYTES - page_table[page].bytes_used;
3347 if (free_bytes > 0) {
3348 sword_t *start_addr = (sword_t *)((uword_t)page_address(page)
3349 + page_table[page].bytes_used);
3350 sword_t size = free_bytes / N_WORD_BYTES;
3351 sword_t i;
3352 for (i = 0; i < size; i++) {
3353 if (start_addr[i] != 0) {
3354 lose("free region not zero at %x\n", start_addr + i);
3362 /* External entry point for verify_zero_fill */
3363 void
3364 gencgc_verify_zero_fill(void)
3366 /* Flush the alloc regions updating the tables. */
3367 gc_alloc_update_all_page_tables();
3368 SHOW("verifying zero fill");
3369 verify_zero_fill();
3372 static void
3373 verify_dynamic_space(void)
3375 generation_index_t i;
3377 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3378 verify_generation(i);
3380 if (gencgc_enable_verify_zero_fill)
3381 verify_zero_fill();
3384 /* Write-protect all the dynamic boxed pages in the given generation. */
3385 static void
3386 write_protect_generation_pages(generation_index_t generation)
3388 page_index_t start;
3390 gc_assert(generation < SCRATCH_GENERATION);
3392 for (start = 0; start < last_free_page; start++) {
3393 if (protect_page_p(start, generation)) {
3394 void *page_start;
3395 page_index_t last;
3397 /* Note the page as protected in the page tables. */
3398 page_table[start].write_protected = 1;
3400 for (last = start + 1; last < last_free_page; last++) {
3401 if (!protect_page_p(last, generation))
3402 break;
3403 page_table[last].write_protected = 1;
3406 page_start = (void *)page_address(start);
3408 os_protect(page_start,
3409 npage_bytes(last - start),
3410 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3412 start = last;
3416 if (gencgc_verbose > 1) {
3417 FSHOW((stderr,
3418 "/write protected %d of %d pages in generation %d\n",
3419 count_write_protect_generation_pages(generation),
3420 count_generation_pages(generation),
3421 generation));
3425 #if defined(LISP_FEATURE_SB_THREAD) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
3426 static void
3427 preserve_context_registers (os_context_t *c)
3429 void **ptr;
3430 /* On Darwin the signal context isn't a contiguous block of memory,
3431 * so just preserve_pointering its contents won't be sufficient.
3433 #if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
3434 #if defined LISP_FEATURE_X86
3435 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3436 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3437 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3438 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3439 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3440 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3441 preserve_pointer((void*)*os_context_pc_addr(c));
3442 #elif defined LISP_FEATURE_X86_64
3443 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3444 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3445 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3446 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3447 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3448 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3449 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3450 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3451 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3452 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3453 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3454 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3455 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3456 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3457 preserve_pointer((void*)*os_context_pc_addr(c));
3458 #else
3459 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3460 #endif
3461 #endif
3462 #if !defined(LISP_FEATURE_WIN32)
3463 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3464 preserve_pointer(*ptr);
3466 #endif
3468 #endif
3470 static void
3471 move_pinned_pages_to_newspace()
3473 page_index_t i;
3475 /* scavenge() will evacuate all oldspace pages, but no newspace
3476 * pages. Pinned pages are precisely those pages which must not
3477 * be evacuated, so move them to newspace directly. */
3479 for (i = 0; i < last_free_page; i++) {
3480 if (page_table[i].dont_move &&
3481 /* dont_move is cleared lazily, so validate the space as well. */
3482 page_table[i].gen == from_space) {
3483 if (pinned_dwords(i) && do_wipe_p) {
3484 // do not move to newspace after all, this will be word-wiped
3485 continue;
3487 page_table[i].gen = new_space;
3488 /* And since we're moving the pages wholesale, also adjust
3489 * the generation allocation counters. */
3490 generations[new_space].bytes_allocated += page_table[i].bytes_used;
3491 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
3496 /* Garbage collect a generation. If raise is 0 then the remains of the
3497 * generation are not raised to the next generation. */
3498 static void
3499 garbage_collect_generation(generation_index_t generation, int raise)
3501 page_index_t i;
3502 uword_t static_space_size;
3503 struct thread *th;
3505 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3507 /* The oldest generation can't be raised. */
3508 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3510 /* Check if weak hash tables were processed in the previous GC. */
3511 gc_assert(weak_hash_tables == NULL);
3513 /* Initialize the weak pointer list. */
3514 weak_pointers = NULL;
3516 /* When a generation is not being raised it is transported to a
3517 * temporary generation (NUM_GENERATIONS), and lowered when
3518 * done. Set up this new generation. There should be no pages
3519 * allocated to it yet. */
3520 if (!raise) {
3521 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3524 /* Set the global src and dest. generations */
3525 from_space = generation;
3526 if (raise)
3527 new_space = generation+1;
3528 else
3529 new_space = SCRATCH_GENERATION;
3531 /* Change to a new space for allocation, resetting the alloc_start_page */
3532 gc_alloc_generation = new_space;
3533 generations[new_space].alloc_start_page = 0;
3534 generations[new_space].alloc_unboxed_start_page = 0;
3535 generations[new_space].alloc_large_start_page = 0;
3536 generations[new_space].alloc_large_unboxed_start_page = 0;
3538 /* Before any pointers are preserved, the dont_move flags on the
3539 * pages need to be cleared. */
3540 for (i = 0; i < last_free_page; i++)
3541 if(page_table[i].gen==from_space) {
3542 page_table[i].dont_move = 0;
3543 gc_assert(pinned_dwords(i) == NULL);
3546 /* Un-write-protect the old-space pages. This is essential for the
3547 * promoted pages as they may contain pointers into the old-space
3548 * which need to be scavenged. It also helps avoid unnecessary page
3549 * faults as forwarding pointers are written into them. They need to
3550 * be un-protected anyway before unmapping later. */
3551 unprotect_oldspace();
3553 /* Scavenge the stacks' conservative roots. */
3555 /* there are potentially two stacks for each thread: the main
3556 * stack, which may contain Lisp pointers, and the alternate stack.
3557 * We don't ever run Lisp code on the altstack, but it may
3558 * host a sigcontext with lisp objects in it */
3560 /* what we need to do: (1) find the stack pointer for the main
3561 * stack; scavenge it (2) find the interrupt context on the
3562 * alternate stack that might contain lisp values, and scavenge
3563 * that */
3565 /* we assume that none of the preceding applies to the thread that
3566 * initiates GC. If you ever call GC from inside an altstack
3567 * handler, you will lose. */
3569 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3570 /* And if we're saving a core, there's no point in being conservative. */
3571 if (conservative_stack) {
3572 for_each_thread(th) {
3573 void **ptr;
3574 void **esp=(void **)-1;
3575 if (th->state == STATE_DEAD)
3576 continue;
3577 # if defined(LISP_FEATURE_SB_SAFEPOINT)
3578 /* Conservative collect_garbage is always invoked with a
3579 * foreign C call or an interrupt handler on top of every
3580 * existing thread, so the stored SP in each thread
3581 * structure is valid, no matter which thread we are looking
3582 * at. For threads that were running Lisp code, the pitstop
3583 * and edge functions maintain this value within the
3584 * interrupt or exception handler. */
3585 esp = os_get_csp(th);
3586 assert_on_stack(th, esp);
3588 /* In addition to pointers on the stack, also preserve the
3589 * return PC, the only value from the context that we need
3590 * in addition to the SP. The return PC gets saved by the
3591 * foreign call wrapper, and removed from the control stack
3592 * into a register. */
3593 preserve_pointer(th->pc_around_foreign_call);
3595 /* And on platforms with interrupts: scavenge ctx registers. */
3597 /* Disabled on Windows, because it does not have an explicit
3598 * stack of `interrupt_contexts'. The reported CSP has been
3599 * chosen so that the current context on the stack is
3600 * covered by the stack scan. See also set_csp_from_context(). */
3601 # ifndef LISP_FEATURE_WIN32
3602 if (th != arch_os_get_current_thread()) {
3603 long k = fixnum_value(
3604 SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3605 while (k > 0)
3606 preserve_context_registers(th->interrupt_contexts[--k]);
3608 # endif
3609 # elif defined(LISP_FEATURE_SB_THREAD)
3610 sword_t i,free;
3611 if(th==arch_os_get_current_thread()) {
3612 /* Somebody is going to burn in hell for this, but casting
3613 * it in two steps shuts gcc up about strict aliasing. */
3614 esp = (void **)((void *)&raise);
3615 } else {
3616 void **esp1;
3617 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3618 for(i=free-1;i>=0;i--) {
3619 os_context_t *c=th->interrupt_contexts[i];
3620 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3621 if (esp1>=(void **)th->control_stack_start &&
3622 esp1<(void **)th->control_stack_end) {
3623 if(esp1<esp) esp=esp1;
3624 preserve_context_registers(c);
3628 # else
3629 esp = (void **)((void *)&raise);
3630 # endif
3631 if (!esp || esp == (void*) -1)
3632 lose("garbage_collect: no SP known for thread %x (OS %x)",
3633 th, th->os_thread);
3634 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3635 preserve_pointer(*ptr);
3639 #else
3640 /* Non-x86oid systems don't have "conservative roots" as such, but
3641 * the same mechanism is used for objects pinned for use by alien
3642 * code. */
3643 for_each_thread(th) {
3644 lispobj pin_list = SymbolTlValue(PINNED_OBJECTS,th);
3645 while (pin_list != NIL) {
3646 struct cons *list_entry =
3647 (struct cons *)native_pointer(pin_list);
3648 preserve_pointer(list_entry->car);
3649 pin_list = list_entry->cdr;
3652 #endif
3654 #if QSHOW
3655 if (gencgc_verbose > 1) {
3656 sword_t num_dont_move_pages = count_dont_move_pages();
3657 fprintf(stderr,
3658 "/non-movable pages due to conservative pointers = %ld (%lu bytes)\n",
3659 num_dont_move_pages,
3660 npage_bytes(num_dont_move_pages));
3662 #endif
3664 /* Now that all of the pinned (dont_move) pages are known, and
3665 * before we start to scavenge (and thus relocate) objects,
3666 * relocate the pinned pages to newspace, so that the scavenger
3667 * will not attempt to relocate their contents. */
3668 move_pinned_pages_to_newspace();
3670 /* Scavenge all the rest of the roots. */
3672 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3674 * If not x86, we need to scavenge the interrupt context(s) and the
3675 * control stack.
3678 struct thread *th;
3679 for_each_thread(th) {
3680 scavenge_interrupt_contexts(th);
3681 scavenge_control_stack(th);
3684 # ifdef LISP_FEATURE_SB_SAFEPOINT
3685 /* In this case, scrub all stacks right here from the GCing thread
3686 * instead of doing what the comment below says. Suboptimal, but
3687 * easier. */
3688 for_each_thread(th)
3689 scrub_thread_control_stack(th);
3690 # else
3691 /* Scrub the unscavenged control stack space, so that we can't run
3692 * into any stale pointers in a later GC (this is done by the
3693 * stop-for-gc handler in the other threads). */
3694 scrub_control_stack();
3695 # endif
3697 #endif
3699 /* Scavenge the Lisp functions of the interrupt handlers, taking
3700 * care to avoid SIG_DFL and SIG_IGN. */
3701 for (i = 0; i < NSIG; i++) {
3702 union interrupt_handler handler = interrupt_handlers[i];
3703 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3704 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3705 scavenge((lispobj *)(interrupt_handlers + i), 1);
3708 /* Scavenge the binding stacks. */
3710 struct thread *th;
3711 for_each_thread(th) {
3712 sword_t len= (lispobj *)get_binding_stack_pointer(th) -
3713 th->binding_stack_start;
3714 scavenge((lispobj *) th->binding_stack_start,len);
3715 #ifdef LISP_FEATURE_SB_THREAD
3716 /* do the tls as well */
3717 len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
3718 (sizeof (struct thread))/(sizeof (lispobj));
3719 scavenge((lispobj *) (th+1),len);
3720 #endif
3724 /* The original CMU CL code had scavenge-read-only-space code
3725 * controlled by the Lisp-level variable
3726 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3727 * wasn't documented under what circumstances it was useful or
3728 * safe to turn it on, so it's been turned off in SBCL. If you
3729 * want/need this functionality, and can test and document it,
3730 * please submit a patch. */
3731 #if 0
3732 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3733 uword_t read_only_space_size =
3734 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3735 (lispobj*)READ_ONLY_SPACE_START;
3736 FSHOW((stderr,
3737 "/scavenge read only space: %d bytes\n",
3738 read_only_space_size * sizeof(lispobj)));
3739 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3741 #endif
3743 /* Scavenge static space. */
3744 static_space_size =
3745 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3746 (lispobj *)STATIC_SPACE_START;
3747 if (gencgc_verbose > 1) {
3748 FSHOW((stderr,
3749 "/scavenge static space: %d bytes\n",
3750 static_space_size * sizeof(lispobj)));
3752 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3754 /* All generations but the generation being GCed need to be
3755 * scavenged. The new_space generation needs special handling as
3756 * objects may be moved in - it is handled separately below. */
3757 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
3759 scavenge_pinned_ranges();
3761 /* Finally scavenge the new_space generation. Keep going until no
3762 * more objects are moved into the new generation */
3763 scavenge_newspace_generation(new_space);
3765 /* FIXME: I tried reenabling this check when debugging unrelated
3766 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3767 * Since the current GC code seems to work well, I'm guessing that
3768 * this debugging code is just stale, but I haven't tried to
3769 * figure it out. It should be figured out and then either made to
3770 * work or just deleted. */
3772 #define RESCAN_CHECK 0
3773 #if RESCAN_CHECK
3774 /* As a check re-scavenge the newspace once; no new objects should
3775 * be found. */
3777 os_vm_size_t old_bytes_allocated = bytes_allocated;
3778 os_vm_size_t bytes_allocated;
3780 /* Start with a full scavenge. */
3781 scavenge_newspace_generation_one_scan(new_space);
3783 /* Flush the current regions, updating the tables. */
3784 gc_alloc_update_all_page_tables();
3786 bytes_allocated = bytes_allocated - old_bytes_allocated;
3788 if (bytes_allocated != 0) {
3789 lose("Rescan of new_space allocated %d more bytes.\n",
3790 bytes_allocated);
3793 #endif
3795 scan_weak_hash_tables();
3796 scan_weak_pointers();
3797 wipe_nonpinned_words();
3799 /* Flush the current regions, updating the tables. */
3800 gc_alloc_update_all_page_tables();
3802 /* Free the pages in oldspace, but not those marked dont_move. */
3803 free_oldspace();
3805 /* If the GC is not raising the age then lower the generation back
3806 * to its normal generation number */
3807 if (!raise) {
3808 for (i = 0; i < last_free_page; i++)
3809 if ((page_table[i].bytes_used != 0)
3810 && (page_table[i].gen == SCRATCH_GENERATION))
3811 page_table[i].gen = generation;
3812 gc_assert(generations[generation].bytes_allocated == 0);
3813 generations[generation].bytes_allocated =
3814 generations[SCRATCH_GENERATION].bytes_allocated;
3815 generations[SCRATCH_GENERATION].bytes_allocated = 0;
3818 /* Reset the alloc_start_page for generation. */
3819 generations[generation].alloc_start_page = 0;
3820 generations[generation].alloc_unboxed_start_page = 0;
3821 generations[generation].alloc_large_start_page = 0;
3822 generations[generation].alloc_large_unboxed_start_page = 0;
3824 if (generation >= verify_gens) {
3825 if (gencgc_verbose) {
3826 SHOW("verifying");
3828 verify_gc();
3829 verify_dynamic_space();
3832 /* Set the new gc trigger for the GCed generation. */
3833 generations[generation].gc_trigger =
3834 generations[generation].bytes_allocated
3835 + generations[generation].bytes_consed_between_gc;
3837 if (raise)
3838 generations[generation].num_gc = 0;
3839 else
3840 ++generations[generation].num_gc;
3844 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3845 sword_t
3846 update_dynamic_space_free_pointer(void)
3848 page_index_t last_page = -1, i;
3850 for (i = 0; i < last_free_page; i++)
3851 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
3852 last_page = i;
3854 last_free_page = last_page+1;
3856 set_alloc_pointer((lispobj)(page_address(last_free_page)));
3857 return 0; /* dummy value: return something ... */
3860 static void
3861 remap_page_range (page_index_t from, page_index_t to)
3863 /* There's a mysterious Solaris/x86 problem with using mmap
3864 * tricks for memory zeroing. See sbcl-devel thread
3865 * "Re: patch: standalone executable redux".
3867 #if defined(LISP_FEATURE_SUNOS)
3868 zero_and_mark_pages(from, to);
3869 #else
3870 const page_index_t
3871 release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
3872 release_mask = release_granularity-1,
3873 end = to+1,
3874 aligned_from = (from+release_mask)&~release_mask,
3875 aligned_end = (end&~release_mask);
3877 if (aligned_from < aligned_end) {
3878 zero_pages_with_mmap(aligned_from, aligned_end-1);
3879 if (aligned_from != from)
3880 zero_and_mark_pages(from, aligned_from-1);
3881 if (aligned_end != end)
3882 zero_and_mark_pages(aligned_end, end-1);
3883 } else {
3884 zero_and_mark_pages(from, to);
3886 #endif
3889 static void
3890 remap_free_pages (page_index_t from, page_index_t to, int forcibly)
3892 page_index_t first_page, last_page;
3894 if (forcibly)
3895 return remap_page_range(from, to);
3897 for (first_page = from; first_page <= to; first_page++) {
3898 if (page_allocated_p(first_page) ||
3899 (page_table[first_page].need_to_zero == 0))
3900 continue;
3902 last_page = first_page + 1;
3903 while (page_free_p(last_page) &&
3904 (last_page <= to) &&
3905 (page_table[last_page].need_to_zero == 1))
3906 last_page++;
3908 remap_page_range(first_page, last_page-1);
3910 first_page = last_page;
3914 generation_index_t small_generation_limit = 1;
3916 /* GC all generations newer than last_gen, raising the objects in each
3917 * to the next older generation - we finish when all generations below
3918 * last_gen are empty. Then if last_gen is due for a GC, or if
3919 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3920 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3922 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3923 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3924 void
3925 collect_garbage(generation_index_t last_gen)
3927 generation_index_t gen = 0, i;
3928 int raise, more = 0;
3929 int gen_to_wp;
3930 /* The largest value of last_free_page seen since the time
3931 * remap_free_pages was called. */
3932 static page_index_t high_water_mark = 0;
3934 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3935 log_generation_stats(gc_logfile, "=== GC Start ===");
3937 gc_active_p = 1;
3939 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
3940 FSHOW((stderr,
3941 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3942 last_gen));
3943 last_gen = 0;
3946 /* Flush the alloc regions updating the tables. */
3947 gc_alloc_update_all_page_tables();
3949 /* Verify the new objects created by Lisp code. */
3950 if (pre_verify_gen_0) {
3951 FSHOW((stderr, "pre-checking generation 0\n"));
3952 verify_generation(0);
3955 if (gencgc_verbose > 1)
3956 print_generation_stats();
3958 do {
3959 /* Collect the generation. */
3961 if (more || (gen >= gencgc_oldest_gen_to_gc)) {
3962 /* Never raise the oldest generation. Never raise the extra generation
3963 * collected due to more-flag. */
3964 raise = 0;
3965 more = 0;
3966 } else {
3967 raise =
3968 (gen < last_gen)
3969 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
3970 /* If we would not normally raise this one, but we're
3971 * running low on space in comparison to the object-sizes
3972 * we've been seeing, raise it and collect the next one
3973 * too. */
3974 if (!raise && gen == last_gen) {
3975 more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
3976 raise = more;
3980 if (gencgc_verbose > 1) {
3981 FSHOW((stderr,
3982 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3983 gen,
3984 raise,
3985 generations[gen].bytes_allocated,
3986 generations[gen].gc_trigger,
3987 generations[gen].num_gc));
3990 /* If an older generation is being filled, then update its
3991 * memory age. */
3992 if (raise == 1) {
3993 generations[gen+1].cum_sum_bytes_allocated +=
3994 generations[gen+1].bytes_allocated;
3997 garbage_collect_generation(gen, raise);
3999 /* Reset the memory age cum_sum. */
4000 generations[gen].cum_sum_bytes_allocated = 0;
4002 if (gencgc_verbose > 1) {
4003 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4004 print_generation_stats();
4007 gen++;
4008 } while ((gen <= gencgc_oldest_gen_to_gc)
4009 && ((gen < last_gen)
4010 || more
4011 || (raise
4012 && (generations[gen].bytes_allocated
4013 > generations[gen].gc_trigger)
4014 && (generation_average_age(gen)
4015 > generations[gen].minimum_age_before_gc))));
4017 /* Now if gen-1 was raised all generations before gen are empty.
4018 * If it wasn't raised then all generations before gen-1 are empty.
4020 * Now objects within this gen's pages cannot point to younger
4021 * generations unless they are written to. This can be exploited
4022 * by write-protecting the pages of gen; then when younger
4023 * generations are GCed only the pages which have been written
4024 * need scanning. */
4025 if (raise)
4026 gen_to_wp = gen;
4027 else
4028 gen_to_wp = gen - 1;
4030 /* There's not much point in WPing pages in generation 0 as it is
4031 * never scavenged (except promoted pages). */
4032 if ((gen_to_wp > 0) && enable_page_protection) {
4033 /* Check that they are all empty. */
4034 for (i = 0; i < gen_to_wp; i++) {
4035 if (generations[i].bytes_allocated)
4036 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4037 gen_to_wp, i);
4039 write_protect_generation_pages(gen_to_wp);
4042 /* Set gc_alloc() back to generation 0. The current regions should
4043 * be flushed after the above GCs. */
4044 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4045 gc_alloc_generation = 0;
4047 /* Save the high-water mark before updating last_free_page */
4048 if (last_free_page > high_water_mark)
4049 high_water_mark = last_free_page;
4051 update_dynamic_space_free_pointer();
4053 /* Update auto_gc_trigger. Make sure we trigger the next GC before
4054 * running out of heap! */
4055 if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
4056 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4057 else
4058 auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
4060 if(gencgc_verbose)
4061 fprintf(stderr,"Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n",
4062 auto_gc_trigger);
4064 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4065 * back to the OS.
4067 if (gen > small_generation_limit) {
4068 if (last_free_page > high_water_mark)
4069 high_water_mark = last_free_page;
4070 remap_free_pages(0, high_water_mark, 0);
4071 high_water_mark = 0;
4074 gc_active_p = 0;
4075 large_allocation = 0;
4077 log_generation_stats(gc_logfile, "=== GC End ===");
4078 SHOW("returning from collect_garbage");
4081 /* This is called by Lisp PURIFY when it is finished. All live objects
4082 * will have been moved to the RO and Static heaps. The dynamic space
4083 * will need a full re-initialization. We don't bother having Lisp
4084 * PURIFY flush the current gc_alloc() region, as the page_tables are
4085 * re-initialized, and every page is zeroed to be sure. */
4086 void
4087 gc_free_heap(void)
4089 page_index_t page, last_page;
4091 if (gencgc_verbose > 1) {
4092 SHOW("entering gc_free_heap");
4095 for (page = 0; page < page_table_pages; page++) {
4096 /* Skip free pages which should already be zero filled. */
4097 if (page_allocated_p(page)) {
4098 void *page_start;
4099 for (last_page = page;
4100 (last_page < page_table_pages) && page_allocated_p(last_page);
4101 last_page++) {
4102 /* Mark the page free. The other slots are assumed invalid
4103 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4104 * should not be write-protected -- except that the
4105 * generation is used for the current region but it sets
4106 * that up. */
4107 page_table[page].allocated = FREE_PAGE_FLAG;
4108 page_table[page].bytes_used = 0;
4109 page_table[page].write_protected = 0;
4112 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4113 * about this change. */
4114 page_start = (void *)page_address(page);
4115 os_protect(page_start, npage_bytes(last_page-page), OS_VM_PROT_ALL);
4116 remap_free_pages(page, last_page-1, 1);
4117 page = last_page-1;
4118 #endif
4119 } else if (gencgc_zero_check_during_free_heap) {
4120 /* Double-check that the page is zero filled. */
4121 sword_t *page_start;
4122 page_index_t i;
4123 gc_assert(page_free_p(page));
4124 gc_assert(page_table[page].bytes_used == 0);
4125 page_start = (sword_t *)page_address(page);
4126 for (i=0; i<(long)(GENCGC_CARD_BYTES/sizeof(sword_t)); i++) {
4127 if (page_start[i] != 0) {
4128 lose("free region not zero at %x\n", page_start + i);
4134 bytes_allocated = 0;
4136 /* Initialize the generations. */
4137 for (page = 0; page < NUM_GENERATIONS; page++) {
4138 generations[page].alloc_start_page = 0;
4139 generations[page].alloc_unboxed_start_page = 0;
4140 generations[page].alloc_large_start_page = 0;
4141 generations[page].alloc_large_unboxed_start_page = 0;
4142 generations[page].bytes_allocated = 0;
4143 generations[page].gc_trigger = 2000000;
4144 generations[page].num_gc = 0;
4145 generations[page].cum_sum_bytes_allocated = 0;
4148 if (gencgc_verbose > 1)
4149 print_generation_stats();
4151 /* Initialize gc_alloc(). */
4152 gc_alloc_generation = 0;
4154 gc_set_region_empty(&boxed_region);
4155 gc_set_region_empty(&unboxed_region);
4157 last_free_page = 0;
4158 set_alloc_pointer((lispobj)((char *)heap_base));
4160 if (verify_after_free_heap) {
4161 /* Check whether purify has left any bad pointers. */
4162 FSHOW((stderr, "checking after free_heap\n"));
4163 verify_gc();
4167 void
4168 gc_init(void)
4170 page_index_t i;
4172 #if defined(LISP_FEATURE_SB_SAFEPOINT)
4173 alloc_gc_page();
4174 #endif
4176 /* Compute the number of pages needed for the dynamic space.
4177 * Dynamic space size should be aligned on page size. */
4178 page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
4179 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4181 /* Default nursery size to 5% of the total dynamic space size,
4182 * min 1Mb. */
4183 bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
4184 if (bytes_consed_between_gcs < (1024*1024))
4185 bytes_consed_between_gcs = 1024*1024;
4187 /* The page_table must be allocated using "calloc" to initialize
4188 * the page structures correctly. There used to be a separate
4189 * initialization loop (now commented out; see below) but that was
4190 * unnecessary and did hurt startup time. */
4191 page_table = calloc(page_table_pages, sizeof(struct page));
4192 gc_assert(page_table);
4193 size_t pins_map_size_in_bytes =
4194 (n_dwords_in_card / N_WORD_BITS) * sizeof (uword_t) * page_table_pages;
4195 /* We use mmap directly here so that we can use a minimum of
4196 system calls per page during GC.
4197 All we need here now is a madvise(DONTNEED) at the end of GC. */
4198 page_table_pinned_dwords
4199 = (in_use_marker_t*)os_validate(NULL, pins_map_size_in_bytes);
4200 /* We do not need to zero */
4201 gc_assert(page_table_pinned_dwords);
4203 gc_init_tables();
4204 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4205 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4207 heap_base = (void*)DYNAMIC_SPACE_START;
4209 /* The page structures are initialized implicitly when page_table
4210 * is allocated with "calloc" above. Formerly we had the following
4211 * explicit initialization here (comments converted to C99 style
4212 * for readability as C's block comments don't nest):
4214 * // Initialize each page structure.
4215 * for (i = 0; i < page_table_pages; i++) {
4216 * // Initialize all pages as free.
4217 * page_table[i].allocated = FREE_PAGE_FLAG;
4218 * page_table[i].bytes_used = 0;
4220 * // Pages are not write-protected at startup.
4221 * page_table[i].write_protected = 0;
4224 * Without this loop the image starts up much faster when dynamic
4225 * space is large -- which it is on 64-bit platforms already by
4226 * default -- and when "calloc" for large arrays is implemented
4227 * using copy-on-write of a page of zeroes -- which it is at least
4228 * on Linux. In this case the pages that page_table_pages is stored
4229 * in are mapped and cleared not before the corresponding part of
4230 * dynamic space is used. For example, this saves clearing 16 MB of
4231 * memory at startup if the page size is 4 KB and the size of
4232 * dynamic space is 4 GB.
4233 * FREE_PAGE_FLAG must be 0 for this to work correctly which is
4234 * asserted below: */
4236 /* Compile time assertion: If triggered, declares an array
4237 * of dimension -1 forcing a syntax error. The intent of the
4238 * assignment is to avoid an "unused variable" warning. */
4239 char assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
4240 assert_free_page_flag_0[0] = assert_free_page_flag_0[0];
4243 bytes_allocated = 0;
4245 /* Initialize the generations.
4247 * FIXME: very similar to code in gc_free_heap(), should be shared */
4248 for (i = 0; i < NUM_GENERATIONS; i++) {
4249 generations[i].alloc_start_page = 0;
4250 generations[i].alloc_unboxed_start_page = 0;
4251 generations[i].alloc_large_start_page = 0;
4252 generations[i].alloc_large_unboxed_start_page = 0;
4253 generations[i].bytes_allocated = 0;
4254 generations[i].gc_trigger = 2000000;
4255 generations[i].num_gc = 0;
4256 generations[i].cum_sum_bytes_allocated = 0;
4257 /* the tune-able parameters */
4258 generations[i].bytes_consed_between_gc
4259 = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
4260 generations[i].number_of_gcs_before_promotion = 1;
4261 generations[i].minimum_age_before_gc = 0.75;
4264 /* Initialize gc_alloc. */
4265 gc_alloc_generation = 0;
4266 gc_set_region_empty(&boxed_region);
4267 gc_set_region_empty(&unboxed_region);
4269 last_free_page = 0;
4272 /* Pick up the dynamic space from after a core load.
4274 * The ALLOCATION_POINTER points to the end of the dynamic space.
4277 static void
4278 gencgc_pickup_dynamic(void)
4280 page_index_t page = 0;
4281 void *alloc_ptr = (void *)get_alloc_pointer();
4282 lispobj *prev=(lispobj *)page_address(page);
4283 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4285 bytes_allocated = 0;
4287 do {
4288 lispobj *first,*ptr= (lispobj *)page_address(page);
4290 if (!gencgc_partial_pickup || page_allocated_p(page)) {
4291 /* It is possible, though rare, for the saved page table
4292 * to contain free pages below alloc_ptr. */
4293 page_table[page].gen = gen;
4294 page_table[page].bytes_used = GENCGC_CARD_BYTES;
4295 page_table[page].large_object = 0;
4296 page_table[page].write_protected = 0;
4297 page_table[page].write_protected_cleared = 0;
4298 page_table[page].dont_move = 0;
4299 page_table[page].need_to_zero = 1;
4301 bytes_allocated += GENCGC_CARD_BYTES;
4304 if (!gencgc_partial_pickup) {
4305 page_table[page].allocated = BOXED_PAGE_FLAG;
4306 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4307 if(ptr == first)
4308 prev=ptr;
4309 page_table[page].scan_start_offset =
4310 page_address(page) - (void *)prev;
4312 page++;
4313 } while (page_address(page) < alloc_ptr);
4315 last_free_page = page;
4317 generations[gen].bytes_allocated = bytes_allocated;
4319 gc_alloc_update_all_page_tables();
4320 write_protect_generation_pages(gen);
4323 void
4324 gc_initialize_pointers(void)
4326 gencgc_pickup_dynamic();
4330 /* alloc(..) is the external interface for memory allocation. It
4331 * allocates to generation 0. It is not called from within the garbage
4332 * collector as it is only external uses that need the check for heap
4333 * size (GC trigger) and to disable the interrupts (interrupts are
4334 * always disabled during a GC).
4336 * The vops that call alloc(..) assume that the returned space is zero-filled.
4337 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4339 * The check for a GC trigger is only performed when the current
4340 * region is full, so in most cases it's not needed. */
4342 static inline lispobj *
4343 general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
4344 struct thread *thread)
4346 #ifndef LISP_FEATURE_WIN32
4347 lispobj alloc_signal;
4348 #endif
4349 void *new_obj;
4350 void *new_free_pointer;
4351 os_vm_size_t trigger_bytes = 0;
4353 gc_assert(nbytes > 0);
4355 /* Check for alignment allocation problems. */
4356 gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
4357 && ((nbytes & LOWTAG_MASK) == 0));
4359 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
4360 /* Must be inside a PA section. */
4361 gc_assert(get_pseudo_atomic_atomic(thread));
4362 #endif
4364 if ((os_vm_size_t) nbytes > large_allocation)
4365 large_allocation = nbytes;
4367 /* maybe we can do this quickly ... */
4368 new_free_pointer = region->free_pointer + nbytes;
4369 if (new_free_pointer <= region->end_addr) {
4370 new_obj = (void*)(region->free_pointer);
4371 region->free_pointer = new_free_pointer;
4372 return(new_obj); /* yup */
4375 /* We don't want to count nbytes against auto_gc_trigger unless we
4376 * have to: it speeds up the tenuring of objects and slows down
4377 * allocation. However, unless we do so when allocating _very_
4378 * large objects we are in danger of exhausting the heap without
4379 * running sufficient GCs.
4381 if ((os_vm_size_t) nbytes >= bytes_consed_between_gcs)
4382 trigger_bytes = nbytes;
4384 /* we have to go the long way around, it seems. Check whether we
4385 * should GC in the near future
4387 if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
4388 /* Don't flood the system with interrupts if the need to gc is
4389 * already noted. This can happen for example when SUB-GC
4390 * allocates or after a gc triggered in a WITHOUT-GCING. */
4391 if (SymbolValue(GC_PENDING,thread) == NIL) {
4392 /* set things up so that GC happens when we finish the PA
4393 * section */
4394 SetSymbolValue(GC_PENDING,T,thread);
4395 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4396 #ifdef LISP_FEATURE_SB_SAFEPOINT
4397 thread_register_gc_trigger();
4398 #else
4399 set_pseudo_atomic_interrupted(thread);
4400 #ifdef GENCGC_IS_PRECISE
4401 /* PPC calls alloc() from a trap
4402 * look up the most context if it's from a trap. */
4404 os_context_t *context =
4405 thread->interrupt_data->allocation_trap_context;
4406 maybe_save_gc_mask_and_block_deferrables
4407 (context ? os_context_sigmask_addr(context) : NULL);
4409 #else
4410 maybe_save_gc_mask_and_block_deferrables(NULL);
4411 #endif
4412 #endif
4416 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4418 #ifndef LISP_FEATURE_WIN32
4419 /* for sb-prof, and not supported on Windows yet */
4420 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4421 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4422 if ((sword_t) alloc_signal <= 0) {
4423 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4424 raise(SIGPROF);
4425 } else {
4426 SetSymbolValue(ALLOC_SIGNAL,
4427 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4428 thread);
4431 #endif
4433 return (new_obj);
4436 lispobj *
4437 general_alloc(sword_t nbytes, int page_type_flag)
4439 struct thread *thread = arch_os_get_current_thread();
4440 /* Select correct region, and call general_alloc_internal with it.
4441 * For other then boxed allocation we must lock first, since the
4442 * region is shared. */
4443 if (BOXED_PAGE_FLAG & page_type_flag) {
4444 #ifdef LISP_FEATURE_SB_THREAD
4445 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4446 #else
4447 struct alloc_region *region = &boxed_region;
4448 #endif
4449 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4450 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4451 lispobj * obj;
4452 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4453 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4454 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4455 return obj;
4456 } else {
4457 lose("bad page type flag: %d", page_type_flag);
4461 lispobj AMD64_SYSV_ABI *
4462 alloc(sword_t nbytes)
4464 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4465 struct thread *self = arch_os_get_current_thread();
4466 int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
4467 if (!was_pseudo_atomic)
4468 set_pseudo_atomic_atomic(self);
4469 #else
4470 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4471 #endif
4473 lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
4475 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4476 if (!was_pseudo_atomic)
4477 clear_pseudo_atomic_atomic(self);
4478 #endif
4480 return result;
4484 * shared support for the OS-dependent signal handlers which
4485 * catch GENCGC-related write-protect violations
4487 void unhandled_sigmemoryfault(void* addr);
4489 /* Depending on which OS we're running under, different signals might
4490 * be raised for a violation of write protection in the heap. This
4491 * function factors out the common generational GC magic which needs
4492 * to invoked in this case, and should be called from whatever signal
4493 * handler is appropriate for the OS we're running under.
4495 * Return true if this signal is a normal generational GC thing that
4496 * we were able to handle, or false if it was abnormal and control
4497 * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
4499 * We have two control flags for this: one causes us to ignore faults
4500 * on unprotected pages completely, and the second complains to stderr
4501 * but allows us to continue without losing.
4503 extern boolean ignore_memoryfaults_on_unprotected_pages;
4504 boolean ignore_memoryfaults_on_unprotected_pages = 0;
4506 extern boolean continue_after_memoryfault_on_unprotected_pages;
4507 boolean continue_after_memoryfault_on_unprotected_pages = 0;
4510 gencgc_handle_wp_violation(void* fault_addr)
4512 page_index_t page_index = find_page_index(fault_addr);
4514 #if QSHOW_SIGNALS
4515 FSHOW((stderr,
4516 "heap WP violation? fault_addr=%p, page_index=%"PAGE_INDEX_FMT"\n",
4517 fault_addr, page_index));
4518 #endif
4520 /* Check whether the fault is within the dynamic space. */
4521 if (page_index == (-1)) {
4523 /* It can be helpful to be able to put a breakpoint on this
4524 * case to help diagnose low-level problems. */
4525 unhandled_sigmemoryfault(fault_addr);
4527 /* not within the dynamic space -- not our responsibility */
4528 return 0;
4530 } else {
4531 int ret;
4532 ret = thread_mutex_lock(&free_pages_lock);
4533 gc_assert(ret == 0);
4534 if (page_table[page_index].write_protected) {
4535 /* Unprotect the page. */
4536 os_protect(page_address(page_index), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
4537 page_table[page_index].write_protected_cleared = 1;
4538 page_table[page_index].write_protected = 0;
4539 } else if (!ignore_memoryfaults_on_unprotected_pages) {
4540 /* The only acceptable reason for this signal on a heap
4541 * access is that GENCGC write-protected the page.
4542 * However, if two CPUs hit a wp page near-simultaneously,
4543 * we had better not have the second one lose here if it
4544 * does this test after the first one has already set wp=0
4546 if(page_table[page_index].write_protected_cleared != 1) {
4547 void lisp_backtrace(int frames);
4548 lisp_backtrace(10);
4549 fprintf(stderr,
4550 "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
4551 " boxed_region.first_page: %"PAGE_INDEX_FMT","
4552 " boxed_region.last_page %"PAGE_INDEX_FMT"\n"
4553 " page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
4554 " page.bytes_used: %"PAGE_BYTES_FMT"\n"
4555 " page.allocated: %d\n"
4556 " page.write_protected: %d\n"
4557 " page.write_protected_cleared: %d\n"
4558 " page.generation: %d\n",
4559 fault_addr,
4560 page_index,
4561 boxed_region.first_page,
4562 boxed_region.last_page,
4563 page_table[page_index].scan_start_offset,
4564 page_table[page_index].bytes_used,
4565 page_table[page_index].allocated,
4566 page_table[page_index].write_protected,
4567 page_table[page_index].write_protected_cleared,
4568 page_table[page_index].gen);
4569 if (!continue_after_memoryfault_on_unprotected_pages)
4570 lose("Feh.\n");
4573 ret = thread_mutex_unlock(&free_pages_lock);
4574 gc_assert(ret == 0);
4575 /* Don't worry, we can handle it. */
4576 return 1;
4579 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4580 * it's not just a case of the program hitting the write barrier, and
4581 * are about to let Lisp deal with it. It's basically just a
4582 * convenient place to set a gdb breakpoint. */
4583 void
4584 unhandled_sigmemoryfault(void *addr)
4587 void gc_alloc_update_all_page_tables(void)
4589 /* Flush the alloc regions updating the tables. */
4590 struct thread *th;
4591 for_each_thread(th) {
4592 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4593 #if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
4594 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
4595 #endif
4597 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4598 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4601 void
4602 gc_set_region_empty(struct alloc_region *region)
4604 region->first_page = 0;
4605 region->last_page = -1;
4606 region->start_addr = page_address(0);
4607 region->free_pointer = page_address(0);
4608 region->end_addr = page_address(0);
4611 static void
4612 zero_all_free_pages()
4614 page_index_t i;
4616 for (i = 0; i < last_free_page; i++) {
4617 if (page_free_p(i)) {
4618 #ifdef READ_PROTECT_FREE_PAGES
4619 os_protect(page_address(i),
4620 GENCGC_CARD_BYTES,
4621 OS_VM_PROT_ALL);
4622 #endif
4623 zero_pages(i, i);
4628 /* Things to do before doing a final GC before saving a core (without
4629 * purify).
4631 * + Pages in large_object pages aren't moved by the GC, so we need to
4632 * unset that flag from all pages.
4633 * + The pseudo-static generation isn't normally collected, but it seems
4634 * reasonable to collect it at least when saving a core. So move the
4635 * pages to a normal generation.
4637 static void
4638 prepare_for_final_gc ()
4640 page_index_t i;
4642 do_wipe_p = 0;
4643 for (i = 0; i < last_free_page; i++) {
4644 page_table[i].large_object = 0;
4645 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4646 int used = page_table[i].bytes_used;
4647 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4648 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4649 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4655 /* Do a non-conservative GC, and then save a core with the initial
4656 * function being set to the value of the static symbol
4657 * SB!VM:RESTART-LISP-FUNCTION */
4658 void
4659 gc_and_save(char *filename, boolean prepend_runtime,
4660 boolean save_runtime_options, boolean compressed,
4661 int compression_level, int application_type)
4663 FILE *file;
4664 void *runtime_bytes = NULL;
4665 size_t runtime_size;
4667 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4668 &runtime_size);
4669 if (file == NULL)
4670 return;
4672 conservative_stack = 0;
4674 /* The filename might come from Lisp, and be moved by the now
4675 * non-conservative GC. */
4676 filename = strdup(filename);
4678 /* Collect twice: once into relatively high memory, and then back
4679 * into low memory. This compacts the retained data into the lower
4680 * pages, minimizing the size of the core file.
4682 prepare_for_final_gc();
4683 gencgc_alloc_start_page = last_free_page;
4684 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4686 prepare_for_final_gc();
4687 gencgc_alloc_start_page = -1;
4688 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4690 if (prepend_runtime)
4691 save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
4692 application_type);
4694 /* The dumper doesn't know that pages need to be zeroed before use. */
4695 zero_all_free_pages();
4696 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4697 prepend_runtime, save_runtime_options,
4698 compressed ? compression_level : COMPRESSION_LEVEL_NONE);
4699 /* Oops. Save still managed to fail. Since we've mangled the stack
4700 * beyond hope, there's not much we can do.
4701 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4702 * going to be rather unsatisfactory too... */
4703 lose("Attempt to save core after non-conservative GC failed.\n");