Fix C compiler warning.
[sbcl.git] / src / runtime / hopscotch.c
blob9e62815ce0a7978cc4455c25fdf16aa4b8fa53a8
1 /*
2 * This software is part of the SBCL system. See the README file for
3 * more information.
5 * This software is derived from the CMU CL system, which was
6 * written at Carnegie Mellon University and released into the
7 * public domain. The software is in the public domain and is
8 * provided with absolutely no warranty. See the COPYING and CREDITS
9 * files for more information.
13 * Our implementation of the hopscotch algorithm described in
14 * http://people.csail.mit.edu/shanir/publications/disc2008_submission_98.pdf
15 * which is extremely simple variation on linear probing
16 * that provides a guaranteed bound on number of probes.
19 #include <pthread.h> // only because of our dang non-self-contained .h files
20 #ifdef COLLECT_STATISTICS
21 #include <stdio.h>
22 #endif
24 #include "genesis/constants.h"
25 #include "runtime.h"
26 #include "gc-internal.h" // for os_validate()
27 #include "hopscotch.h"
29 typedef struct hopscotch_table* tableptr;
30 void hopscotch_integrity_check(tableptr,char*,int);
32 #define table_size(table) (1+(table).mask)
33 #define hash(x) x
34 #define INTEGRITY_CHECK(when) {}
36 /// Set a single bit in the hop mask for logical cell at 'index'
37 static inline void set_hop_bit(tableptr ht, unsigned index, int bit)
39 unsigned mask = 1<<bit;
40 ht->hops[index] |= mask;
42 /// Set all the bits in the hop mask for logical cell at 'index'
43 static inline void set_hop_mask(tableptr ht, unsigned index, unsigned bits)
45 ht->hops[index] = bits;
47 static inline unsigned get_hop_mask(tableptr ht, unsigned index)
49 return ht->hops[index];
52 /// Hopscotch storage allocation granularity.
53 /// Our usual value of "page size" is the GC page size, which is
54 /// coarser than necessary (cf {target}/backend-parms.lisp).
55 static int hh_allocation_granularity = 4096;
56 #define ALLOCATION_OVERHEAD (2*sizeof(unsigned int))
57 /// Return the number of usable bytes (excluding the header) in an allocation
58 #define usable_size(x) ((unsigned int*)x)[-1]
60 /// Sizing up a table can't be done in-place, so reserve a few blocks
61 /// of memory for when resize has to happen during GC. We don't return
62 /// these blocks to the OS. If even more is required, it will be allocated
63 /// as needed, but we'll only keep on reserve at most two blocks.
64 #define N_CACHED_ALLOCS 2
65 char* cached_alloc[N_CACHED_ALLOCS];
66 void hopscotch_init() // Called once on runtime startup, from gc_init().
68 // Get 16KB from the OS and evenly divide it into two pieces.
69 int n_bytes_per_slice = 8 * 1024;
70 int n_bytes_total = N_CACHED_ALLOCS * n_bytes_per_slice;
71 char* mem = (char*)os_validate(0, n_bytes_total);
72 gc_assert(mem);
73 cached_alloc[0] = mem + ALLOCATION_OVERHEAD;
74 cached_alloc[1] = cached_alloc[0] + n_bytes_per_slice;
75 // Write the user-visible size of each allocation into the block header
76 usable_size(cached_alloc[0]) = n_bytes_per_slice - ALLOCATION_OVERHEAD;
77 usable_size(cached_alloc[1]) = n_bytes_per_slice - ALLOCATION_OVERHEAD;
80 /* Return the address of at least 'nbytes' of storage.
81 * This is not a general-purpose thing - it's only intended to keep
82 * one or perhaps two hopscotch hash tables around during GC,
83 * for pinned objects, and maybe something else.
84 * As such, no attempt is made to minimize storage use,
85 * and if used more generally, would badly suffer from fragmentation.
87 static char* cached_allocate(os_vm_size_t nbytes)
89 // See if either cached allocation is large enough.
90 if (cached_alloc[0] && usable_size(cached_alloc[0]) >= nbytes) {
91 // Yup, just give the consumer the whole thing.
92 char* result = cached_alloc[0];
93 cached_alloc[0] = 0; // Remove from the pool
94 return result;
96 if (cached_alloc[1] && usable_size(cached_alloc[1]) >= nbytes) { // Ditto.
97 char* result = cached_alloc[1];
98 cached_alloc[1] = 0;
99 return result;
101 // Request more memory, not using malloc().
102 // Round up, since the OS will give more than asked if the request is
103 // not a multiple of the mmap granularity, which we'll assume is 4K.
104 // (It doesn't actually matter.)
105 nbytes = CEILING(nbytes, hh_allocation_granularity);
106 char* result = os_validate(0, nbytes);
107 gc_assert(result);
108 result += ALLOCATION_OVERHEAD;
109 usable_size(result) = nbytes - ALLOCATION_OVERHEAD;
110 return result;
113 /* Return 'mem' to the cache, first zero-filling to the specified length.
114 * Though the memory size is recorded in the header of the memory block,
115 * the allocator doesn't know how many bytes were touched by the requestor,
116 * which is why the length is specified again.
117 * If returning it to the OS and not the cache, then don't bother 0-filling.
119 static void cached_deallocate(char* mem, int zero_fill_length)
121 int line = 0;
122 if (!cached_alloc[0]) {
123 } else if (!cached_alloc[1])
124 line = 1;
125 else {
126 // Try to retain whichever 2 blocks are largest (the given one and
127 // cached ones) in the hope of fulfilling future requests from cache.
128 int this_size = usable_size(mem);
129 int cached_size0 = usable_size(cached_alloc[0]);
130 int cached_size1 = usable_size(cached_alloc[1]);
131 if (!(this_size > cached_size0 || this_size > cached_size1)) {
132 // mem is not strictly larger than either cached block. Release it.
133 os_deallocate(mem - ALLOCATION_OVERHEAD,
134 usable_size(mem) + ALLOCATION_OVERHEAD);
135 return;
137 // Evict and replace the smaller of the two cache entries.
138 if (cached_size1 < cached_size0)
139 line = 1;
140 os_deallocate(cached_alloc[line] - ALLOCATION_OVERHEAD,
141 usable_size(cached_alloc[line]) + ALLOCATION_OVERHEAD);
143 bzero(mem, zero_fill_length);
144 cached_alloc[line] = mem;
147 /* Initialize 'ht' for 'size' logical bins with a max hop of 'hop_range'.
148 * 'valuesp' makes a hash-map if true; a hash-set if false.
149 * Hop range will be selected automatically if specified as 0.
151 static void hopscotch_realloc(tableptr ht, boolean valuesp, int size, char hop_range)
153 // Somewhat arbitrary criteria that improve the worst-case probes for
154 // small hashtables. The reference algorithm uses a fixed max hop of 32,
155 // but fewer is better, and our pinned object table tends to be very small.
156 if (hop_range == 0) { // Let us pick.
157 if (size <= 1024) hop_range = 8;
158 else if (size <= 16384) hop_range = 16;
159 else hop_range = 32;
162 // The key/value arrays are *not* circular.
163 // The last few logical cells in the key array can use physical cells
164 // at indices greater than 'size'; there's no wrapping back to index 0.
165 int n_keys = size + (hop_range - 1);
166 unsigned storage_size = sizeof (uword_t) * n_keys
167 + sizeof (int) * size // hop bitmasks
168 + (valuesp ? (sizeof (int) * n_keys) : 0); // values
170 if (ht->keys)
171 gc_assert(usable_size(ht->keys) >= storage_size);
172 else
173 ht->keys = (uword_t*)cached_allocate(storage_size);
175 ht->mem_size = storage_size;
176 ht->mask = size - 1;
177 ht->hop_range = hop_range;
178 ht->hops = (unsigned*)((char*)ht->keys + sizeof (uword_t) * n_keys);
179 ht->values = !valuesp ? 0 :
180 (unsigned*)((char*)ht->hops + sizeof (int) * size);
183 /* Initialize 'ht' for first use, which entails zeroing the counters
184 * and allocating storage.
186 void hopscotch_create(tableptr ht, boolean valuesp, int size, char hop_range)
188 gc_assert((size & (size-1)) == 0); // ensure power-of-2
189 ht->count = 0;
190 ht->rehashing = 0;
191 ht->resized = 0;
192 // Ensure that the first reset() doesn't do something screwy.
193 ht->prev_size = size;
194 // Clear these even if not collecting statistics,
195 // because it looks ugly if we don't.
196 ht->hit .n_seeks = ht->hit .n_probes = 0;
197 ht->miss.n_seeks = ht->miss.n_probes = 0;
199 ht->keys = 0; // Forces allocation of backing storage.
200 hopscotch_realloc(ht, valuesp, size, hop_range);
203 /* Delete the storage associated with 'ht' */
204 void hopscotch_delete(tableptr ht)
206 if (ht->mem_size) { // Free it, zero-filling if ever used.
207 cached_deallocate((char*)ht->keys, ht->count ? ht->mem_size : 0);
208 ht->keys = 0;
209 ht->hops = 0;
210 ht->values = 0;
214 /* Prepare 'ht' for re-use. Same as CLRHASH */
215 void hopscotch_reset(tableptr ht)
217 if (ht->count) {
218 bzero(ht->keys, ht->mem_size);
219 ht->count = 0;
221 // If the size exceeds twice the final size from the prior run,
222 // or is the same size and was not enlarged, then downsize,
223 // but don't go below a certain minimal size.
224 int size = table_size(*ht);
225 #if 0
226 fprintf(stderr, "hh reset: size=%d prev=%d upsized=%d\n",
227 size, ht->prev_size, ht->resized);
228 #endif
229 if (size > (ht->prev_size << 1)
230 || (size == ht->prev_size && !ht->resized && size > 8))
231 // Halve the size for the next GC cycle
232 hopscotch_realloc(ht, ht->values != 0, size >> 1, 0);
233 ht->prev_size = size;
234 ht->resized = 0;
235 INTEGRITY_CHECK("after reset");
238 /* Double the size of 'ht'. Called when an insertion overflows the table */
239 tableptr hopscotch_resize_up(tableptr ht)
241 int size = ht->mask + 1; // Logical bin count
242 int old_max_index = hopscotch_max_key_index(*ht);
243 struct hopscotch_table copy;
245 #if 0
246 fprintf(stderr, "resize up: ct=%d cap=%d hop=%d LF=%f\n",
247 ht->count, 1+old_max_index, ht->hop_range,
248 (float)ht->count/(1+old_max_index));
249 #endif
250 INTEGRITY_CHECK("before resize");
251 // Copy the keys or key/value pairs.
253 // It's conceivable, however improbable, that there is a hash function
254 // which causes more collisions at the new size than the old size.
255 // Due to the fixed hop range, failure to insert while rehashing
256 // must be caught so that we can try again with a larger size.
257 // But usually this loop will execute exactly once.
258 int i;
259 do {
260 size *= 2;
261 hopscotch_create(&copy, ht->values != 0, size, 0);
262 copy.rehashing = 1; // Causes put() to return 0 on failure
263 if (ht->values) {
264 for(i=old_max_index ; i >= 0 ; --i)
265 if (ht->keys[i])
266 if (!hopscotch_put(&copy, ht->keys[i], ht->values[i]))
267 break;
268 } else {
269 for(i=old_max_index ; i >= 0 ; --i)
270 if (ht->keys[i])
271 if (!hopscotch_put(&copy, ht->keys[i], 1)) {
272 #if 0
273 fprintf(stderr, "resize failed with new size %d, hop_range %d\n",
274 size, copy.hop_range);
275 #endif
276 break;
279 } while (i >= 0 && (hopscotch_delete(&copy), 1));
281 // Zero-fill and release the old storage.
282 cached_deallocate((char*)ht->keys, ht->mem_size);
284 // Move all of the data pointers from 'copy' into ht.
285 // mem_size is passed to bzero() when resetting the table,
286 // so definitely be sure to use the new, not the old.
287 // And of course _don't_ hopscotch_delete() copy when done.
288 ht->mem_size = copy.mem_size;
289 ht->mask = copy.mask;
290 ht->hop_range = copy.hop_range;
291 ht->keys = copy.keys;
292 ht->hops = copy.hops;
293 ht->values = copy.values;
294 ht->resized = 1;
295 INTEGRITY_CHECK("after resize");
296 return ht;
299 void hopscotch_log_stats(tableptr ht)
301 #ifdef COLLECT_STATISTICS
302 static FILE *hh_logfile;
303 if (!hh_logfile)
304 hh_logfile = fopen("hash-stats.txt","a");
305 fprintf(hh_logfile,
306 "hopscotch: ct=%5d cap=%5d LF=%f seek=%5d+%5d probe/seek=%f+%f (hit+miss)\n",
307 ht->count,
308 (ht->mask + ht->hop_range),
309 (float)ht->count / (ht->mask + ht->hop_range),
310 ht->hit.n_seeks, ht->miss.n_seeks,
311 ht->hit.n_seeks>0 ? (float)ht->hit.n_probes / ht->hit.n_seeks : 0.0,
312 ht->miss.n_seeks>0 ? (float)ht->miss.n_probes / ht->miss.n_seeks : 0.0);
313 fflush(hh_logfile);
314 ht->hit.n_seeks = ht->hit.n_probes = 0;
315 ht->miss.n_seeks = ht->miss.n_probes = 0;
316 #endif
319 /* Return an integer with 'n' low-order 1 bits.
320 * This does not do the right thing for n = 0, but that's fine!
321 * (Shifting an unsigned 32-bit integer rightward by 32 is not defined.
322 * 32-bit x86 masks the shift amount to 5 bits, so you get 0 shift)
324 static inline unsigned int bitmask_of_width(int n) {
325 return (0xFFFFFFFFU >> (32 - n));
328 #define put_pair(i,k,v) ht->keys[i] = k; if(ht->values) ht->values[i] = v
330 /* Add key/val to 'ht'. 'val' is ignored for a hash-set */
331 int hopscotch_put(tableptr ht, uword_t key, unsigned int val)
333 // 'desired_index' is where 'key' logically belongs, but it
334 // may physically go in any cell to the right up to (range-1) away.
335 int desired_index = hash(key) & ht->mask;
336 if (ht->keys[desired_index] == 0) { // Instant win
337 put_pair(desired_index, key, val);
338 set_hop_bit(ht, desired_index, 0);
339 return ++ht->count;
341 // 'limit' is the inclusive bound on cell indices.
342 int limit = hopscotch_max_key_index(*ht);
343 int free_index = desired_index;
344 int displacement;
345 while (ht->keys[++free_index] != 0) // While cell is occupied
346 if (free_index == limit)
347 return ht->rehashing ? 0 : // fail if rehash table is too small
348 hopscotch_put(hopscotch_resize_up(ht), key, val);
350 // 'free_index' is where *some* item could go,
351 // but it might be too far away for this key.
352 retry:
353 if ((displacement = free_index - desired_index) < ht->hop_range) {
354 put_pair(free_index, key, val);
355 set_hop_bit(ht, desired_index, displacement);
356 return ++ht->count;
358 // Find the empty cell furthest away from and to the left of free_index,
359 // within the hop_range, that contains an item that can be moved.
360 int logical_bin = free_index - (ht->hop_range - 1);
361 // limit is the max index (inclusive) of the available free cells
362 // up to but excluding 'free_index'
363 limit = free_index - 1;
364 // In case free_index currently points to a physical bin "off the end"
365 // of the logical bins, confine to the highest logical bin,
366 // which is just the table mask.
367 if (limit >= (int)ht->mask)
368 limit = ht->mask;
369 // Now 'free_index' is fixed, and 'logical_bin' is what we search
370 // over to find something to displace into the free_index.
371 // Example: v----- free index
372 // | | X | X | O | | [X = filled. O = filled + owned]
373 // ^--- logical bin (displacement = 3)
374 // Look at the low 3 bits of the hop bits for 'logical_bin'.
375 // Those indicate the physical cells "owned" by the logical cell
376 // and within the needed distance to the free cell.
377 // If any are set, the leftmost bit is robbed to make room.
378 // In the above example, bit index 2 (0-based index) would be claimed.
379 for ( ; logical_bin <= limit ; ++logical_bin ) {
380 displacement = free_index - logical_bin;
381 unsigned bits = get_hop_mask(ht, logical_bin);
382 unsigned masked_bits = bits & bitmask_of_width(displacement);
383 if (masked_bits) {
384 int victim = ffs(masked_bits) - 1; // ffs() is 1-based
385 int physical_elt = logical_bin + victim;
386 // Relocate the contents of 'physical_elt' to 'free_index'
387 put_pair(free_index, ht->keys[physical_elt], ht->values[physical_elt]);
388 put_pair(physical_elt, 0, 0);
389 // This logical bin no longer owns the index where the victim was,
390 // but does own the index where it got moved to.
391 set_hop_mask(ht, logical_bin, bits ^ (1<<displacement | 1<<victim));
392 // Now free_index gets smaller, and we try again from the top.
393 free_index = physical_elt;
394 goto retry;
397 // Too many collisions and not enough room to move things around.
398 return ht->rehashing ? 0 : hopscotch_put(hopscotch_resize_up(ht), key, val);
399 #undef put_pair
402 /// When probing on lookup, while we could use the mask bits in the
403 /// desired logical bin to restrict the number of key comparisons made,
404 /// this turns out to be worse. Though slightly counter-intuitive,
405 /// it is likely due to one fewer conditional branch when we hit the
406 /// first choice physical cell. The probe() macro will decide whether
407 /// to use the mask bits and/or record the number of key comparisons.
408 /// Statistics gathering also slows us down a lot, so only do it when
409 /// making comparative benchmarks, not in real-world use.
410 #ifdef COLLECT_STATISTICS
411 #define probe(mask,i,retval) ++probes; if (ht->keys[i] == key) { \
412 ++ht->hit.n_seeks; ht->hit.n_probes += probes; \
413 return retval; }
414 #else
415 #define probe(mask,i,retval) if (ht->keys[i] == key) return retval
416 #endif
418 /* Test for membership in a hashset. Return 1 or 0. */
419 int hopscotch_containsp(tableptr ht, uword_t key)
421 // index needn't be 'long' but the code generated is better with it.
422 unsigned long index = hash(key) & ht->mask;
423 unsigned bits = get_hop_mask(ht, index);
424 #ifdef COLLECT_STATISTICS
425 int probes = 0;
426 #endif
427 // *** Use care when modifying this code, and benchmark it thoroughly! ***
428 // TODO: use XMM register to test 2 keys at once if properly aligned.
429 if (bits & 0xff) {
430 probe((1<<0), index+0, 1);
431 probe((1<<1), index+1, 1);
432 probe((1<<2), index+2, 1);
433 probe((1<<3), index+3, 1);
434 probe((1<<4), index+4, 1);
435 probe((1<<5), index+5, 1);
436 probe((1<<6), index+6, 1);
437 probe((1<<7), index+7, 1);
439 // There's a trade-off to be made: checking for fewer bits at a time
440 // (such as by "bits & 0x0f") would give finer grain to the set of
441 // physical cells tested, but would mean more iterations.
442 // It seems like 8 bits at a time is a good number, especially if the
443 // hop range is 8, because this general case need never execute.
444 while ((bits >>= 8) != 0) {
445 index += 8;
446 if (bits & 0xff) {
447 probe((1<<0), index+0, 1);
448 probe((1<<1), index+1, 1);
449 probe((1<<2), index+2, 1);
450 probe((1<<3), index+3, 1);
451 probe((1<<4), index+4, 1);
452 probe((1<<5), index+5, 1);
453 probe((1<<6), index+6, 1);
454 probe((1<<7), index+7, 1);
457 #ifdef COLLECT_STATISTICS
458 ++ht->miss.n_seeks;
459 ht->miss.n_probes += probes;
460 #endif
461 return 0;
464 /* Return the value associated with 'key', or -1 if not found */
465 int hopscotch_get(tableptr ht, uword_t key)
467 int index = hash(key) & ht->mask;
468 unsigned bits = get_hop_mask(ht, index);
469 #ifdef COLLECT_STATISTICS
470 int probes = 0;
471 #endif
472 // This is not as blazingly fast as the hand-unrolled loop
473 // in containsp(), but the GC does not need it, so ...
474 while (bits) {
475 if (bits & 0xf) {
476 probe(1, index+0, ht->values[index+0]);
477 probe(2, index+1, ht->values[index+1]);
478 probe(4, index+2, ht->values[index+2]);
479 probe(8, index+3, ht->values[index+3]);
481 index += 4;
482 bits >>= 4;
484 #ifdef COLLECT_STATISTICS
485 ++ht->miss.n_seeks;
486 ht->miss.n_probes += probes;
487 #endif
488 return -1;
491 #undef probe
493 #if 0
494 int popcount(unsigned x)
496 int count = 0;
497 for ( ; x != 0 ; x >>= 1 )
498 if (x&1) ++count;
499 return count;
502 /* Perform a bunch of sanity checks on 'ht' */
503 void hopscotch_integrity_check(tableptr ht, char*when, int verbose)
505 int n_items = 0, tot_bits_set = 0, i;
506 int size = table_size(*ht);
507 int n_kv_pairs = size + ht->hop_range-1;
508 int fail = 0;
509 FILE * s = stderr;
511 for(i=n_kv_pairs-1 ; i >= 0 ; --i) if (ht->keys[i]) ++n_items;
512 for(i=ht->mask; i>= 0; --i) tot_bits_set += popcount(get_hop_mask(ht,i));
513 if (verbose)
514 fprintf(s, "(%s) Verifying table @ %p. count=%d actual=%d bits=%d\n",
515 when, ht, ht->count, n_items, tot_bits_set);
516 for (i=0;i<n_kv_pairs;++i) {
517 uword_t key = ht->keys[i];
518 int claimed;
519 if (key != 0 || (i<=ht->mask && get_hop_mask(ht,i) != 0)) {
520 // Compute the logical cell that owns this physical cell.
521 int start_index = i - (ht->hop_range-1);
522 if (start_index < 0) start_index = 0;
523 int end_index = i;
524 if (end_index > ht->mask) end_index = ht->mask;
525 claimed = -1;
526 int logical_cell;
527 for (logical_cell = start_index ; logical_cell <= end_index ; ++logical_cell) {
528 unsigned hop_bits = get_hop_mask(ht, logical_cell);
529 if (hop_bits & (1<<(i - logical_cell))) {
530 if (claimed == -1)
531 claimed = logical_cell;
532 else {
533 fprintf(stderr,
534 "physical cell %d duplicately claimed: %d and %d",
535 i, claimed, logical_cell);
536 fail = 1;
540 if (verbose) {
541 if (claimed==i || (claimed==-1 && !key))
542 fprintf(s, " ");
543 else if (claimed!=-1) {
544 fprintf(s, "[%4d]", claimed);
545 if ((int)(ht->mask & hash(key)) != claimed)
546 lose("key hashes to wrong logical cell?");
547 } else { // should have been claimed
548 fprintf(s, " **** ");
549 fail = 1;
551 fprintf(s, " %4d: %04x", i, i <= ht->mask ? get_hop_mask(ht,i) : 0);
552 if (key)
553 fprintf(s, " %12p -> %d",
554 (void*)(key<<(1+WORD_SHIFT)),
555 (int)(ht->mask & hash(key)));
556 putc('\n', s);
560 if (ht->count != n_items || tot_bits_set != n_items || fail)
561 lose("integrity check on hashtable %p failed", ht);
562 fflush(s);
564 #endif