Disassemble TBZ and TBNZ on ARM64.
[sbcl.git] / src / code / late-type.lisp
blob77c67623ae5372a3266a40aa7a40835e197ee78c
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier))
32 (:default-initargs
33 :specifier (missing-arg)))
35 ;;; This condition is signalled whenever we encounter a type (DEFTYPE,
36 ;;; structure, condition, class) that has been marked as deprecated.
37 (define-condition parse-deprecated-type (condition)
38 ((specifier :reader parse-deprecated-type-specifier :initarg :specifier))
39 (:default-initargs
40 :specifier (missing-arg)))
42 ;;; These functions are used as method for types which need a complex
43 ;;; subtypep method to handle some superclasses, but cover a subtree
44 ;;; of the type graph (i.e. there is no simple way for any other type
45 ;;; class to be a subtype.) There are always still complex ways,
46 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
47 ;;; chance to run, instead of immediately returning NIL, T.
48 (defun delegate-complex-subtypep-arg2 (type1 type2)
49 (let ((subtypep-arg1
50 (type-class-complex-subtypep-arg1 (type-class-info type1))))
51 (if subtypep-arg1
52 (funcall subtypep-arg1 type1 type2)
53 (values nil t))))
54 (defun delegate-complex-intersection2 (type1 type2)
55 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
56 (if (and method (not (eq method #'delegate-complex-intersection2)))
57 (funcall method type2 type1)
58 (hierarchical-intersection2 type1 type2))))
60 (defun contains-unknown-type-p (ctype)
61 (typecase ctype
62 (unknown-type t)
63 (compound-type (some #'contains-unknown-type-p (compound-type-types ctype)))
64 (negation-type (contains-unknown-type-p (negation-type-type ctype)))
65 (cons-type (or (contains-unknown-type-p (cons-type-car-type ctype))
66 (contains-unknown-type-p (cons-type-cdr-type ctype))))
67 (array-type (contains-unknown-type-p (array-type-element-type ctype)))))
69 ;; Similar to (NOT CONTAINS-UNKNOWN-TYPE-P), but report that (SATISFIES F)
70 ;; is not a testable type unless F is currently bound.
71 (defun testable-type-p (ctype)
72 (typecase ctype
73 (unknown-type nil) ; must precede HAIRY because an unknown is HAIRY
74 (hairy-type
75 (let ((spec (hairy-type-specifier ctype)))
76 ;; Anything other than (SATISFIES ...) is testable
77 ;; because there's no reason to suppose that it isn't.
78 (or (neq (car spec) 'satisfies) (fboundp (cadr spec)))))
79 (compound-type (every #'testable-type-p (compound-type-types ctype)))
80 (negation-type (testable-type-p (negation-type-type ctype)))
81 (cons-type (and (testable-type-p (cons-type-car-type ctype))
82 (testable-type-p (cons-type-cdr-type ctype))))
83 ;; This case could be too strict. I think an array type is testable
84 ;; if the upgraded type is testable. Probably nobody cares though.
85 (array-type (testable-type-p (array-type-element-type ctype)))
86 (t t)))
88 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
89 ;;; method. INFO is a list of conses
90 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
91 (defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
92 ;; If TYPE2 might be concealing something related to our class
93 ;; hierarchy
94 (if (type-might-contain-other-types-p type2)
95 ;; too confusing, gotta punt
96 (values nil nil)
97 ;; ordinary case expected by old CMU CL code, where the taxonomy
98 ;; of TYPE2's representation accurately reflects the taxonomy of
99 ;; the underlying set
100 (values
101 ;; FIXME: This old CMU CL code probably deserves a comment
102 ;; explaining to us mere mortals how it works...
103 (and (sb!xc:typep type2 'classoid)
104 (dolist (x info nil)
105 (when (or (not (cdr x))
106 (csubtypep type1 (specifier-type (cdr x))))
107 (return
108 (or (eq type2 (car x))
109 (let ((inherits (layout-inherits
110 (classoid-layout (car x)))))
111 (dotimes (i (length inherits) nil)
112 (when (eq type2 (layout-classoid (svref inherits i)))
113 (return t)))))))))
114 t)))
116 ;;; This function takes a list of specs, each of the form
117 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
118 ;;; Consider one spec (with no guard): any instance of the named
119 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
120 ;;; its superclasses. If there are multiple specs, then some will have
121 ;;; guards. We choose the first spec whose guard is a supertype of
122 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
123 ;;; G0, G1, G2
124 ;;; is actually
125 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
127 ;;; WHEN controls when the forms are executed.
128 (defmacro !define-superclasses (type-class-name specs when)
129 (with-unique-names (type-class info)
130 `(,when
131 (let ((,type-class (type-class-or-lose ',type-class-name))
132 (,info (mapcar (lambda (spec)
133 (destructuring-bind
134 (super &optional guard)
135 spec
136 (cons (find-classoid super) guard)))
137 ',specs)))
138 (setf (type-class-complex-subtypep-arg1 ,type-class)
139 (lambda (type1 type2)
140 (has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
141 (setf (type-class-complex-subtypep-arg2 ,type-class)
142 #'delegate-complex-subtypep-arg2)
143 (setf (type-class-complex-intersection2 ,type-class)
144 #'delegate-complex-intersection2)))))
146 ;;;; FUNCTION and VALUES types
147 ;;;;
148 ;;;; Pretty much all of the general type operations are illegal on
149 ;;;; VALUES types, since we can't discriminate using them, do
150 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
151 ;;;; operations, but are generally considered to be equivalent to
152 ;;;; FUNCTION. These really aren't true types in any type theoretic
153 ;;;; sense, but we still parse them into CTYPE structures for two
154 ;;;; reasons:
156 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
157 ;;;; tell whether a type is a function or values type without
158 ;;;; parsing it.
159 ;;;; -- Many of the places that can be annotated with real types can
160 ;;;; also be annotated with function or values types.
162 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
163 (type1 type2)
164 (declare (ignore type2))
165 ;; FIXME: should be TYPE-ERROR, here and in next method
166 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
168 (!define-type-method (values :complex-subtypep-arg2)
169 (type1 type2)
170 (declare (ignore type1))
171 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
173 (!define-type-method (values :negate) (type)
174 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
176 (!define-type-method (values :unparse) (type)
177 (cons 'values
178 (let ((unparsed (unparse-args-types type)))
179 (if (or (values-type-optional type)
180 (values-type-rest type)
181 (values-type-allowp type))
182 unparsed
183 (nconc unparsed '(&optional))))))
185 ;;; Return true if LIST1 and LIST2 have the same elements in the same
186 ;;; positions according to TYPE=. We return NIL, NIL if there is an
187 ;;; uncertain comparison.
188 (defun type=-list (list1 list2)
189 (declare (list list1 list2))
190 (do ((types1 list1 (cdr types1))
191 (types2 list2 (cdr types2)))
192 ((or (null types1) (null types2))
193 (if (or types1 types2)
194 (values nil t)
195 (values t t)))
196 (multiple-value-bind (val win)
197 (type= (first types1) (first types2))
198 (unless win
199 (return (values nil nil)))
200 (unless val
201 (return (values nil t))))))
203 (!define-type-method (values :simple-=) (type1 type2)
204 (type=-args type1 type2))
206 (!define-type-class function :enumerable nil
207 :might-contain-other-types nil)
209 ;;; a flag that we can bind to cause complex function types to be
210 ;;; unparsed as FUNCTION. This is useful when we want a type that we
211 ;;; can pass to TYPEP.
212 (!defvar *unparse-fun-type-simplify* nil)
213 ;;; A flag to prevent TYPE-OF calls by user applications from returning
214 ;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
215 (!defvar *unparse-allow-negation* t)
217 (!define-type-method (function :negate) (type) (make-negation-type type))
219 (!define-type-method (function :unparse) (type)
220 (if *unparse-fun-type-simplify*
221 'function
222 (list 'function
223 (if (fun-type-wild-args type)
225 (unparse-args-types type))
226 (type-specifier
227 (fun-type-returns type)))))
229 ;;; The meaning of this is a little confused. On the one hand, all
230 ;;; function objects are represented the same way regardless of the
231 ;;; arglists and return values, and apps don't get to ask things like
232 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
233 ;;; other hand, Python wants to reason about function types. So...
234 (!define-type-method (function :simple-subtypep) (type1 type2)
235 (flet ((fun-type-simple-p (type)
236 (not (or (fun-type-rest type)
237 (fun-type-keyp type))))
238 (every-csubtypep (types1 types2)
239 (loop
240 for a1 in types1
241 for a2 in types2
242 do (multiple-value-bind (res sure-p)
243 (csubtypep a1 a2)
244 (unless res (return (values res sure-p))))
245 finally (return (values t t)))))
246 (and/type (values-subtypep (fun-type-returns type1)
247 (fun-type-returns type2))
248 (cond ((fun-type-wild-args type2) (values t t))
249 ((fun-type-wild-args type1)
250 (cond ((fun-type-keyp type2) (values nil nil))
251 ((not (fun-type-rest type2)) (values nil t))
252 ((not (null (fun-type-required type2)))
253 (values nil t))
254 (t (and/type (type= *universal-type*
255 (fun-type-rest type2))
256 (every/type #'type=
257 *universal-type*
258 (fun-type-optional
259 type2))))))
260 ((not (and (fun-type-simple-p type1)
261 (fun-type-simple-p type2)))
262 (values nil nil))
263 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
264 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
265 (cond ((or (> max1 max2) (< min1 min2))
266 (values nil t))
267 ((and (= min1 min2) (= max1 max2))
268 (and/type (every-csubtypep
269 (fun-type-required type1)
270 (fun-type-required type2))
271 (every-csubtypep
272 (fun-type-optional type1)
273 (fun-type-optional type2))))
274 (t (every-csubtypep
275 (concatenate 'list
276 (fun-type-required type1)
277 (fun-type-optional type1))
278 (concatenate 'list
279 (fun-type-required type2)
280 (fun-type-optional type2))))))))))))
282 (!define-superclasses function ((function)) !cold-init-forms)
284 ;;; The union or intersection of two FUNCTION types is FUNCTION.
285 (!define-type-method (function :simple-union2) (type1 type2)
286 (declare (ignore type1 type2))
287 (specifier-type 'function))
288 (!define-type-method (function :simple-intersection2) (type1 type2)
289 (let ((ftype (specifier-type 'function)))
290 (cond ((eq type1 ftype) type2)
291 ((eq type2 ftype) type1)
292 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
293 (fun-type-returns type2))))
294 (flet ((change-returns (ftype rtype)
295 (declare (type fun-type ftype) (type ctype rtype))
296 (make-fun-type :required (fun-type-required ftype)
297 :optional (fun-type-optional ftype)
298 :keyp (fun-type-keyp ftype)
299 :keywords (fun-type-keywords ftype)
300 :allowp (fun-type-allowp ftype)
301 :returns rtype)))
302 (cond
303 ((fun-type-wild-args type1)
304 (if (fun-type-wild-args type2)
305 (make-fun-type :wild-args t
306 :returns rtype)
307 (change-returns type2 rtype)))
308 ((fun-type-wild-args type2)
309 (change-returns type1 rtype))
310 (t (multiple-value-bind (req opt rest)
311 (args-type-op type1 type2 #'type-intersection #'max)
312 (make-fun-type :required req
313 :optional opt
314 :rest rest
315 ;; FIXME: :keys
316 :allowp (and (fun-type-allowp type1)
317 (fun-type-allowp type2))
318 :returns rtype))))))))))
320 ;;; The union or intersection of a subclass of FUNCTION with a
321 ;;; FUNCTION type is somewhat complicated.
322 (!define-type-method (function :complex-intersection2) (type1 type2)
323 (cond
324 ((type= type1 (specifier-type 'function)) type2)
325 ((csubtypep type1 (specifier-type 'function)) nil)
326 (t :call-other-method)))
327 (!define-type-method (function :complex-union2) (type1 type2)
328 (declare (ignore type2))
329 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
330 ;; FUNCTION, then it is the union of the two; otherwise, there is no
331 ;; special union.
332 (cond
333 ((type= type1 (specifier-type 'function)) type1)
334 (t nil)))
336 (!define-type-method (function :simple-=) (type1 type2)
337 (macrolet ((compare (comparator field)
338 (let ((reader (symbolicate '#:fun-type- field)))
339 `(,comparator (,reader type1) (,reader type2)))))
340 (and/type (compare type= returns)
341 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
342 (values nil t))
343 ((eq (fun-type-wild-args type1) t)
344 (values t t))
345 (t (type=-args type1 type2))))))
347 (!define-type-class constant :inherits values)
349 (!define-type-method (constant :negate) (type)
350 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
352 (!define-type-method (constant :unparse) (type)
353 `(constant-arg ,(type-specifier (constant-type-type type))))
355 (!define-type-method (constant :simple-=) (type1 type2)
356 (type= (constant-type-type type1) (constant-type-type type2)))
358 (!def-type-translator constant-arg ((:context context) type)
359 (make-constant-type :type (single-value-specifier-type-r context type)))
361 ;;; Return the lambda-list-like type specification corresponding
362 ;;; to an ARGS-TYPE.
363 (declaim (ftype (function (args-type) list) unparse-args-types))
364 (defun unparse-args-types (type)
365 (collect ((result))
367 (dolist (arg (args-type-required type))
368 (result (type-specifier arg)))
370 (when (args-type-optional type)
371 (result '&optional)
372 (dolist (arg (args-type-optional type))
373 (result (type-specifier arg))))
375 (when (args-type-rest type)
376 (result '&rest)
377 (result (type-specifier (args-type-rest type))))
379 (when (args-type-keyp type)
380 (result '&key)
381 (dolist (key (args-type-keywords type))
382 (result (list (key-info-name key)
383 (type-specifier (key-info-type key))))))
385 (when (args-type-allowp type)
386 (result '&allow-other-keys))
388 (result)))
390 (!def-type-translator function ((:context context)
391 &optional (args '*) (result '*))
392 (let ((result (coerce-to-values (values-specifier-type-r context result))))
393 (if (eq args '*)
394 (if (eq result *wild-type*)
395 (specifier-type 'function)
396 (make-fun-type :wild-args t :returns result))
397 (multiple-value-bind (llks required optional rest keywords)
398 (parse-args-types context args :function-type)
399 (if (and (null required)
400 (null optional)
401 (eq rest *universal-type*)
402 (not (ll-kwds-keyp llks)))
403 (if (eq result *wild-type*)
404 (specifier-type 'function)
405 (make-fun-type :wild-args t :returns result))
406 (make-fun-type :required required
407 :optional optional
408 :rest rest
409 :keyp (ll-kwds-keyp llks)
410 :keywords keywords
411 :allowp (ll-kwds-allowp llks)
412 :returns result))))))
414 (!def-type-translator values :list ((:context context) &rest values)
415 (if (eq values '*)
416 *wild-type*
417 (multiple-value-bind (llks required optional rest)
418 (parse-args-types context values :values-type)
419 (if (plusp llks)
420 (make-values-type :required required :optional optional :rest rest)
421 (make-short-values-type required)))))
423 ;;;; VALUES types interfaces
424 ;;;;
425 ;;;; We provide a few special operations that can be meaningfully used
426 ;;;; on VALUES types (as well as on any other type).
428 ;;; Return the minimum number of values possibly matching VALUES type
429 ;;; TYPE.
430 (defun values-type-min-value-count (type)
431 (etypecase type
432 (named-type
433 (ecase (named-type-name type)
434 ((t *) 0)
435 ((nil) 0)))
436 (values-type
437 (length (values-type-required type)))))
439 ;;; Return the maximum number of values possibly matching VALUES type
440 ;;; TYPE.
441 (defun values-type-max-value-count (type)
442 (etypecase type
443 (named-type
444 (ecase (named-type-name type)
445 ((t *) call-arguments-limit)
446 ((nil) 0)))
447 (values-type
448 (if (values-type-rest type)
449 call-arguments-limit
450 (+ (length (values-type-optional type))
451 (length (values-type-required type)))))))
453 (defun values-type-may-be-single-value-p (type)
454 (<= (values-type-min-value-count type)
456 (values-type-max-value-count type)))
458 ;;; VALUES type with a single value.
459 (defun type-single-value-p (type)
460 (and (%values-type-p type)
461 (not (values-type-rest type))
462 (null (values-type-optional type))
463 (singleton-p (values-type-required type))))
465 ;;; Return the type of the first value indicated by TYPE. This is used
466 ;;; by people who don't want to have to deal with VALUES types.
467 #!-sb-fluid (declaim (freeze-type values-type))
468 ; (inline single-value-type))
469 (defun single-value-type (type)
470 (declare (type ctype type))
471 (cond ((eq type *wild-type*)
472 *universal-type*)
473 ((eq type *empty-type*)
474 *empty-type*)
475 ((not (values-type-p type))
476 type)
477 ((car (args-type-required type)))
478 (t (type-union (specifier-type 'null)
479 (or (car (args-type-optional type))
480 (args-type-rest type)
481 (specifier-type 'null))))))
483 ;;; Return the minimum number of arguments that a function can be
484 ;;; called with, and the maximum number or NIL. If not a function
485 ;;; type, return NIL, NIL.
486 (defun fun-type-nargs (type)
487 (declare (type ctype type))
488 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
489 (let ((fixed (length (args-type-required type))))
490 (if (or (args-type-rest type)
491 (args-type-keyp type)
492 (args-type-allowp type))
493 (values fixed nil)
494 (values fixed (+ fixed (length (args-type-optional type))))))
495 (values nil nil)))
497 ;;; Determine whether TYPE corresponds to a definite number of values.
498 ;;; The first value is a list of the types for each value, and the
499 ;;; second value is the number of values. If the number of values is
500 ;;; not fixed, then return NIL and :UNKNOWN.
501 (defun values-types (type)
502 (declare (type ctype type))
503 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
504 (values nil :unknown))
505 ((or (args-type-optional type)
506 (args-type-rest type))
507 (values nil :unknown))
509 (let ((req (args-type-required type)))
510 (values req (length req))))))
512 ;;; Return two values:
513 ;;; 1. A list of all the positional (fixed and optional) types.
514 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
515 (defun values-type-types (type &optional (default-type *empty-type*))
516 (declare (type ctype type))
517 (if (eq type *wild-type*)
518 (values nil *universal-type*)
519 (values (append (args-type-required type)
520 (args-type-optional type))
521 (cond ((args-type-rest type))
522 (t default-type)))))
524 ;;; types of values in (the <type> (values o_1 ... o_n))
525 (defun values-type-out (type count)
526 (declare (type ctype type) (type unsigned-byte count))
527 (if (eq type *wild-type*)
528 (make-list count :initial-element *universal-type*)
529 (collect ((res))
530 (flet ((process-types (types)
531 (loop for type in types
532 while (plusp count)
533 do (decf count)
534 do (res type))))
535 (process-types (values-type-required type))
536 (process-types (values-type-optional type))
537 (when (plusp count)
538 (loop with rest = (the ctype (values-type-rest type))
539 repeat count
540 do (res rest))))
541 (res))))
543 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
544 (defun values-type-in (type count)
545 (declare (type ctype type) (type unsigned-byte count))
546 (if (eq type *wild-type*)
547 (make-list count :initial-element *universal-type*)
548 (collect ((res))
549 (let ((null-type (specifier-type 'null)))
550 (loop for type in (values-type-required type)
551 while (plusp count)
552 do (decf count)
553 do (res type))
554 (loop for type in (values-type-optional type)
555 while (plusp count)
556 do (decf count)
557 do (res (type-union type null-type)))
558 (when (plusp count)
559 (loop with rest = (acond ((values-type-rest type)
560 (type-union it null-type))
561 (t null-type))
562 repeat count
563 do (res rest))))
564 (res))))
566 ;;; Return a list of OPERATION applied to the types in TYPES1 and
567 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
568 ;;; than TYPES2. The second value is T if OPERATION always returned a
569 ;;; true second value.
570 (defun fixed-values-op (types1 types2 rest2 operation)
571 (declare (list types1 types2) (type ctype rest2) (type function operation))
572 (let ((exact t))
573 (values (mapcar (lambda (t1 t2)
574 (multiple-value-bind (res win)
575 (funcall operation t1 t2)
576 (unless win
577 (setq exact nil))
578 res))
579 types1
580 (append types2
581 (make-list (- (length types1) (length types2))
582 :initial-element rest2)))
583 exact)))
585 ;;; If TYPE isn't a values type, then make it into one.
586 (defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-hash-value)
587 ((type eq))
588 (cond ((multiple-value-bind (res sure)
589 (csubtypep (specifier-type 'null) type)
590 (and (not res) sure))
591 ;; FIXME: What should we do with (NOT SURE)?
592 (make-values-type :required (list type) :rest *universal-type*))
594 (make-values-type :optional (list type) :rest *universal-type*))))
596 (defun coerce-to-values (type)
597 (declare (type ctype type))
598 (cond ((or (eq type *universal-type*)
599 (eq type *wild-type*))
600 *wild-type*)
601 ((values-type-p type)
602 type)
603 (t (%coerce-to-values type))))
605 ;;; Return type, corresponding to ANSI short form of VALUES type
606 ;;; specifier.
607 (defun make-short-values-type (types)
608 (declare (list types))
609 (let ((last-required (position-if
610 (lambda (type)
611 (not/type (csubtypep (specifier-type 'null) type)))
612 types
613 :from-end t)))
614 (if last-required
615 (make-values-type :required (subseq types 0 (1+ last-required))
616 :optional (subseq types (1+ last-required))
617 :rest *universal-type*)
618 (make-values-type :optional types :rest *universal-type*))))
620 (defun make-single-value-type (type)
621 (make-values-type :required (list type)))
623 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
624 ;;; type, including VALUES types. With VALUES types such as:
625 ;;; (VALUES a0 a1)
626 ;;; (VALUES b0 b1)
627 ;;; we compute the more useful result
628 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
629 ;;; rather than the precise result
630 ;;; (<operation> (values a0 a1) (values b0 b1))
631 ;;; This has the virtue of always keeping the VALUES type specifier
632 ;;; outermost, and retains all of the information that is really
633 ;;; useful for static type analysis. We want to know what is always
634 ;;; true of each value independently. It is worthless to know that if
635 ;;; the first value is B0 then the second will be B1.
637 ;;; If the VALUES count signatures differ, then we produce a result with
638 ;;; the required VALUE count chosen by NREQ when applied to the number
639 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
640 ;;; &REST T (anyone who uses keyword values deserves to lose.)
642 ;;; The second value is true if the result is definitely empty or if
643 ;;; OPERATION returned true as its second value each time we called
644 ;;; it. Since we approximate the intersection of VALUES types, the
645 ;;; second value being true doesn't mean the result is exact.
646 (defun args-type-op (type1 type2 operation nreq)
647 (declare (type ctype type1 type2)
648 (type function operation nreq))
649 (when (eq type1 type2)
650 (values type1 t))
651 (multiple-value-bind (types1 rest1)
652 (values-type-types type1)
653 (multiple-value-bind (types2 rest2)
654 (values-type-types type2)
655 (multiple-value-bind (rest rest-exact)
656 (funcall operation rest1 rest2)
657 (multiple-value-bind (res res-exact)
658 (if (< (length types1) (length types2))
659 (fixed-values-op types2 types1 rest1 operation)
660 (fixed-values-op types1 types2 rest2 operation))
661 (let* ((req (funcall nreq
662 (length (args-type-required type1))
663 (length (args-type-required type2))))
664 (required (subseq res 0 req))
665 (opt (subseq res req)))
666 (values required opt rest
667 (and rest-exact res-exact))))))))
669 (defun values-type-op (type1 type2 operation nreq)
670 (multiple-value-bind (required optional rest exactp)
671 (args-type-op type1 type2 operation nreq)
672 (values (make-values-type :required required
673 :optional optional
674 :rest rest)
675 exactp)))
677 (defun compare-key-args (type1 type2)
678 (let ((keys1 (args-type-keywords type1))
679 (keys2 (args-type-keywords type2)))
680 (and (= (length keys1) (length keys2))
681 (eq (args-type-allowp type1)
682 (args-type-allowp type2))
683 (loop for key1 in keys1
684 for match = (find (key-info-name key1)
685 keys2 :key #'key-info-name)
686 always (and match
687 (type= (key-info-type key1)
688 (key-info-type match)))))))
690 (defun type=-args (type1 type2)
691 (macrolet ((compare (comparator field)
692 (let ((reader (symbolicate '#:args-type- field)))
693 `(,comparator (,reader type1) (,reader type2)))))
694 (and/type
695 (cond ((null (args-type-rest type1))
696 (values (null (args-type-rest type2)) t))
697 ((null (args-type-rest type2))
698 (values nil t))
700 (compare type= rest)))
701 (and/type (and/type (compare type=-list required)
702 (compare type=-list optional))
703 (if (or (args-type-keyp type1) (args-type-keyp type2))
704 (values (compare-key-args type1 type2) t)
705 (values t t))))))
707 ;;; Do a union or intersection operation on types that might be values
708 ;;; types. The result is optimized for utility rather than exactness,
709 ;;; but it is guaranteed that it will be no smaller (more restrictive)
710 ;;; than the precise result.
712 ;;; The return convention seems to be analogous to
713 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
714 (defun-cached (values-type-union :hash-function #'type-cache-hash
715 :hash-bits 8)
716 ((type1 eq) (type2 eq))
717 (declare (type ctype type1 type2))
718 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
719 ((eq type1 *empty-type*) type2)
720 ((eq type2 *empty-type*) type1)
722 (values (values-type-op type1 type2 #'type-union #'min)))))
724 (defun-cached (values-type-intersection :hash-function #'type-cache-hash
725 :hash-bits 8)
726 ((type1 eq) (type2 eq))
727 (declare (type ctype type1 type2))
728 (cond ((eq type1 *wild-type*)
729 (coerce-to-values type2))
730 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
731 type1)
732 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
733 *empty-type*)
734 ((and (not (values-type-p type2))
735 (values-type-required type1))
736 (let ((req1 (values-type-required type1)))
737 (make-values-type :required (cons (type-intersection (first req1) type2)
738 (rest req1))
739 :optional (values-type-optional type1)
740 :rest (values-type-rest type1)
741 :allowp (values-type-allowp type1))))
743 (values (values-type-op type1 (coerce-to-values type2)
744 #'type-intersection
745 #'max)))))
747 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
748 ;;; works on VALUES types. Note that due to the semantics of
749 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
750 ;;; there isn't really any intersection.
751 (defun values-types-equal-or-intersect (type1 type2)
752 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
753 (values t t))
754 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
755 (values t t))
757 (let ((res (values-type-intersection type1 type2)))
758 (values (not (eq res *empty-type*))
759 t)))))
761 ;;; a SUBTYPEP-like operation that can be used on any types, including
762 ;;; VALUES types
763 (defun-cached (values-subtypep :hash-function #'type-cache-hash
764 :hash-bits 8
765 :values 2)
766 ((type1 eq) (type2 eq))
767 (declare (type ctype type1 type2))
768 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
769 (eq type1 *empty-type*))
770 (values t t))
771 ((eq type1 *wild-type*)
772 (values (eq type2 *wild-type*) t))
773 ((or (eq type2 *empty-type*)
774 (not (values-types-equal-or-intersect type1 type2)))
775 (values nil t))
776 ((and (not (values-type-p type2))
777 (values-type-required type1))
778 (csubtypep (first (values-type-required type1))
779 type2))
780 (t (setq type2 (coerce-to-values type2))
781 (multiple-value-bind (types1 rest1) (values-type-types type1)
782 (multiple-value-bind (types2 rest2) (values-type-types type2)
783 (cond ((< (length (values-type-required type1))
784 (length (values-type-required type2)))
785 (values nil t))
786 ((< (length types1) (length types2))
787 (values nil nil))
789 (do ((t1 types1 (rest t1))
790 (t2 types2 (rest t2)))
791 ((null t2)
792 (csubtypep rest1 rest2))
793 (multiple-value-bind (res win-p)
794 (csubtypep (first t1) (first t2))
795 (unless win-p
796 (return (values nil nil)))
797 (unless res
798 (return (values nil t))))))))))))
800 ;;;; type method interfaces
802 ;;; like SUBTYPEP, only works on CTYPE structures
803 (defun-cached (csubtypep :hash-function #'type-cache-hash
804 :hash-bits 10
805 :memoizer memoize
806 :values 2)
807 ((type1 eq) (type2 eq))
808 (declare (type ctype type1 type2))
809 (cond ((or (eq type1 type2)
810 (eq type1 *empty-type*)
811 (eq type2 *universal-type*))
812 (values t t))
813 #+nil
814 ((eq type1 *universal-type*)
815 (values nil t))
817 (memoize
818 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
819 type1 type2
820 :complex-arg1 :complex-subtypep-arg1)))))
822 ;;; Just parse the type specifiers and call CSUBTYPE.
823 (defun sb!xc:subtypep (type1 type2 &optional environment)
824 #!+sb-doc
825 "Return two values indicating the relationship between type1 and type2.
826 If values are T and T, type1 definitely is a subtype of type2.
827 If values are NIL and T, type1 definitely is not a subtype of type2.
828 If values are NIL and NIL, it couldn't be determined."
829 (declare (type lexenv-designator environment) (ignore environment))
830 (declare (explicit-check))
831 (csubtypep (specifier-type type1) (specifier-type type2)))
833 ;;; If two types are definitely equivalent, return true. The second
834 ;;; value indicates whether the first value is definitely correct.
835 ;;; This should only fail in the presence of HAIRY types.
836 (defun-cached (type= :hash-function #'type-cache-hash
837 :hash-bits 11
838 :memoizer memoize
839 :values 2)
840 ((type1 eq) (type2 eq))
841 (declare (type ctype type1 type2))
842 (cond ((eq type1 type2)
843 (values t t))
844 ;; If args are not EQ, but both allow TYPE= optimization,
845 ;; and at least one is interned, then return no and certainty.
846 ;; Most of the interned CTYPEs admit this optimization,
847 ;; NUMERIC and MEMBER types do as well.
848 ((and (minusp (logior (type-hash-value type1) (type-hash-value type2)))
849 (logtest (logand (type-hash-value type1) (type-hash-value type2))
850 +type-admits-type=-optimization+))
851 (values nil t))
853 (memoize (!invoke-type-method :simple-= :complex-= type1 type2)))))
855 ;;; Not exactly the negation of TYPE=, since when the relationship is
856 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
857 ;;; the conservative assumption is =.
858 (defun type/= (type1 type2)
859 (declare (type ctype type1 type2))
860 (multiple-value-bind (res win) (type= type1 type2)
861 (if win
862 (values (not res) t)
863 (values nil nil))))
865 ;;; the type method dispatch case of TYPE-UNION2
866 (defun %type-union2 (type1 type2)
867 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
868 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
869 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
870 ;; demonstrates this is actually necessary. Also unlike
871 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
872 ;; between not finding a method and having a method return NIL.
873 (flet ((1way (x y)
874 (!invoke-type-method :simple-union2 :complex-union2
876 :default nil)))
877 (declare (inline 1way))
878 (or (1way type1 type2)
879 (1way type2 type1))))
881 ;;; Find a type which includes both types. Any inexactness is
882 ;;; represented by the fuzzy element types; we return a single value
883 ;;; that is precise to the best of our knowledge. This result is
884 ;;; simplified into the canonical form, thus is not a UNION-TYPE
885 ;;; unless we find no other way to represent the result.
886 (defun-cached (type-union2 :hash-function #'type-cache-hash
887 :hash-bits 11
888 :memoizer memoize)
889 ((type1 eq) (type2 eq))
890 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
891 ;; Paste technique of programming. If it stays around (as opposed to
892 ;; e.g. fading away in favor of some CLOS solution) the shared logic
893 ;; should probably become shared code. -- WHN 2001-03-16
894 (declare (type ctype type1 type2))
895 (let ((t2 nil))
896 (if (eq type1 type2)
897 type1
898 (memoize
899 (cond
900 ;; CSUBTYPEP for array-types answers questions about the
901 ;; specialized type, yet for union we want to take the
902 ;; expressed type in account too.
903 ((and (not (and (array-type-p type1) (array-type-p type2)))
904 (or (setf t2 (csubtypep type1 type2))
905 (csubtypep type2 type1)))
906 (if t2 type2 type1))
907 ((or (union-type-p type1)
908 (union-type-p type2))
909 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
910 ;; values broken out and united separately. The full TYPE-UNION
911 ;; function knows how to do this, so let it handle it.
912 (type-union type1 type2))
914 ;; the ordinary case: we dispatch to type methods
915 (%type-union2 type1 type2)))))))
917 ;;; the type method dispatch case of TYPE-INTERSECTION2
918 (defun %type-intersection2 (type1 type2)
919 ;; We want to give both argument orders a chance at
920 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
921 ;; methods could give noncommutative results, e.g.
922 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
923 ;; => NIL, NIL
924 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
925 ;; => #<NAMED-TYPE NIL>, T
926 ;; We also need to distinguish between the case where we found a
927 ;; type method, and it returned NIL, and the case where we fell
928 ;; through without finding any type method. An example of the first
929 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
930 ;; An example of the second case is the intersection of two
931 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
932 ;; ARRAY.
934 ;; (Why yes, CLOS probably *would* be nicer..)
935 (flet ((1way (x y)
936 (!invoke-type-method :simple-intersection2 :complex-intersection2
938 :default :call-other-method)))
939 (declare (inline 1way))
940 (let ((xy (1way type1 type2)))
941 (or (and (not (eql xy :call-other-method)) xy)
942 (let ((yx (1way type2 type1)))
943 (or (and (not (eql yx :call-other-method)) yx)
944 (cond ((and (eql xy :call-other-method)
945 (eql yx :call-other-method))
946 *empty-type*)
948 nil))))))))
950 (defun-cached (type-intersection2 :hash-function #'type-cache-hash
951 :hash-bits 11
952 :memoizer memoize
953 :values 1)
954 ((type1 eq) (type2 eq))
955 (declare (type ctype type1 type2))
956 (if (eq type1 type2)
957 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
958 ;; type2 = (SPECIFIER-TYPE
959 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
960 type1
961 (memoize
962 (cond
963 ((or (intersection-type-p type1)
964 (intersection-type-p type2))
965 ;; Intersections of INTERSECTION-TYPE should have the
966 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
967 ;; separately. The full TYPE-INTERSECTION function knows how
968 ;; to do that, so let it handle it.
969 (type-intersection type1 type2))
971 ;; the ordinary case: we dispatch to type methods
972 (%type-intersection2 type1 type2))))))
974 ;;; Return as restrictive and simple a type as we can discover that is
975 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
976 ;;; worst, we arbitrarily return one of the arguments as the first
977 ;;; value (trying not to return a hairy type).
978 (defun type-approx-intersection2 (type1 type2)
979 (cond ((type-intersection2 type1 type2))
980 ((hairy-type-p type1) type2)
981 (t type1)))
983 ;;; a test useful for checking whether a derived type matches a
984 ;;; declared type
986 ;;; The first value is true unless the types don't intersect and
987 ;;; aren't equal. The second value is true if the first value is
988 ;;; definitely correct. NIL is considered to intersect with any type.
989 ;;; If T is a subtype of either type, then we also return T, T. This
990 ;;; way we recognize that hairy types might intersect with T.
992 ;;; Well now given the statement above that this is "useful for ..."
993 ;;; a particular thing, I see how treating *empty-type* magically could
994 ;;; be useful, however given all the _other_ calls to this function within
995 ;;; this file, it seems suboptimal, because logically it is wrong.
996 (defun types-equal-or-intersect (type1 type2)
997 (declare (type ctype type1 type2))
998 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
999 (values t t)
1000 (let ((intersection2 (type-intersection2 type1 type2)))
1001 (cond ((not intersection2)
1002 (if (or (csubtypep *universal-type* type1)
1003 (csubtypep *universal-type* type2))
1004 (values t t)
1005 (values t nil)))
1006 ((eq intersection2 *empty-type*) (values nil t))
1007 (t (values t t))))))
1009 ;;; Return a Common Lisp type specifier corresponding to the TYPE
1010 ;;; object.
1011 (defun type-specifier (type)
1012 (declare (type ctype type))
1013 (funcall (type-class-unparse (type-class-info type)) type))
1015 ;;; Don't try to define a print method until it's actually gonna work!
1016 ;;; (Otherwise this would be near the DEFSTRUCT)
1017 (def!method print-object ((ctype ctype) stream)
1018 (print-unreadable-object (ctype stream :type t)
1019 (prin1 (type-specifier ctype) stream)))
1021 ;;; Same here.
1022 ;;; Just dump it as a specifier. (We'll convert it back upon loading.)
1023 (defun make-type-load-form (type)
1024 (declare (type ctype type))
1025 `(specifier-type ',(type-specifier type)))
1027 (defun-cached (type-negation :hash-function #'type-hash-value
1028 :hash-bits 8
1029 :values 1)
1030 ((type eq))
1031 (declare (type ctype type))
1032 (funcall (type-class-negate (type-class-info type)) type))
1034 (defun-cached (type-singleton-p :hash-function #'type-hash-value
1035 :hash-bits 8
1036 :values 2)
1037 ((type eq))
1038 (declare (type ctype type))
1039 (let ((function (type-class-singleton-p (type-class-info type))))
1040 (if function
1041 (funcall function type)
1042 (values nil nil))))
1044 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
1045 ;;; early-type.lisp by WHN ca. 19990201.)
1047 ;;; Take a list of type specifiers, computing the translation of each
1048 ;;; specifier and defining it as a builtin type.
1049 ;;; Seee the comments in 'type-init' for why this is a slightly
1050 ;;; screwy way to go about it.
1051 (declaim (ftype (function (list) (values)) !precompute-types))
1052 (defun !precompute-types (specs)
1053 (dolist (spec specs)
1054 (let ((res (handler-bind
1055 ((parse-unknown-type
1056 (lambda (c)
1057 (declare (ignore c))
1058 ;; We can handle conditions at this point,
1059 ;; but win32 can not perform i/o here because
1060 ;; !MAKE-COLD-STDERR-STREAM has no implementation.
1061 #!-win32
1062 (progn (write-string "//caught: parse-unknown ")
1063 (write spec)
1064 (terpri)))))
1065 (specifier-type spec))))
1066 (unless (unknown-type-p res)
1067 (setf (info :type :builtin spec) res)
1068 (setf (info :type :kind spec) :primitive))))
1069 (values))
1071 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
1072 ;;;;
1073 ;;;; These are fully general operations on CTYPEs: they'll always
1074 ;;;; return a CTYPE representing the result.
1076 ;;; shared logic for unions and intersections: Return a list of
1077 ;;; types representing the same types as INPUT-TYPES, but with
1078 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
1079 ;;; component types, and with any SIMPLY2 simplifications applied.
1080 (macrolet
1081 ((def (name compound-type-p simplify2)
1082 `(defun ,name (types)
1083 (when types
1084 (multiple-value-bind (first rest)
1085 (if (,compound-type-p (car types))
1086 (values (car (compound-type-types (car types)))
1087 (append (cdr (compound-type-types (car types)))
1088 (cdr types)))
1089 (values (car types) (cdr types)))
1090 (let ((rest (,name rest)) u)
1091 (dolist (r rest (cons first rest))
1092 (when (setq u (,simplify2 first r))
1093 (return (,name (nsubstitute u r rest)))))))))))
1094 (def simplify-intersections intersection-type-p type-intersection2)
1095 (def simplify-unions union-type-p type-union2))
1097 (defun maybe-distribute-one-union (union-type types)
1098 (let* ((intersection (apply #'type-intersection types))
1099 (union (mapcar (lambda (x) (type-intersection x intersection))
1100 (union-type-types union-type))))
1101 (if (notany (lambda (x) (or (hairy-type-p x)
1102 (intersection-type-p x)))
1103 union)
1104 union
1105 nil)))
1107 (defun type-intersection (&rest input-types)
1108 (%type-intersection input-types))
1109 (defun-cached (%type-intersection :hash-bits 10 :hash-function #'type-list-cache-hash)
1110 ((input-types equal))
1111 (let ((simplified-types (simplify-intersections input-types)))
1112 (declare (type list simplified-types))
1113 ;; We want to have a canonical representation of types (or failing
1114 ;; that, punt to HAIRY-TYPE). Canonical representation would have
1115 ;; intersections inside unions but not vice versa, since you can
1116 ;; always achieve that by the distributive rule. But we don't want
1117 ;; to just apply the distributive rule, since it would be too easy
1118 ;; to end up with unreasonably huge type expressions. So instead
1119 ;; we try to generate a simple type by distributing the union; if
1120 ;; the type can't be made simple, we punt to HAIRY-TYPE.
1121 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
1122 (let* ((first-union (find-if #'union-type-p simplified-types))
1123 (other-types (coerce (remove first-union simplified-types)
1124 'list))
1125 (distributed (maybe-distribute-one-union first-union
1126 other-types)))
1127 (if distributed
1128 (apply #'type-union distributed)
1129 (%make-hairy-type `(and ,@(map 'list #'type-specifier
1130 simplified-types)))))
1131 (cond
1132 ((null simplified-types) *universal-type*)
1133 ((null (cdr simplified-types)) (car simplified-types))
1134 (t (%make-intersection-type
1135 (some #'type-enumerable simplified-types)
1136 simplified-types))))))
1138 (defun type-union (&rest input-types)
1139 (%type-union input-types))
1140 (defun-cached (%type-union :hash-bits 8 :hash-function #'type-list-cache-hash)
1141 ((input-types equal))
1142 (let ((simplified-types (simplify-unions input-types)))
1143 (cond
1144 ((null simplified-types) *empty-type*)
1145 ((null (cdr simplified-types)) (car simplified-types))
1146 (t (make-union-type
1147 (every #'type-enumerable simplified-types)
1148 simplified-types)))))
1150 ;;;; built-in types
1152 (!define-type-class named :enumerable nil :might-contain-other-types nil)
1154 ;; This is used when parsing (SATISFIES KEYWORDP)
1155 ;; so that simplifications can be made when computing intersections,
1156 ;; without which we would see this kind of "empty-type in disguise"
1157 ;; (AND (SATISFIES KEYWORDP) CONS)
1158 ;; This isn't *keyword-type* because KEYWORD is implemented
1159 ;; as the intersection of SYMBOL and (SATISFIES KEYWORDP)
1160 ;; We could also intern the KEYWORD type but that would require
1161 ;; hacking the INTERSECTION logic.
1162 (defglobal *satisfies-keywordp-type* -1)
1164 ;; Here too I discovered more than 1000 instances in a particular
1165 ;; Lisp image, when really this is *EMPTY-TYPE*.
1166 ;; (AND (SATISFIES LEGAL-FUN-NAME-P) (SIMPLE-ARRAY CHARACTER (*)))
1167 (defglobal *fun-name-type* -1)
1169 ;; !LATE-TYPE-COLD-INIT can't be GCd - there are lambdas in the toplevel code
1170 ;; component that leak out and persist - but everything below is GCable.
1171 ;; This leads to about 20KB of extra code being retained on x86-64.
1172 ;; An educated guess is that DEFINE-SUPERCLASSES is responsible for the problem.
1173 (defun !late-type-cold-init2 ()
1174 (macrolet ((frob (name var)
1175 `(progn
1176 (setq ,var
1177 (mark-ctype-interned (make-named-type :name ',name)))
1178 (setf (info :type :kind ',name) :primitive)
1179 (setf (info :type :builtin ',name) ,var))))
1180 ;; KLUDGE: In ANSI, * isn't really the name of a type, it's just a
1181 ;; special symbol which can be stuck in some places where an
1182 ;; ordinary type can go, e.g. (ARRAY * 1) instead of (ARRAY T 1).
1183 ;; In SBCL it also used to denote universal VALUES type.
1184 (frob * *wild-type*)
1185 (frob nil *empty-type*)
1186 (frob t *universal-type*)
1187 (setf (sb!c::meta-info-default (sb!c::meta-info :variable :type))
1188 *universal-type*)
1189 ;; new in sbcl-0.9.5: these used to be CLASSOID types, but that
1190 ;; view of them was incompatible with requirements on the MOP
1191 ;; metaobject class hierarchy: the INSTANCE and
1192 ;; FUNCALLABLE-INSTANCE types are disjoint (instances have
1193 ;; instance-pointer-lowtag; funcallable-instances have
1194 ;; fun-pointer-lowtag), while FUNCALLABLE-STANDARD-OBJECT is
1195 ;; required to be a subclass of STANDARD-OBJECT. -- CSR,
1196 ;; 2005-09-09
1197 (frob instance *instance-type*)
1198 (frob funcallable-instance *funcallable-instance-type*)
1199 ;; new in sbcl-1.0.3.3: necessary to act as a join point for the
1200 ;; extended sequence hierarchy. (Might be removed later if we use
1201 ;; a dedicated FUNDAMENTAL-SEQUENCE class for this.)
1202 (frob extended-sequence *extended-sequence-type*))
1203 (!intern-important-fun-type-instances)
1204 (!intern-important-member-type-instances)
1205 (!intern-important-cons-type-instances)
1206 (!intern-important-numeric-type-instances)
1207 (!intern-important-character-set-type-instances)
1208 (!intern-important-array-type-instances) ; must be after numeric and char
1209 (setf *satisfies-keywordp-type*
1210 (mark-ctype-interned (%make-hairy-type '(satisfies keywordp))))
1211 (setf *fun-name-type*
1212 (mark-ctype-interned (%make-hairy-type '(satisfies legal-fun-name-p))))
1213 ;; This is not an important type- no attempt is made to return exactly this
1214 ;; object when parsing FUNCTION. In fact we return the classoid instead
1215 (setf *universal-fun-type*
1216 (make-fun-type :wild-args t :returns *wild-type*)))
1218 (!define-type-method (named :simple-=) (type1 type2)
1219 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1220 (values (eq type1 type2) t))
1222 (defun cons-type-might-be-empty-type (type)
1223 (declare (type cons-type type))
1224 (let ((car-type (cons-type-car-type type))
1225 (cdr-type (cons-type-cdr-type type)))
1227 (if (cons-type-p car-type)
1228 (cons-type-might-be-empty-type car-type)
1229 (multiple-value-bind (yes surep)
1230 (type= car-type *empty-type*)
1231 (aver (not yes))
1232 (not surep)))
1233 (if (cons-type-p cdr-type)
1234 (cons-type-might-be-empty-type cdr-type)
1235 (multiple-value-bind (yes surep)
1236 (type= cdr-type *empty-type*)
1237 (aver (not yes))
1238 (not surep))))))
1240 (defun cons-type-length-info (type)
1241 (declare (type cons-type type))
1242 (do ((min 1 (1+ min))
1243 (cdr (cons-type-cdr-type type) (cons-type-cdr-type cdr)))
1244 ((not (cons-type-p cdr))
1245 (cond
1246 ((csubtypep cdr (specifier-type 'null))
1247 (values min t))
1248 ((csubtypep *universal-type* cdr)
1249 (values min nil))
1250 ((type/= (type-intersection (specifier-type 'cons) cdr) *empty-type*)
1251 (values min nil))
1252 ((type/= (type-intersection (specifier-type 'null) cdr) *empty-type*)
1253 (values min t))
1254 (t (values min :maybe))))
1255 ()))
1257 (!define-type-method (named :complex-=) (type1 type2)
1258 (cond
1259 ((and (eq type2 *empty-type*)
1260 (or (and (intersection-type-p type1)
1261 ;; not allowed to be unsure on these... FIXME: keep
1262 ;; the list of CL types that are intersection types
1263 ;; once and only once.
1264 (not (or (type= type1 (specifier-type 'ratio))
1265 (type= type1 (specifier-type 'keyword)))))
1266 (and (cons-type-p type1)
1267 (cons-type-might-be-empty-type type1))))
1268 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1269 ;; STREAM) can get here. In general, we can't really tell
1270 ;; whether these are equal to NIL or not, so
1271 (values nil nil))
1272 ((type-might-contain-other-types-p type1)
1273 (invoke-complex-=-other-method type1 type2))
1274 (t (values nil t))))
1276 (!define-type-method (named :simple-subtypep) (type1 type2)
1277 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1278 (aver (not (eq type1 type2)))
1279 (values (or (eq type1 *empty-type*)
1280 (eq type2 *wild-type*)
1281 (eq type2 *universal-type*)) t))
1283 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1284 ;; This AVER causes problems if we write accurate methods for the
1285 ;; union (and possibly intersection) types which then delegate to
1286 ;; us; while a user shouldn't get here, because of the odd status of
1287 ;; *wild-type* a type-intersection executed by the compiler can. -
1288 ;; CSR, 2002-04-10
1290 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1291 (cond ((eq type1 *empty-type*)
1293 (;; When TYPE2 might be the universal type in disguise
1294 (type-might-contain-other-types-p type2)
1295 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1296 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1297 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1298 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1299 ;; problem (where at least part of the problem is cases like
1300 ;; (SUBTYPEP T '(SATISFIES FOO))
1301 ;; or
1302 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1303 ;; where the second type is a hairy type like SATISFIES, or
1304 ;; is a compound type which might contain a hairy type) by
1305 ;; returning uncertainty.
1306 (values nil nil))
1307 ((eq type1 *funcallable-instance-type*)
1308 (values (eq type2 (specifier-type 'function)) t))
1310 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1311 ;; method, and so shouldn't appear here.
1312 (aver (not (named-type-p type2)))
1313 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1314 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1315 (values nil t))))
1317 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1318 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1319 (cond ((eq type2 *universal-type*)
1320 (values t t))
1321 ;; some CONS types can conceal danger
1322 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1323 (values nil nil))
1324 ((type-might-contain-other-types-p type1)
1325 ;; those types can be other types in disguise. So we'd
1326 ;; better delegate.
1327 (invoke-complex-subtypep-arg1-method type1 type2))
1328 ((and (or (eq type2 *instance-type*)
1329 (eq type2 *funcallable-instance-type*))
1330 (member-type-p type1))
1331 ;; member types can be subtypep INSTANCE and
1332 ;; FUNCALLABLE-INSTANCE in surprising ways.
1333 (invoke-complex-subtypep-arg1-method type1 type2))
1334 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1335 (let* ((layout (classoid-layout type1))
1336 (inherits (layout-inherits layout))
1337 (sequencep (find (classoid-layout (find-classoid 'sequence))
1338 inherits)))
1339 (values (if sequencep t nil) t)))
1340 ((and (eq type2 *instance-type*) (classoid-p type1))
1341 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1342 (values nil t)
1343 (let* ((layout (classoid-layout type1))
1344 (inherits (layout-inherits layout))
1345 (functionp (find (classoid-layout (find-classoid 'function))
1346 inherits)))
1347 (cond
1348 (functionp
1349 (values nil t))
1350 ((eq type1 (find-classoid 'function))
1351 (values nil t))
1352 ((or (structure-classoid-p type1)
1353 #+nil
1354 (condition-classoid-p type1))
1355 (values t t))
1356 (t (values nil nil))))))
1357 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1358 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1359 (values nil t)
1360 (let* ((layout (classoid-layout type1))
1361 (inherits (layout-inherits layout))
1362 (functionp (find (classoid-layout (find-classoid 'function))
1363 inherits)))
1364 (values (if functionp t nil) t))))
1366 ;; FIXME: This seems to rely on there only being 4 or 5
1367 ;; NAMED-TYPE values, and the exclusion of various
1368 ;; possibilities above. It would be good to explain it and/or
1369 ;; rewrite it so that it's clearer.
1370 (values nil t))))
1372 (!define-type-method (named :complex-intersection2) (type1 type2)
1373 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1374 ;; Perhaps when bug 85 is fixed it can be reenabled.
1375 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1376 (cond
1377 ((eq type2 *extended-sequence-type*)
1378 (typecase type1
1379 (structure-classoid *empty-type*)
1380 (classoid
1381 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1382 *empty-type*
1383 (if (find (classoid-layout (find-classoid 'sequence))
1384 (layout-inherits (classoid-layout type1)))
1385 type1
1386 nil)))
1388 (if (or (type-might-contain-other-types-p type1)
1389 (member-type-p type1))
1391 *empty-type*))))
1392 ((eq type2 *instance-type*)
1393 (typecase type1
1394 (structure-classoid type1)
1395 (classoid
1396 (if (and (not (member type1 *non-instance-classoid-types*
1397 :key #'find-classoid))
1398 (not (eq type1 (find-classoid 'function)))
1399 (not (find (classoid-layout (find-classoid 'function))
1400 (layout-inherits (classoid-layout type1)))))
1402 *empty-type*))
1404 (if (or (type-might-contain-other-types-p type1)
1405 (member-type-p type1))
1407 *empty-type*))))
1408 ((eq type2 *funcallable-instance-type*)
1409 (typecase type1
1410 (structure-classoid *empty-type*)
1411 (classoid
1412 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1413 *empty-type*
1414 (if (find (classoid-layout (find-classoid 'function))
1415 (layout-inherits (classoid-layout type1)))
1416 type1
1417 (if (type= type1 (find-classoid 'function))
1418 type2
1419 nil))))
1420 (fun-type nil)
1422 (if (or (type-might-contain-other-types-p type1)
1423 (member-type-p type1))
1425 *empty-type*))))
1426 (t (hierarchical-intersection2 type1 type2))))
1428 (!define-type-method (named :complex-union2) (type1 type2)
1429 ;; Perhaps when bug 85 is fixed this can be reenabled.
1430 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1431 (cond
1432 ((eq type2 *extended-sequence-type*)
1433 (if (classoid-p type1)
1434 (if (or (member type1 *non-instance-classoid-types*
1435 :key #'find-classoid)
1436 (not (find (classoid-layout (find-classoid 'sequence))
1437 (layout-inherits (classoid-layout type1)))))
1439 type2)
1440 nil))
1441 ((eq type2 *instance-type*)
1442 (if (classoid-p type1)
1443 (if (or (member type1 *non-instance-classoid-types*
1444 :key #'find-classoid)
1445 (find (classoid-layout (find-classoid 'function))
1446 (layout-inherits (classoid-layout type1))))
1448 type2)
1449 nil))
1450 ((eq type2 *funcallable-instance-type*)
1451 (if (classoid-p type1)
1452 (if (or (member type1 *non-instance-classoid-types*
1453 :key #'find-classoid)
1454 (not (find (classoid-layout (find-classoid 'function))
1455 (layout-inherits (classoid-layout type1)))))
1457 (if (eq type1 (specifier-type 'function))
1458 type1
1459 type2))
1460 nil))
1461 (t (hierarchical-union2 type1 type2))))
1463 (!define-type-method (named :negate) (x)
1464 (aver (not (eq x *wild-type*)))
1465 (cond
1466 ((eq x *universal-type*) *empty-type*)
1467 ((eq x *empty-type*) *universal-type*)
1468 ((or (eq x *instance-type*)
1469 (eq x *funcallable-instance-type*)
1470 (eq x *extended-sequence-type*))
1471 (make-negation-type x))
1472 (t (bug "NAMED type unexpected: ~S" x))))
1474 (!define-type-method (named :unparse) (x)
1475 (named-type-name x))
1477 ;;;; hairy and unknown types
1478 ;;;; DEFINE-TYPE-CLASS HAIRY is in 'early-type'
1480 (!define-type-method (hairy :negate) (x) (make-negation-type x))
1482 (!define-type-method (hairy :unparse) (x)
1483 (hairy-type-specifier x))
1485 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1486 (let ((hairy-spec1 (hairy-type-specifier type1))
1487 (hairy-spec2 (hairy-type-specifier type2)))
1488 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1489 (values t t))
1490 ((maybe-reparse-specifier! type1)
1491 (csubtypep type1 type2))
1492 ((maybe-reparse-specifier! type2)
1493 (csubtypep type1 type2))
1495 (values nil nil)))))
1497 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1498 (if (maybe-reparse-specifier! type2)
1499 (csubtypep type1 type2)
1500 (let ((specifier (hairy-type-specifier type2)))
1501 (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
1502 (case (cadr specifier)
1503 ((keywordp) (if (type= type1 (specifier-type 'symbol))
1504 (values nil t)
1505 (invoke-complex-subtypep-arg1-method type1 type2)))
1506 (t (invoke-complex-subtypep-arg1-method type1 type2))))
1508 (invoke-complex-subtypep-arg1-method type1 type2))))))
1510 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1511 (if (maybe-reparse-specifier! type1)
1512 (csubtypep type1 type2)
1513 (values nil nil)))
1515 (!define-type-method (hairy :complex-=) (type1 type2)
1516 (if (maybe-reparse-specifier! type2)
1517 (type= type1 type2)
1518 (values nil nil)))
1520 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1521 (type1 type2)
1522 (acond ((type= type1 type2)
1523 type1)
1524 ((eq type2 *satisfies-keywordp-type*)
1525 ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
1526 ;; if A is re-homed as :A. However as a special case that really
1527 ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
1528 ;; is empty because of the illegality of changing NIL's package.
1529 (if (eq type1 *null-type*)
1530 *empty-type*
1531 (multiple-value-bind (answer certain)
1532 (types-equal-or-intersect type1 (specifier-type 'symbol))
1533 (and (not answer) certain *empty-type*))))
1534 ((eq type2 *fun-name-type*)
1535 (multiple-value-bind (answer certain)
1536 (types-equal-or-intersect type1 (specifier-type 'symbol))
1537 (and (not answer)
1538 certain
1539 (multiple-value-bind (answer certain)
1540 (types-equal-or-intersect type1 (specifier-type 'cons))
1541 (and (not answer) certain *empty-type*)))))
1542 ((and (typep (hairy-type-specifier type2) '(cons (eql satisfies)))
1543 (info :function :predicate-truth-constraint
1544 (cadr (hairy-type-specifier type2))))
1545 (multiple-value-bind (answer certain)
1546 (types-equal-or-intersect type1 (specifier-type it))
1547 (and (not answer) certain *empty-type*)))))
1549 (!define-type-method (hairy :simple-union2)
1550 (type1 type2)
1551 (if (type= type1 type2)
1552 type1
1553 nil))
1555 (!define-type-method (hairy :simple-=) (type1 type2)
1556 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1557 (hairy-type-specifier type2))
1558 (values t t)
1559 (values nil nil)))
1561 (!def-type-translator satisfies :list (&whole whole predicate-name)
1562 (unless (symbolp predicate-name)
1563 (error 'simple-type-error
1564 :datum predicate-name
1565 :expected-type 'symbol
1566 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1567 :format-arguments (list predicate-name)))
1568 (case predicate-name
1569 (keywordp *satisfies-keywordp-type*)
1570 (legal-fun-name-p *fun-name-type*)
1571 (t (%make-hairy-type whole))))
1573 ;;;; negation types
1575 (!define-type-method (negation :negate) (x)
1576 (negation-type-type x))
1578 (!define-type-method (negation :unparse) (x)
1579 (if (type= (negation-type-type x) (specifier-type 'cons))
1580 'atom
1581 `(not ,(type-specifier (negation-type-type x)))))
1583 (!define-type-method (negation :simple-subtypep) (type1 type2)
1584 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1586 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1587 (let* ((complement-type2 (negation-type-type type2))
1588 (intersection2 (type-intersection2 type1
1589 complement-type2)))
1590 (if intersection2
1591 ;; FIXME: if uncertain, maybe try arg1?
1592 (type= intersection2 *empty-type*)
1593 (invoke-complex-subtypep-arg1-method type1 type2))))
1595 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1596 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1597 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1599 ;; You may not believe this. I couldn't either. But then I sat down
1600 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1601 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1602 (block nil
1603 ;; (Several logical truths in this block are true as long as
1604 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1605 ;; case with b=T where we actually reach this type method, but
1606 ;; we'll test for and exclude this case anyway, since future
1607 ;; maintenance might make it possible for it to end up in this
1608 ;; code.)
1609 (multiple-value-bind (equal certain)
1610 (type= type2 *universal-type*)
1611 (unless certain
1612 (return (values nil nil)))
1613 (when equal
1614 (return (values t t))))
1615 (let ((complement-type1 (negation-type-type type1)))
1616 ;; Do the special cases first, in order to give us a chance if
1617 ;; subtype/supertype relationships are hairy.
1618 (multiple-value-bind (equal certain)
1619 (type= complement-type1 type2)
1620 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1621 ;; excluded above).
1622 (unless certain
1623 (return (values nil nil)))
1624 (when equal
1625 (return (values nil t))))
1626 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1627 ;; two built-in atomic type specifiers never be uncertain. This
1628 ;; is hard to do cleanly for the built-in types whose
1629 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1630 ;; we can do it with this hack, which uses our global knowledge
1631 ;; that our implementation of the type system uses disjoint
1632 ;; implementation types to represent disjoint sets (except when
1633 ;; types are contained in other types). (This is a KLUDGE
1634 ;; because it's fragile. Various changes in internal
1635 ;; representation in the type system could make it start
1636 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1637 (unless (or (type-might-contain-other-types-p complement-type1)
1638 (type-might-contain-other-types-p type2))
1639 ;; Because of the way our types which don't contain other
1640 ;; types are disjoint subsets of the space of possible values,
1641 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1642 ;; is not T, as checked above).
1643 (return (values nil t)))
1644 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1645 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1646 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1647 ;; But a CSUBTYPEP relationship might still hold:
1648 (multiple-value-bind (equal certain)
1649 (csubtypep complement-type1 type2)
1650 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1651 ;; b=T, which was excluded above).
1652 (unless certain
1653 (return (values nil nil)))
1654 (when equal
1655 (return (values nil t))))
1656 (multiple-value-bind (equal certain)
1657 (csubtypep type2 complement-type1)
1658 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1659 ;; That's not true if a=T. Do we know at this point that a is
1660 ;; not T?)
1661 (unless certain
1662 (return (values nil nil)))
1663 (when equal
1664 (return (values nil t))))
1665 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1666 ;; KLUDGE case above: Other cases here would rely on being able
1667 ;; to catch all possible cases, which the fragility of this type
1668 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1669 ;; then we want T, T; if this is not the case and the types are
1670 ;; disjoint (have an intersection of *empty-type*) then we want
1671 ;; NIL, T; else if the union of a and b is the *universal-type*
1672 ;; then we want T, T. So currently we still claim to be unsure
1673 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1675 ;; OTOH we might still get here:
1676 (values nil nil))))
1678 (!define-type-method (negation :complex-=) (type1 type2)
1679 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1680 ;; type, except possibly a type that might contain it in disguise.
1681 (declare (ignore type2))
1682 (if (type-might-contain-other-types-p type1)
1683 (values nil nil)
1684 (values nil t)))
1686 (!define-type-method (negation :simple-intersection2) (type1 type2)
1687 (let ((not1 (negation-type-type type1))
1688 (not2 (negation-type-type type2)))
1689 (cond
1690 ((csubtypep not1 not2) type2)
1691 ((csubtypep not2 not1) type1)
1692 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1693 ;; method, below? The clause would read
1695 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1697 ;; but with proper canonicalization of negation types, there's
1698 ;; no way of constructing two negation types with union of their
1699 ;; negations being the universal type.
1701 (aver (not (eq (type-union not1 not2) *universal-type*)))
1702 nil))))
1704 (defun maybe-complex-array-refinement (type1 type2)
1705 (let* ((ntype (negation-type-type type2))
1706 (ndims (array-type-dimensions ntype))
1707 (ncomplexp (array-type-complexp ntype))
1708 (nseltype (array-type-specialized-element-type ntype))
1709 (neltype (array-type-element-type ntype)))
1710 (if (and (eql ndims '*) (null ncomplexp)
1711 (eq neltype *wild-type*) (eq nseltype *wild-type*))
1712 (make-array-type (array-type-dimensions type1)
1713 :complexp t
1714 :element-type (array-type-element-type type1)
1715 :specialized-element-type (array-type-specialized-element-type type1)))))
1717 (!define-type-method (negation :complex-intersection2) (type1 type2)
1718 (cond
1719 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1720 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1721 type1)
1722 ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
1723 (maybe-complex-array-refinement type1 type2))
1724 (t nil)))
1726 (!define-type-method (negation :simple-union2) (type1 type2)
1727 (let ((not1 (negation-type-type type1))
1728 (not2 (negation-type-type type2)))
1729 (cond
1730 ((csubtypep not1 not2) type1)
1731 ((csubtypep not2 not1) type2)
1732 ((eq (type-intersection not1 not2) *empty-type*)
1733 *universal-type*)
1734 (t nil))))
1736 (!define-type-method (negation :complex-union2) (type1 type2)
1737 (cond
1738 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1739 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1740 type2)
1741 (t nil)))
1743 (!define-type-method (negation :simple-=) (type1 type2)
1744 (type= (negation-type-type type1) (negation-type-type type2)))
1746 (!def-type-translator not :list ((:context context) typespec)
1747 (type-negation (specifier-type-r context typespec)))
1749 ;;;; numeric types
1751 (!define-type-class number :enumerable #'numeric-type-enumerable
1752 :might-contain-other-types nil)
1754 (declaim (inline numeric-type-equal))
1755 (defun numeric-type-equal (type1 type2)
1756 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1757 (eq (numeric-type-format type1) (numeric-type-format type2))
1758 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1760 (!define-type-method (number :simple-=) (type1 type2)
1761 (values
1762 (and (numeric-type-equal type1 type2)
1763 (equalp (numeric-type-low type1) (numeric-type-low type2))
1764 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1767 (!define-type-method (number :negate) (type)
1768 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1769 (make-negation-type type)
1770 (type-union
1771 (make-negation-type (modified-numeric-type type :low nil :high nil))
1772 (cond
1773 ((null (numeric-type-low type))
1774 (modified-numeric-type
1775 type
1776 :low (let ((h (numeric-type-high type)))
1777 (if (consp h) (car h) (list h)))
1778 :high nil))
1779 ((null (numeric-type-high type))
1780 (modified-numeric-type
1781 type
1782 :low nil
1783 :high (let ((l (numeric-type-low type)))
1784 (if (consp l) (car l) (list l)))))
1785 (t (type-union
1786 (modified-numeric-type
1787 type
1788 :low nil
1789 :high (let ((l (numeric-type-low type)))
1790 (if (consp l) (car l) (list l))))
1791 (modified-numeric-type
1792 type
1793 :low (let ((h (numeric-type-high type)))
1794 (if (consp h) (car h) (list h)))
1795 :high nil)))))))
1797 (!define-type-method (number :unparse) (type)
1798 (let* ((complexp (numeric-type-complexp type))
1799 (low (numeric-type-low type))
1800 (high (numeric-type-high type))
1801 (base (case (numeric-type-class type)
1802 (integer 'integer)
1803 (rational 'rational)
1804 (float (or (numeric-type-format type) 'float))
1805 (t 'real))))
1806 (let ((base+bounds
1807 (cond ((and (eq base 'integer) high low)
1808 (let ((high-count (logcount high))
1809 (high-length (integer-length high)))
1810 (cond ((= low 0)
1811 (cond ((= high 0) '(integer 0 0))
1812 ((= high 1) 'bit)
1813 ((and (= high-count high-length)
1814 (plusp high-length))
1815 `(unsigned-byte ,high-length))
1817 `(mod ,(1+ high)))))
1818 ((and (= low sb!xc:most-negative-fixnum)
1819 (= high sb!xc:most-positive-fixnum))
1820 'fixnum)
1821 ((and (= low (lognot high))
1822 (= high-count high-length)
1823 (> high-count 0))
1824 `(signed-byte ,(1+ high-length)))
1826 `(integer ,low ,high)))))
1827 (high `(,base ,(or low '*) ,high))
1828 (low
1829 (if (and (eq base 'integer) (= low 0))
1830 'unsigned-byte
1831 `(,base ,low)))
1832 (t base))))
1833 (ecase complexp
1834 (:real
1835 base+bounds)
1836 (:complex
1837 (aver (neq base+bounds 'real))
1838 `(complex ,base+bounds))
1839 ((nil)
1840 (aver (eq base+bounds 'real))
1841 'number)))))
1843 (!define-type-method (number :singleton-p) (type)
1844 (let ((low (numeric-type-low type))
1845 (high (numeric-type-high type)))
1846 (if (and low
1847 (eql low high)
1848 (eql (numeric-type-complexp type) :real)
1849 (member (numeric-type-class type) '(integer rational
1850 #-sb-xc-host float)))
1851 (values t (numeric-type-low type))
1852 (values nil nil))))
1854 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1855 ;;; into consideration. CLOSED is the predicate used to test the bound
1856 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1857 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1858 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1859 ;;; whereas if X is infinite, then the test fails (unless Y is also
1860 ;;; infinite).
1862 ;;; This is for comparing bounds of the same kind, e.g. upper and
1863 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1864 (defmacro numeric-bound-test (x y closed open)
1865 `(cond ((not ,y) t)
1866 ((not ,x) nil)
1867 ((consp ,x)
1868 (if (consp ,y)
1869 (,closed (car ,x) (car ,y))
1870 (,closed (car ,x) ,y)))
1872 (if (consp ,y)
1873 (,open ,x (car ,y))
1874 (,closed ,x ,y)))))
1876 ;;; This is used to compare upper and lower bounds. This is different
1877 ;;; from the same-bound case:
1878 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1879 ;;; return true if *either* arg is NIL.
1880 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1881 ;;; causing us to use the OPEN test for those cases as well.
1882 (defmacro numeric-bound-test* (x y closed open)
1883 `(cond ((not ,y) t)
1884 ((not ,x) t)
1885 ((consp ,x)
1886 (if (consp ,y)
1887 (,open (car ,x) (car ,y))
1888 (,open (car ,x) ,y)))
1890 (if (consp ,y)
1891 (,open ,x (car ,y))
1892 (,closed ,x ,y)))))
1894 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1895 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1896 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1897 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1898 ;;; otherwise we return the other arg.
1899 (defmacro numeric-bound-max (x y closed open max-p)
1900 (once-only ((n-x x)
1901 (n-y y))
1902 `(cond ((not ,n-x) ,(if max-p nil n-y))
1903 ((not ,n-y) ,(if max-p nil n-x))
1904 ((consp ,n-x)
1905 (if (consp ,n-y)
1906 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1907 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1909 (if (consp ,n-y)
1910 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1911 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1913 (!define-type-method (number :simple-subtypep) (type1 type2)
1914 (let ((class1 (numeric-type-class type1))
1915 (class2 (numeric-type-class type2))
1916 (complexp2 (numeric-type-complexp type2))
1917 (format2 (numeric-type-format type2))
1918 (low1 (numeric-type-low type1))
1919 (high1 (numeric-type-high type1))
1920 (low2 (numeric-type-low type2))
1921 (high2 (numeric-type-high type2)))
1922 ;; If one is complex and the other isn't, they are disjoint.
1923 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1924 (null complexp2)))
1925 (values nil t))
1926 ;; If the classes are specified and different, the types are
1927 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1928 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1929 ;; X X) for integral X, but this is dealt with in the
1930 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1931 ((not (or (eq class1 class2)
1932 (null class2)
1933 (and (eq class1 'integer) (eq class2 'rational))))
1934 (values nil t))
1935 ;; If the float formats are specified and different, the types
1936 ;; are disjoint.
1937 ((not (or (eq (numeric-type-format type1) format2)
1938 (null format2)))
1939 (values nil t))
1940 ;; Check the bounds.
1941 ((and (numeric-bound-test low1 low2 >= >)
1942 (numeric-bound-test high1 high2 <= <))
1943 (values t t))
1945 (values nil t)))))
1947 (!define-superclasses number ((number)) !cold-init-forms)
1949 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1950 ;;; then return true, otherwise NIL.
1951 (defun numeric-types-adjacent (low high)
1952 (let ((low-bound (numeric-type-high low))
1953 (high-bound (numeric-type-low high)))
1954 (cond ((not (and low-bound high-bound)) nil)
1955 ((and (consp low-bound) (consp high-bound)) nil)
1956 ((consp low-bound)
1957 (let ((low-value (car low-bound)))
1958 (or (eql low-value high-bound)
1959 (and (eql low-value
1960 (load-time-value (make-unportable-float
1961 :single-float-negative-zero)))
1962 (eql high-bound 0f0))
1963 (and (eql low-value 0f0)
1964 (eql high-bound
1965 (load-time-value (make-unportable-float
1966 :single-float-negative-zero))))
1967 (and (eql low-value
1968 (load-time-value (make-unportable-float
1969 :double-float-negative-zero)))
1970 (eql high-bound 0d0))
1971 (and (eql low-value 0d0)
1972 (eql high-bound
1973 (load-time-value (make-unportable-float
1974 :double-float-negative-zero)))))))
1975 ((consp high-bound)
1976 (let ((high-value (car high-bound)))
1977 (or (eql high-value low-bound)
1978 (and (eql high-value
1979 (load-time-value (make-unportable-float
1980 :single-float-negative-zero)))
1981 (eql low-bound 0f0))
1982 (and (eql high-value 0f0)
1983 (eql low-bound
1984 (load-time-value (make-unportable-float
1985 :single-float-negative-zero))))
1986 (and (eql high-value
1987 (load-time-value (make-unportable-float
1988 :double-float-negative-zero)))
1989 (eql low-bound 0d0))
1990 (and (eql high-value 0d0)
1991 (eql low-bound
1992 (load-time-value (make-unportable-float
1993 :double-float-negative-zero)))))))
1994 ((and (eq (numeric-type-class low) 'integer)
1995 (eq (numeric-type-class high) 'integer))
1996 (eql (1+ low-bound) high-bound))
1998 nil))))
2000 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
2002 ;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
2003 ;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
2004 ;;; the compiler does this occasionally during type-derivation to avoid
2005 ;;; creating absurdly complex unions of numeric types.
2006 (defvar *approximate-numeric-unions* nil)
2008 (!define-type-method (number :simple-union2) (type1 type2)
2009 (declare (type numeric-type type1 type2))
2010 (cond ((csubtypep type1 type2) type2)
2011 ((csubtypep type2 type1) type1)
2013 (let ((class1 (numeric-type-class type1))
2014 (format1 (numeric-type-format type1))
2015 (complexp1 (numeric-type-complexp type1))
2016 (class2 (numeric-type-class type2))
2017 (format2 (numeric-type-format type2))
2018 (complexp2 (numeric-type-complexp type2)))
2019 (cond
2020 ((and (eq class1 class2)
2021 (eq format1 format2)
2022 (eq complexp1 complexp2)
2023 (or *approximate-numeric-unions*
2024 (numeric-types-intersect type1 type2)
2025 (numeric-types-adjacent type1 type2)
2026 (numeric-types-adjacent type2 type1)))
2027 (make-numeric-type
2028 :class class1
2029 :format format1
2030 :complexp complexp1
2031 :low (numeric-bound-max (numeric-type-low type1)
2032 (numeric-type-low type2)
2033 <= < t)
2034 :high (numeric-bound-max (numeric-type-high type1)
2035 (numeric-type-high type2)
2036 >= > t)))
2037 ;; FIXME: These two clauses are almost identical, and the
2038 ;; consequents are in fact identical in every respect.
2039 ((and (eq class1 'rational)
2040 (eq class2 'integer)
2041 (eq format1 format2)
2042 (eq complexp1 complexp2)
2043 (integerp (numeric-type-low type2))
2044 (integerp (numeric-type-high type2))
2045 (= (numeric-type-low type2) (numeric-type-high type2))
2046 (or *approximate-numeric-unions*
2047 (numeric-types-adjacent type1 type2)
2048 (numeric-types-adjacent type2 type1)))
2049 (make-numeric-type
2050 :class 'rational
2051 :format format1
2052 :complexp complexp1
2053 :low (numeric-bound-max (numeric-type-low type1)
2054 (numeric-type-low type2)
2055 <= < t)
2056 :high (numeric-bound-max (numeric-type-high type1)
2057 (numeric-type-high type2)
2058 >= > t)))
2059 ((and (eq class1 'integer)
2060 (eq class2 'rational)
2061 (eq format1 format2)
2062 (eq complexp1 complexp2)
2063 (integerp (numeric-type-low type1))
2064 (integerp (numeric-type-high type1))
2065 (= (numeric-type-low type1) (numeric-type-high type1))
2066 (or *approximate-numeric-unions*
2067 (numeric-types-adjacent type1 type2)
2068 (numeric-types-adjacent type2 type1)))
2069 (make-numeric-type
2070 :class 'rational
2071 :format format1
2072 :complexp complexp1
2073 :low (numeric-bound-max (numeric-type-low type1)
2074 (numeric-type-low type2)
2075 <= < t)
2076 :high (numeric-bound-max (numeric-type-high type1)
2077 (numeric-type-high type2)
2078 >= > t)))
2079 (t nil))))))
2082 (!cold-init-forms ;; is !PRECOMPUTE-TYPES not doing the right thing?
2083 (setf (info :type :kind 'number) :primitive)
2084 (setf (info :type :builtin 'number)
2085 (make-numeric-type :complexp nil)))
2087 (!def-type-translator complex ((:context context) &optional (typespec '*))
2088 (if (eq typespec '*)
2089 (specifier-type '(complex real))
2090 (labels ((not-numeric ()
2091 (error "The component type for COMPLEX is not numeric: ~S"
2092 typespec))
2093 (not-real ()
2094 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
2095 typespec))
2096 (complex1 (component-type)
2097 (unless (numeric-type-p component-type)
2098 (not-numeric))
2099 (when (eq (numeric-type-complexp component-type) :complex)
2100 (not-real))
2101 (if (csubtypep component-type (specifier-type '(eql 0)))
2102 *empty-type*
2103 (modified-numeric-type component-type
2104 :complexp :complex)))
2105 (do-complex (ctype)
2106 (cond
2107 ((eq ctype *empty-type*) *empty-type*)
2108 ((eq ctype *universal-type*) (not-real))
2109 ((typep ctype 'numeric-type) (complex1 ctype))
2110 ((typep ctype 'union-type)
2111 (apply #'type-union
2112 (mapcar #'do-complex (union-type-types ctype))))
2113 ((typep ctype 'member-type)
2114 (apply #'type-union
2115 (mapcar-member-type-members
2116 (lambda (x) (do-complex (ctype-of x)))
2117 ctype)))
2118 ((and (typep ctype 'intersection-type)
2119 ;; FIXME: This is very much a
2120 ;; not-quite-worst-effort, but we are required to do
2121 ;; something here because of our representation of
2122 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
2123 ;; allow users to ask about (COMPLEX RATIO). This
2124 ;; will of course fail to work right on such types
2125 ;; as (AND INTEGER (SATISFIES ZEROP))...
2126 (let ((numbers (remove-if-not
2127 #'numeric-type-p
2128 (intersection-type-types ctype))))
2129 (and (car numbers)
2130 (null (cdr numbers))
2131 (eq (numeric-type-complexp (car numbers)) :real)
2132 (complex1 (car numbers))))))
2134 (multiple-value-bind (subtypep certainly)
2135 (csubtypep ctype (specifier-type 'real))
2136 (if (and (not subtypep) certainly)
2137 (not-real)
2138 ;; ANSI just says that TYPESPEC is any subtype of
2139 ;; type REAL, not necessarily a NUMERIC-TYPE. In
2140 ;; particular, at this point TYPESPEC could legally
2141 ;; be a hairy type like (AND NUMBER (SATISFIES
2142 ;; REALP) (SATISFIES ZEROP)), in which case we fall
2143 ;; through the logic above and end up here,
2144 ;; stumped.
2145 ;; FIXME: (COMPLEX NUMBER) is not rejected but should
2146 ;; be, as NUMBER is clearly not a subtype of real.
2147 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
2148 used for a COMPLEX component.~:@>"
2149 typespec)))))))
2150 (let ((ctype (specifier-type-r context typespec)))
2151 (do-complex ctype)))))
2153 ;;; If X is *, return NIL, otherwise return the bound, which must be a
2154 ;;; member of TYPE or a one-element list of a member of TYPE.
2155 #!-sb-fluid (declaim (inline canonicalized-bound))
2156 (defun canonicalized-bound (bound type)
2157 (cond ((eq bound '*) nil)
2158 ((or (sb!xc:typep bound type)
2159 (and (consp bound)
2160 (sb!xc:typep (car bound) type)
2161 (null (cdr bound))))
2162 bound)
2164 (error "Bound is not ~S, a ~S or a list of a ~S: ~S"
2166 type
2167 type
2168 bound))))
2170 (!def-type-translator integer (&optional (low '*) (high '*))
2171 (let* ((l (canonicalized-bound low 'integer))
2172 (lb (if (consp l) (1+ (car l)) l))
2173 (h (canonicalized-bound high 'integer))
2174 (hb (if (consp h) (1- (car h)) h)))
2175 (if (and hb lb (< hb lb))
2176 *empty-type*
2177 (make-numeric-type :class 'integer
2178 :complexp :real
2179 :enumerable (not (null (and l h)))
2180 :low lb
2181 :high hb))))
2183 (defmacro !def-bounded-type (type class format)
2184 `(!def-type-translator ,type (&optional (low '*) (high '*))
2185 (let ((lb (canonicalized-bound low ',type))
2186 (hb (canonicalized-bound high ',type)))
2187 (if (not (numeric-bound-test* lb hb <= <))
2188 *empty-type*
2189 (make-numeric-type :class ',class
2190 :format ',format
2191 :low lb
2192 :high hb)))))
2194 (!def-bounded-type rational rational nil)
2196 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
2197 ;;; UNION-TYPEs of more primitive types, in order to make
2198 ;;; type representation more unique, avoiding problems in the
2199 ;;; simplification of things like
2200 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
2201 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
2202 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
2203 ;;; it was too easy for the first argument to be simplified to
2204 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
2205 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
2206 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
2207 ;;; the first argument can't be seen to be a subtype of any of the
2208 ;;; terms in the second argument.
2210 ;;; The old CMU CL way was:
2211 ;;; (!def-bounded-type float float nil)
2212 ;;; (!def-bounded-type real nil nil)
2214 ;;; FIXME: If this new way works for a while with no weird new
2215 ;;; problems, we can go back and rip out support for separate FLOAT
2216 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
2217 ;;; sbcl-0.6.11.22, 2001-03-21.
2219 ;;; FIXME: It's probably necessary to do something to fix the
2220 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
2221 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
2222 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
2223 (declare (type function inner-coerce-bound-fun))
2224 (if (eql bound '*)
2225 bound
2226 (funcall inner-coerce-bound-fun bound type upperp)))
2227 (defun inner-coerce-real-bound (bound type upperp)
2228 #+sb-xc-host (declare (ignore upperp))
2229 (let #+sb-xc-host ()
2230 #-sb-xc-host
2231 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
2232 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
2233 (let ((nbound (if (consp bound) (car bound) bound))
2234 (consp (consp bound)))
2235 (ecase type
2236 (rational
2237 (if consp
2238 (list (rational nbound))
2239 (rational nbound)))
2240 (float
2241 (cond
2242 ((floatp nbound) bound)
2244 ;; Coerce to the widest float format available, to avoid
2245 ;; unnecessary loss of precision, but don't coerce
2246 ;; unrepresentable numbers, except on the host where we
2247 ;; shouldn't be making these types (but KLUDGE: can't even
2248 ;; assert portably that we're not).
2249 #-sb-xc-host
2250 (ecase upperp
2251 ((nil)
2252 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2253 ((t)
2254 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2255 (let ((result (coerce nbound 'long-float)))
2256 (if consp (list result) result)))))))))
2257 (defun inner-coerce-float-bound (bound type upperp)
2258 #+sb-xc-host (declare (ignore upperp))
2259 (let #+sb-xc-host ()
2260 #-sb-xc-host
2261 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
2262 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
2263 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
2264 (ps (load-time-value
2265 (symbol-value 'sb!xc:most-positive-single-float))))
2266 (let ((nbound (if (consp bound) (car bound) bound))
2267 (consp (consp bound)))
2268 (ecase type
2269 (single-float
2270 (cond
2271 ((typep nbound 'single-float) bound)
2273 #-sb-xc-host
2274 (ecase upperp
2275 ((nil)
2276 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2277 ((t)
2278 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2279 (let ((result (coerce nbound 'single-float)))
2280 (if consp (list result) result)))))
2281 (double-float
2282 (cond
2283 ((typep nbound 'double-float) bound)
2285 #-sb-xc-host
2286 (ecase upperp
2287 ((nil)
2288 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2289 ((t)
2290 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2291 (let ((result (coerce nbound 'double-float)))
2292 (if consp (list result) result)))))))))
2293 (defun coerced-real-bound (bound type upperp)
2294 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2295 (defun coerced-float-bound (bound type upperp)
2296 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2297 (!def-type-translator real (&optional (low '*) (high '*))
2298 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2299 ,(coerced-real-bound high 'float t))
2300 (rational ,(coerced-real-bound low 'rational nil)
2301 ,(coerced-real-bound high 'rational t)))))
2302 (!def-type-translator float (&optional (low '*) (high '*))
2303 (specifier-type
2304 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2305 ,(coerced-float-bound high 'single-float t))
2306 (double-float ,(coerced-float-bound low 'double-float nil)
2307 ,(coerced-float-bound high 'double-float t))
2308 #!+long-float ,(error "stub: no long float support yet"))))
2310 (defmacro !define-float-format (f)
2311 `(!def-bounded-type ,f float ,f))
2313 ;; (!define-float-format short-float) ; it's a DEFTYPE
2314 (!define-float-format single-float)
2315 (!define-float-format double-float)
2316 ;; long-float support is dead.
2317 ;; (!define-float-format long-float) ; also a DEFTYPE
2319 (defun numeric-types-intersect (type1 type2)
2320 (declare (type numeric-type type1 type2))
2321 (let* ((class1 (numeric-type-class type1))
2322 (class2 (numeric-type-class type2))
2323 (complexp1 (numeric-type-complexp type1))
2324 (complexp2 (numeric-type-complexp type2))
2325 (format1 (numeric-type-format type1))
2326 (format2 (numeric-type-format type2))
2327 (low1 (numeric-type-low type1))
2328 (high1 (numeric-type-high type1))
2329 (low2 (numeric-type-low type2))
2330 (high2 (numeric-type-high type2)))
2331 ;; If one is complex and the other isn't, then they are disjoint.
2332 (cond ((not (or (eq complexp1 complexp2)
2333 (null complexp1) (null complexp2)))
2334 nil)
2335 ;; If either type is a float, then the other must either be
2336 ;; specified to be a float or unspecified. Otherwise, they
2337 ;; are disjoint.
2338 ((and (eq class1 'float)
2339 (not (member class2 '(float nil)))) nil)
2340 ((and (eq class2 'float)
2341 (not (member class1 '(float nil)))) nil)
2342 ;; If the float formats are specified and different, the
2343 ;; types are disjoint.
2344 ((not (or (eq format1 format2) (null format1) (null format2)))
2345 nil)
2347 ;; Check the bounds. This is a bit odd because we must
2348 ;; always have the outer bound of the interval as the
2349 ;; second arg.
2350 (if (numeric-bound-test high1 high2 <= <)
2351 (or (and (numeric-bound-test low1 low2 >= >)
2352 (numeric-bound-test* low1 high2 <= <))
2353 (and (numeric-bound-test low2 low1 >= >)
2354 (numeric-bound-test* low2 high1 <= <)))
2355 (or (and (numeric-bound-test* low2 high1 <= <)
2356 (numeric-bound-test low2 low1 >= >))
2357 (and (numeric-bound-test high2 high1 <= <)
2358 (numeric-bound-test* high2 low1 >= >))))))))
2360 ;;; Take the numeric bound X and convert it into something that can be
2361 ;;; used as a bound in a numeric type with the specified CLASS and
2362 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2363 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2365 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2366 ;;; the appropriate type number. X may only be a float when CLASS is
2367 ;;; FLOAT.
2369 ;;; ### Note: it is possible for the coercion to a float to overflow
2370 ;;; or underflow. This happens when the bound doesn't fit in the
2371 ;;; specified format. In this case, we should really return the
2372 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2373 ;;; of desired format. But these conditions aren't currently signalled
2374 ;;; in any useful way.
2376 ;;; Also, when converting an open rational bound into a float we
2377 ;;; should probably convert it to a closed bound of the closest float
2378 ;;; in the specified format. KLUDGE: In general, open float bounds are
2379 ;;; screwed up. -- (comment from original CMU CL)
2380 (defun round-numeric-bound (x class format up-p)
2381 (if x
2382 (let ((cx (if (consp x) (car x) x)))
2383 (ecase class
2384 ((nil rational) x)
2385 (integer
2386 (if (and (consp x) (integerp cx))
2387 (if up-p (1+ cx) (1- cx))
2388 (if up-p (ceiling cx) (floor cx))))
2389 (float
2390 (let ((res
2391 (cond
2392 ((and format (subtypep format 'double-float))
2393 (if (<= most-negative-double-float cx most-positive-double-float)
2394 (coerce cx format)
2395 nil))
2397 (if (<= most-negative-single-float cx most-positive-single-float)
2398 ;; FIXME: bug #389
2399 (coerce cx (or format 'single-float))
2400 nil)))))
2401 (if (consp x) (list res) res)))))
2402 nil))
2404 ;;; Handle the case of type intersection on two numeric types. We use
2405 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2406 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2407 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2408 ;;; types intersect, then the only attributes that can be specified
2409 ;;; and different are the class and the bounds.
2411 ;;; When the class differs, we use the more restrictive class. The
2412 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2413 ;;; INTEGER.
2415 ;;; We make the result lower (upper) bound the maximum (minimum) of
2416 ;;; the argument lower (upper) bounds. We convert the bounds into the
2417 ;;; appropriate numeric type before maximizing. This avoids possible
2418 ;;; confusion due to mixed-type comparisons (but I think the result is
2419 ;;; the same).
2420 (!define-type-method (number :simple-intersection2) (type1 type2)
2421 (declare (type numeric-type type1 type2))
2422 (if (numeric-types-intersect type1 type2)
2423 (let* ((class1 (numeric-type-class type1))
2424 (class2 (numeric-type-class type2))
2425 (class (ecase class1
2426 ((nil) class2)
2427 ((integer float) class1)
2428 (rational (if (eq class2 'integer)
2429 'integer
2430 'rational))))
2431 (format (or (numeric-type-format type1)
2432 (numeric-type-format type2))))
2433 (make-numeric-type
2434 :class class
2435 :format format
2436 :complexp (or (numeric-type-complexp type1)
2437 (numeric-type-complexp type2))
2438 :low (numeric-bound-max
2439 (round-numeric-bound (numeric-type-low type1)
2440 class format t)
2441 (round-numeric-bound (numeric-type-low type2)
2442 class format t)
2443 > >= nil)
2444 :high (numeric-bound-max
2445 (round-numeric-bound (numeric-type-high type1)
2446 class format nil)
2447 (round-numeric-bound (numeric-type-high type2)
2448 class format nil)
2449 < <= nil)))
2450 *empty-type*))
2452 ;;; Given two float formats, return the one with more precision. If
2453 ;;; either one is null, return NIL.
2454 (defun float-format-max (f1 f2)
2455 (when (and f1 f2)
2456 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2457 (when (or (eq f f1) (eq f f2))
2458 (return f)))))
2460 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2461 ;;; the rules of numeric contagion. This is always NUMBER, some float
2462 ;;; format (possibly complex) or RATIONAL. Due to rational
2463 ;;; canonicalization, there isn't much we can do here with integers or
2464 ;;; rational complex numbers.
2466 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2467 ;;; is useful mainly for allowing types that are technically numbers,
2468 ;;; but not a NUMERIC-TYPE.
2469 (defun numeric-contagion (type1 type2)
2470 (if (and (numeric-type-p type1) (numeric-type-p type2))
2471 (let ((class1 (numeric-type-class type1))
2472 (class2 (numeric-type-class type2))
2473 (format1 (numeric-type-format type1))
2474 (format2 (numeric-type-format type2))
2475 (complexp1 (numeric-type-complexp type1))
2476 (complexp2 (numeric-type-complexp type2)))
2477 (cond ((or (null complexp1)
2478 (null complexp2))
2479 (specifier-type 'number))
2480 ((eq class1 'float)
2481 (make-numeric-type
2482 :class 'float
2483 :format (ecase class2
2484 (float (float-format-max format1 format2))
2485 ((integer rational) format1)
2486 ((nil)
2487 ;; A double-float with any real number is a
2488 ;; double-float.
2489 #!-long-float
2490 (if (eq format1 'double-float)
2491 'double-float
2492 nil)
2493 ;; A long-float with any real number is a
2494 ;; long-float.
2495 #!+long-float
2496 (if (eq format1 'long-float)
2497 'long-float
2498 nil)))
2499 :complexp (if (or (eq complexp1 :complex)
2500 (eq complexp2 :complex))
2501 :complex
2502 :real)))
2503 ((eq class2 'float) (numeric-contagion type2 type1))
2504 ((and (eq complexp1 :real) (eq complexp2 :real))
2505 (make-numeric-type
2506 :class (and class1 class2 'rational)
2507 :complexp :real))
2509 (specifier-type 'number))))
2510 (specifier-type 'number)))
2512 ;;;; array types
2514 (!define-type-class array :enumerable nil
2515 :might-contain-other-types nil)
2517 (!define-type-method (array :simple-=) (type1 type2)
2518 (cond ((not (and (equal (array-type-dimensions type1)
2519 (array-type-dimensions type2))
2520 (eq (array-type-complexp type1)
2521 (array-type-complexp type2))))
2522 (values nil t))
2523 ((or (unknown-type-p (array-type-element-type type1))
2524 (unknown-type-p (array-type-element-type type2)))
2525 (type= (array-type-element-type type1)
2526 (array-type-element-type type2)))
2528 (values (type= (array-type-specialized-element-type type1)
2529 (array-type-specialized-element-type type2))
2530 t))))
2532 (!define-type-method (array :negate) (type)
2533 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2534 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2535 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2536 ;; A symptom of the aforementioned is that the following are not TYPE=
2537 ;; (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
2538 ;; (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
2539 ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
2540 ;; only provide one additional bit of information: that the vector
2541 ;; is complex as opposed to simple. The rank and element-type are fixed.
2542 (if (and (eq (array-type-dimensions type) '*)
2543 (eq (array-type-complexp type) 't)
2544 (eq (array-type-element-type type) *wild-type*))
2545 ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
2546 ;; This is deliberately asymmetric - trying to say that NOT simple-array
2547 ;; equals hairy-array leads to infinite recursion.
2548 (type-union (make-array-type '* :complexp nil
2549 :element-type *wild-type*)
2550 (make-negation-type
2551 (make-array-type '* :element-type *wild-type*)))
2552 (make-negation-type type)))
2554 (!define-type-method (array :unparse) (type)
2555 (let* ((dims (array-type-dimensions type))
2556 ;; Compare the specialised element type and the
2557 ;; derived element type. If the derived type
2558 ;; is so small that it jumps to a smaller upgraded
2559 ;; element type, use the specialised element type.
2561 ;; This protects from unparsing
2562 ;; (and (vector (or bit symbol))
2563 ;; (vector (or bit character)))
2564 ;; i.e., the intersection of two T array types,
2565 ;; as a bit vector.
2566 (stype (array-type-specialized-element-type type))
2567 (dtype (array-type-element-type type))
2568 (utype (%upgraded-array-element-type dtype))
2569 (eltype (type-specifier (if (type= stype utype)
2570 dtype
2571 stype)))
2572 (complexp (array-type-complexp type)))
2573 (if (and (eq complexp t) (not *unparse-allow-negation*))
2574 (setq complexp :maybe))
2575 (cond ((eq dims '*)
2576 (if (eq eltype '*)
2577 (ecase complexp
2578 ((t) '(and array (not simple-array)))
2579 ((:maybe) 'array)
2580 ((nil) 'simple-array))
2581 (ecase complexp
2582 ((t) `(and (array ,eltype) (not simple-array)))
2583 ((:maybe) `(array ,eltype))
2584 ((nil) `(simple-array ,eltype)))))
2585 ((= (length dims) 1)
2586 (if complexp
2587 (let ((answer
2588 (if (eq (car dims) '*)
2589 (case eltype
2590 (bit 'bit-vector)
2591 ((base-char #!-sb-unicode character) 'base-string)
2592 (* 'vector)
2593 (t `(vector ,eltype)))
2594 (case eltype
2595 (bit `(bit-vector ,(car dims)))
2596 ((base-char #!-sb-unicode character)
2597 `(base-string ,(car dims)))
2598 (t `(vector ,eltype ,(car dims)))))))
2599 (if (eql complexp :maybe)
2600 answer
2601 `(and ,answer (not simple-array))))
2602 (if (eq (car dims) '*)
2603 (case eltype
2604 (bit 'simple-bit-vector)
2605 ((base-char #!-sb-unicode character) 'simple-base-string)
2606 ((t) 'simple-vector)
2607 (t `(simple-array ,eltype (*))))
2608 (case eltype
2609 (bit `(simple-bit-vector ,(car dims)))
2610 ((base-char #!-sb-unicode character)
2611 `(simple-base-string ,(car dims)))
2612 ((t) `(simple-vector ,(car dims)))
2613 (t `(simple-array ,eltype ,dims))))))
2615 (ecase complexp
2616 ((t) `(and (array ,eltype ,dims) (not simple-array)))
2617 ((:maybe) `(array ,eltype ,dims))
2618 ((nil) `(simple-array ,eltype ,dims)))))))
2620 (!define-type-method (array :simple-subtypep) (type1 type2)
2621 (let ((dims1 (array-type-dimensions type1))
2622 (dims2 (array-type-dimensions type2))
2623 (complexp2 (array-type-complexp type2)))
2624 (cond (;; not subtypep unless dimensions are compatible
2625 (not (or (eq dims2 '*)
2626 (and (not (eq dims1 '*))
2627 ;; (sbcl-0.6.4 has trouble figuring out that
2628 ;; DIMS1 and DIMS2 must be lists at this
2629 ;; point, and knowing that is important to
2630 ;; compiling EVERY efficiently.)
2631 (= (length (the list dims1))
2632 (length (the list dims2)))
2633 (every (lambda (x y)
2634 (or (eq y '*) (eql x y)))
2635 (the list dims1)
2636 (the list dims2)))))
2637 (values nil t))
2638 ;; not subtypep unless complexness is compatible
2639 ((not (or (eq complexp2 :maybe)
2640 (eq (array-type-complexp type1) complexp2)))
2641 (values nil t))
2642 ;; Since we didn't fail any of the tests above, we win
2643 ;; if the TYPE2 element type is wild.
2644 ((eq (array-type-element-type type2) *wild-type*)
2645 (values t t))
2646 (;; Since we didn't match any of the special cases above, if
2647 ;; either element type is unknown we can only give a good
2648 ;; answer if they are the same.
2649 (or (unknown-type-p (array-type-element-type type1))
2650 (unknown-type-p (array-type-element-type type2)))
2651 (if (type= (array-type-element-type type1)
2652 (array-type-element-type type2))
2653 (values t t)
2654 (values nil nil)))
2655 (;; Otherwise, the subtype relationship holds iff the
2656 ;; types are equal, and they're equal iff the specialized
2657 ;; element types are identical.
2659 (values (type= (array-type-specialized-element-type type1)
2660 (array-type-specialized-element-type type2))
2661 t)))))
2663 (!define-superclasses array
2664 ((vector vector) (array))
2665 !cold-init-forms)
2667 (defun array-types-intersect (type1 type2)
2668 (declare (type array-type type1 type2))
2669 (let ((dims1 (array-type-dimensions type1))
2670 (dims2 (array-type-dimensions type2))
2671 (complexp1 (array-type-complexp type1))
2672 (complexp2 (array-type-complexp type2)))
2673 ;; See whether dimensions are compatible.
2674 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2675 (and (= (length dims1) (length dims2))
2676 (every (lambda (x y)
2677 (or (eq x '*) (eq y '*) (= x y)))
2678 dims1 dims2))))
2679 (values nil t))
2680 ;; See whether complexpness is compatible.
2681 ((not (or (eq complexp1 :maybe)
2682 (eq complexp2 :maybe)
2683 (eq complexp1 complexp2)))
2684 (values nil t))
2685 ;; Old comment:
2687 ;; If either element type is wild, then they intersect.
2688 ;; Otherwise, the types must be identical.
2690 ;; FIXME: There seems to have been a fair amount of
2691 ;; confusion about the distinction between requested element
2692 ;; type and specialized element type; here is one of
2693 ;; them. If we request an array to hold objects of an
2694 ;; unknown type, we can do no better than represent that
2695 ;; type as an array specialized on wild-type. We keep the
2696 ;; requested element-type in the -ELEMENT-TYPE slot, and
2697 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2698 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2699 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2700 ;; in that specific case should be T, NIL? Or maybe this
2701 ;; function should really be called
2702 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2703 ;; was responsible for bug #123, and this whole issue could
2704 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2705 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2706 (eq (array-type-specialized-element-type type2) *wild-type*)
2707 (type= (array-type-specialized-element-type type1)
2708 (array-type-specialized-element-type type2)))
2710 (values t t))
2712 (values nil t)))))
2714 (defun unite-array-types-complexp (type1 type2)
2715 (let ((complexp1 (array-type-complexp type1))
2716 (complexp2 (array-type-complexp type2)))
2717 (cond
2718 ((eq complexp1 complexp2)
2719 ;; both types are the same complexp-ity
2720 (values complexp1 t))
2721 ((eq complexp1 :maybe)
2722 ;; type1 is wild-complexp
2723 (values :maybe type1))
2724 ((eq complexp2 :maybe)
2725 ;; type2 is wild-complexp
2726 (values :maybe type2))
2728 ;; both types partition the complexp-space
2729 (values :maybe nil)))))
2731 (defun unite-array-types-dimensions (type1 type2)
2732 (let ((dims1 (array-type-dimensions type1))
2733 (dims2 (array-type-dimensions type2)))
2734 (cond ((equal dims1 dims2)
2735 ;; both types are same dimensionality
2736 (values dims1 t))
2737 ((eq dims1 '*)
2738 ;; type1 is wild-dimensions
2739 (values '* type1))
2740 ((eq dims2 '*)
2741 ;; type2 is wild-dimensions
2742 (values '* type2))
2743 ((not (= (length dims1) (length dims2)))
2744 ;; types have different number of dimensions
2745 (values :incompatible nil))
2747 ;; we need to check on a per-dimension basis
2748 (let* ((supertype1 t)
2749 (supertype2 t)
2750 (compatible t)
2751 (result (mapcar (lambda (dim1 dim2)
2752 (cond
2753 ((equal dim1 dim2)
2754 dim1)
2755 ((eq dim1 '*)
2756 (setf supertype2 nil)
2758 ((eq dim2 '*)
2759 (setf supertype1 nil)
2762 (setf compatible nil))))
2763 dims1 dims2)))
2764 (cond
2765 ((or (not compatible)
2766 (and (not supertype1)
2767 (not supertype2)))
2768 (values :incompatible nil))
2769 ((and supertype1 supertype2)
2770 (values result supertype1))
2772 (values result (if supertype1 type1 type2)))))))))
2774 (defun unite-array-types-element-types (type1 type2)
2775 ;; FIXME: We'd love to be able to unite the full set of specialized
2776 ;; array element types up to *wild-type*, but :simple-union2 is
2777 ;; performed pairwise, so we don't have a good hook for it and our
2778 ;; representation doesn't allow us to easily detect the situation
2779 ;; anyway.
2780 ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
2781 (let* ((eltype1 (array-type-element-type type1))
2782 (eltype2 (array-type-element-type type2))
2783 (stype1 (array-type-specialized-element-type type1))
2784 (stype2 (array-type-specialized-element-type type2))
2785 (wild1 (eq eltype1 *wild-type*))
2786 (wild2 (eq eltype2 *wild-type*)))
2787 (cond
2788 ((type= eltype1 eltype2)
2789 (values eltype1 stype1 t))
2790 (wild1
2791 (values eltype1 stype1 type1))
2792 (wild2
2793 (values eltype2 stype2 type2))
2794 ((not (type= stype1 stype2))
2795 ;; non-wild types that don't share UAET don't unite
2796 (values :incompatible nil nil))
2797 ((csubtypep eltype1 eltype2)
2798 (values eltype2 stype2 type2))
2799 ((csubtypep eltype2 eltype1)
2800 (values eltype1 stype1 type1))
2802 (values :incompatible nil nil)))))
2804 (defun unite-array-types-supertypes-compatible-p (&rest supertypes)
2805 ;; supertypes are compatible if they are all T, if there is a single
2806 ;; NIL and all the rest are T, or if all non-T supertypes are the
2807 ;; same and not NIL.
2808 (let ((interesting-supertypes
2809 (remove t supertypes)))
2810 (or (not interesting-supertypes)
2811 (equal interesting-supertypes '(nil))
2812 ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
2813 (typep (remove-duplicates interesting-supertypes)
2814 '(cons array-type null)))))
2816 (!define-type-method (array :simple-union2) (type1 type2)
2817 (multiple-value-bind
2818 (result-eltype result-stype eltype-supertype)
2819 (unite-array-types-element-types type1 type2)
2820 (multiple-value-bind
2821 (result-complexp complexp-supertype)
2822 (unite-array-types-complexp type1 type2)
2823 (multiple-value-bind
2824 (result-dimensions dimensions-supertype)
2825 (unite-array-types-dimensions type1 type2)
2826 (when (and (not (eq result-dimensions :incompatible))
2827 (not (eq result-eltype :incompatible))
2828 (unite-array-types-supertypes-compatible-p
2829 eltype-supertype complexp-supertype dimensions-supertype))
2830 (make-array-type result-dimensions
2831 :complexp result-complexp
2832 :element-type result-eltype
2833 :specialized-element-type result-stype))))))
2835 (!define-type-method (array :simple-intersection2) (type1 type2)
2836 (declare (type array-type type1 type2))
2837 (if (array-types-intersect type1 type2)
2838 (let ((dims1 (array-type-dimensions type1))
2839 (dims2 (array-type-dimensions type2))
2840 (complexp1 (array-type-complexp type1))
2841 (complexp2 (array-type-complexp type2))
2842 (eltype1 (array-type-element-type type1))
2843 (eltype2 (array-type-element-type type2))
2844 (stype1 (array-type-specialized-element-type type1))
2845 (stype2 (array-type-specialized-element-type type2)))
2846 (make-array-type (cond ((eq dims1 '*) dims2)
2847 ((eq dims2 '*) dims1)
2849 (mapcar (lambda (x y) (if (eq x '*) y x))
2850 dims1 dims2)))
2851 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2852 :element-type (cond
2853 ((eq eltype1 *wild-type*) eltype2)
2854 ((eq eltype2 *wild-type*) eltype1)
2855 (t (type-intersection eltype1 eltype2)))
2856 :specialized-element-type (cond
2857 ((eq stype1 *wild-type*) stype2)
2858 ((eq stype2 *wild-type*) stype1)
2860 (aver (type= stype1 stype2))
2861 stype1))))
2862 *empty-type*))
2864 ;;; Check a supplied dimension list to determine whether it is legal,
2865 ;;; and return it in canonical form (as either '* or a list).
2866 (defun canonical-array-dimensions (dims)
2867 (typecase dims
2868 ((member *) dims)
2869 (integer
2870 (when (minusp dims)
2871 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2872 (when (>= dims sb!xc:array-rank-limit)
2873 (error "array type with too many dimensions: ~S" dims))
2874 (make-list dims :initial-element '*))
2875 (list
2876 (when (>= (length dims) sb!xc:array-rank-limit)
2877 (error "array type with too many dimensions: ~S" dims))
2878 (dolist (dim dims)
2879 (unless (eq dim '*)
2880 (unless (and (integerp dim)
2881 (>= dim 0)
2882 (< dim sb!xc:array-dimension-limit))
2883 (error "bad dimension in array type: ~S" dim))))
2884 dims)
2886 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2888 ;;;; MEMBER types
2890 (!define-type-class member :enumerable t
2891 :might-contain-other-types nil)
2893 (!define-type-method (member :negate) (type)
2894 (let ((xset (member-type-xset type))
2895 (fp-zeroes (member-type-fp-zeroes type)))
2896 (if fp-zeroes
2897 ;; Hairy case, which needs to do a bit of float type
2898 ;; canonicalization.
2899 (apply #'type-intersection
2900 (if (xset-empty-p xset)
2901 *universal-type*
2902 (make-negation-type (make-member-type xset nil)))
2903 (mapcar
2904 (lambda (x)
2905 (let* ((opposite (neg-fp-zero x))
2906 (type (ctype-of opposite)))
2907 (type-union
2908 (make-negation-type
2909 (modified-numeric-type type :low nil :high nil))
2910 (modified-numeric-type type :low nil :high (list opposite))
2911 (make-eql-type opposite)
2912 (modified-numeric-type type :low (list opposite) :high nil))))
2913 fp-zeroes))
2914 ;; Easy case
2915 (make-negation-type type))))
2917 (!define-type-method (member :unparse) (type)
2918 (let ((members (member-type-members type)))
2919 (cond ((equal members '(nil)) 'null)
2920 (t `(member ,@members)))))
2922 (!define-type-method (member :singleton-p) (type)
2923 (if (eql 1 (member-type-size type))
2924 (values t (first (member-type-members type)))
2925 (values nil nil)))
2927 (!define-type-method (member :simple-subtypep) (type1 type2)
2928 (values (and (xset-subset-p (member-type-xset type1)
2929 (member-type-xset type2))
2930 (subsetp (member-type-fp-zeroes type1)
2931 (member-type-fp-zeroes type2)))
2934 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2935 (block punt
2936 (mapc-member-type-members
2937 (lambda (elt)
2938 (multiple-value-bind (ok surep) (ctypep elt type2)
2939 (unless surep
2940 (return-from punt (values nil nil)))
2941 (unless ok
2942 (return-from punt (values nil t)))))
2943 type1)
2944 (values t t)))
2946 ;;; We punt if the odd type is enumerable and intersects with the
2947 ;;; MEMBER type. If not enumerable, then it is definitely not a
2948 ;;; subtype of the MEMBER type.
2949 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2950 (cond ((not (type-enumerable type1)) (values nil t))
2951 ((types-equal-or-intersect type1 type2)
2952 (invoke-complex-subtypep-arg1-method type1 type2))
2953 (t (values nil t))))
2955 (!define-type-method (member :simple-intersection2) (type1 type2)
2956 (make-member-type (xset-intersection (member-type-xset type1)
2957 (member-type-xset type2))
2958 (intersection (member-type-fp-zeroes type1)
2959 (member-type-fp-zeroes type2))))
2961 (!define-type-method (member :complex-intersection2) (type1 type2)
2962 (block punt
2963 (let ((xset (alloc-xset))
2964 (fp-zeroes nil))
2965 (mapc-member-type-members
2966 (lambda (member)
2967 (multiple-value-bind (ok sure) (ctypep member type1)
2968 (unless sure
2969 (return-from punt nil))
2970 (when ok
2971 (if (fp-zero-p member)
2972 (pushnew member fp-zeroes)
2973 (add-to-xset member xset)))))
2974 type2)
2975 (if (and (xset-empty-p xset) (not fp-zeroes))
2976 *empty-type*
2977 (make-member-type xset fp-zeroes)))))
2979 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2980 ;;; a union type, and the member/union interaction is handled by the
2981 ;;; union type method.
2982 (!define-type-method (member :simple-union2) (type1 type2)
2983 (make-member-type (xset-union (member-type-xset type1)
2984 (member-type-xset type2))
2985 (union (member-type-fp-zeroes type1)
2986 (member-type-fp-zeroes type2))))
2988 (!define-type-method (member :simple-=) (type1 type2)
2989 (let ((xset1 (member-type-xset type1))
2990 (xset2 (member-type-xset type2))
2991 (l1 (member-type-fp-zeroes type1))
2992 (l2 (member-type-fp-zeroes type2)))
2993 (values (and (eql (xset-count xset1) (xset-count xset2))
2994 (xset-subset-p xset1 xset2)
2995 (xset-subset-p xset2 xset1)
2996 (subsetp l1 l2)
2997 (subsetp l2 l1))
2998 t)))
3000 (!define-type-method (member :complex-=) (type1 type2)
3001 (if (type-enumerable type1)
3002 (multiple-value-bind (val win) (csubtypep type2 type1)
3003 (if (or val (not win))
3004 (values nil nil)
3005 (values nil t)))
3006 (values nil t)))
3008 (!def-type-translator member :list (&rest members)
3009 (if members
3010 (let (ms numbers char-codes)
3011 (dolist (m (remove-duplicates members))
3012 (typecase m
3013 (character (push (sb!xc:char-code m) char-codes))
3014 (real (if (and (floatp m) (zerop m))
3015 (push m ms)
3016 (push (ctype-of m) numbers)))
3017 (t (push m ms))))
3018 (apply #'type-union
3019 (member-type-from-list ms)
3020 (make-character-set-type (mapcar (lambda (x) (cons x x))
3021 (sort char-codes #'<)))
3022 (nreverse numbers)))
3023 *empty-type*))
3025 ;;;; intersection types
3026 ;;;;
3027 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
3028 ;;;; of punting on all AND types, not just the unreasonably complicated
3029 ;;;; ones. The change was motivated by trying to get the KEYWORD type
3030 ;;;; to behave sensibly:
3031 ;;;; ;; reasonable definition
3032 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
3033 ;;;; ;; reasonable behavior
3034 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
3035 ;;;; Without understanding a little about the semantics of AND, we'd
3036 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
3037 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
3038 ;;;; not so good..)
3039 ;;;;
3040 ;;;; We still follow the example of CMU CL to some extent, by punting
3041 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
3042 ;;;; involving AND.
3044 (!define-type-class intersection
3045 :enumerable #'compound-type-enumerable
3046 :might-contain-other-types t)
3048 (!define-type-method (intersection :negate) (type)
3049 (apply #'type-union
3050 (mapcar #'type-negation (intersection-type-types type))))
3052 ;;; A few intersection types have special names. The others just get
3053 ;;; mechanically unparsed.
3054 (!define-type-method (intersection :unparse) (type)
3055 (declare (type ctype type))
3056 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
3057 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
3059 ;;; shared machinery for type equality: true if every type in the set
3060 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
3061 (defun type=-set (types1 types2)
3062 (flet ((type<=-set (x y)
3063 (declare (type list x y))
3064 (every/type (lambda (x y-element)
3065 (any/type #'type= y-element x))
3066 x y)))
3067 (and/type (type<=-set types1 types2)
3068 (type<=-set types2 types1))))
3070 ;;; Two intersection types are equal if their subtypes are equal sets.
3072 ;;; FIXME: Might it be better to use
3073 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
3074 ;;; instead, since SUBTYPEP is the usual relationship that we care
3075 ;;; most about, so it would be good to leverage any ingenuity there
3076 ;;; in this more obscure method?
3077 (!define-type-method (intersection :simple-=) (type1 type2)
3078 (type=-set (intersection-type-types type1)
3079 (intersection-type-types type2)))
3081 (defun %intersection-complex-subtypep-arg1 (type1 type2)
3082 (type= type1 (type-intersection type1 type2)))
3084 (defun %intersection-simple-subtypep (type1 type2)
3085 (every/type #'%intersection-complex-subtypep-arg1
3086 type1
3087 (intersection-type-types type2)))
3089 (!define-type-method (intersection :simple-subtypep) (type1 type2)
3090 (%intersection-simple-subtypep type1 type2))
3092 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
3093 (%intersection-complex-subtypep-arg1 type1 type2))
3095 (defun %intersection-complex-subtypep-arg2 (type1 type2)
3096 (every/type #'csubtypep type1 (intersection-type-types type2)))
3098 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
3099 (%intersection-complex-subtypep-arg2 type1 type2))
3101 ;;; FIXME: This will look eeriely familiar to readers of the UNION
3102 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
3103 ;;; because it was generated by cut'n'paste methods. Given that
3104 ;;; intersections and unions have all sorts of symmetries known to
3105 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
3106 ;;; reflect those symmetries in code in a way that ties them together
3107 ;;; more strongly than having two independent near-copies :-/
3108 (!define-type-method (intersection :simple-union2 :complex-union2)
3109 (type1 type2)
3110 ;; Within this method, type2 is guaranteed to be an intersection
3111 ;; type:
3112 (aver (intersection-type-p type2))
3113 ;; Make sure to call only the applicable methods...
3114 (cond ((and (intersection-type-p type1)
3115 (%intersection-simple-subtypep type1 type2)) type2)
3116 ((and (intersection-type-p type1)
3117 (%intersection-simple-subtypep type2 type1)) type1)
3118 ((and (not (intersection-type-p type1))
3119 (%intersection-complex-subtypep-arg2 type1 type2))
3120 type2)
3121 ((and (not (intersection-type-p type1))
3122 (%intersection-complex-subtypep-arg1 type2 type1))
3123 type1)
3124 ;; KLUDGE: This special (and somewhat hairy) magic is required
3125 ;; to deal with the RATIONAL/INTEGER special case. The UNION
3126 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
3127 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
3128 ((and (csubtypep type2 (specifier-type 'ratio))
3129 (numeric-type-p type1)
3130 (csubtypep type1 (specifier-type 'integer))
3131 (csubtypep type2
3132 (make-numeric-type
3133 :class 'rational
3134 :complexp nil
3135 :low (if (null (numeric-type-low type1))
3137 (list (1- (numeric-type-low type1))))
3138 :high (if (null (numeric-type-high type1))
3140 (list (1+ (numeric-type-high type1)))))))
3141 (let* ((intersected (intersection-type-types type2))
3142 (remaining (remove (specifier-type '(not integer))
3143 intersected
3144 :test #'type=)))
3145 (and (not (equal intersected remaining))
3146 (type-union type1 (apply #'type-intersection remaining)))))
3148 (let ((accumulator *universal-type*))
3149 (do ((t2s (intersection-type-types type2) (cdr t2s)))
3150 ((null t2s) accumulator)
3151 (let ((union (type-union type1 (car t2s))))
3152 (when (union-type-p union)
3153 ;; we have to give up here -- there are all sorts of
3154 ;; ordering worries, but it's better than before.
3155 ;; Doing exactly the same as in the UNION
3156 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
3157 ;; overflow with the mutual recursion never bottoming
3158 ;; out.
3159 (if (and (eq accumulator *universal-type*)
3160 (null (cdr t2s)))
3161 ;; KLUDGE: if we get here, we have a partially
3162 ;; simplified result. While this isn't by any
3163 ;; means a universal simplification, including
3164 ;; this logic here means that we can get (OR
3165 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
3166 (return union)
3167 (return nil)))
3168 (setf accumulator
3169 (type-intersection accumulator union))))))))
3171 (!def-type-translator and :list ((:context context) &rest type-specifiers)
3172 (apply #'type-intersection
3173 (mapcar (lambda (x) (specifier-type-r context x))
3174 type-specifiers)))
3176 ;;;; union types
3178 (!define-type-class union
3179 :enumerable #'compound-type-enumerable
3180 :might-contain-other-types t)
3182 (!define-type-method (union :negate) (type)
3183 (declare (type ctype type))
3184 (apply #'type-intersection
3185 (mapcar #'type-negation (union-type-types type))))
3187 ;;; The LIST, FLOAT and REAL types have special names. Other union
3188 ;;; types just get mechanically unparsed.
3189 (!define-type-method (union :unparse) (type)
3190 (declare (type ctype type))
3191 (cond
3192 ((type= type (specifier-type 'list)) 'list)
3193 ((type= type (specifier-type 'float)) 'float)
3194 ((type= type (specifier-type 'real)) 'real)
3195 ((type= type (specifier-type 'sequence)) 'sequence)
3196 ((type= type (specifier-type 'bignum)) 'bignum)
3197 ((type= type (specifier-type 'simple-string)) 'simple-string)
3198 ((type= type (specifier-type 'string)) 'string)
3199 ((type= type (specifier-type 'complex)) 'complex)
3200 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
3202 ;;; Two union types are equal if they are each subtypes of each
3203 ;;; other. We need to be this clever because our complex subtypep
3204 ;;; methods are now more accurate; we don't get infinite recursion
3205 ;;; because the simple-subtypep method delegates to complex-subtypep
3206 ;;; of the individual types of type1. - CSR, 2002-04-09
3208 ;;; Previous comment, now obsolete, but worth keeping around because
3209 ;;; it is true, though too strong a condition:
3211 ;;; Two union types are equal if their subtypes are equal sets.
3212 (!define-type-method (union :simple-=) (type1 type2)
3213 (multiple-value-bind (subtype certain?)
3214 (csubtypep type1 type2)
3215 (if subtype
3216 (csubtypep type2 type1)
3217 ;; we might as well become as certain as possible.
3218 (if certain?
3219 (values nil t)
3220 (multiple-value-bind (subtype certain?)
3221 (csubtypep type2 type1)
3222 (declare (ignore subtype))
3223 (values nil certain?))))))
3225 (!define-type-method (union :complex-=) (type1 type2)
3226 (declare (ignore type1))
3227 (if (some #'type-might-contain-other-types-p
3228 (union-type-types type2))
3229 (values nil nil)
3230 (values nil t)))
3232 ;;; Similarly, a union type is a subtype of another if and only if
3233 ;;; every element of TYPE1 is a subtype of TYPE2.
3234 (defun union-simple-subtypep (type1 type2)
3235 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
3236 type2
3237 (union-type-types type1)))
3239 (!define-type-method (union :simple-subtypep) (type1 type2)
3240 (union-simple-subtypep type1 type2))
3242 (defun union-complex-subtypep-arg1 (type1 type2)
3243 (every/type (swapped-args-fun #'csubtypep)
3244 type2
3245 (union-type-types type1)))
3247 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
3248 (union-complex-subtypep-arg1 type1 type2))
3250 (defun union-complex-subtypep-arg2 (type1 type2)
3251 ;; At this stage, we know that type2 is a union type and type1
3252 ;; isn't. We might as well check this, though:
3253 (aver (union-type-p type2))
3254 (aver (not (union-type-p type1)))
3255 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
3256 ;; turns out to be too restrictive, causing bug 91.
3258 ;; the following reimplementation might look dodgy. It is dodgy. It
3259 ;; depends on the union :complex-= method not doing very much work
3260 ;; -- certainly, not using subtypep. Reasoning:
3262 ;; A is a subset of (B1 u B2)
3263 ;; <=> A n (B1 u B2) = A
3264 ;; <=> (A n B1) u (A n B2) = A
3266 ;; But, we have to be careful not to delegate this type= to
3267 ;; something that could invoke subtypep, which might get us back
3268 ;; here -> stack explosion. We therefore ensure that the second type
3269 ;; (which is the one that's dispatched on) is either a union type
3270 ;; (where we've ensured that the complex-= method will not call
3271 ;; subtypep) or something with no union types involved, in which
3272 ;; case we'll never come back here.
3274 ;; If we don't do this, then e.g.
3275 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
3276 ;; would loop infinitely, as the member :complex-= method is
3277 ;; implemented in terms of subtypep.
3279 ;; Ouch. - CSR, 2002-04-10
3280 (multiple-value-bind (sub-value sub-certain?)
3281 (type= type1
3282 (apply #'type-union
3283 (mapcar (lambda (x) (type-intersection type1 x))
3284 (union-type-types type2))))
3285 (if sub-certain?
3286 (values sub-value sub-certain?)
3287 ;; The ANY/TYPE expression above is a sufficient condition for
3288 ;; subsetness, but not a necessary one, so we might get a more
3289 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
3290 ;; ANY/TYPE expression is uncertain.
3291 (invoke-complex-subtypep-arg1-method type1 type2))))
3293 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
3294 (union-complex-subtypep-arg2 type1 type2))
3296 (!define-type-method (union :simple-intersection2 :complex-intersection2)
3297 (type1 type2)
3298 ;; The CSUBTYPEP clauses here let us simplify e.g.
3299 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
3300 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
3301 ;; (where LIST is (OR CONS NULL)).
3303 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
3304 ;; versa, but it's important that we pre-expand them into
3305 ;; specialized operations on individual elements of
3306 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
3307 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
3308 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
3309 ;; cause infinite recursion.
3311 ;; Within this method, type2 is guaranteed to be a union type:
3312 (aver (union-type-p type2))
3313 ;; Make sure to call only the applicable methods...
3314 (cond ((and (union-type-p type1)
3315 (union-simple-subtypep type1 type2)) type1)
3316 ((and (union-type-p type1)
3317 (union-simple-subtypep type2 type1)) type2)
3318 ((and (not (union-type-p type1))
3319 (union-complex-subtypep-arg2 type1 type2))
3320 type1)
3321 ((and (not (union-type-p type1))
3322 (union-complex-subtypep-arg1 type2 type1))
3323 type2)
3325 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
3326 ;; operations in a particular order, and gives up if any of
3327 ;; the sub-unions turn out not to be simple. In other cases
3328 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
3329 ;; bad idea, since it can overlook simplifications which
3330 ;; might occur if the terms were accumulated in a different
3331 ;; order. It's possible that that will be a problem here too.
3332 ;; However, I can't think of a good example to demonstrate
3333 ;; it, and without an example to demonstrate it I can't write
3334 ;; test cases, and without test cases I don't want to
3335 ;; complicate the code to address what's still a hypothetical
3336 ;; problem. So I punted. -- WHN 2001-03-20
3337 (let ((accumulator *empty-type*))
3338 (dolist (t2 (union-type-types type2) accumulator)
3339 (setf accumulator
3340 (type-union accumulator
3341 (type-intersection type1 t2))))))))
3343 (!def-type-translator or :list ((:context context) &rest type-specifiers)
3344 (let ((type (apply #'type-union
3345 (mapcar (lambda (x) (specifier-type-r context x))
3346 type-specifiers))))
3347 (if (union-type-p type)
3348 (sb!kernel::simplify-array-unions type)
3349 type)))
3351 ;;;; CONS types
3353 (!define-type-class cons :enumerable nil :might-contain-other-types nil)
3355 (!def-type-translator cons ((:context context)
3356 &optional (car-type-spec '*) (cdr-type-spec '*))
3357 (let ((car-type (single-value-specifier-type-r context car-type-spec))
3358 (cdr-type (single-value-specifier-type-r context cdr-type-spec)))
3359 (make-cons-type car-type cdr-type)))
3361 (!define-type-method (cons :negate) (type)
3362 (if (and (eq (cons-type-car-type type) *universal-type*)
3363 (eq (cons-type-cdr-type type) *universal-type*))
3364 (make-negation-type type)
3365 (type-union
3366 (make-negation-type (specifier-type 'cons))
3367 (cond
3368 ((and (not (eq (cons-type-car-type type) *universal-type*))
3369 (not (eq (cons-type-cdr-type type) *universal-type*)))
3370 (type-union
3371 (make-cons-type
3372 (type-negation (cons-type-car-type type))
3373 *universal-type*)
3374 (make-cons-type
3375 *universal-type*
3376 (type-negation (cons-type-cdr-type type)))))
3377 ((not (eq (cons-type-car-type type) *universal-type*))
3378 (make-cons-type
3379 (type-negation (cons-type-car-type type))
3380 *universal-type*))
3381 ((not (eq (cons-type-cdr-type type) *universal-type*))
3382 (make-cons-type
3383 *universal-type*
3384 (type-negation (cons-type-cdr-type type))))
3385 (t (bug "Weird CONS type ~S" type))))))
3387 (!define-type-method (cons :unparse) (type)
3388 (let ((car-eltype (type-specifier (cons-type-car-type type)))
3389 (cdr-eltype (type-specifier (cons-type-cdr-type type))))
3390 (if (and (member car-eltype '(t *))
3391 (member cdr-eltype '(t *)))
3392 'cons
3393 `(cons ,car-eltype ,cdr-eltype))))
3395 (!define-type-method (cons :simple-=) (type1 type2)
3396 (declare (type cons-type type1 type2))
3397 (multiple-value-bind (car-match car-win)
3398 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3399 (multiple-value-bind (cdr-match cdr-win)
3400 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3401 (cond ((and car-match cdr-match)
3402 (aver (and car-win cdr-win))
3403 (values t t))
3405 (values nil
3406 ;; FIXME: Ideally we would like to detect and handle
3407 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3408 ;; but just returning a secondary true on (and car-win cdr-win)
3409 ;; unfortunately breaks other things. --NS 2006-08-16
3410 (and (or (and (not car-match) car-win)
3411 (and (not cdr-match) cdr-win))
3412 (not (and (cons-type-might-be-empty-type type1)
3413 (cons-type-might-be-empty-type type2))))))))))
3415 (!define-type-method (cons :simple-subtypep) (type1 type2)
3416 (declare (type cons-type type1 type2))
3417 (multiple-value-bind (val-car win-car)
3418 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3419 (multiple-value-bind (val-cdr win-cdr)
3420 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3421 (if (and val-car val-cdr)
3422 (values t (and win-car win-cdr))
3423 (values nil (or (and (not val-car) win-car)
3424 (and (not val-cdr) win-cdr)))))))
3426 ;;; Give up if a precise type is not possible, to avoid returning
3427 ;;; overly general types.
3428 (!define-type-method (cons :simple-union2) (type1 type2)
3429 (declare (type cons-type type1 type2))
3430 (let ((car-type1 (cons-type-car-type type1))
3431 (car-type2 (cons-type-car-type type2))
3432 (cdr-type1 (cons-type-cdr-type type1))
3433 (cdr-type2 (cons-type-cdr-type type2))
3434 car-not1
3435 car-not2)
3436 ;; UGH. -- CSR, 2003-02-24
3437 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3438 &optional (not1 nil not1p))
3439 `(type-union
3440 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3441 (make-cons-type
3442 (type-intersection ,car2
3443 ,(if not1p
3444 not1
3445 `(type-negation ,car1)))
3446 ,cdr2))))
3447 (cond ((type= car-type1 car-type2)
3448 (make-cons-type car-type1
3449 (type-union cdr-type1 cdr-type2)))
3450 ((type= cdr-type1 cdr-type2)
3451 (make-cons-type (type-union car-type1 car-type2)
3452 cdr-type1))
3453 ((csubtypep car-type1 car-type2)
3454 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3455 ((csubtypep car-type2 car-type1)
3456 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3457 ;; more general case of the above, but harder to compute
3458 ((progn
3459 (setf car-not1 (type-negation car-type1))
3460 (multiple-value-bind (yes win)
3461 (csubtypep car-type2 car-not1)
3462 (and (not yes) win)))
3463 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3464 ((progn
3465 (setf car-not2 (type-negation car-type2))
3466 (multiple-value-bind (yes win)
3467 (csubtypep car-type1 car-not2)
3468 (and (not yes) win)))
3469 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3470 ;; Don't put these in -- consider the effect of taking the
3471 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3472 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3473 #+nil
3474 ((csubtypep cdr-type1 cdr-type2)
3475 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3476 #+nil
3477 ((csubtypep cdr-type2 cdr-type1)
3478 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3480 (!define-type-method (cons :simple-intersection2) (type1 type2)
3481 (declare (type cons-type type1 type2))
3482 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3483 (cons-type-car-type type2)))
3484 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3485 (cons-type-cdr-type type2))))
3486 (cond
3487 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3488 (car-int2 (make-cons-type car-int2
3489 (type-intersection
3490 (cons-type-cdr-type type1)
3491 (cons-type-cdr-type type2))))
3492 (cdr-int2 (make-cons-type
3493 (type-intersection (cons-type-car-type type1)
3494 (cons-type-car-type type2))
3495 cdr-int2)))))
3497 (!define-superclasses cons ((cons)) !cold-init-forms)
3499 ;;;; CHARACTER-SET types
3501 ;; all character-set types are enumerable, but it's not possible
3502 ;; for one to be TYPE= to a MEMBER type because (MEMBER #\x)
3503 ;; is not internally represented as a MEMBER type.
3504 ;; So in case it wasn't clear already ENUMERABLE-P does not mean
3505 ;; "possibly a MEMBER type in the Lisp-theoretic sense",
3506 ;; but means "could be implemented in SBCL as a MEMBER type".
3507 (!define-type-class character-set :enumerable nil
3508 :might-contain-other-types nil)
3510 (!def-type-translator character-set
3511 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3512 (make-character-set-type pairs))
3514 (!define-type-method (character-set :negate) (type)
3515 (let ((pairs (character-set-type-pairs type)))
3516 (if (and (= (length pairs) 1)
3517 (= (caar pairs) 0)
3518 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3519 (make-negation-type type)
3520 (let ((not-character
3521 (make-negation-type
3522 (make-character-set-type
3523 '((0 . #.(1- sb!xc:char-code-limit)))))))
3524 (type-union
3525 not-character
3526 (make-character-set-type
3527 (let (not-pairs)
3528 (when (> (caar pairs) 0)
3529 (push (cons 0 (1- (caar pairs))) not-pairs))
3530 (do* ((tail pairs (cdr tail))
3531 (high1 (cdar tail) (cdar tail))
3532 (low2 (caadr tail) (caadr tail)))
3533 ((null (cdr tail))
3534 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3535 (push (cons (1+ (cdar tail))
3536 (1- sb!xc:char-code-limit))
3537 not-pairs))
3538 (nreverse not-pairs))
3539 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3541 (!define-type-method (character-set :unparse) (type)
3542 (cond
3543 ((type= type (specifier-type 'character)) 'character)
3544 ((type= type (specifier-type 'base-char)) 'base-char)
3545 ((type= type (specifier-type 'extended-char)) 'extended-char)
3546 ((type= type (specifier-type 'standard-char)) 'standard-char)
3548 ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
3549 ;; are at most as many characters as there are character code ranges.
3550 ;; (basically saying to use MEMBER if each range is one character)
3551 (let* ((pairs (character-set-type-pairs type))
3552 (count (length pairs))
3553 (chars (loop named outer
3554 for (low . high) in pairs
3555 nconc (loop for code from low upto high
3556 collect (sb!xc:code-char code)
3557 when (minusp (decf count))
3558 do (return-from outer t)))))
3559 (if (eq chars t)
3560 `(character-set ,pairs)
3561 `(member ,@chars))))))
3563 (!define-type-method (character-set :singleton-p) (type)
3564 (let* ((pairs (character-set-type-pairs type))
3565 (pair (first pairs)))
3566 (if (and (typep pairs '(cons t null))
3567 (eql (car pair) (cdr pair)))
3568 (values t (code-char (car pair)))
3569 (values nil nil))))
3571 (!define-type-method (character-set :simple-=) (type1 type2)
3572 (let ((pairs1 (character-set-type-pairs type1))
3573 (pairs2 (character-set-type-pairs type2)))
3574 (values (equal pairs1 pairs2) t)))
3576 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3577 (values
3578 (dolist (pair (character-set-type-pairs type1) t)
3579 (unless (position pair (character-set-type-pairs type2)
3580 :test (lambda (x y) (and (>= (car x) (car y))
3581 (<= (cdr x) (cdr y)))))
3582 (return nil)))
3585 (!define-type-method (character-set :simple-union2) (type1 type2)
3586 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3587 ;; actually does the union for us. It might be a little fragile to
3588 ;; rely on it.
3589 (make-character-set-type
3590 (merge 'list
3591 (copy-alist (character-set-type-pairs type1))
3592 (copy-alist (character-set-type-pairs type2))
3593 #'< :key #'car)))
3595 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3596 ;; KLUDGE: brute force.
3598 (let (pairs)
3599 (dolist (pair1 (character-set-type-pairs type1)
3600 (make-character-set-type
3601 (sort pairs #'< :key #'car)))
3602 (dolist (pair2 (character-set-type-pairs type2))
3603 (cond
3604 ((<= (car pair1) (car pair2) (cdr pair1))
3605 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3606 ((<= (car pair2) (car pair1) (cdr pair2))
3607 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3609 (make-character-set-type
3610 (intersect-type-pairs
3611 (character-set-type-pairs type1)
3612 (character-set-type-pairs type2))))
3615 ;;; Intersect two ordered lists of pairs
3616 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3617 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3618 ;;; Each pair represents the integer interval start..end.
3620 (defun intersect-type-pairs (alist1 alist2)
3621 (if (and alist1 alist2)
3622 (let ((res nil)
3623 (pair1 (pop alist1))
3624 (pair2 (pop alist2)))
3625 (loop
3626 (when (> (car pair1) (car pair2))
3627 (rotatef pair1 pair2)
3628 (rotatef alist1 alist2))
3629 (let ((pair1-cdr (cdr pair1)))
3630 (cond
3631 ((> (car pair2) pair1-cdr)
3632 ;; No over lap -- discard pair1
3633 (unless alist1 (return))
3634 (setq pair1 (pop alist1)))
3635 ((<= (cdr pair2) pair1-cdr)
3636 (push (cons (car pair2) (cdr pair2)) res)
3637 (cond
3638 ((= (cdr pair2) pair1-cdr)
3639 (unless alist1 (return))
3640 (unless alist2 (return))
3641 (setq pair1 (pop alist1)
3642 pair2 (pop alist2)))
3643 (t ;; (< (cdr pair2) pair1-cdr)
3644 (unless alist2 (return))
3645 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3646 (setq pair2 (pop alist2)))))
3647 (t ;; (> (cdr pair2) (cdr pair1))
3648 (push (cons (car pair2) pair1-cdr) res)
3649 (unless alist1 (return))
3650 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3651 (setq pair1 (pop alist1))))))
3652 (nreverse res))
3653 nil))
3656 ;;; Return the type that describes all objects that are in X but not
3657 ;;; in Y. If we can't determine this type, then return NIL.
3659 ;;; For now, we only are clever dealing with union and member types.
3660 ;;; If either type is not a union type, then we pretend that it is a
3661 ;;; union of just one type. What we do is remove from X all the types
3662 ;;; that are a subtype any type in Y. If any type in X intersects with
3663 ;;; a type in Y but is not a subtype, then we give up.
3665 ;;; We must also special-case any member type that appears in the
3666 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3667 ;;; If Y has any members, we must be careful that none of those
3668 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3669 ;;; this case, since to compute that difference we would have to break
3670 ;;; the type from X into some collection of types that represents the
3671 ;;; type without that particular element. This seems too hairy to be
3672 ;;; worthwhile, given its low utility.
3673 (defun type-difference (x y)
3674 (if (and (numeric-type-p x) (numeric-type-p y))
3675 ;; Numeric types are easy. Are there any others we should handle like this?
3676 (type-intersection x (type-negation y))
3677 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3678 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3679 (collect ((res))
3680 (dolist (x-type x-types)
3681 (if (member-type-p x-type)
3682 (let ((xset (alloc-xset))
3683 (fp-zeroes nil))
3684 (mapc-member-type-members
3685 (lambda (elt)
3686 (multiple-value-bind (ok sure) (ctypep elt y)
3687 (unless sure
3688 (return-from type-difference nil))
3689 (unless ok
3690 (if (fp-zero-p elt)
3691 (pushnew elt fp-zeroes)
3692 (add-to-xset elt xset)))))
3693 x-type)
3694 (unless (and (xset-empty-p xset) (not fp-zeroes))
3695 (res (make-member-type xset fp-zeroes))))
3696 (dolist (y-type y-types (res x-type))
3697 (multiple-value-bind (val win) (csubtypep x-type y-type)
3698 (unless win (return-from type-difference nil))
3699 (when val (return))
3700 (when (types-equal-or-intersect x-type y-type)
3701 (return-from type-difference nil))))))
3702 (let ((y-mem (find-if #'member-type-p y-types)))
3703 (when y-mem
3704 (dolist (x-type x-types)
3705 (unless (member-type-p x-type)
3706 (mapc-member-type-members
3707 (lambda (member)
3708 (multiple-value-bind (ok sure) (ctypep member x-type)
3709 (when (or (not sure) ok)
3710 (return-from type-difference nil))))
3711 y-mem)))))
3712 (apply #'type-union (res))))))
3714 (!def-type-translator array ((:context context)
3715 &optional (element-type '*)
3716 (dimensions '*))
3717 (let ((eltype (if (eq element-type '*)
3718 *wild-type*
3719 (specifier-type-r context element-type))))
3720 (make-array-type (canonical-array-dimensions dimensions)
3721 :complexp :maybe
3722 :element-type eltype
3723 :specialized-element-type (%upgraded-array-element-type
3724 eltype))))
3726 (!def-type-translator simple-array ((:context context)
3727 &optional (element-type '*)
3728 (dimensions '*))
3729 (let ((eltype (if (eq element-type '*)
3730 *wild-type*
3731 (specifier-type-r context element-type))))
3732 (make-array-type (canonical-array-dimensions dimensions)
3733 :complexp nil
3734 :element-type eltype
3735 :specialized-element-type (%upgraded-array-element-type
3736 eltype))))
3738 ;;;; SIMD-PACK types
3739 #!+sb-simd-pack
3740 (progn
3741 (!define-type-class simd-pack :enumerable nil
3742 :might-contain-other-types nil)
3744 ;; Though this involves a recursive call to parser, parsing context need not
3745 ;; be passed down, because an unknown-type condition is an immediate failure.
3746 (!def-type-translator simd-pack (&optional (element-type-spec '*))
3747 (if (eql element-type-spec '*)
3748 (%make-simd-pack-type *simd-pack-element-types*)
3749 (make-simd-pack-type (single-value-specifier-type element-type-spec))))
3751 (!define-type-method (simd-pack :negate) (type)
3752 (let ((remaining (set-difference *simd-pack-element-types*
3753 (simd-pack-type-element-type type)))
3754 (not-simd-pack (make-negation-type (specifier-type 'simd-pack))))
3755 (if remaining
3756 (type-union not-simd-pack (%make-simd-pack-type remaining))
3757 not-simd-pack)))
3759 (!define-type-method (simd-pack :unparse) (type)
3760 (let ((eltypes (simd-pack-type-element-type type)))
3761 (cond ((equal eltypes *simd-pack-element-types*)
3762 'simd-pack)
3763 ((= 1 (length eltypes))
3764 `(simd-pack ,(first eltypes)))
3766 `(or ,@(mapcar (lambda (eltype)
3767 `(simd-pack ,eltype))
3768 eltypes))))))
3770 (!define-type-method (simd-pack :simple-=) (type1 type2)
3771 (declare (type simd-pack-type type1 type2))
3772 (null (set-exclusive-or (simd-pack-type-element-type type1)
3773 (simd-pack-type-element-type type2))))
3775 (!define-type-method (simd-pack :simple-subtypep) (type1 type2)
3776 (declare (type simd-pack-type type1 type2))
3777 (subsetp (simd-pack-type-element-type type1)
3778 (simd-pack-type-element-type type2)))
3780 (!define-type-method (simd-pack :simple-union2) (type1 type2)
3781 (declare (type simd-pack-type type1 type2))
3782 (%make-simd-pack-type (union (simd-pack-type-element-type type1)
3783 (simd-pack-type-element-type type2))))
3785 (!define-type-method (simd-pack :simple-intersection2) (type1 type2)
3786 (declare (type simd-pack-type type1 type2))
3787 (let ((intersection (intersection (simd-pack-type-element-type type1)
3788 (simd-pack-type-element-type type2))))
3789 (if intersection
3790 (%make-simd-pack-type intersection)
3791 *empty-type*)))
3793 (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
3795 ;;;; utilities shared between cross-compiler and target system
3797 ;;; Does the type derived from compilation of an actual function
3798 ;;; definition satisfy declarations of a function's type?
3799 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3800 (declare (type ctype defined-ftype declared-ftype))
3801 (flet ((is-built-in-class-function-p (ctype)
3802 (and (built-in-classoid-p ctype)
3803 (eq (built-in-classoid-name ctype) 'function))))
3804 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3805 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3806 (is-built-in-class-function-p declared-ftype)
3807 ;; In that case, any definition satisfies the declaration.
3809 (;; It's not clear whether or how DEFINED-FTYPE might be
3810 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3811 ;; invalid, so let's handle that case too, just in case.
3812 (is-built-in-class-function-p defined-ftype)
3813 ;; No matter what DECLARED-FTYPE might be, we can't prove
3814 ;; that an object of type FUNCTION doesn't satisfy it, so
3815 ;; we return success no matter what.
3817 (;; Otherwise both of them must be FUN-TYPE objects.
3819 ;; FIXME: For now we only check compatibility of the return
3820 ;; type, not argument types, and we don't even check the
3821 ;; return type very precisely (as per bug 94a). It would be
3822 ;; good to do a better job. Perhaps to check the
3823 ;; compatibility of the arguments, we should (1) redo
3824 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3825 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3826 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3827 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3828 (values-types-equal-or-intersect
3829 (fun-type-returns defined-ftype)
3830 (fun-type-returns declared-ftype))))))
3832 ;;; This messy case of CTYPE for NUMBER is shared between the
3833 ;;; cross-compiler and the target system.
3834 (defun ctype-of-number (x)
3835 (let ((num (if (complexp x) (realpart x) x)))
3836 (multiple-value-bind (complexp low high)
3837 (if (complexp x)
3838 (let ((imag (imagpart x)))
3839 (values :complex (min num imag) (max num imag)))
3840 (values :real num num))
3841 (make-numeric-type :class (etypecase num
3842 (integer (if (complexp x)
3843 (if (integerp (imagpart x))
3844 'integer
3845 'rational)
3846 'integer))
3847 (rational 'rational)
3848 (float 'float))
3849 :format (and (floatp num) (float-format-name num))
3850 :complexp complexp
3851 :low low
3852 :high high))))
3854 ;;; The following function is a generic driver for approximating
3855 ;;; set-valued functions over types. Putting this here because it'll
3856 ;;; probably be useful for a lot of type analyses.
3858 ;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
3860 ;;; We compute an over or under-approximation of the set
3862 ;;; F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
3864 ;;; via set-valued approximations of f, OVER and UNDER.
3866 ;;; These functions must have the property that
3867 ;;; Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
3868 ;;; Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
3870 ;;; The driver is also parameterised over the finite set
3871 ;;; representation.
3873 ;;; Union, intersection and difference are binary functions to compute
3874 ;;; set union, intersection and difference. Top and bottom are the
3875 ;;; concrete representations for the universe and empty sets; we never
3876 ;;; call the set functions on top or bottom, so it's safe to use
3877 ;;; special values there.
3879 ;;; Arguments:
3881 ;;; TYPE: the ctype for which we wish to approximate F(TYPE)
3882 ;;; OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
3883 ;;; You usually want T.
3884 ;;; UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
3885 ;;; Conform to cl::(union/intersection/set-difference). Passing NIL will
3886 ;;; disable some cleverness and result in quicker computation of coarser
3887 ;;; approximations. However, passing difference without union and intersection
3888 ;;; will probably not end well.
3889 ;;; TOP/BOTTOM: concrete representation of the universe and empty set. Finite
3890 ;;; set operations are never called on TOP/BOTTOM, so it's safe to use special
3891 ;;; values there.
3892 ;;; OVER/UNDER: the set-valued approximations of F.
3894 ;;; Implementation details.
3896 ;;; It's a straightforward walk down the type.
3897 ;;; Union types -> take the union of children, intersection ->
3898 ;;; intersect. There is some complication for negation types: we must
3899 ;;; not only negate the result, but also flip from overapproximating
3900 ;;; to underapproximating in the children (or vice versa).
3902 ;;; We represent sets as a pair of (negate-p finite-set) in order to
3903 ;;; support negation types.
3905 (declaim (inline generic-abstract-type-function))
3906 (defun generic-abstract-type-function
3907 (type overapproximate
3908 union intersection difference
3909 top bottom
3910 over under)
3911 (labels ((union* (x y)
3912 ;; wrappers to avoid calling union/intersection on
3913 ;; top/bottom.
3914 (cond ((or (eql x top)
3915 (eql y top))
3916 top)
3917 ((eql x bottom) y)
3918 ((eql y bottom) x)
3920 (funcall union x y))))
3921 (intersection* (x y)
3922 (cond ((or (eql x bottom)
3923 (eql y bottom))
3924 bottom)
3925 ((eql x top) y)
3926 ((eql y top) x)
3928 (funcall intersection x y))))
3929 (unite (not-x-p x not-y-p y)
3930 ;; if we only have one negated set, it's x.
3931 (when not-y-p
3932 (rotatef not-x-p not-y-p)
3933 (rotatef x y))
3934 (cond ((and not-x-p not-y-p)
3935 ;; -x \/ -y = -(x /\ y)
3936 (normalize t (intersection* x y)))
3937 (not-x-p
3938 ;; -x \/ y = -(x \ y)
3939 (cond ((eql x top)
3940 (values nil y))
3941 ((or (eql y top)
3942 (eql x bottom))
3943 (values nil top))
3944 ((eql y bottom)
3945 (values t x))
3947 (normalize t
3948 (funcall difference x y)))))
3950 (values nil (union* x y)))))
3951 (intersect (not-x-p x not-y-p y)
3952 (when not-y-p
3953 (rotatef not-x-p not-y-p)
3954 (rotatef x y))
3955 (cond ((and not-x-p not-y-p)
3956 ;; -x /\ -y = -(x \/ y)
3957 (normalize t (union* x y)))
3958 (not-x-p
3959 ;; -x /\ y = y \ x
3960 (cond ((or (eql x top) (eql y bottom))
3961 (values nil bottom))
3962 ((eql x bottom)
3963 (values nil y))
3964 ((eql y top)
3965 (values t x))
3967 (values nil (funcall difference y x)))))
3969 (values nil (intersection* x y)))))
3970 (normalize (not-x-p x)
3971 ;; catch some easy cases of redundant negation.
3972 (cond ((not not-x-p)
3973 (values nil x))
3974 ((eql x top)
3975 bottom)
3976 ((eql x bottom)
3977 top)
3979 (values t x))))
3980 (default (overapproximate)
3981 ;; default value
3982 (if overapproximate top bottom))
3983 (walk-union (types overapproximate)
3984 ;; Only do this if union is provided.
3985 (unless union
3986 (return-from walk-union (default overapproximate)))
3987 ;; Reduce/union from bottom.
3988 (let ((not-acc-p nil)
3989 (acc bottom))
3990 (dolist (type types (values not-acc-p acc))
3991 (multiple-value-bind (not x)
3992 (walk type overapproximate)
3993 (setf (values not-acc-p acc)
3994 (unite not-acc-p acc not x)))
3995 ;; Early exit on top set.
3996 (when (and (eql acc top)
3997 (not not-acc-p))
3998 (return (values nil top))))))
3999 (walk-intersection (types overapproximate)
4000 ;; Skip if we don't know how to intersect sets
4001 (unless intersection
4002 (return-from walk-intersection (default overapproximate)))
4003 ;; Reduce/intersection from top
4004 (let ((not-acc-p nil)
4005 (acc top))
4006 (dolist (type types (values not-acc-p acc))
4007 (multiple-value-bind (not x)
4008 (walk type overapproximate)
4009 (setf (values not-acc-p acc)
4010 (intersect not-acc-p acc not x)))
4011 (when (and (eql acc bottom)
4012 (not not-acc-p))
4013 (return (values nil bottom))))))
4014 (walk-negate (type overapproximate)
4015 ;; Don't introduce negated types if we don't know how to
4016 ;; subtract sets.
4017 (unless difference
4018 (return-from walk-negate (default overapproximate)))
4019 (multiple-value-bind (not x)
4020 (walk type (not overapproximate))
4021 (normalize (not not) x)))
4022 (walk (type overapproximate)
4023 (typecase type
4024 (union-type
4025 (walk-union (union-type-types type) overapproximate))
4026 ((cons (member or union))
4027 (walk-union (rest type) overapproximate))
4028 (intersection-type
4029 (walk-intersection (intersection-type-types type) overapproximate))
4030 ((cons (member and intersection))
4031 (walk-intersection (rest type) overapproximate))
4032 (negation-type
4033 (walk-negate (negation-type-type type) overapproximate))
4034 ((cons (eql not))
4035 (walk-negate (second type) overapproximate))
4037 (values nil
4038 (if overapproximate
4039 (if over
4040 (funcall over type)
4041 (default t))
4042 (if under
4043 (funcall under type)
4044 (default nil))))))))
4045 (multiple-value-call #'normalize (walk type overapproximate))))
4046 (declaim (notinline generic-abstract-type-function))
4048 ;;; Standard list representation of sets. Use CL:* for the universe.
4049 (defun list-abstract-type-function (type over &key under (overapproximate t))
4050 (declare (inline generic-abstract-type-function))
4051 (generic-abstract-type-function
4052 type overapproximate
4053 #'union #'intersection #'set-difference
4054 '* nil
4055 over under))
4057 (!defun-from-collected-cold-init-forms !late-type-cold-init)
4059 #-sb-xc (!late-type-cold-init2)
4061 (/show0 "late-type.lisp end of file")