Ifdef-ize the hopscotch hash stuff for non-x86.
[sbcl.git] / src / code / irrat.lisp
blobfdd8add31092992776cd67969fbec80e21b46e4c
1 ;;;; This file contains all the irrational functions. (Actually, most
2 ;;;; of the work is done by calling out to C.)
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!KERNEL")
15 ;;;; miscellaneous constants, utility functions, and macros
17 (defconstant pi
18 #!+long-float 3.14159265358979323846264338327950288419716939937511l0
19 #!-long-float 3.14159265358979323846264338327950288419716939937511d0)
21 ;;; Make these INLINE, since the call to C is at least as compact as a
22 ;;; Lisp call, and saves number consing to boot.
23 (eval-when (:compile-toplevel :execute)
25 (sb!xc:defmacro def-math-rtn (name num-args &optional wrapper)
26 (let ((function (symbolicate "%" (string-upcase name)))
27 (args (loop for i below num-args
28 collect (intern (format nil "ARG~D" i)))))
29 `(progn
30 (declaim (inline ,function))
31 (defun ,function ,args
32 (alien-funcall
33 (extern-alien ,(format nil "~:[~;sb_~]~a" wrapper name)
34 (function double-float
35 ,@(loop repeat num-args
36 collect 'double-float)))
37 ,@args)))))
39 (defun handle-reals (function var)
40 `((((foreach fixnum single-float bignum ratio))
41 (coerce (,function (coerce ,var 'double-float)) 'single-float))
42 ((double-float)
43 (,function ,var))))
45 (defun handle-complex (form)
46 `((((foreach (complex double-float) (complex single-float) (complex rational)))
47 ,form)))
48 ) ; EVAL-WHEN
50 #!+x86 ;; for constant folding
51 (macrolet ((def (name ll)
52 `(defun ,name ,ll (,name ,@ll))))
53 (def %atan2 (x y))
54 (def %atan (x))
55 (def %tan (x))
56 (def %tan-quick (x))
57 (def %cos (x))
58 (def %cos-quick (x))
59 (def %sin (x))
60 (def %sin-quick (x))
61 (def %sqrt (x))
62 (def %log (x))
63 (def %exp (x)))
65 #!+(or x86-64 arm-vfp arm64) ;; for constant folding
66 (macrolet ((def (name ll)
67 `(defun ,name ,ll (,name ,@ll))))
68 (def %sqrt (x)))
70 ;;;; stubs for the Unix math library
71 ;;;;
72 ;;;; Many of these are unnecessary on the X86 because they're built
73 ;;;; into the FPU.
75 ;;; trigonometric
76 #!-x86 (def-math-rtn "sin" 1)
77 #!-x86 (def-math-rtn "cos" 1)
78 #!-x86 (def-math-rtn "tan" 1)
79 #!-x86 (def-math-rtn "atan" 1)
80 #!-x86 (def-math-rtn "atan2" 2)
82 (def-math-rtn "acos" 1 #!+win32 t)
83 (def-math-rtn "asin" 1 #!+win32 t)
84 (def-math-rtn "cosh" 1 #!+win32 t)
85 (def-math-rtn "sinh" 1 #!+win32 t)
86 (def-math-rtn "tanh" 1 #!+win32 t)
87 (def-math-rtn "asinh" 1 #!+win32 t)
88 (def-math-rtn "acosh" 1 #!+win32 t)
89 (def-math-rtn "atanh" 1 #!+win32 t)
91 ;;; exponential and logarithmic
92 (def-math-rtn "hypot" 2 #!+win32 t)
93 #!-x86 (def-math-rtn "exp" 1)
94 #!-x86 (def-math-rtn "log" 1)
95 #!-x86 (def-math-rtn "log10" 1)
96 (def-math-rtn "pow" 2)
97 #!-(or x86 x86-64 arm-vfp arm64) (def-math-rtn "sqrt" 1)
98 #!-x86 (def-math-rtn "log1p" 1)
101 ;;;; power functions
103 (defun exp (number)
104 "Return e raised to the power NUMBER."
105 (declare (explicit-check))
106 (number-dispatch ((number number))
107 (handle-reals %exp number)
108 (handle-complex
109 (* (exp (realpart number))
110 (cis (imagpart number))))))
112 ;;; INTEXP -- Handle the rational base, integer power case.
113 ;;; This function precisely calculates base raised to an integral
114 ;;; power. It separates the cases by the sign of power, for efficiency
115 ;;; reasons, as powers can be calculated more efficiently if power is
116 ;;; a positive integer. Values of power are calculated as positive
117 ;;; integers, and inverted if negative.
118 (defun intexp (base power)
119 (cond ((eql base 1)
120 base)
121 ((eql base -1)
122 (if (evenp power)
124 base))
125 ((ratiop base)
126 (let ((den (denominator base))
127 (num (numerator base)))
128 (if (minusp power)
129 (let ((negated (- power)))
130 (cond ((eql num 1)
131 (intexp den negated))
132 ((eql num -1)
133 (intexp (- den) negated))
135 (build-ratio (intexp den negated)
136 (intexp num negated)))))
137 (build-ratio (intexp num power)
138 (intexp den power)))))
139 ((minusp power)
140 (/ (intexp base (- power))))
141 ((eql base 2)
142 (ash 1 power))
144 (do ((nextn (ash power -1) (ash power -1))
145 (total (if (oddp power) base 1)
146 (if (oddp power) (* base total) total)))
147 ((zerop nextn) total)
148 (setq base (* base base))
149 (setq power nextn)))))
151 ;;; If an integer power of a rational, use INTEXP above. Otherwise, do
152 ;;; floating point stuff. If both args are real, we try %POW right
153 ;;; off, assuming it will return 0 if the result may be complex. If
154 ;;; so, we call COMPLEX-POW which directly computes the complex
155 ;;; result. We also separate the complex-real and real-complex cases
156 ;;; from the general complex case.
157 (defun expt (base power)
158 "Return BASE raised to the POWER."
159 (declare (explicit-check))
160 (if (zerop power)
161 (if (and (zerop base) (floatp power))
162 (error 'arguments-out-of-domain-error
163 :operands (list base power)
164 :operation 'expt
165 :references (list '(:ansi-cl :function expt)))
166 (let ((result (1+ (* base power))))
167 (if (and (floatp result) (float-nan-p result))
168 (float 1 result)
169 result)))
170 (labels (;; determine if the double float is an integer.
171 ;; 0 - not an integer
172 ;; 1 - an odd int
173 ;; 2 - an even int
174 (isint (ihi lo)
175 (declare (type (unsigned-byte 31) ihi)
176 (type (unsigned-byte 32) lo)
177 (optimize (speed 3) (safety 0)))
178 (let ((isint 0))
179 (declare (type fixnum isint))
180 (cond ((>= ihi #x43400000) ; exponent >= 53
181 (setq isint 2))
182 ((>= ihi #x3ff00000)
183 (let ((k (- (ash ihi -20) #x3ff))) ; exponent
184 (declare (type (mod 53) k))
185 (cond ((> k 20)
186 (let* ((shift (- 52 k))
187 (j (logand (ash lo (- shift))))
188 (j2 (ash j shift)))
189 (declare (type (mod 32) shift)
190 (type (unsigned-byte 32) j j2))
191 (when (= j2 lo)
192 (setq isint (- 2 (logand j 1))))))
193 ((= lo 0)
194 (let* ((shift (- 20 k))
195 (j (ash ihi (- shift)))
196 (j2 (ash j shift)))
197 (declare (type (mod 32) shift)
198 (type (unsigned-byte 31) j j2))
199 (when (= j2 ihi)
200 (setq isint (- 2 (logand j 1))))))))))
201 isint))
202 (real-expt (x y rtype)
203 (let ((x (coerce x 'double-float))
204 (y (coerce y 'double-float)))
205 (declare (double-float x y))
206 (let* ((x-hi (double-float-high-bits x))
207 (x-lo (double-float-low-bits x))
208 (x-ihi (logand x-hi #x7fffffff))
209 (y-hi (double-float-high-bits y))
210 (y-lo (double-float-low-bits y))
211 (y-ihi (logand y-hi #x7fffffff)))
212 (declare (type (signed-byte 32) x-hi y-hi)
213 (type (unsigned-byte 31) x-ihi y-ihi)
214 (type (unsigned-byte 32) x-lo y-lo))
215 ;; y==zero: x**0 = 1
216 (when (zerop (logior y-ihi y-lo))
217 (return-from real-expt (coerce 1d0 rtype)))
218 ;; +-NaN return x+y
219 ;; FIXME: Hardcoded qNaN/sNaN values are not portable.
220 (when (or (> x-ihi #x7ff00000)
221 (and (= x-ihi #x7ff00000) (/= x-lo 0))
222 (> y-ihi #x7ff00000)
223 (and (= y-ihi #x7ff00000) (/= y-lo 0)))
224 (return-from real-expt (coerce (+ x y) rtype)))
225 (let ((yisint (if (< x-hi 0) (isint y-ihi y-lo) 0)))
226 (declare (type fixnum yisint))
227 ;; special value of y
228 (when (and (zerop y-lo) (= y-ihi #x7ff00000))
229 ;; y is +-inf
230 (return-from real-expt
231 (cond ((and (= x-ihi #x3ff00000) (zerop x-lo))
232 ;; +-1**inf is NaN
233 (coerce (- y y) rtype))
234 ((>= x-ihi #x3ff00000)
235 ;; (|x|>1)**+-inf = inf,0
236 (if (>= y-hi 0)
237 (coerce y rtype)
238 (coerce 0 rtype)))
240 ;; (|x|<1)**-,+inf = inf,0
241 (if (< y-hi 0)
242 (coerce (- y) rtype)
243 (coerce 0 rtype))))))
245 (let ((abs-x (abs x)))
246 (declare (double-float abs-x))
247 ;; special value of x
248 (when (and (zerop x-lo)
249 (or (= x-ihi #x7ff00000) (zerop x-ihi)
250 (= x-ihi #x3ff00000)))
251 ;; x is +-0,+-inf,+-1
252 (let ((z (if (< y-hi 0)
253 (/ 1 abs-x) ; z = (1/|x|)
254 abs-x)))
255 (declare (double-float z))
256 (when (< x-hi 0)
257 (cond ((and (= x-ihi #x3ff00000) (zerop yisint))
258 ;; (-1)**non-int
259 (let ((y*pi (* y pi)))
260 (declare (double-float y*pi))
261 (return-from real-expt
262 (complex
263 (coerce (%cos y*pi) rtype)
264 (coerce (%sin y*pi) rtype)))))
265 ((= yisint 1)
266 ;; (x<0)**odd = -(|x|**odd)
267 (setq z (- z)))))
268 (return-from real-expt (coerce z rtype))))
270 (if (>= x-hi 0)
271 ;; x>0
272 (coerce (%pow x y) rtype)
273 ;; x<0
274 (let ((pow (%pow abs-x y)))
275 (declare (double-float pow))
276 (case yisint
277 (1 ; odd
278 (coerce (* -1d0 pow) rtype))
279 (2 ; even
280 (coerce pow rtype))
281 (t ; non-integer
282 (let ((y*pi (* y pi)))
283 (declare (double-float y*pi))
284 (complex
285 (coerce (* pow (%cos y*pi))
286 rtype)
287 (coerce (* pow (%sin y*pi))
288 rtype))))))))))))
289 (complex-expt (base power)
290 (if (and (zerop base) (plusp (realpart power)))
291 (* base power)
292 (exp (* power (log base))))))
293 (declare (inline real-expt complex-expt))
294 (number-dispatch ((base number) (power number))
295 (((foreach fixnum (or bignum ratio) (complex rational)) integer)
296 (intexp base power))
297 (((foreach single-float double-float) rational)
298 (real-expt base power '(dispatch-type base)))
299 (((foreach fixnum (or bignum ratio) single-float)
300 (foreach ratio single-float))
301 (real-expt base power 'single-float))
302 (((foreach fixnum (or bignum ratio) single-float double-float)
303 double-float)
304 (real-expt base power 'double-float))
305 ((double-float single-float)
306 (real-expt base power 'double-float))
307 ;; Handle (expt <complex> <rational>), except the case dealt with
308 ;; in the first clause above, (expt <(complex rational)> <integer>).
309 (((foreach (complex rational))
310 ratio)
311 (* (expt (abs base) power)
312 (cis (* power (phase base)))))
313 (((foreach (complex single-float) (complex double-float))
314 (foreach fixnum (or bignum ratio)))
315 (* (expt (abs base) power)
316 (cis (* power (phase base)))))
317 ;; The next three clauses handle (expt <real> <complex>).
318 (((foreach fixnum (or bignum ratio) single-float)
319 (foreach (complex single-float) (complex rational)))
320 (complex-expt base power))
321 (((foreach fixnum (or bignum ratio) single-float)
322 (complex double-float))
323 (complex-expt (coerce base 'double-float) power))
324 ((double-float complex)
325 (complex-expt base power))
326 ;; The next three clauses handle (expt <complex> <float>) and
327 ;; (expt <complex> <complex>).
328 (((foreach (complex single-float) (complex rational))
329 (foreach (complex single-float) (complex rational) single-float))
330 (complex-expt base power))
331 (((foreach (complex single-float) (complex rational))
332 (foreach (complex double-float) double-float))
333 (complex-expt (coerce base '(complex double-float)) power))
334 (((complex double-float)
335 (foreach complex double-float single-float))
336 (complex-expt base power))))))
338 ;;; FIXME: Maybe rename this so that it's clearer that it only works
339 ;;; on integers?
340 (defun log2 (x)
341 (declare (type integer x))
342 ;; CMUCL comment:
344 ;; Write x = 2^n*f where 1/2 < f <= 1. Then log2(x) = n +
345 ;; log2(f). So we grab the top few bits of x and scale that
346 ;; appropriately, take the log of it and add it to n.
348 ;; Motivated by an attempt to get LOG to work better on bignums.
349 (let ((n (integer-length x)))
350 (if (< n sb!vm:double-float-digits)
351 (log (coerce x 'double-float) 2.0d0)
352 (let ((f (ldb (byte sb!vm:double-float-digits
353 (- n sb!vm:double-float-digits))
354 x)))
355 (+ n (log (scale-float (coerce f 'double-float)
356 (- sb!vm:double-float-digits))
357 2.0d0))))))
359 (defun log (number &optional (base nil base-p))
360 "Return the logarithm of NUMBER in the base BASE, which defaults to e."
361 (declare (explicit-check))
362 (if base-p
363 (cond
364 ((zerop base)
365 (if (or (typep number 'double-float) (typep base 'double-float))
366 0.0d0
367 0.0f0))
368 ((and (typep number '(integer (0) *))
369 (typep base '(integer (0) *)))
370 (coerce (/ (log2 number) (log2 base)) 'single-float))
371 ((and (typep number 'integer) (typep base 'double-float))
372 ;; No single float intermediate result
373 (/ (log2 number) (log base 2.0d0)))
374 ((and (typep number 'double-float) (typep base 'integer))
375 (/ (log number 2.0d0) (log2 base)))
377 (/ (log number) (log base))))
378 (number-dispatch ((number number))
379 (((foreach fixnum bignum))
380 (if (minusp number)
381 (complex (log (- number)) (coerce pi 'single-float))
382 (coerce (/ (log2 number) (log (exp 1.0d0) 2.0d0)) 'single-float)))
383 ((ratio)
384 (if (minusp number)
385 (complex (log (- number)) (coerce pi 'single-float))
386 (let ((numerator (numerator number))
387 (denominator (denominator number)))
388 (if (= (integer-length numerator)
389 (integer-length denominator))
390 (coerce (%log1p (coerce (- number 1) 'double-float))
391 'single-float)
392 (coerce (/ (- (log2 numerator) (log2 denominator))
393 (log (exp 1.0d0) 2.0d0))
394 'single-float)))))
395 (((foreach single-float double-float))
396 ;; Is (log -0) -infinity (libm.a) or -infinity + i*pi (Kahan)?
397 ;; Since this doesn't seem to be an implementation issue
398 ;; I (pw) take the Kahan result.
399 (if (< (float-sign number)
400 (coerce 0 '(dispatch-type number)))
401 (complex (log (- number)) (coerce pi '(dispatch-type number)))
402 (coerce (%log (coerce number 'double-float))
403 '(dispatch-type number))))
404 ((complex)
405 (complex-log number)))))
407 (defun sqrt (number)
408 "Return the square root of NUMBER."
409 (declare (explicit-check))
410 (number-dispatch ((number number))
411 (((foreach fixnum bignum ratio))
412 (if (minusp number)
413 (complex 0f0
414 (coerce (%sqrt (- (coerce number 'double-float))) 'single-float))
415 (coerce (%sqrt (coerce number 'double-float)) 'single-float)))
416 (((foreach single-float double-float))
417 (if (minusp number)
418 (complex (coerce 0.0 '(dispatch-type number))
419 (coerce (%sqrt (- (coerce number 'double-float)))
420 '(dispatch-type number)))
421 (coerce (%sqrt (coerce number 'double-float))
422 '(dispatch-type number))))
423 ((complex)
424 (complex-sqrt number))))
426 ;;;; trigonometic and related functions
428 (defun abs (number)
429 "Return the absolute value of the number."
430 (declare (explicit-check))
431 (number-dispatch ((number number))
432 (((foreach single-float double-float fixnum rational))
433 (abs number))
434 (handle-complex
435 (let ((rx (realpart number))
436 (ix (imagpart number)))
437 (etypecase rx
438 (rational
439 (sqrt (+ (* rx rx) (* ix ix))))
440 (single-float
441 (coerce (%hypot (coerce rx 'double-float)
442 (coerce (truly-the single-float ix) 'double-float))
443 'single-float))
444 (double-float
445 (%hypot rx (truly-the double-float ix))))))))
447 (defun phase (number)
448 "Return the angle part of the polar representation of a complex number.
449 For complex numbers, this is (atan (imagpart number) (realpart number)).
450 For non-complex positive numbers, this is 0. For non-complex negative
451 numbers this is PI."
452 (declare (explicit-check))
453 (number-dispatch ((number number))
454 ((rational)
455 (if (minusp number)
456 (coerce pi 'single-float)
457 0.0f0))
458 ((single-float)
459 (if (minusp (float-sign number))
460 (coerce pi 'single-float)
461 0.0f0))
462 ((double-float)
463 (if (minusp (float-sign number))
464 (coerce pi 'double-float)
465 0.0d0))
466 (handle-complex
467 (atan (imagpart number) (realpart number)))))
469 (defun sin (number)
470 "Return the sine of NUMBER."
471 (declare (explicit-check))
472 (number-dispatch ((number number))
473 (handle-reals %sin number)
474 (handle-complex
475 (let ((x (realpart number))
476 (y (imagpart number)))
477 (complex (* (sin x) (cosh y))
478 (* (cos x) (sinh y)))))))
480 (defun cos (number)
481 "Return the cosine of NUMBER."
482 (declare (explicit-check))
483 (number-dispatch ((number number))
484 (handle-reals %cos number)
485 (handle-complex
486 (let ((x (realpart number))
487 (y (imagpart number)))
488 (complex (* (cos x) (cosh y))
489 (- (* (sin x) (sinh y))))))))
491 (defun tan (number)
492 "Return the tangent of NUMBER."
493 (declare (explicit-check))
494 (number-dispatch ((number number))
495 (handle-reals %tan number)
496 (handle-complex
497 ;; tan z = -i * tanh(i*z)
498 (let* ((result (complex-tanh (complex (- (imagpart number))
499 (realpart number)))))
500 (complex (imagpart result)
501 (- (realpart result)))))))
503 (defun cis (theta)
504 "Return cos(Theta) + i sin(Theta), i.e. exp(i Theta)."
505 (declare (explicit-check ))
506 (number-dispatch ((theta real))
507 (((foreach single-float double-float rational))
508 (complex (cos theta) (sin theta)))))
510 (defun asin (number)
511 "Return the arc sine of NUMBER."
512 (declare (explicit-check))
513 (number-dispatch ((number number))
514 ((rational)
515 (if (or (> number 1) (< number -1))
516 (complex-asin number)
517 (coerce (%asin (coerce number 'double-float)) 'single-float)))
518 (((foreach single-float double-float))
519 (if (or (> number (coerce 1 '(dispatch-type number)))
520 (< number (coerce -1 '(dispatch-type number))))
521 (complex-asin (complex number))
522 (coerce (%asin (coerce number 'double-float))
523 '(dispatch-type number))))
524 ((complex)
525 (complex-asin number))))
527 (defun acos (number)
528 "Return the arc cosine of NUMBER."
529 (declare (explicit-check))
530 (number-dispatch ((number number))
531 ((rational)
532 (if (or (> number 1) (< number -1))
533 (complex-acos number)
534 (coerce (%acos (coerce number 'double-float)) 'single-float)))
535 (((foreach single-float double-float))
536 (if (or (> number (coerce 1 '(dispatch-type number)))
537 (< number (coerce -1 '(dispatch-type number))))
538 (complex-acos (complex number))
539 (coerce (%acos (coerce number 'double-float))
540 '(dispatch-type number))))
541 ((complex)
542 (complex-acos number))))
544 (defun atan (y &optional (x nil xp))
545 "Return the arc tangent of Y if X is omitted or Y/X if X is supplied."
546 (declare (explicit-check))
547 (if xp
548 (flet ((atan2 (y x)
549 (declare (type double-float y x)
550 (values double-float))
551 (if (zerop x)
552 (if (zerop y)
553 (if (plusp (float-sign x))
555 (float-sign y pi))
556 (float-sign y (/ pi 2)))
557 (%atan2 y x))))
558 (number-dispatch ((y real) (x real))
559 ((double-float
560 (foreach double-float single-float fixnum bignum ratio))
561 (atan2 y (coerce x 'double-float)))
562 (((foreach single-float fixnum bignum ratio)
563 double-float)
564 (atan2 (coerce y 'double-float) x))
565 (((foreach single-float fixnum bignum ratio)
566 (foreach single-float fixnum bignum ratio))
567 (coerce (atan2 (coerce y 'double-float) (coerce x 'double-float))
568 'single-float))))
569 (number-dispatch ((y number))
570 (handle-reals %atan y)
571 ((complex)
572 (complex-atan y)))))
574 ;;; It seems that every target system has a C version of sinh, cosh,
575 ;;; and tanh. Let's use these for reals because the original
576 ;;; implementations based on the definitions lose big in round-off
577 ;;; error. These bad definitions also mean that sin and cos for
578 ;;; complex numbers can also lose big.
580 (defun sinh (number)
581 "Return the hyperbolic sine of NUMBER."
582 (declare (explicit-check))
583 (number-dispatch ((number number))
584 (handle-reals %sinh number)
585 (handle-complex
586 (let ((x (realpart number))
587 (y (imagpart number)))
588 (complex (* (sinh x) (cos y))
589 (* (cosh x) (sin y)))))))
591 (defun cosh (number)
592 "Return the hyperbolic cosine of NUMBER."
593 (declare (explicit-check))
594 (number-dispatch ((number number))
595 (handle-reals %cosh number)
596 (handle-complex
597 (let ((x (realpart number))
598 (y (imagpart number)))
599 (complex (* (cosh x) (cos y))
600 (* (sinh x) (sin y)))))))
602 (defun tanh (number)
603 "Return the hyperbolic tangent of NUMBER."
604 (declare (explicit-check))
605 (number-dispatch ((number number))
606 (handle-reals %tanh number)
607 ((complex)
608 (complex-tanh number))))
610 (defun asinh (number)
611 "Return the hyperbolic arc sine of NUMBER."
612 (declare (explicit-check))
613 (number-dispatch ((number number))
614 (handle-reals %asinh number)
615 ((complex)
616 (complex-asinh number))))
618 (defun acosh (number)
619 "Return the hyperbolic arc cosine of NUMBER."
620 (declare (explicit-check))
621 (number-dispatch ((number number))
622 ((rational)
623 ;; acosh is complex if number < 1
624 (if (< number 1)
625 (complex-acosh number)
626 (coerce (%acosh (coerce number 'double-float)) 'single-float)))
627 (((foreach single-float double-float))
628 (if (< number (coerce 1 '(dispatch-type number)))
629 (complex-acosh (complex number))
630 (coerce (%acosh (coerce number 'double-float))
631 '(dispatch-type number))))
632 ((complex)
633 (complex-acosh number))))
635 (defun atanh (number)
636 "Return the hyperbolic arc tangent of NUMBER."
637 (declare (explicit-check))
638 (number-dispatch ((number number))
639 ((rational)
640 ;; atanh is complex if |number| > 1
641 (if (or (> number 1) (< number -1))
642 (complex-atanh number)
643 (coerce (%atanh (coerce number 'double-float)) 'single-float)))
644 (((foreach single-float double-float))
645 (if (or (> number (coerce 1 '(dispatch-type number)))
646 (< number (coerce -1 '(dispatch-type number))))
647 (complex-atanh (complex number))
648 (coerce (%atanh (coerce number 'double-float))
649 '(dispatch-type number))))
650 ((complex)
651 (complex-atanh number))))
654 ;;;; not-OLD-SPECFUN stuff
655 ;;;;
656 ;;;; (This was conditional on #-OLD-SPECFUN in the CMU CL sources,
657 ;;;; but OLD-SPECFUN was mentioned nowhere else, so it seems to be
658 ;;;; the standard special function system.)
659 ;;;;
660 ;;;; This is a set of routines that implement many elementary
661 ;;;; transcendental functions as specified by ANSI Common Lisp. The
662 ;;;; implementation is based on Kahan's paper.
663 ;;;;
664 ;;;; I believe I have accurately implemented the routines and are
665 ;;;; correct, but you may want to check for your self.
666 ;;;;
667 ;;;; These functions are written for CMU Lisp and take advantage of
668 ;;;; some of the features available there. It may be possible,
669 ;;;; however, to port this to other Lisps.
670 ;;;;
671 ;;;; Some functions are significantly more accurate than the original
672 ;;;; definitions in CMU Lisp. In fact, some functions in CMU Lisp
673 ;;;; give the wrong answer like (acos #c(-2.0 0.0)), where the true
674 ;;;; answer is pi + i*log(2-sqrt(3)).
675 ;;;;
676 ;;;; All of the implemented functions will take any number for an
677 ;;;; input, but the result will always be a either a complex
678 ;;;; single-float or a complex double-float.
679 ;;;;
680 ;;;; general functions:
681 ;;;; complex-sqrt
682 ;;;; complex-log
683 ;;;; complex-atanh
684 ;;;; complex-tanh
685 ;;;; complex-acos
686 ;;;; complex-acosh
687 ;;;; complex-asin
688 ;;;; complex-asinh
689 ;;;; complex-atan
690 ;;;;
691 ;;;; utility functions:
692 ;;;; logb
693 ;;;;
694 ;;;; internal functions:
695 ;;;; square coerce-to-complex-type cssqs
696 ;;;;
697 ;;;; references:
698 ;;;; Kahan, W. "Branch Cuts for Complex Elementary Functions, or Much
699 ;;;; Ado About Nothing's Sign Bit" in Iserles and Powell (eds.) "The
700 ;;;; State of the Art in Numerical Analysis", pp. 165-211, Clarendon
701 ;;;; Press, 1987
702 ;;;;
703 ;;;; The original CMU CL code requested:
704 ;;;; Please send any bug reports, comments, or improvements to
705 ;;;; Raymond Toy at <email address deleted during 2002 spam avalanche>.
707 ;;; FIXME: In SBCL, the floating point infinity constants like
708 ;;; SB!EXT:DOUBLE-FLOAT-POSITIVE-INFINITY aren't available as
709 ;;; constants at cross-compile time, because the cross-compilation
710 ;;; host might not have support for floating point infinities. Thus,
711 ;;; they're effectively implemented as special variable references,
712 ;;; and the code below which uses them might be unnecessarily
713 ;;; inefficient. Perhaps some sort of MAKE-LOAD-TIME-VALUE hackery
714 ;;; should be used instead? (KLUDGED 2004-03-08 CSR, by replacing the
715 ;;; special variable references with (probably equally slow)
716 ;;; constructors)
718 ;;; FIXME: As of 2004-05, when PFD noted that IMAGPART and COMPLEX
719 ;;; differ in their interpretations of the real line, IMAGPART was
720 ;;; patch, which without a certain amount of effort would have altered
721 ;;; all the branch cut treatment. Clients of these COMPLEX- routines
722 ;;; were patched to use explicit COMPLEX, rather than implicitly
723 ;;; passing in real numbers for treatment with IMAGPART, and these
724 ;;; COMPLEX- functions altered to require arguments of type COMPLEX;
725 ;;; however, someone needs to go back to Kahan for the definitive
726 ;;; answer for treatment of negative real floating point numbers and
727 ;;; branch cuts. If adjustment is needed, it is probably the removal
728 ;;; of explicit calls to COMPLEX in the clients of irrational
729 ;;; functions. -- a slightly bitter CSR, 2004-05-16
731 (declaim (inline square))
732 (defun square (x)
733 (declare (double-float x))
734 (* x x))
736 ;;; original CMU CL comment, apparently re. LOGB and
737 ;;; perhaps CSSQS:
738 ;;; If you have these functions in libm, perhaps they should be used
739 ;;; instead of these Lisp versions. These versions are probably good
740 ;;; enough, especially since they are portable.
742 ;;; This is like LOGB, but X is not infinity and non-zero and not a
743 ;;; NaN, so we can always return an integer.
744 (declaim (inline logb-finite))
745 (defun logb-finite (x)
746 (declare (type double-float x))
747 (multiple-value-bind (signif exponent sign)
748 (decode-float x)
749 (declare (ignore signif sign))
750 ;; DECODE-FLOAT is almost right, except that the exponent is off
751 ;; by one.
752 (1- exponent)))
754 ;;; Compute an integer N such that 1 <= |2^N * x| < 2.
755 ;;; For the special cases, the following values are used:
756 ;;; x logb
757 ;;; NaN NaN
758 ;;; +/- infinity +infinity
759 ;;; 0 -infinity
760 (defun logb (x)
761 (declare (type double-float x))
762 (cond ((float-nan-p x)
764 ((float-infinity-p x)
765 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
766 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0))
767 ((zerop x)
768 ;; The answer is negative infinity, but we are supposed to
769 ;; signal divide-by-zero, so do the actual division
770 (/ -1.0d0 x)
773 (logb-finite x))))
775 ;;; This function is used to create a complex number of the
776 ;;; appropriate type:
777 ;;; Create complex number with real part X and imaginary part Y
778 ;;; such that has the same type as Z. If Z has type (complex
779 ;;; rational), the X and Y are coerced to single-float.
780 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
781 (error "needs work for long float support"))
782 (declaim (inline coerce-to-complex-type))
783 (defun coerce-to-complex-type (x y z)
784 (declare (double-float x y)
785 (number z))
786 (if (typep (realpart z) 'double-float)
787 (complex x y)
788 ;; Convert anything that's not already a DOUBLE-FLOAT (because
789 ;; the initial argument was a (COMPLEX DOUBLE-FLOAT) and we
790 ;; haven't done anything to lose precision) to a SINGLE-FLOAT.
791 (complex (float x 1f0)
792 (float y 1f0))))
794 ;;; Compute |(x+i*y)/2^k|^2 scaled to avoid over/underflow. The
795 ;;; result is r + i*k, where k is an integer.
796 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
797 (error "needs work for long float support"))
798 (defun cssqs (z)
799 (declare (muffle-conditions t))
800 (let ((x (float (realpart z) 1d0))
801 (y (float (imagpart z) 1d0)))
802 ;; Would this be better handled using an exception handler to
803 ;; catch the overflow or underflow signal? For now, we turn all
804 ;; traps off and look at the accrued exceptions to see if any
805 ;; signal would have been raised.
806 (with-float-traps-masked (:underflow :overflow)
807 (let ((rho (+ (square x) (square y))))
808 (declare (optimize (speed 3) (space 0)))
809 (cond ((and (or (float-nan-p rho)
810 (float-infinity-p rho))
811 (or (float-infinity-p (abs x))
812 (float-infinity-p (abs y))))
813 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
814 (values
815 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0)
817 ((let ((threshold
818 ;; (/ least-positive-double-float double-float-epsilon)
819 (load-time-value
820 #!-long-float
821 (make-double-float #x1fffff #xfffffffe)
822 #!+long-float
823 (error "(/ least-positive-long-float long-float-epsilon)")))
824 (traps (ldb sb!vm::float-sticky-bits
825 (sb!vm:floating-point-modes))))
826 ;; Overflow raised or (underflow raised and rho <
827 ;; lambda/eps)
828 (or (not (zerop (logand sb!vm:float-overflow-trap-bit traps)))
829 (and (not (zerop (logand sb!vm:float-underflow-trap-bit
830 traps)))
831 (< rho threshold))))
832 ;; If we're here, neither x nor y are infinity and at
833 ;; least one is non-zero.. Thus logb returns a nice
834 ;; integer.
835 (let ((k (- (logb-finite (max (abs x) (abs y))))))
836 (values (+ (square (scale-float x k))
837 (square (scale-float y k)))
838 (- k))))
840 (values rho 0)))))))
842 ;;; principal square root of Z
844 ;;; Z may be RATIONAL or COMPLEX; the result is always a COMPLEX.
845 (defun complex-sqrt (z)
846 ;; KLUDGE: Here and below, we can't just declare Z to be of type
847 ;; COMPLEX, because one-arg COMPLEX on rationals returns a rational.
848 ;; Since there isn't a rational negative zero, this is OK from the
849 ;; point of view of getting the right answer in the face of branch
850 ;; cuts, but declarations of the form (OR RATIONAL COMPLEX) are
851 ;; still ugly. -- CSR, 2004-05-16
852 (declare (type (or complex rational) z))
853 (multiple-value-bind (rho k)
854 (cssqs z)
855 (declare (type (or (member 0d0) (double-float 0d0)) rho)
856 (type fixnum k))
857 (let ((x (float (realpart z) 1.0d0))
858 (y (float (imagpart z) 1.0d0))
859 (eta 0d0)
860 (nu 0d0))
861 (declare (double-float x y eta nu)
862 ;; get maybe-inline functions inlined.
863 (optimize (space 0)))
864 (if (not (float-nan-p x))
865 (setf rho (+ (scale-float (abs x) (- k)) (sqrt rho))))
867 (cond ((oddp k)
868 (setf k (ash k -1)))
870 (setf k (1- (ash k -1)))
871 (setf rho (+ rho rho))))
873 (setf rho (scale-float (sqrt rho) k))
875 (setf eta rho)
876 (setf nu y)
878 (when (/= rho 0d0)
879 (when (not (float-infinity-p (abs nu)))
880 (setf nu (/ (/ nu rho) 2d0)))
881 (when (< x 0d0)
882 (setf eta (abs nu))
883 (setf nu (float-sign y rho))))
884 (coerce-to-complex-type eta nu z))))
886 ;;; log of Z = log |Z| + i * arg Z
888 ;;; Z may be any number, but the result is always a complex.
889 (defun complex-log (z)
890 (declare (muffle-conditions t))
891 (declare (type (or rational complex) z))
892 ;; The constants t0, t1, t2 should be evaluated to machine
893 ;; precision. In addition, Kahan says the accuracy of log1p
894 ;; influences the choices of these constants but doesn't say how to
895 ;; choose them. We'll just assume his choices matches our
896 ;; implementation of log1p.
897 (let ((t0 (load-time-value
898 #!-long-float
899 (make-double-float #x3fe6a09e #x667f3bcd)
900 #!+long-float
901 (error "(/ (sqrt 2l0))")))
902 ;; KLUDGE: if repeatable fasls start failing under some weird
903 ;; xc host, this 1.2d0 might be a good place to examine: while
904 ;; it _should_ be the same in all vaguely-IEEE754 hosts, 1.2
905 ;; is not exactly representable, so something could go wrong.
906 (t1 1.2d0)
907 (t2 3d0)
908 (ln2 (load-time-value
909 #!-long-float
910 (make-double-float #x3fe62e42 #xfefa39ef)
911 #!+long-float
912 (error "(log 2l0)")))
913 (x (float (realpart z) 1.0d0))
914 (y (float (imagpart z) 1.0d0)))
915 (multiple-value-bind (rho k)
916 (cssqs z)
917 (declare (optimize (speed 3)))
918 (let ((beta (max (abs x) (abs y)))
919 (theta (min (abs x) (abs y))))
920 (coerce-to-complex-type (if (and (zerop k)
921 (< t0 beta)
922 (or (<= beta t1)
923 (< rho t2)))
924 (/ (%log1p (+ (* (- beta 1.0d0)
925 (+ beta 1.0d0))
926 (* theta theta)))
927 2d0)
928 (+ (/ (log rho) 2d0)
929 (* k ln2)))
930 (atan y x)
931 z)))))
933 ;;; KLUDGE: Let us note the following "strange" behavior. atanh 1.0d0
934 ;;; is +infinity, but the following code returns approx 176 + i*pi/4.
935 ;;; The reason for the imaginary part is caused by the fact that arg
936 ;;; i*y is never 0 since we have positive and negative zeroes. -- rtoy
937 ;;; Compute atanh z = (log(1+z) - log(1-z))/2.
938 (defun complex-atanh (z)
939 (declare (muffle-conditions t))
940 (declare (type (or rational complex) z))
941 (let* (;; constants
942 (theta (/ (sqrt most-positive-double-float) 4.0d0))
943 (rho (/ 4.0d0 (sqrt most-positive-double-float)))
944 (half-pi (/ pi 2.0d0))
945 (rp (float (realpart z) 1.0d0))
946 (beta (float-sign rp 1.0d0))
947 (x (* beta rp))
948 (y (* beta (- (float (imagpart z) 1.0d0))))
949 (eta 0.0d0)
950 (nu 0.0d0))
951 ;; Shouldn't need this declare.
952 (declare (double-float x y))
953 (locally
954 (declare (optimize (speed 3)))
955 (cond ((or (> x theta)
956 (> (abs y) theta))
957 ;; To avoid overflow...
958 (setf nu (float-sign y half-pi))
959 ;; ETA is real part of 1/(x + iy). This is x/(x^2+y^2),
960 ;; which can cause overflow. Arrange this computation so
961 ;; that it won't overflow.
962 (setf eta (let* ((x-bigger (> x (abs y)))
963 (r (if x-bigger (/ y x) (/ x y)))
964 (d (+ 1.0d0 (* r r))))
965 (if x-bigger
966 (/ (/ x) d)
967 (/ (/ r y) d)))))
968 ((= x 1.0d0)
969 ;; Should this be changed so that if y is zero, eta is set
970 ;; to +infinity instead of approx 176? In any case
971 ;; tanh(176) is 1.0d0 within working precision.
972 (let ((t1 (+ 4d0 (square y)))
973 (t2 (+ (abs y) rho)))
974 (setf eta (log (/ (sqrt (sqrt t1))
975 (sqrt t2))))
976 (setf nu (* 0.5d0
977 (float-sign y
978 (+ half-pi (atan (* 0.5d0 t2))))))))
980 (let ((t1 (+ (abs y) rho)))
981 ;; Normal case using log1p(x) = log(1 + x)
982 (setf eta (* 0.25d0
983 (%log1p (/ (* 4.0d0 x)
984 (+ (square (- 1.0d0 x))
985 (square t1))))))
986 (setf nu (* 0.5d0
987 (atan (* 2.0d0 y)
988 (- (* (- 1.0d0 x)
989 (+ 1.0d0 x))
990 (square t1))))))))
991 (coerce-to-complex-type (* beta eta)
992 (- (* beta nu))
993 z))))
995 ;;; Compute tanh z = sinh z / cosh z.
996 (defun complex-tanh (z)
997 (declare (muffle-conditions t))
998 (declare (type (or rational complex) z))
999 (let ((x (float (realpart z) 1.0d0))
1000 (y (float (imagpart z) 1.0d0)))
1001 (locally
1002 ;; space 0 to get maybe-inline functions inlined
1003 (declare (optimize (speed 3) (space 0)))
1004 (cond ((> (abs x)
1005 (load-time-value
1006 #!-long-float
1007 (make-double-float #x406633ce #x8fb9f87e)
1008 #!+long-float
1009 (error "(/ (+ (log 2l0) (log most-positive-long-float)) 4l0)")))
1010 (coerce-to-complex-type (float-sign x)
1011 (float-sign y) z))
1013 (let* ((tv (%tan y))
1014 (beta (+ 1.0d0 (* tv tv)))
1015 (s (sinh x))
1016 (rho (sqrt (+ 1.0d0 (* s s)))))
1017 (if (float-infinity-p (abs tv))
1018 (coerce-to-complex-type (/ rho s)
1019 (/ tv)
1021 (let ((den (+ 1.0d0 (* beta s s))))
1022 (coerce-to-complex-type (/ (* beta rho s)
1023 den)
1024 (/ tv den)
1025 z)))))))))
1027 ;;; Compute acos z = pi/2 - asin z.
1029 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1030 (defun complex-acos (z)
1031 ;; Kahan says we should only compute the parts needed. Thus, the
1032 ;; REALPART's below should only compute the real part, not the whole
1033 ;; complex expression. Doing this can be important because we may get
1034 ;; spurious signals that occur in the part that we are not using.
1036 ;; However, we take a pragmatic approach and just use the whole
1037 ;; expression.
1039 ;; NOTE: The formula given by Kahan is somewhat ambiguous in whether
1040 ;; it's the conjugate of the square root or the square root of the
1041 ;; conjugate. This needs to be checked.
1043 ;; I checked. It doesn't matter because (conjugate (sqrt z)) is the
1044 ;; same as (sqrt (conjugate z)) for all z. This follows because
1046 ;; (conjugate (sqrt z)) = exp(0.5*log |z|)*exp(-0.5*j*arg z).
1048 ;; (sqrt (conjugate z)) = exp(0.5*log|z|)*exp(0.5*j*arg conj z)
1050 ;; and these two expressions are equal if and only if arg conj z =
1051 ;; -arg z, which is clearly true for all z.
1052 (declare (type (or rational complex) z))
1053 (let ((sqrt-1+z (complex-sqrt (+ 1 z)))
1054 (sqrt-1-z (complex-sqrt (- 1 z))))
1055 (with-float-traps-masked (:divide-by-zero)
1056 (complex (* 2 (atan (/ (realpart sqrt-1-z)
1057 (realpart sqrt-1+z))))
1058 (asinh (imagpart (* (conjugate sqrt-1+z)
1059 sqrt-1-z)))))))
1061 ;;; Compute acosh z = 2 * log(sqrt((z+1)/2) + sqrt((z-1)/2))
1063 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1064 (defun complex-acosh (z)
1065 (declare (type (or rational complex) z))
1066 (let ((sqrt-z-1 (complex-sqrt (- z 1)))
1067 (sqrt-z+1 (complex-sqrt (+ z 1))))
1068 (with-float-traps-masked (:divide-by-zero)
1069 (complex (asinh (realpart (* (conjugate sqrt-z-1)
1070 sqrt-z+1)))
1071 (* 2 (atan (/ (imagpart sqrt-z-1)
1072 (realpart sqrt-z+1))))))))
1074 ;;; Compute asin z = asinh(i*z)/i.
1076 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
1077 (defun complex-asin (z)
1078 (declare (type (or rational complex) z))
1079 (let ((sqrt-1-z (complex-sqrt (- 1 z)))
1080 (sqrt-1+z (complex-sqrt (+ 1 z))))
1081 (with-float-traps-masked (:divide-by-zero)
1082 (complex (atan (/ (realpart z)
1083 (realpart (* sqrt-1-z sqrt-1+z))))
1084 (asinh (imagpart (* (conjugate sqrt-1-z)
1085 sqrt-1+z)))))))
1087 ;;; Compute asinh z = log(z + sqrt(1 + z*z)).
1089 ;;; Z may be any number, but the result is always a complex.
1090 (defun complex-asinh (z)
1091 (declare (type (or rational complex) z))
1092 ;; asinh z = -i * asin (i*z)
1093 (let* ((iz (complex (- (imagpart z)) (realpart z)))
1094 (result (complex-asin iz)))
1095 (complex (imagpart result)
1096 (- (realpart result)))))
1098 ;;; Compute atan z = atanh (i*z) / i.
1100 ;;; Z may be any number, but the result is always a complex.
1101 (defun complex-atan (z)
1102 (declare (type (or rational complex) z))
1103 ;; atan z = -i * atanh (i*z)
1104 (let* ((iz (complex (- (imagpart z)) (realpart z)))
1105 (result (complex-atanh iz)))
1106 (complex (imagpart result)
1107 (- (realpart result)))))