Ifdef-ize the hopscotch hash stuff for non-x86.
[sbcl.git] / src / code / float.lisp
blobaceb0a99660ed985438987f3d65f13240dbe2c24
1 ;;;; This file contains the definitions of float-specific number
2 ;;;; support (other than irrational stuff, which is in irrat.) There is
3 ;;;; code in here that assumes there are only two float formats: IEEE
4 ;;;; single and double. (LONG-FLOAT support has been added, but bugs
5 ;;;; may still remain due to old code which assumes this dichotomy.)
7 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; more information.
9 ;;;;
10 ;;;; This software is derived from the CMU CL system, which was
11 ;;;; written at Carnegie Mellon University and released into the
12 ;;;; public domain. The software is in the public domain and is
13 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
14 ;;;; files for more information.
16 (in-package "SB!KERNEL")
18 ;;;; float predicates and environment query
20 #!-sb-fluid
21 (declaim (maybe-inline float-denormalized-p float-infinity-p float-nan-p
22 float-trapping-nan-p))
24 (defun float-denormalized-p (x)
25 "Return true if the float X is denormalized."
26 (number-dispatch ((x float))
27 ((single-float)
28 (and (zerop (ldb sb!vm:single-float-exponent-byte (single-float-bits x)))
29 (not (zerop x))))
30 ((double-float)
31 (and (zerop (ldb sb!vm:double-float-exponent-byte
32 (double-float-high-bits x)))
33 (not (zerop x))))
34 #!+(and long-float x86)
35 ((long-float)
36 (and (zerop (ldb sb!vm:long-float-exponent-byte (long-float-exp-bits x)))
37 (not (zerop x))))))
39 (defmacro !define-float-dispatching-function
40 (name doc single double #!+(and long-float x86) long)
41 `(defun ,name (x)
42 ,doc
43 (number-dispatch ((x float))
44 ((single-float)
45 (let ((bits (single-float-bits x)))
46 (and (> (ldb sb!vm:single-float-exponent-byte bits)
47 sb!vm:single-float-normal-exponent-max)
48 ,single)))
49 ((double-float)
50 (let ((hi (double-float-high-bits x))
51 (lo (double-float-low-bits x)))
52 (declare (ignorable lo))
53 (and (> (ldb sb!vm:double-float-exponent-byte hi)
54 sb!vm:double-float-normal-exponent-max)
55 ,double)))
56 #!+(and long-float x86)
57 ((long-float)
58 (let ((exp (long-float-exp-bits x))
59 (hi (long-float-high-bits x))
60 (lo (long-float-low-bits x)))
61 (declare (ignorable lo))
62 (and (> (ldb sb!vm:long-float-exponent-byte exp)
63 sb!vm:long-float-normal-exponent-max)
64 ,long))))))
66 (!define-float-dispatching-function float-infinity-p
67 "Return true if the float X is an infinity (+ or -)."
68 (zerop (ldb sb!vm:single-float-significand-byte bits))
69 (and (zerop (ldb sb!vm:double-float-significand-byte hi))
70 (zerop lo))
71 #!+(and long-float x86)
72 (and (zerop (ldb sb!vm:long-float-significand-byte hi))
73 (zerop lo)))
75 (!define-float-dispatching-function float-nan-p
76 "Return true if the float X is a NaN (Not a Number)."
77 (not (zerop (ldb sb!vm:single-float-significand-byte bits)))
78 (or (not (zerop (ldb sb!vm:double-float-significand-byte hi)))
79 (not (zerop lo)))
80 #!+(and long-float x86)
81 (or (not (zerop (ldb sb!vm:long-float-significand-byte hi)))
82 (not (zerop lo))))
84 (!define-float-dispatching-function float-trapping-nan-p
85 "Return true if the float X is a trapping NaN (Not a Number)."
86 ;; HPPA (and apparently MIPS) have trapping NaNs (SNaNs) with the
87 ;; trapping-nan-bit SET. PPC, SPARC, Alpha, and x86 (and presumably
88 ;; x86-64, ARM, and ARM64) have trapping NaNs (SNaNs) with the
89 ;; trapping-nan-bit CLEAR. Note that the given implementation
90 ;; considers infinities to be FLOAT-TRAPPING-NAN-P on most
91 ;; architectures.
92 #!-(or mips hppa)
93 (zerop (logand (ldb sb!vm:single-float-significand-byte bits)
94 sb!vm:single-float-trapping-nan-bit))
95 #!+(or mips hppa)
96 (not (zerop (logand (ldb sb!vm:single-float-significand-byte bits)
97 sb!vm:single-float-trapping-nan-bit)))
98 #!-(or mips hppa)
99 (zerop (logand (ldb sb!vm:double-float-significand-byte hi)
100 sb!vm:double-float-trapping-nan-bit))
101 #!+(or mips hppa)
102 (not (zerop (logand (ldb sb!vm:double-float-significand-byte hi)
103 sb!vm:double-float-trapping-nan-bit)))
104 #!+(and long-float x86)
105 (zerop (logand (ldb sb!vm:long-float-significand-byte hi)
106 sb!vm:long-float-trapping-nan-bit)))
108 ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the
109 ;;; actual exponent (and hence how denormalized it is), otherwise we just
110 ;;; return the number of digits or 0.
111 #!-sb-fluid (declaim (maybe-inline float-precision))
112 (defun float-precision (f)
113 "Return a non-negative number of significant digits in its float argument.
114 Will be less than FLOAT-DIGITS if denormalized or zero."
115 (declare (explicit-check))
116 (macrolet ((frob (digits bias decode)
117 `(cond ((zerop f) 0)
118 ((float-denormalized-p f)
119 (multiple-value-bind (ignore exp) (,decode f)
120 (declare (ignore ignore))
121 (truly-the fixnum
122 (+ ,digits (1- ,digits) ,bias exp))))
124 ,digits))))
125 (number-dispatch ((f float))
126 ((single-float)
127 (frob sb!vm:single-float-digits sb!vm:single-float-bias
128 integer-decode-single-denorm))
129 ((double-float)
130 (frob sb!vm:double-float-digits sb!vm:double-float-bias
131 integer-decode-double-denorm))
132 #!+long-float
133 ((long-float)
134 (frob sb!vm:long-float-digits sb!vm:long-float-bias
135 integer-decode-long-denorm)))))
137 (defun float-sign (float1 &optional (float2 (float 1 float1)))
138 "Return a floating-point number that has the same sign as
139 FLOAT1 and, if FLOAT2 is given, has the same absolute value
140 as FLOAT2."
141 (declare (float float1 float2) (explicit-check))
142 (* (if (etypecase float1
143 (single-float (minusp (single-float-bits float1)))
144 (double-float (minusp (double-float-high-bits float1)))
145 #!+long-float
146 (long-float (minusp (long-float-exp-bits float1))))
147 (float -1 float1)
148 (float 1 float1))
149 (abs float2)))
151 (defun float-format-digits (format)
152 (ecase format
153 ((short-float single-float) sb!vm:single-float-digits)
154 ((double-float #!-long-float long-float) sb!vm:double-float-digits)
155 #!+long-float
156 (long-float sb!vm:long-float-digits)))
158 #!-sb-fluid (declaim (inline float-digits float-radix))
160 (defun float-digits (f)
161 (declare (explicit-check))
162 (number-dispatch ((f float))
163 ((single-float) sb!vm:single-float-digits)
164 ((double-float) sb!vm:double-float-digits)
165 #!+long-float
166 ((long-float) sb!vm:long-float-digits)))
168 (defun float-radix (x)
169 "Return (as an integer) the radix b of its floating-point argument."
170 (declare (ignore x) (type float x))
173 ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT
175 #!-sb-fluid
176 (declaim (maybe-inline integer-decode-single-float
177 integer-decode-double-float))
179 ;;; Handle the denormalized case of INTEGER-DECODE-FLOAT for SINGLE-FLOAT.
180 (defun integer-decode-single-denorm (x)
181 (declare (type single-float x))
182 (let* ((bits (single-float-bits (abs x)))
183 (sig (ash (ldb sb!vm:single-float-significand-byte bits) 1))
184 (extra-bias 0))
185 (declare (type (unsigned-byte 24) sig)
186 (type (integer 0 23) extra-bias))
187 (loop
188 (unless (zerop (logand sig sb!vm:single-float-hidden-bit))
189 (return))
190 (setq sig (ash sig 1))
191 (incf extra-bias))
192 (values sig
193 (- (- sb!vm:single-float-bias)
194 sb!vm:single-float-digits
195 extra-bias)
196 (if (minusp (float-sign x)) -1 1))))
198 ;;; Handle the single-float case of INTEGER-DECODE-FLOAT. If an infinity or
199 ;;; NaN, error. If a denorm, call i-d-s-DENORM to handle it.
200 (defun integer-decode-single-float (x)
201 (declare (single-float x))
202 (let* ((bits (single-float-bits (abs x)))
203 (exp (ldb sb!vm:single-float-exponent-byte bits))
204 (sig (ldb sb!vm:single-float-significand-byte bits))
205 (sign (if (minusp (float-sign x)) -1 1))
206 (biased (- exp sb!vm:single-float-bias sb!vm:single-float-digits)))
207 (declare (fixnum biased))
208 (unless (<= exp sb!vm:single-float-normal-exponent-max)
209 (error "can't decode NaN or infinity: ~S" x))
210 (cond ((and (zerop exp) (zerop sig))
211 (values 0 biased sign))
212 ((< exp sb!vm:single-float-normal-exponent-min)
213 (integer-decode-single-denorm x))
215 (values (logior sig sb!vm:single-float-hidden-bit) biased sign)))))
217 ;;; like INTEGER-DECODE-SINGLE-DENORM, only doubly so
218 (defun integer-decode-double-denorm (x)
219 (declare (type double-float x))
220 (let* ((high-bits (double-float-high-bits (abs x)))
221 (sig-high (ldb sb!vm:double-float-significand-byte high-bits))
222 (low-bits (double-float-low-bits x))
223 (sign (if (minusp (float-sign x)) -1 1))
224 (biased (- (- sb!vm:double-float-bias) sb!vm:double-float-digits)))
225 (if (zerop sig-high)
226 (let ((sig low-bits)
227 (extra-bias (- sb!vm:double-float-digits 33))
228 (bit (ash 1 31)))
229 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
230 (loop
231 (unless (zerop (logand sig bit)) (return))
232 (setq sig (ash sig 1))
233 (incf extra-bias))
234 (values (ash sig (- sb!vm:double-float-digits 32))
235 (truly-the fixnum (- biased extra-bias))
236 sign))
237 (let ((sig (ash sig-high 1))
238 (extra-bias 0))
239 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
240 (loop
241 (unless (zerop (logand sig sb!vm:double-float-hidden-bit))
242 (return))
243 (setq sig (ash sig 1))
244 (incf extra-bias))
245 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
246 (truly-the fixnum (- biased extra-bias))
247 sign)))))
249 ;;; like INTEGER-DECODE-SINGLE-FLOAT, only doubly so
250 (defun integer-decode-double-float (x)
251 (declare (double-float x))
252 (let* ((abs (abs x))
253 (hi (double-float-high-bits abs))
254 (lo (double-float-low-bits abs))
255 (exp (ldb sb!vm:double-float-exponent-byte hi))
256 (sig (ldb sb!vm:double-float-significand-byte hi))
257 (sign (if (minusp (float-sign x)) -1 1))
258 (biased (- exp sb!vm:double-float-bias sb!vm:double-float-digits)))
259 (declare (fixnum biased))
260 (unless (<= exp sb!vm:double-float-normal-exponent-max)
261 (error "Can't decode NaN or infinity: ~S." x))
262 (cond ((and (zerop exp) (zerop sig) (zerop lo))
263 (values 0 biased sign))
264 ((< exp sb!vm:double-float-normal-exponent-min)
265 (integer-decode-double-denorm x))
267 (values
268 (logior (ash (logior (ldb sb!vm:double-float-significand-byte hi)
269 sb!vm:double-float-hidden-bit)
272 biased sign)))))
274 #!+(and long-float x86)
275 (defun integer-decode-long-denorm (x)
276 (declare (type long-float x))
277 (let* ((high-bits (long-float-high-bits (abs x)))
278 (sig-high (ldb sb!vm:long-float-significand-byte high-bits))
279 (low-bits (long-float-low-bits x))
280 (sign (if (minusp (float-sign x)) -1 1))
281 (biased (- (- sb!vm:long-float-bias) sb!vm:long-float-digits)))
282 (if (zerop sig-high)
283 (let ((sig low-bits)
284 (extra-bias (- sb!vm:long-float-digits 33))
285 (bit (ash 1 31)))
286 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
287 (loop
288 (unless (zerop (logand sig bit)) (return))
289 (setq sig (ash sig 1))
290 (incf extra-bias))
291 (values (ash sig (- sb!vm:long-float-digits 32))
292 (truly-the fixnum (- biased extra-bias))
293 sign))
294 (let ((sig (ash sig-high 1))
295 (extra-bias 0))
296 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
297 (loop
298 (unless (zerop (logand sig sb!vm:long-float-hidden-bit))
299 (return))
300 (setq sig (ash sig 1))
301 (incf extra-bias))
302 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
303 (truly-the fixnum (- biased extra-bias))
304 sign)))))
306 #!+(and long-float x86)
307 (defun integer-decode-long-float (x)
308 (declare (long-float x))
309 (let* ((hi (long-float-high-bits x))
310 (lo (long-float-low-bits x))
311 (exp-bits (long-float-exp-bits x))
312 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
313 (sign (if (minusp exp-bits) -1 1))
314 (biased (- exp sb!vm:long-float-bias sb!vm:long-float-digits)))
315 (declare (fixnum biased))
316 (unless (<= exp sb!vm:long-float-normal-exponent-max)
317 (error "can't decode NaN or infinity: ~S" x))
318 (cond ((and (zerop exp) (zerop hi) (zerop lo))
319 (values 0 biased sign))
320 ((< exp sb!vm:long-float-normal-exponent-min)
321 (integer-decode-long-denorm x))
323 (values (logior (ash hi 32) lo) biased sign)))))
325 ;;; Dispatch to the correct type-specific i-d-f function.
326 (defun integer-decode-float (x)
327 "Return three values:
328 1) an integer representation of the significand.
329 2) the exponent for the power of 2 that the significand must be multiplied
330 by to get the actual value. This differs from the DECODE-FLOAT exponent
331 by FLOAT-DIGITS, since the significand has been scaled to have all its
332 digits before the radix point.
333 3) -1 or 1 (i.e. the sign of the argument.)"
334 (declare (explicit-check))
335 (number-dispatch ((x float))
336 ((single-float)
337 (integer-decode-single-float x))
338 ((double-float)
339 (integer-decode-double-float x))
340 #!+long-float
341 ((long-float)
342 (integer-decode-long-float x))))
344 #!-sb-fluid (declaim (maybe-inline decode-single-float decode-double-float))
346 ;;; Handle the denormalized case of DECODE-SINGLE-FLOAT. We call
347 ;;; INTEGER-DECODE-SINGLE-DENORM and then make the result into a float.
348 (defun decode-single-denorm (x)
349 (declare (type single-float x))
350 (multiple-value-bind (sig exp sign) (integer-decode-single-denorm x)
351 (values (make-single-float
352 (dpb sig sb!vm:single-float-significand-byte
353 (dpb sb!vm:single-float-bias
354 sb!vm:single-float-exponent-byte
355 0)))
356 (truly-the fixnum (+ exp sb!vm:single-float-digits))
357 (float sign x))))
359 ;;; Handle the single-float case of DECODE-FLOAT. If an infinity or NaN,
360 ;;; error. If a denorm, call d-s-DENORM to handle it.
361 (defun decode-single-float (x)
362 (declare (single-float x))
363 (let* ((bits (single-float-bits (abs x)))
364 (exp (ldb sb!vm:single-float-exponent-byte bits))
365 (sign (float-sign x))
366 (biased (truly-the single-float-exponent
367 (- exp sb!vm:single-float-bias))))
368 (unless (<= exp sb!vm:single-float-normal-exponent-max)
369 (error "can't decode NaN or infinity: ~S" x))
370 (cond ((zerop x)
371 (values 0.0f0 biased sign))
372 ((< exp sb!vm:single-float-normal-exponent-min)
373 (decode-single-denorm x))
375 (values (make-single-float
376 (dpb sb!vm:single-float-bias
377 sb!vm:single-float-exponent-byte
378 bits))
379 biased sign)))))
381 ;;; like DECODE-SINGLE-DENORM, only doubly so
382 (defun decode-double-denorm (x)
383 (declare (double-float x))
384 (multiple-value-bind (sig exp sign) (integer-decode-double-denorm x)
385 (values (make-double-float
386 (dpb (logand (ash sig -32) (lognot sb!vm:double-float-hidden-bit))
387 sb!vm:double-float-significand-byte
388 (dpb sb!vm:double-float-bias
389 sb!vm:double-float-exponent-byte 0))
390 (ldb (byte 32 0) sig))
391 (truly-the fixnum (+ exp sb!vm:double-float-digits))
392 (float sign x))))
394 ;;; like DECODE-SINGLE-FLOAT, only doubly so
395 (defun decode-double-float (x)
396 (declare (double-float x))
397 (let* ((abs (abs x))
398 (hi (double-float-high-bits abs))
399 (lo (double-float-low-bits abs))
400 (exp (ldb sb!vm:double-float-exponent-byte hi))
401 (sign (float-sign x))
402 (biased (truly-the double-float-exponent
403 (- exp sb!vm:double-float-bias))))
404 (unless (<= exp sb!vm:double-float-normal-exponent-max)
405 (error "can't decode NaN or infinity: ~S" x))
406 (cond ((zerop x)
407 (values 0.0d0 biased sign))
408 ((< exp sb!vm:double-float-normal-exponent-min)
409 (decode-double-denorm x))
411 (values (make-double-float
412 (dpb sb!vm:double-float-bias
413 sb!vm:double-float-exponent-byte hi)
415 biased sign)))))
417 #!+(and long-float x86)
418 (defun decode-long-denorm (x)
419 (declare (long-float x))
420 (multiple-value-bind (sig exp sign) (integer-decode-long-denorm x)
421 (values (make-long-float sb!vm:long-float-bias (ash sig -32)
422 (ldb (byte 32 0) sig))
423 (truly-the fixnum (+ exp sb!vm:long-float-digits))
424 (float sign x))))
426 #!+(and long-float x86)
427 (defun decode-long-float (x)
428 (declare (long-float x))
429 (let* ((hi (long-float-high-bits x))
430 (lo (long-float-low-bits x))
431 (exp-bits (long-float-exp-bits x))
432 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
433 (sign (if (minusp exp-bits) -1l0 1l0))
434 (biased (truly-the long-float-exponent
435 (- exp sb!vm:long-float-bias))))
436 (unless (<= exp sb!vm:long-float-normal-exponent-max)
437 (error "can't decode NaN or infinity: ~S" x))
438 (cond ((zerop x)
439 (values 0.0l0 biased sign))
440 ((< exp sb!vm:long-float-normal-exponent-min)
441 (decode-long-denorm x))
443 (values (make-long-float
444 (dpb sb!vm:long-float-bias sb!vm:long-float-exponent-byte
445 exp-bits)
448 biased sign)))))
450 ;;; Dispatch to the appropriate type-specific function.
451 (defun decode-float (f)
452 "Return three values:
453 1) a floating-point number representing the significand. This is always
454 between 0.5 (inclusive) and 1.0 (exclusive).
455 2) an integer representing the exponent.
456 3) -1.0 or 1.0 (i.e. the sign of the argument.)"
457 (declare (explicit-check))
458 (number-dispatch ((f float))
459 ((single-float)
460 (decode-single-float f))
461 ((double-float)
462 (decode-double-float f))
463 #!+long-float
464 ((long-float)
465 (decode-long-float f))))
467 ;;;; SCALE-FLOAT
469 #!-sb-fluid (declaim (maybe-inline scale-single-float scale-double-float))
471 ;;; Handle float scaling where the X is denormalized or the result is
472 ;;; denormalized or underflows to 0.
473 (defun scale-float-maybe-underflow (x exp)
474 (multiple-value-bind (sig old-exp) (integer-decode-float x)
475 (let* ((digits (float-digits x))
476 (new-exp (+ exp old-exp digits
477 (etypecase x
478 (single-float sb!vm:single-float-bias)
479 (double-float sb!vm:double-float-bias))))
480 (sign (if (minusp (float-sign x)) 1 0)))
481 (cond
482 ((< new-exp
483 (etypecase x
484 (single-float sb!vm:single-float-normal-exponent-min)
485 (double-float sb!vm:double-float-normal-exponent-min)))
486 (when (sb!vm:current-float-trap :inexact)
487 (error 'floating-point-inexact :operation 'scale-float
488 :operands (list x exp)))
489 (when (sb!vm:current-float-trap :underflow)
490 (error 'floating-point-underflow :operation 'scale-float
491 :operands (list x exp)))
492 (let ((shift (1- new-exp)))
493 (if (< shift (- (1- digits)))
494 (float-sign x 0.0)
495 (etypecase x
496 (single-float (single-from-bits sign 0 (ash sig shift)))
497 (double-float (double-from-bits sign 0 (ash sig shift)))))))
499 (etypecase x
500 (single-float (single-from-bits sign new-exp sig))
501 (double-float (double-from-bits sign new-exp sig))))))))
503 ;;; Called when scaling a float overflows, or the original float was a
504 ;;; NaN or infinity. If overflow errors are trapped, then error,
505 ;;; otherwise return the appropriate infinity. If a NaN, signal or not
506 ;;; as appropriate.
507 (defun scale-float-maybe-overflow (x exp)
508 (cond
509 ((float-infinity-p x)
510 ;; Infinity is infinity, no matter how small...
512 ((float-nan-p x)
513 (when (and (float-trapping-nan-p x)
514 (sb!vm:current-float-trap :invalid))
515 (error 'floating-point-invalid-operation :operation 'scale-float
516 :operands (list x exp)))
519 (when (sb!vm:current-float-trap :overflow)
520 (error 'floating-point-overflow :operation 'scale-float
521 :operands (list x exp)))
522 (when (sb!vm:current-float-trap :inexact)
523 (error 'floating-point-inexact :operation 'scale-float
524 :operands (list x exp)))
525 (* (float-sign x)
526 (etypecase x
527 (single-float
528 ;; SINGLE-FLOAT-POSITIVE-INFINITY
529 (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0))
530 (double-float
531 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
532 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0)))))))
534 ;;; Scale a single or double float, calling the correct over/underflow
535 ;;; functions.
536 (defun scale-single-float (x exp)
537 (declare (single-float x) (integer exp))
538 (etypecase exp
539 (fixnum
540 (let* ((bits (single-float-bits x))
541 (old-exp (ldb sb!vm:single-float-exponent-byte bits))
542 (new-exp (+ old-exp exp)))
543 (cond
544 ((zerop x) x)
545 ((or (< old-exp sb!vm:single-float-normal-exponent-min)
546 (< new-exp sb!vm:single-float-normal-exponent-min))
547 (scale-float-maybe-underflow x exp))
548 ((or (> old-exp sb!vm:single-float-normal-exponent-max)
549 (> new-exp sb!vm:single-float-normal-exponent-max))
550 (scale-float-maybe-overflow x exp))
552 (make-single-float (dpb new-exp
553 sb!vm:single-float-exponent-byte
554 bits))))))
555 (unsigned-byte (scale-float-maybe-overflow x exp))
556 ((integer * 0) (scale-float-maybe-underflow x exp))))
557 (defun scale-double-float (x exp)
558 (declare (double-float x) (integer exp))
559 (etypecase exp
560 (fixnum
561 (let* ((hi (double-float-high-bits x))
562 (lo (double-float-low-bits x))
563 (old-exp (ldb sb!vm:double-float-exponent-byte hi))
564 (new-exp (+ old-exp exp)))
565 (cond
566 ((zerop x) x)
567 ((or (< old-exp sb!vm:double-float-normal-exponent-min)
568 (< new-exp sb!vm:double-float-normal-exponent-min))
569 (scale-float-maybe-underflow x exp))
570 ((or (> old-exp sb!vm:double-float-normal-exponent-max)
571 (> new-exp sb!vm:double-float-normal-exponent-max))
572 (scale-float-maybe-overflow x exp))
574 (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi)
575 lo)))))
576 (unsigned-byte (scale-float-maybe-overflow x exp))
577 ((integer * 0) (scale-float-maybe-underflow x exp))))
579 #!+(and x86 long-float)
580 (defun scale-long-float (x exp)
581 (declare (long-float x) (integer exp))
582 (scale-float x exp))
584 ;;; Dispatch to the correct type-specific scale-float function.
585 (defun scale-float (f ex)
586 "Return the value (* f (expt (float 2 f) ex)), but with no unnecessary loss
587 of precision or overflow."
588 (declare (explicit-check))
589 (number-dispatch ((f float))
590 ((single-float)
591 (scale-single-float f ex))
592 ((double-float)
593 (scale-double-float f ex))
594 #!+long-float
595 ((long-float)
596 (scale-long-float f ex))))
598 ;;;; converting to/from floats
600 (defun float (number &optional (other () otherp))
601 "Converts any REAL to a float. If OTHER is not provided, it returns a
602 SINGLE-FLOAT if NUMBER is not already a FLOAT. If OTHER is provided, the
603 result is the same float format as OTHER."
604 (declare (explicit-check))
605 (if otherp
606 (number-dispatch ((number real) (other float))
607 (((foreach rational single-float double-float #!+long-float long-float)
608 (foreach single-float double-float #!+long-float long-float))
609 (coerce number '(dispatch-type other))))
610 (if (floatp number)
611 number
612 (coerce number 'single-float))))
614 (macrolet ((frob (name type)
615 `(defun ,name (x)
616 (number-dispatch ((x real))
617 (((foreach single-float double-float #!+long-float long-float
618 sb!vm:signed-word
619 ,@(and (sb!c::template-translates-arg-p '%double-float 0 'word)
620 '(word))))
621 (coerce x ',type))
622 ((ratio)
623 (float-ratio x ',type))
624 ((bignum)
625 (bignum-to-float x ',type))))))
626 (frob %single-float single-float)
627 (frob %double-float double-float)
628 #!+long-float
629 (frob %long-float long-float))
631 ;;; Convert a ratio to a float. We avoid any rounding error by doing an
632 ;;; integer division. Accuracy is important to preserve print-read
633 ;;; consistency, since this is ultimately how the reader reads a float. We
634 ;;; scale the numerator by a power of two until the division results in the
635 ;;; desired number of fraction bits, then do round-to-nearest.
636 (defun float-ratio (x format)
637 (let* ((signed-num (numerator x))
638 (plusp (plusp signed-num))
639 (num (if plusp signed-num (- signed-num)))
640 (den (denominator x))
641 (digits (float-format-digits format))
642 (scale 0))
643 (declare (fixnum digits scale))
644 ;; Strip any trailing zeros from the denominator and move it into the scale
645 ;; factor (to minimize the size of the operands.)
646 (let ((den-twos (1- (integer-length (logxor den (1- den))))))
647 (declare (fixnum den-twos))
648 (decf scale den-twos)
649 (setq den (ash den (- den-twos))))
650 ;; Guess how much we need to scale by from the magnitudes of the numerator
651 ;; and denominator. We want one extra bit for a guard bit.
652 (let* ((num-len (integer-length num))
653 (den-len (integer-length den))
654 (delta (- den-len num-len))
655 (shift (1+ (the fixnum (+ delta digits))))
656 (shifted-num (ash num shift)))
657 (declare (fixnum delta shift))
658 (decf scale delta)
659 (labels ((float-and-scale (bits)
660 (let* ((bits (ash bits -1))
661 (len (integer-length bits)))
662 (cond ((> len digits)
663 (aver (= len (the fixnum (1+ digits))))
664 (scale-float (floatit (ash bits -1)) (1+ scale)))
666 (scale-float (floatit bits) scale)))))
667 (floatit (bits)
668 (let ((sign (if plusp 0 1)))
669 (case format
670 (single-float
671 (single-from-bits sign sb!vm:single-float-bias bits))
672 (double-float
673 (double-from-bits sign sb!vm:double-float-bias bits))
674 #!+long-float
675 (long-float
676 (long-from-bits sign sb!vm:long-float-bias bits))))))
677 (loop
678 (multiple-value-bind (fraction-and-guard rem)
679 (truncate shifted-num den)
680 (let ((extra (- (integer-length fraction-and-guard) digits)))
681 (declare (fixnum extra))
682 (cond ((/= extra 1)
683 (aver (> extra 1)))
684 ((oddp fraction-and-guard)
685 (return
686 (if (zerop rem)
687 (float-and-scale
688 (if (zerop (logand fraction-and-guard 2))
689 fraction-and-guard
690 (1+ fraction-and-guard)))
691 (float-and-scale (1+ fraction-and-guard)))))
693 (return (float-and-scale fraction-and-guard)))))
694 (setq shifted-num (ash shifted-num -1))
695 (incf scale)))))))
697 ;;; These might be useful if we ever have a machine without float/integer
698 ;;; conversion hardware. For now, we'll use special ops that
699 ;;; uninterruptibly frob the rounding modes & do ieee round-to-integer.
700 #+nil
701 (progn
702 ;; The compiler compiles a call to this when we are doing %UNARY-TRUNCATE
703 ;; and the result is known to be a fixnum. We can avoid some generic
704 ;; arithmetic in this case.
705 (defun %unary-truncate-single-float/fixnum (x)
706 (declare (single-float x) (values fixnum))
707 (locally (declare (optimize (speed 3) (safety 0)))
708 (let* ((bits (single-float-bits x))
709 (exp (ldb sb!vm:single-float-exponent-byte bits))
710 (frac (logior (ldb sb!vm:single-float-significand-byte bits)
711 sb!vm:single-float-hidden-bit))
712 (shift (- exp sb!vm:single-float-digits sb!vm:single-float-bias)))
713 (when (> exp sb!vm:single-float-normal-exponent-max)
714 (error 'floating-point-invalid-operation :operator 'truncate
715 :operands (list x)))
716 (if (<= shift (- sb!vm:single-float-digits))
718 (let ((res (ash frac shift)))
719 (declare (type (unsigned-byte 31) res))
720 (if (minusp bits)
721 (- res)
722 res))))))
723 ;; Double-float version of this operation (see above single op).
724 (defun %unary-truncate-double-float/fixnum (x)
725 (declare (double-float x) (values fixnum))
726 (locally (declare (optimize (speed 3) (safety 0)))
727 (let* ((hi-bits (double-float-high-bits x))
728 (exp (ldb sb!vm:double-float-exponent-byte hi-bits))
729 (frac (logior (ldb sb!vm:double-float-significand-byte hi-bits)
730 sb!vm:double-float-hidden-bit))
731 (shift (- exp (- sb!vm:double-float-digits sb!vm:n-word-bits)
732 sb!vm:double-float-bias)))
733 (when (> exp sb!vm:double-float-normal-exponent-max)
734 (error 'floating-point-invalid-operation :operator 'truncate
735 :operands (list x)))
736 (if (<= shift (- sb!vm:n-word-bits sb!vm:double-float-digits))
738 (let* ((res-hi (ash frac shift))
739 (res (if (plusp shift)
740 (logior res-hi
741 (the fixnum
742 (ash (double-float-low-bits x)
743 (- shift sb!vm:n-word-bits))))
744 res-hi)))
745 (declare (type (unsigned-byte 31) res-hi res))
746 (if (minusp hi-bits)
747 (- res)
748 res)))))))
750 ;;; This function is called when we are doing a truncate without any funky
751 ;;; divisor, i.e. converting a float or ratio to an integer. Note that we do
752 ;;; *not* return the second value of truncate, so it must be computed by the
753 ;;; caller if needed.
755 ;;; In the float case, we pick off small arguments so that compiler
756 ;;; can use special-case operations. We use an exclusive test, since
757 ;;; (due to round-off error), (float most-positive-fixnum) is likely
758 ;;; to be equal to (1+ most-positive-fixnum). An exclusive test is
759 ;;; good enough, because most-positive-fixnum will be one less than a
760 ;;; power of two, and that power of two will be exactly representable
761 ;;; as a float (at least until we get 128-bit fixnums).
762 (defun %unary-truncate (number)
763 (number-dispatch ((number real))
764 ((integer) number)
765 ((ratio) (values (truncate (numerator number) (denominator number))))
766 (((foreach single-float double-float #!+long-float long-float))
767 (if (< (float most-negative-fixnum number)
768 number
769 (float most-positive-fixnum number))
770 (truly-the fixnum (%unary-truncate number))
771 (multiple-value-bind (bits exp) (integer-decode-float number)
772 (let ((res (ash bits exp)))
773 (if (minusp number)
774 (- res)
775 res)))))))
777 ;;; Specialized versions for floats.
778 (macrolet ((def (type name)
779 `(defun ,name (number)
780 (if (< ,(coerce sb!xc:most-negative-fixnum type)
781 number
782 ,(coerce sb!xc:most-positive-fixnum type))
783 (truly-the fixnum (,name number))
784 ;; General -- slow -- case.
785 (multiple-value-bind (bits exp) (integer-decode-float number)
786 (let ((res (ash bits exp)))
787 (if (minusp number)
788 (- res)
789 res)))))))
790 (def single-float %unary-truncate/single-float)
791 (def double-float %unary-truncate/double-float)
792 #!+long-float
793 (def double-float %unary-truncate/long-float))
795 ;;; Similar to %UNARY-TRUNCATE, but rounds to the nearest integer. If we
796 ;;; can't use the round primitive, then we do our own round-to-nearest on the
797 ;;; result of i-d-f. [Note that this rounding will really only happen with
798 ;;; double floats, since the whole single-float fraction will fit in a fixnum,
799 ;;; so all single-floats larger than most-positive-fixnum can be precisely
800 ;;; represented by an integer.]
801 (defun %unary-round (number)
802 (number-dispatch ((number real))
803 ((integer) number)
804 ((ratio) (values (round (numerator number) (denominator number))))
805 (((foreach single-float double-float #!+long-float long-float))
806 (if (< (float most-negative-fixnum number)
807 number
808 (float most-positive-fixnum number))
809 (truly-the fixnum (%unary-round number))
810 (multiple-value-bind (bits exp) (integer-decode-float number)
811 (let* ((shifted (ash bits exp))
812 (rounded (if (minusp exp)
813 (let ((fractional-bits (logand bits (lognot (ash -1 (- exp)))))
814 (0.5bits (ash 1 (- -1 exp))))
815 (cond
816 ((> fractional-bits 0.5bits) (1+ shifted))
817 ((< fractional-bits 0.5bits) shifted)
818 (t (if (oddp shifted) (1+ shifted) shifted))))
819 shifted)))
820 (if (minusp number)
821 (- rounded)
822 rounded)))))))
824 (defun %unary-ftruncate (number)
825 (number-dispatch ((number real))
826 ((integer) (float number))
827 ((ratio) (float (truncate (numerator number) (denominator number))))
828 (((foreach single-float double-float #!+long-float long-float))
829 (%unary-ftruncate number))))
831 (defun rational (x)
832 "RATIONAL produces a rational number for any real numeric argument. This is
833 more efficient than RATIONALIZE, but it assumes that floating-point is
834 completely accurate, giving a result that isn't as pretty."
835 (declare (explicit-check))
836 (number-dispatch ((x real))
837 (((foreach single-float double-float #!+long-float long-float))
838 (multiple-value-bind (bits exp) (integer-decode-float x)
839 (if (eql bits 0)
841 (let ((int (if (minusp x) (- bits) bits)))
842 (if (minusp exp)
843 (integer-/-integer int (ash 1 (- exp)))
844 (ash int exp))))))
845 ((rational) x)))
847 ;;; This algorithm for RATIONALIZE, due to Bruno Haible, is included
848 ;;; with permission.
850 ;;; Algorithm (recursively presented):
851 ;;; If x is a rational number, return x.
852 ;;; If x = 0.0, return 0.
853 ;;; If x < 0.0, return (- (rationalize (- x))).
854 ;;; If x > 0.0:
855 ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
856 ;;; exponent, sign).
857 ;;; If m = 0 or e >= 0: return x = m*2^e.
858 ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
859 ;;; with smallest possible numerator and denominator.
860 ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
861 ;;; But in this case the result will be x itself anyway, regardless of
862 ;;; the choice of a. Therefore we can simply ignore this case.
863 ;;; Note 2: At first, we need to consider the closed interval [a,b].
864 ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself
865 ;;; has a denominator <= 2^|e|, we can restrict the seach to the open
866 ;;; interval (a,b).
867 ;;; So, for given a and b (0 < a < b) we are searching a rational number
868 ;;; y with a <= y <= b.
869 ;;; Recursive algorithm fraction_between(a,b):
870 ;;; c := (ceiling a)
871 ;;; if c < b
872 ;;; then return c ; because a <= c < b, c integer
873 ;;; else
874 ;;; ; a is not integer (otherwise we would have had c = a < b)
875 ;;; k := c-1 ; k = floor(a), k < a < b <= k+1
876 ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
877 ;;; ; note 1 <= 1/(b-k) < 1/(a-k)
879 ;;; You can see that we are actually computing a continued fraction expansion.
881 ;;; Algorithm (iterative):
882 ;;; If x is rational, return x.
883 ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa,
884 ;;; exponent, sign).
885 ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
886 ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
887 ;;; (positive and already in lowest terms because the denominator is a
888 ;;; power of two and the numerator is odd).
889 ;;; Start a continued fraction expansion
890 ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
891 ;;; Loop
892 ;;; c := (ceiling a)
893 ;;; if c >= b
894 ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
895 ;;; goto Loop
896 ;;; finally partial_quotient(c).
897 ;;; Here partial_quotient(c) denotes the iteration
898 ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
899 ;;; At the end, return s * (p[i]/q[i]).
900 ;;; This rational number is already in lowest terms because
901 ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
903 ;;; See also
904 ;;; Hardy, Wright: An introduction to number theory
905 ;;; and/or
906 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture17/>
907 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture18/>
909 (defun rationalize (x)
910 "Converts any REAL to a RATIONAL. Floats are converted to a simple rational
911 representation exploiting the assumption that floats are only accurate to
912 their precision. RATIONALIZE (and also RATIONAL) preserve the invariant:
913 (= x (float (rationalize x) x))"
914 (declare (explicit-check))
915 (number-dispatch ((x real))
916 (((foreach single-float double-float #!+long-float long-float))
917 ;; This is a fairly straigtforward implementation of the
918 ;; iterative algorithm above.
919 (multiple-value-bind (frac expo sign)
920 (integer-decode-float x)
921 (cond ((or (zerop frac) (>= expo 0))
922 (if (minusp sign)
923 (- (ash frac expo))
924 (ash frac expo)))
926 ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e),
927 ;; so build the fraction up immediately, without having to do
928 ;; a gcd.
929 (let ((a (build-ratio (- (* 2 frac) 1) (ash 1 (- 1 expo))))
930 (b (build-ratio (+ (* 2 frac) 1) (ash 1 (- 1 expo))))
931 (p0 0)
932 (q0 1)
933 (p1 1)
934 (q1 0))
935 (do ((c (ceiling a) (ceiling a)))
936 ((< c b)
937 (let ((top (+ (* c p1) p0))
938 (bot (+ (* c q1) q0)))
939 (build-ratio (if (minusp sign)
940 (- top)
941 top)
942 bot)))
943 (let* ((k (- c 1))
944 (p2 (+ (* k p1) p0))
945 (q2 (+ (* k q1) q0)))
946 (psetf a (/ (- b k))
947 b (/ (- a k)))
948 (setf p0 p1
949 q0 q1
950 p1 p2
951 q1 q2))))))))
952 ((rational) x)))