Remove compiler/*/static-fn.lisp
[sbcl.git] / src / compiler / ir2tran.lisp
blob5338b65ccb072fb7190aa07128f0b76f35e66529
1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!C")
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
20 (unless (eq x y)
21 (vop move node block x y))
22 (values))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
30 nil))
32 ;;; Allocate an indirect value cell.
33 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
34 (defun emit-make-value-cell (node block value res)
35 (event make-value-cell-event node)
36 (vop make-value-cell node block value nil res))
38 ;;;; leaf reference
40 ;;; Return the TN that holds the value of THING in the environment ENV.
41 (declaim (ftype (sfunction ((or nlx-info lambda-var clambda) physenv) tn)
42 find-in-physenv))
43 (defun find-in-physenv (thing physenv)
44 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
45 (etypecase thing
46 (lambda-var
47 ;; I think that a failure of this assertion means that we're
48 ;; trying to access a variable which was improperly closed
49 ;; over. The PHYSENV describes a physical environment. Every
50 ;; variable that a form refers to should either be in its
51 ;; physical environment directly, or grabbed from a
52 ;; surrounding physical environment when it was closed over.
53 ;; The ASSOC expression above finds closed-over variables, so
54 ;; if we fell through the ASSOC expression, it wasn't closed
55 ;; over. Therefore, it must be in our physical environment
56 ;; directly. If instead it is in some other physical
57 ;; environment, then it's bogus for us to reference it here
58 ;; without it being closed over. -- WHN 2001-09-29
59 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
60 (leaf-info thing))
61 (nlx-info
62 (aver (eq physenv (block-physenv (nlx-info-target thing))))
63 (ir2-nlx-info-home (nlx-info-info thing)))
64 (clambda
65 (aver (xep-p thing))
66 (entry-info-closure-tn (lambda-info thing))))
67 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
69 ;;; If LEAF already has a constant TN, return that, otherwise make a
70 ;;; TN for it.
71 (defun constant-tn (leaf boxedp)
72 (declare (type constant leaf))
73 ;; When convenient we can have both a boxed and unboxed TN for
74 ;; constant.
75 (if boxedp
76 (or (constant-boxed-tn leaf)
77 (setf (constant-boxed-tn leaf) (make-constant-tn leaf t)))
78 (or (leaf-info leaf)
79 (setf (leaf-info leaf) (make-constant-tn leaf nil)))))
81 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
82 ;;; isn't directly represented by a TN. ENV is the environment that
83 ;;; the reference is done in.
84 (defun leaf-tn (leaf env boxedp)
85 (declare (type leaf leaf) (type physenv env))
86 (typecase leaf
87 (lambda-var
88 (unless (lambda-var-indirect leaf)
89 (find-in-physenv leaf env)))
90 (constant (constant-tn leaf boxedp))
91 (t nil)))
93 ;;; This is used to conveniently get a handle on a constant TN during
94 ;;; IR2 conversion. It returns a constant TN representing the Lisp
95 ;;; object VALUE.
96 (defun emit-constant (value)
97 (constant-tn (find-constant value) t))
99 (defun boxed-combination-ref-p (combination lvar)
100 (let ((args (combination-args combination)))
101 (flet ((struct-slot-tagged-p (dd index)
102 (let ((slot (and dd
103 (find index (dd-slots dd) :key #'dsd-index))))
104 (and slot
105 (eq (dsd-raw-type slot) t))))
106 (constant (lvar)
107 (and (constant-lvar-p lvar)
108 (lvar-value lvar))))
109 (case (combination-fun-source-name combination nil)
110 (data-vector-set-with-offset
111 (and (eq lvar (car (last args)))
112 (csubtypep (lvar-type (car args))
113 (specifier-type '(array t)))))
114 (initialize-vector
115 (csubtypep (lvar-type (car args))
116 (specifier-type '(array t))))
117 (%make-structure-instance
118 (let* ((dd (constant (car args)))
119 (slot-specs (constant (cadr args)))
120 (pos (position lvar (cddr args)))
121 (slot (and pos
122 (nth pos slot-specs))))
123 (struct-slot-tagged-p dd (cddr slot))))
124 (%instance-set
125 (let* ((instance (lvar-type (car args)))
126 (layout (and (structure-classoid-p instance)
127 (classoid-layout instance))))
128 (and (eq lvar (car (last args)))
129 (struct-slot-tagged-p (and layout
130 (layout-info layout))
131 (constant (cadr args))))))
132 ((%special-bind %set-sap-ref-lispobj
133 %rplaca %rplacd cons list list*
134 values)
137 (call-full-like-p combination))))))
139 (defun boxed-ref-p (ref)
140 (let* ((lvar (ref-lvar ref))
141 (dest (lvar-dest lvar)))
142 (cond ((basic-combination-p dest)
143 (if (combination-p dest)
144 (boxed-combination-ref-p dest lvar)
145 (call-full-like-p dest)))
146 ((set-p dest)
147 (global-var-p (set-var dest)))
148 ((return-p dest)
149 (let* ((fun (return-lambda dest))
150 (returns (tail-set-info (lambda-tail-set fun))))
151 (or (xep-p fun)
152 (eq (return-info-kind returns) :unknown)))))))
154 ;;; Convert a REF node. The reference must not be delayed.
155 (defun ir2-convert-ref (node block)
156 (declare (type ref node) (type ir2-block block))
157 (let* ((lvar (node-lvar node))
158 (leaf (ref-leaf node))
159 (locs (lvar-result-tns
160 lvar (list (primitive-type (leaf-type leaf)))))
161 (res (first locs)))
162 (etypecase leaf
163 (lambda-var
164 (let ((tn (find-in-physenv leaf (node-physenv node)))
165 (indirect (lambda-var-indirect leaf))
166 (explicit (lambda-var-explicit-value-cell leaf)))
167 (cond
168 ((and indirect explicit)
169 (vop value-cell-ref node block tn res))
170 ((and indirect
171 (not (eq (node-physenv node)
172 (lambda-physenv (lambda-var-home leaf)))))
173 (let ((reffer (third (primitive-type-indirect-cell-type
174 (primitive-type (leaf-type leaf))))))
175 (if reffer
176 (funcall reffer node block tn (leaf-info leaf) res)
177 (vop ancestor-frame-ref node block tn (leaf-info leaf) res))))
178 (t (emit-move node block tn res)))))
179 (constant
180 (emit-move node block (constant-tn leaf (boxed-ref-p node)) res))
181 (functional
182 (ir2-convert-closure node block leaf res))
183 (global-var
184 (ir2-convert-global-var node block leaf res)))
185 (move-lvar-result node block locs lvar))
186 (values))
188 (defun ir2-convert-global-var (node block leaf res)
189 (let ((unsafe (policy node (zerop safety)))
190 (name (leaf-source-name leaf)))
191 (ecase (global-var-kind leaf)
192 ((:special :unknown)
193 (aver (symbolp name))
194 (let ((name-tn (emit-constant name)))
195 (if (or unsafe (always-boundp name))
196 (vop fast-symbol-value node block name-tn res)
197 (vop symbol-value node block name-tn res))))
198 (:global
199 (aver (symbolp name))
200 (let ((name-tn (emit-constant name)))
201 (if (or unsafe (always-boundp name))
202 (vop fast-symbol-global-value node block name-tn res)
203 (vop symbol-global-value node block name-tn res))))
204 (:global-function
205 ;; In cross-compilation, testing (INFO :function :definition) is not
206 ;; sensible (or possible) but we can assume that things with fun-info
207 ;; will eventually be defined. If that's untrue, e.g. if we referred
208 ;; to #'DESCRIBE during cold-load, we'd just fix it locally by declaring
209 ;; DESCRIBE notinline.
210 ;; But in the target, more caution is warranted because users might
211 ;; DEFKNOWN a function but fail to define it. And they shouldn't be
212 ;; expected to understand the failure mode and the remedy.
213 (cond ((and #-sb-xc-host (info :function :definition name)
214 (info :function :info name)
215 (let ((*lexenv* (node-lexenv node)))
216 (not (fun-lexically-notinline-p name))))
217 ;; Known functions can be dumped without going through fdefns.
218 ;; But if NOTINLINEd, don't early-bind to the functional value
219 ;; because that disallows redefinition, including but not limited
220 ;; to encapsulations, which in turn makes TRACE not work, which
221 ;; leads to extreme frustration when debugging.
222 (emit-move node block (make-load-time-constant-tn :known-fun name)
223 res))
225 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
226 (if unsafe
227 (vop fdefn-fun node block fdefn-tn res)
228 (vop safe-fdefn-fun node block fdefn-tn res)))))))))
230 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
231 (defun assertions-on-ir2-converted-clambda (clambda)
232 ;; This assertion was sort of an experiment. It would be nice and
233 ;; sane and easier to understand things if it were *always* true,
234 ;; but experimentally I observe that it's only *almost* always
235 ;; true. -- WHN 2001-01-02
236 #+nil
237 (aver (eql (lambda-component clambda)
238 (block-component (ir2-block-block ir2-block))))
239 ;; Check for some weirdness which came up in bug
240 ;; 138, 2002-01-02.
242 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
243 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
244 ;; code
245 ;; * treats every HANDLEless :ENTRY record into a
246 ;; patch, and
247 ;; * expects every patch to correspond to an
248 ;; IR2-COMPONENT-ENTRIES record.
249 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
250 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
251 ;; was a HANDLEless :ENTRY record which didn't correspond to an
252 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
253 ;; when it's caught at dump time, so this assertion tries to catch
254 ;; it here.
255 (aver (member clambda
256 (component-lambdas (lambda-component clambda))))
257 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
258 ;; used as a queue for stuff pending to do in IR1, and now that
259 ;; we're doing IR2 it should've been completely flushed (but
260 ;; wasn't).
261 (aver (null (component-new-functionals (lambda-component clambda))))
262 (values))
264 ;;; Emit code to load a function object implementing FUNCTIONAL into
265 ;;; RES. This gets interesting when the referenced function is a
266 ;;; closure: we must make the closure and move the closed-over values
267 ;;; into it.
269 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
270 ;;; for the called function, since local call analysis converts all
271 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
272 ;;; closure.
274 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
275 ;;; don't initialize that slot. This can happen with closures over
276 ;;; top level variables, where optimization of the closure deleted the
277 ;;; variable. Since we committed to the closure format when we
278 ;;; pre-analyzed the top level code, we just leave an empty slot.
279 (defun ir2-convert-closure (ref ir2-block functional res)
280 (declare (type ref ref)
281 (type ir2-block ir2-block)
282 (type functional functional)
283 (type tn res))
284 (flet ((prepare ()
285 (aver (not (eql (functional-kind functional) :deleted)))
286 (unless (leaf-info functional)
287 (setf (leaf-info functional)
288 (make-entry-info :name
289 (functional-debug-name functional))))))
290 (let ((closure (etypecase functional
291 (clambda
292 (assertions-on-ir2-converted-clambda functional)
293 (physenv-closure (get-lambda-physenv functional)))
294 (functional
295 (aver (eq (functional-kind functional) :toplevel-xep))
296 nil)))
297 global-var)
298 (cond (closure
299 (prepare)
300 (let* ((physenv (node-physenv ref))
301 (tn (find-in-physenv functional physenv)))
302 (emit-move ref ir2-block tn res)))
303 ;; we're about to emit a reference to a "closure" that's actually
304 ;; an inlinable global function.
305 ((and (global-var-p (setf global-var
306 (functional-inline-expanded functional)))
307 (eq :global-function (global-var-kind global-var)))
308 (ir2-convert-global-var ref ir2-block global-var res))
310 ;; if we're here, we should have either a toplevel-xep (some
311 ;; global scope function in a different component) or an external
312 ;; reference to the "closure"'s body.
313 (prepare)
314 (aver (memq (functional-kind functional) '(:external :toplevel-xep)))
315 (let ((entry (make-load-time-constant-tn :entry functional)))
316 (emit-move ref ir2-block entry res))))))
317 (values))
319 (defun closure-initial-value (what this-env current-fp)
320 (declare (type (or nlx-info lambda-var clambda) what)
321 (type physenv this-env)
322 (type (or tn null) current-fp))
323 ;; If we have an indirect LAMBDA-VAR that does not require an
324 ;; EXPLICIT-VALUE-CELL, and is from this environment (not from being
325 ;; closed over), we need to store the current frame pointer.
326 (if (and (lambda-var-p what)
327 (lambda-var-indirect what)
328 (not (lambda-var-explicit-value-cell what))
329 (eq (lambda-physenv (lambda-var-home what))
330 this-env))
331 current-fp
332 (find-in-physenv what this-env)))
334 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
335 (declare (ignore ltn-policy))
336 (when (lvar-dynamic-extent leaves)
337 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
338 (setf (ir2-lvar-kind info) :delayed)
339 (setf (lvar-info leaves) info)
340 (setf (ir2-lvar-stack-pointer info)
341 (make-stack-pointer-tn)))))
343 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
344 (let ((dx-p (lvar-dynamic-extent leaves)))
345 (collect ((delayed))
346 (when dx-p
347 (vop current-stack-pointer call 2block
348 (ir2-lvar-stack-pointer (lvar-info leaves))))
349 (dolist (leaf (lvar-value leaves))
350 (binding* ((xep (awhen (functional-entry-fun leaf)
351 ;; if the xep's been deleted then we can skip it
352 (if (eq (functional-kind it) :deleted)
353 nil it))
354 :exit-if-null)
355 (nil (aver (xep-p xep)))
356 (entry-info (lambda-info xep) :exit-if-null)
357 (tn (entry-info-closure-tn entry-info) :exit-if-null)
358 (closure (physenv-closure (get-lambda-physenv xep)))
359 #!-x86-64
360 (entry (make-load-time-constant-tn :entry xep)))
361 (let ((this-env (node-physenv call))
362 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
363 (aver (entry-info-offset entry-info))
364 (vop make-closure call 2block #!-x86-64 entry
365 (entry-info-offset entry-info) (length closure)
366 leaf-dx-p tn)
367 (loop for what in closure and n from 0 do
368 (unless (and (lambda-var-p what)
369 (null (leaf-refs what)))
370 ;; In LABELS a closure may refer to another closure
371 ;; in the same group, so we must be sure that we
372 ;; store a closure only after its creation.
374 ;; TODO: Here is a simple solution: we postpone
375 ;; putting of all closures after all creations
376 ;; (though it may require more registers).
377 (if (lambda-p what)
378 (delayed (list tn (find-in-physenv what this-env) n))
379 (let ((initial-value (closure-initial-value
380 what this-env nil)))
381 (if initial-value
382 (vop closure-init call 2block
383 tn initial-value n)
384 ;; An initial-value of NIL means to stash
385 ;; the frame pointer... which requires a
386 ;; different VOP.
387 (vop closure-init-from-fp call 2block tn n)))))))))
388 (loop for (tn what n) in (delayed)
389 do (vop closure-init call 2block
390 tn what n))))
391 (values))
393 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
394 ;;; deliver the value to that lvar. If the var is a lexical variable
395 ;;; with no refs, then we don't actually set anything, since the
396 ;;; variable has been deleted.
397 (defun ir2-convert-set (node block)
398 (declare (type cset node) (type ir2-block block))
399 (let* ((lvar (node-lvar node))
400 (leaf (set-var node))
401 (val (lvar-tn node block (set-value node)))
402 (locs (if lvar
403 (lvar-result-tns
404 lvar (list (primitive-type (leaf-type leaf))))
405 nil)))
406 (etypecase leaf
407 (lambda-var
408 (when (leaf-refs leaf)
409 (let ((tn (find-in-physenv leaf (node-physenv node)))
410 (indirect (lambda-var-indirect leaf))
411 (explicit (lambda-var-explicit-value-cell leaf)))
412 (cond
413 ((and indirect explicit)
414 (vop value-cell-set node block tn val))
415 ((and indirect
416 (not (eq (node-physenv node)
417 (lambda-physenv (lambda-var-home leaf)))))
418 (let ((setter (fourth (primitive-type-indirect-cell-type
419 (primitive-type (leaf-type leaf))))))
420 (if setter
421 (funcall setter node block tn val (leaf-info leaf))
422 (vop ancestor-frame-set node block tn val (leaf-info leaf)))))
423 (t (emit-move node block val tn))))))
424 (global-var
425 (aver (symbolp (leaf-source-name leaf)))
426 (ecase (global-var-kind leaf)
427 ((:special)
428 (vop set node block (emit-constant (leaf-source-name leaf)) val))
429 ((:global)
430 (vop %set-symbol-global-value node
431 block (emit-constant (leaf-source-name leaf)) val)))))
432 (when locs
433 (emit-move node block val (first locs))
434 (move-lvar-result node block locs lvar)))
435 (values))
437 ;;;; utilities for receiving fixed values
439 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
440 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
441 ;;; single-value lvar.
443 ;;; The primitive-type of the result will always be the same as the
444 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
445 ;;; TNs that satisfy the operand primitive-type restriction. We may
446 ;;; have to make a temporary of the desired type and move the actual
447 ;;; lvar TN into it. This happens when we delete a type check in
448 ;;; unsafe code or when we locally know something about the type of an
449 ;;; argument variable.
450 (defun lvar-tn (node block lvar)
451 (declare (type node node) (type ir2-block block) (type lvar lvar))
452 (let* ((2lvar (lvar-info lvar))
453 (lvar-tn
454 (ecase (ir2-lvar-kind 2lvar)
455 (:delayed
456 (let ((ref (lvar-uses lvar)))
457 (leaf-tn (ref-leaf ref) (node-physenv ref) (boxed-ref-p ref))))
458 (:fixed
459 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
460 (first (ir2-lvar-locs 2lvar)))))
461 (ptype (ir2-lvar-primitive-type 2lvar)))
463 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
465 (let ((temp (make-normal-tn ptype)))
466 (emit-move node block lvar-tn temp)
467 temp)))))
469 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
470 ;;; TNs holding the values of LVAR with PTYPES as their primitive
471 ;;; types. LVAR must be annotated for the same number of fixed values
472 ;;; are there are PTYPES.
474 ;;; If the lvar has a type check, check the values into temps and
475 ;;; return the temps. When we have more values than assertions, we
476 ;;; move the extra values with no check.
477 (defun lvar-tns (node block lvar ptypes)
478 (declare (type node node) (type ir2-block block)
479 (type lvar lvar) (list ptypes))
480 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
481 (nlocs (length locs)))
482 (aver (= nlocs (length ptypes)))
484 (mapcar (lambda (from to-type)
485 (if (eq (tn-primitive-type from) to-type)
486 from
487 (let ((temp (make-normal-tn to-type)))
488 (emit-move node block from temp)
489 temp)))
490 locs
491 ptypes)))
493 ;;;; utilities for delivering values to lvars
495 ;;; Return a list of TNs with the specifier TYPES that can be used as
496 ;;; result TNs to evaluate an expression into LVAR. This is used
497 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
498 ;;; an lvar.
500 ;;; If the lvar isn't annotated (meaning the values are discarded) or
501 ;;; is unknown-values, then we make temporaries for each supplied
502 ;;; value, providing a place to compute the result in until we decide
503 ;;; what to do with it (if anything.)
505 ;;; If the lvar is fixed-values, and wants the same number of values
506 ;;; as the user wants to deliver, then we just return the
507 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
508 ;;; discarded TNs. We always return a TN of the specified type, using
509 ;;; the lvar locs only when they are of the correct type.
510 (defun lvar-result-tns (lvar types)
511 (declare (type (or lvar null) lvar) (type list types))
512 (if (not lvar)
513 (mapcar #'make-normal-tn types)
514 (let ((2lvar (lvar-info lvar)))
515 (ecase (ir2-lvar-kind 2lvar)
516 (:fixed
517 (let* ((locs (ir2-lvar-locs 2lvar))
518 (nlocs (length locs))
519 (ntypes (length types)))
520 (if (and (= nlocs ntypes)
521 (do ((loc locs (cdr loc))
522 (type types (cdr type)))
523 ((null loc) t)
524 (unless (eq (tn-primitive-type (car loc)) (car type))
525 (return nil))))
526 locs
527 (mapcar (lambda (loc type)
528 (if (eq (tn-primitive-type loc) type)
530 (make-normal-tn type)))
531 (if (< nlocs ntypes)
532 (append locs
533 (mapcar #'make-normal-tn
534 (subseq types nlocs)))
535 locs)
536 types))))
537 (:unknown
538 (mapcar #'make-normal-tn types))))))
540 ;;; Make the first N standard value TNs, returning them in a list.
541 (defun make-standard-value-tns (n)
542 (declare (type unsigned-byte n))
543 (collect ((res))
544 (dotimes (i n)
545 (res (standard-arg-location i)))
546 (res)))
548 ;;; Return a list of TNs wired to the standard value passing
549 ;;; conventions that can be used to receive values according to the
550 ;;; unknown-values convention. This is used together with
551 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
552 ;;; lvar.
554 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
555 ;;; an empty list of temporaries.
557 ;;; If the lvar is annotated, then it must be :FIXED.
558 (defun standard-result-tns (lvar)
559 (declare (type (or lvar null) lvar))
560 (if lvar
561 (let ((2lvar (lvar-info lvar)))
562 (ecase (ir2-lvar-kind 2lvar)
563 (:fixed
564 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
565 nil))
567 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
568 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
569 ;;; doing the appropriate coercions.
570 (defun move-results-coerced (node block src dest)
571 (declare (type node node) (type ir2-block block) (list src dest))
572 (let ((nsrc (length src))
573 (ndest (length dest)))
574 (mapc (lambda (from to)
575 (unless (eq from to)
576 (emit-move node block from to)))
577 (if (> ndest nsrc)
578 (append src (make-list (- ndest nsrc)
579 :initial-element (emit-constant nil)))
580 src)
581 dest))
582 (values))
584 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
585 ;;; the specified lvar. NODE and BLOCK provide context for emitting
586 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
587 ;;; LVAR-RESULT-TNs, RESULTS may be a list of any type or
588 ;;; number of TNs.
590 ;;; If the lvar is fixed values, then move the results into the lvar
591 ;;; locations. If the lvar is unknown values, then do the moves into
592 ;;; the standard value locations, and use PUSH-VALUES to put the
593 ;;; values on the stack.
594 (defun move-lvar-result (node block results lvar)
595 (declare (type node node) (type ir2-block block)
596 (list results) (type (or lvar null) lvar))
597 (when lvar
598 (let ((2lvar (lvar-info lvar)))
599 (ecase (ir2-lvar-kind 2lvar)
600 (:fixed
601 (let ((locs (ir2-lvar-locs 2lvar)))
602 (unless (eq locs results)
603 (move-results-coerced node block results locs))))
604 (:unknown
605 (let* ((nvals (length results))
606 (locs (make-standard-value-tns nvals)))
607 (move-results-coerced node block results locs)
608 (vop* push-values node block
609 ((reference-tn-list locs nil))
610 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
611 nvals))))))
612 (values))
614 ;;; CAST
615 (defun ir2-convert-cast (node block)
616 (declare (type cast node)
617 (type ir2-block block))
618 (binding* ((lvar (node-lvar node) :exit-if-null)
619 (2lvar (lvar-info lvar))
620 (value (cast-value node))
621 (2value (lvar-info value)))
622 (ecase (ir2-lvar-kind 2lvar)
623 (:unused)
624 ((:unknown :fixed)
625 (aver (not (cast-type-check node)))
626 (move-results-coerced node block
627 (ir2-lvar-locs 2value)
628 (ir2-lvar-locs 2lvar))))))
630 (defoptimizer (%check-bound ir2-hook) ((array bound index) node block)
631 (declare (ignore block))
632 (when (constant-lvar-p bound)
633 (let* ((bound-type (specifier-type `(integer 0 (,(lvar-value bound)))))
634 (index-type (lvar-type index)))
635 (when (eq (type-intersection bound-type index-type)
636 *empty-type*)
637 (let ((*compiler-error-context* node))
638 (compiler-warn "Derived type ~s is not a suitable index for ~s."
639 (type-specifier index-type)
640 (type-specifier (lvar-type array))))))))
642 ;;;; template conversion
644 ;;; Build a TN-REFS list that represents access to the values of the
645 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
646 ;;; are returned in the second value as a list rather than being
647 ;;; accessed as a normal argument. NODE and BLOCK provide the context
648 ;;; for emitting any necessary type-checking code.
649 (defun reference-args (node block args template)
650 (declare (type node node) (type ir2-block block) (list args)
651 (type template template))
652 (collect ((info-args))
653 (let ((last nil)
654 (first nil))
655 (do ((args args (cdr args))
656 (types (template-arg-types template) (cdr types)))
657 ((null args))
658 (let ((type (first types))
659 (arg (first args)))
660 (if (and (consp type) (eq (car type) ':constant))
661 (info-args (lvar-value arg))
662 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
663 (if last
664 (setf (tn-ref-across last) ref)
665 (setf first ref))
666 (setq last ref)))))
668 (values (the (or tn-ref null) first) (info-args)))))
670 ;;; Convert a conditional template. We try to exploit any
671 ;;; drop-through, but emit an unconditional branch afterward if we
672 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
673 ;;; negated.
674 (defun ir2-convert-conditional (node block template args info-args if not-p)
675 (declare (type node node) (type ir2-block block)
676 (type template template) (type (or tn-ref null) args)
677 (list info-args) (type cif if) (type boolean not-p))
678 (let ((consequent (if-consequent if))
679 (alternative (if-alternative if))
680 (flags (and (consp (template-result-types template))
681 (rest (template-result-types template)))))
682 (aver (= (template-info-arg-count template)
683 (+ (length info-args)
684 (if flags 0 2))))
685 (when not-p
686 (rotatef consequent alternative)
687 (setf not-p nil))
688 (when (drop-thru-p if consequent)
689 (rotatef consequent alternative)
690 (setf not-p t))
691 (cond ((not flags)
692 (emit-template node block template args nil
693 (list* (block-label consequent) not-p
694 info-args))
695 (if (drop-thru-p if alternative)
696 (register-drop-thru alternative)
697 (vop branch node block (block-label alternative))))
699 (emit-template node block template args nil info-args)
700 (vop branch-if node block (block-label consequent) flags not-p)
701 (if (drop-thru-p if alternative)
702 (register-drop-thru alternative)
703 (vop branch node block (block-label alternative)))))))
705 ;;; Convert an IF that isn't the DEST of a conditional template.
706 (defun ir2-convert-if (node block)
707 (declare (type ir2-block block) (type cif node))
708 (let* ((test (if-test node))
709 (test-ref (reference-tn (lvar-tn node block test) nil))
710 (nil-ref (reference-tn (emit-constant nil) nil)))
711 (setf (tn-ref-across test-ref) nil-ref)
712 (ir2-convert-conditional node block (template-or-lose 'if-eq)
713 test-ref () node t)))
715 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
716 ;;; describing the result types we want for a template call. We are really
717 ;;; only interested in the number of results required: in normal case
718 ;;; TEMPLATE-RESULTS-OK has already checked them.
719 (defun find-template-result-types (call rtypes)
720 (let* ((type (node-derived-type call))
721 (types
722 (mapcar #'primitive-type
723 (if (args-type-p type)
724 (append (args-type-required type)
725 (args-type-optional type))
726 (list type))))
727 (primitive-t *backend-t-primitive-type*))
728 (mapcar (lambda (rtype)
729 (declare (ignore rtype))
730 (or (pop types) primitive-t)) rtypes)))
732 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
733 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
734 ;;; fixed values and has locations that satisfy the result restrictions. This
735 ;;; can fail when there is a type check or a values count mismatch.
736 (defun make-template-result-tns (call lvar rtypes)
737 (declare (type combination call) (type (or lvar null) lvar)
738 (list rtypes))
739 (let ((2lvar (when lvar (lvar-info lvar))))
740 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
741 (let ((locs (ir2-lvar-locs 2lvar)))
742 (if (and (= (length rtypes) (length locs))
743 (do ((loc locs (cdr loc))
744 (rtypes rtypes (cdr rtypes)))
745 ((null loc) t)
746 (unless (operand-restriction-ok
747 (car rtypes)
748 (tn-primitive-type (car loc))
749 :t-ok nil)
750 (return nil))))
751 locs
752 (lvar-result-tns
753 lvar
754 (find-template-result-types call rtypes))))
755 (lvar-result-tns
756 lvar
757 (find-template-result-types call rtypes)))))
759 ;;; Get the operands into TNs, make TN-REFs for them, and then call
760 ;;; the template emit function.
761 (defun ir2-convert-template (call block)
762 (declare (type combination call) (type ir2-block block))
763 (let* ((template (combination-info call))
764 (lvar (node-lvar call))
765 (rtypes (template-result-types template)))
766 (multiple-value-bind (args info-args)
767 (reference-args call block (combination-args call) template)
768 (aver (not (template-more-results-type template)))
769 (if (template-conditional-p template)
770 (ir2-convert-conditional call block template args info-args
771 (lvar-dest lvar) nil)
772 (let* ((results (make-template-result-tns call lvar rtypes))
773 (r-refs (reference-tn-list results t)))
774 (aver (= (length info-args)
775 (template-info-arg-count template)))
776 (when (and lvar (lvar-dynamic-extent lvar))
777 (vop current-stack-pointer call block
778 (ir2-lvar-stack-pointer (lvar-info lvar))))
779 (when (emit-step-p call)
780 (vop sb!vm::step-instrument-before-vop call block))
781 (if info-args
782 (emit-template call block template args r-refs info-args)
783 (emit-template call block template args r-refs))
784 (move-lvar-result call block results lvar)))))
785 (values))
787 ;;; We don't have to do much because operand count checking is done by
788 ;;; IR1 conversion. The only difference between this and the function
789 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
790 ;;; arguments.
791 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
792 (declare (ignore args))
793 (let* ((template (lvar-value template))
794 (info (lvar-value info))
795 (lvar (node-lvar call))
796 (rtypes (template-result-types template))
797 (results (make-template-result-tns call lvar rtypes))
798 (r-refs (reference-tn-list results t)))
799 (multiple-value-bind (args info-args)
800 (reference-args call block (cddr (combination-args call)) template)
801 (aver (not (template-more-results-type template)))
802 (aver (not (template-conditional-p template)))
803 (aver (null info-args))
805 (if info
806 (emit-template call block template args r-refs info)
807 (emit-template call block template args r-refs))
809 (move-lvar-result call block results lvar)))
810 (values))
812 (defoptimizer (%%primitive derive-type) ((template info &rest args))
813 (declare (ignore info args))
814 (let ((type (template-type (lvar-value template))))
815 (if (fun-type-p type)
816 (fun-type-returns type)
817 *wild-type*)))
819 ;;;; local call
821 ;;; Convert a LET by moving the argument values into the variables.
822 ;;; Since a LET doesn't have any passing locations, we move the
823 ;;; arguments directly into the variables. We must also allocate any
824 ;;; indirect value cells, since there is no function prologue to do
825 ;;; this.
826 (defun ir2-convert-let (node block fun)
827 (declare (type combination node) (type ir2-block block) (type clambda fun))
828 (mapc (lambda (var arg)
829 (when arg
830 (let ((src (lvar-tn node block arg))
831 (dest (leaf-info var)))
832 (if (and (lambda-var-indirect var)
833 (lambda-var-explicit-value-cell var))
834 (emit-make-value-cell node block src dest)
835 (emit-move node block src dest)))))
836 (lambda-vars fun) (basic-combination-args node))
837 (values))
839 ;;; Emit any necessary moves into assignment temps for a local call to
840 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
841 ;;; values, and (possibly EQ) TNs that are the actual destination of
842 ;;; the arguments. When necessary, we allocate temporaries for
843 ;;; arguments to preserve parallel assignment semantics. These lists
844 ;;; exclude unused arguments and include implicit environment
845 ;;; arguments, i.e. they exactly correspond to the arguments passed.
847 ;;; OLD-FP is the TN currently holding the value we want to pass as
848 ;;; OLD-FP. If null, then the call is to the same environment (an
849 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
850 ;;; environment alone.
852 ;;; CLOSURE-FP is for calling a closure that has "implicit" value
853 ;;; cells (stored in the allocating stack frame), and is the frame
854 ;;; pointer TN to use for values allocated in the outbound stack
855 ;;; frame. This is distinct from OLD-FP for the specific case of a
856 ;;; tail-local-call.
857 (defun emit-psetq-moves (node block fun old-fp &optional (closure-fp old-fp))
858 (declare (type combination node) (type ir2-block block) (type clambda fun)
859 (type (or tn null) old-fp closure-fp))
860 (let ((actuals (mapcar (lambda (x)
861 (when x
862 (lvar-tn node block x)))
863 (combination-args node))))
864 (collect ((temps)
865 (locs))
866 (dolist (var (lambda-vars fun))
867 (let ((actual (pop actuals))
868 (loc (leaf-info var)))
869 (when actual
870 (cond
871 ((and (lambda-var-indirect var)
872 (lambda-var-explicit-value-cell var))
873 (let ((temp
874 (make-normal-tn *backend-t-primitive-type*)))
875 (emit-make-value-cell node block actual temp)
876 (temps temp)))
877 ((member actual (locs))
878 (let ((temp (make-normal-tn (tn-primitive-type loc))))
879 (emit-move node block actual temp)
880 (temps temp)))
882 (temps actual)))
883 (locs loc))))
885 (when old-fp
886 (let ((this-1env (node-physenv node))
887 (called-env (physenv-info (lambda-physenv fun))))
888 (dolist (thing (ir2-physenv-closure called-env))
889 (temps (closure-initial-value (car thing) this-1env closure-fp))
890 (locs (cdr thing)))
891 (temps old-fp)
892 (locs (ir2-physenv-old-fp called-env))))
894 (values (temps) (locs)))))
896 ;;; A tail-recursive local call is done by emitting moves of stuff
897 ;;; into the appropriate passing locations. After setting up the args
898 ;;; and environment, we just move our return-pc into the called
899 ;;; function's passing location.
900 (defun ir2-convert-tail-local-call (node block fun)
901 (declare (type combination node) (type ir2-block block) (type clambda fun))
902 (let ((this-env (physenv-info (node-physenv node)))
903 (current-fp (make-stack-pointer-tn)))
904 (multiple-value-bind (temps locs)
905 (emit-psetq-moves node block fun
906 (ir2-physenv-old-fp this-env) current-fp)
908 ;; If we're about to emit a move from CURRENT-FP then we need to
909 ;; initialize it.
910 (when (find current-fp temps)
911 (vop current-fp node block current-fp))
913 (mapc (lambda (temp loc)
914 (emit-move node block temp loc))
915 temps locs))
917 (emit-move node block
918 (ir2-physenv-return-pc this-env)
919 (ir2-physenv-return-pc-pass
920 (physenv-info
921 (lambda-physenv fun)))))
923 (values))
925 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
926 ;;; except that the caller and callee environment are the same, so we
927 ;;; don't need to mess with the environment locations, return PC, etc.
928 (defun ir2-convert-assignment (node block fun)
929 (declare (type combination node) (type ir2-block block) (type clambda fun))
930 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
932 (mapc (lambda (temp loc)
933 (emit-move node block temp loc))
934 temps locs))
935 (values))
937 ;;; Do stuff to set up the arguments to a non-tail local call
938 ;;; (including implicit environment args.) We allocate a frame
939 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
940 ;;; the values to pass and the list of passing location TNs.
941 (defun ir2-convert-local-call-args (node block fun)
942 (declare (type combination node) (type ir2-block block) (type clambda fun))
943 (let ((fp (make-stack-pointer-tn))
944 (nfp (make-number-stack-pointer-tn))
945 (old-fp (make-stack-pointer-tn)))
946 (multiple-value-bind (temps locs)
947 (emit-psetq-moves node block fun old-fp)
948 (vop current-fp node block old-fp)
949 (vop allocate-frame node block
950 (physenv-info (lambda-physenv fun))
951 fp nfp)
952 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
954 ;;; Handle a non-TR known-values local call. We emit the call, then
955 ;;; move the results to the lvar's destination.
956 (defun ir2-convert-local-known-call (node block fun returns lvar start)
957 (declare (type node node) (type ir2-block block) (type clambda fun)
958 (type return-info returns) (type (or lvar null) lvar)
959 (type label start))
960 (multiple-value-bind (fp nfp temps arg-locs)
961 (ir2-convert-local-call-args node block fun)
962 (let ((locs (return-info-locations returns)))
963 (vop* known-call-local node block
964 (fp nfp (reference-tn-list temps nil))
965 ((reference-tn-list locs t))
966 arg-locs (physenv-info (lambda-physenv fun)) start)
967 (move-lvar-result node block locs lvar)))
968 (values))
970 ;;; Handle a non-TR unknown-values local call. We do different things
971 ;;; depending on what kind of values the lvar wants.
973 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
974 ;;; specifying the lvar's LOCS as the VOP results so that we don't
975 ;;; have to do anything after the call.
977 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
978 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
979 ;;; coercions.
980 (defun ir2-convert-local-unknown-call (node block fun lvar start)
981 (declare (type node node) (type ir2-block block) (type clambda fun)
982 (type (or lvar null) lvar) (type label start))
983 (multiple-value-bind (fp nfp temps arg-locs)
984 (ir2-convert-local-call-args node block fun)
985 (let ((2lvar (and lvar (lvar-info lvar)))
986 (env (physenv-info (lambda-physenv fun)))
987 (temp-refs (reference-tn-list temps nil)))
988 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
989 (vop* multiple-call-local node block (fp nfp temp-refs)
990 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
991 arg-locs env start)
992 (let ((locs (standard-result-tns lvar)))
993 (vop* call-local node block
994 (fp nfp temp-refs)
995 ((reference-tn-list locs t))
996 arg-locs env start (length locs))
997 (move-lvar-result node block locs lvar)))))
998 (values))
1000 ;;; Dispatch to the appropriate function, depending on whether we have
1001 ;;; a let, tail or normal call. If the function doesn't return, call
1002 ;;; it using the unknown-value convention. We could compile it as a
1003 ;;; tail call, but that might seem confusing in the debugger.
1004 (defun ir2-convert-local-call (node block)
1005 (declare (type combination node) (type ir2-block block))
1006 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1007 (kind (functional-kind fun)))
1008 (cond ((eq kind :let)
1009 (ir2-convert-let node block fun))
1010 ((eq kind :assignment)
1011 (ir2-convert-assignment node block fun))
1012 ((node-tail-p node)
1013 (ir2-convert-tail-local-call node block fun))
1015 (let ((start (block-trampoline (lambda-block fun)))
1016 (returns (tail-set-info (lambda-tail-set fun)))
1017 (lvar (node-lvar node)))
1018 (ecase (if returns
1019 (return-info-kind returns)
1020 :unknown)
1021 (:unknown
1022 (ir2-convert-local-unknown-call node block fun lvar start))
1023 (:fixed
1024 (ir2-convert-local-known-call node block fun returns
1025 lvar start)))))))
1026 (values))
1028 ;;;; full call
1030 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
1031 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
1032 ;;; true if the thing is named (false if it is a function).
1034 ;;; There are two interesting non-named cases:
1035 ;;; -- We know it's a function. No check needed: return the
1036 ;;; lvar LOC.
1037 ;;; -- We don't know what it is.
1038 (defun fun-lvar-tn (node block lvar)
1039 (declare (ignore node block))
1040 (declare (type lvar lvar))
1041 (let ((2lvar (lvar-info lvar)))
1042 (if (eq (ir2-lvar-kind 2lvar) :delayed)
1043 (let ((name (lvar-fun-name lvar t)))
1044 (aver name)
1045 (values (cond ((sb!vm::static-fdefn-offset name)
1046 name)
1048 ;; Named call to an immobile fdefn from an immobile component
1049 ;; uses the FUN-TN only to preserve liveness of the fdefn.
1050 ;; The name becomes an info arg.
1051 (make-load-time-constant-tn :fdefinition name)))
1052 name))
1053 (let* ((locs (ir2-lvar-locs 2lvar))
1054 (loc (first locs))
1055 (function-ptype (primitive-type-or-lose 'function)))
1056 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
1057 (= (length locs) 1)))
1058 (aver (eq (tn-primitive-type loc) function-ptype))
1059 (values loc nil)))))
1061 ;;; Set up the args to NODE in the current frame, and return a TN-REF
1062 ;;; list for the passing locations.
1063 (defun move-tail-full-call-args (node block)
1064 (declare (type combination node) (type ir2-block block))
1065 (let ((args (basic-combination-args node))
1066 (last nil)
1067 (first nil))
1068 (dotimes (num (length args))
1069 (let ((loc (standard-arg-location num)))
1070 (emit-move node block (lvar-tn node block (elt args num)) loc)
1071 (let ((ref (reference-tn loc nil)))
1072 (if last
1073 (setf (tn-ref-across last) ref)
1074 (setf first ref))
1075 (setq last ref))))
1076 first))
1078 ;;; Move the arguments into the passing locations and do a (possibly
1079 ;;; named) tail call.
1080 (defun ir2-convert-tail-full-call (node block)
1081 (declare (type combination node) (type ir2-block block))
1082 (let* ((env (physenv-info (node-physenv node)))
1083 (args (basic-combination-args node))
1084 (nargs (length args))
1085 (pass-refs (move-tail-full-call-args node block))
1086 (old-fp (ir2-physenv-old-fp env))
1087 (return-pc (ir2-physenv-return-pc env)))
1089 (multiple-value-bind (fun-tn named)
1090 (fun-lvar-tn node block (basic-combination-fun node))
1091 (cond ((not named)
1092 (vop* tail-call node block
1093 (fun-tn old-fp return-pc pass-refs)
1094 (nil)
1095 nargs (emit-step-p node)))
1096 #!-immobile-code
1097 ((eq fun-tn named)
1098 (vop* static-tail-call-named node block
1099 (old-fp return-pc pass-refs) ; args
1100 (nil) ; results
1101 nargs named (emit-step-p node)))
1103 (vop* tail-call-named node block
1104 (#!-immobile-code fun-tn old-fp return-pc pass-refs) ; args
1105 (nil) ; results
1106 nargs #!+immobile-code named (emit-step-p node)))))) ; info
1107 (values))
1109 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
1110 (defun ir2-convert-full-call-args (node block)
1111 (declare (type combination node) (type ir2-block block))
1112 (let* ((args (basic-combination-args node))
1113 (fp (make-stack-pointer-tn))
1114 (nargs (length args)))
1115 (vop allocate-full-call-frame node block nargs fp)
1116 (collect ((locs))
1117 (let ((last nil)
1118 (first nil))
1119 (dotimes (num nargs)
1120 (locs (standard-arg-location num))
1121 (let ((ref (reference-tn (lvar-tn node block (elt args num))
1122 nil)))
1123 (if last
1124 (setf (tn-ref-across last) ref)
1125 (setf first ref))
1126 (setq last ref)))
1128 (values fp first (locs) nargs)))))
1130 ;;; Do full call when a fixed number of values are desired. We make
1131 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
1132 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
1133 (defun ir2-convert-fixed-full-call (node block)
1134 (declare (type combination node) (type ir2-block block))
1135 (multiple-value-bind (fp args arg-locs nargs)
1136 (ir2-convert-full-call-args node block)
1137 (let* ((lvar (node-lvar node))
1138 (locs (standard-result-tns lvar))
1139 (loc-refs (reference-tn-list locs t))
1140 (nvals (length locs)))
1141 (multiple-value-bind (fun-tn named)
1142 (fun-lvar-tn node block (basic-combination-fun node))
1143 (cond ((not named)
1144 (vop* call node block (fp fun-tn args) (loc-refs)
1145 arg-locs nargs nvals (emit-step-p node)))
1146 #!-immobile-code
1147 ((eq fun-tn named)
1148 (vop* static-call-named node block
1149 (fp args)
1150 (loc-refs)
1151 arg-locs nargs named nvals
1152 (emit-step-p node)))
1154 (vop* call-named node block
1155 (fp #!-immobile-code fun-tn args) ; args
1156 (loc-refs) ; results
1157 arg-locs nargs #!+immobile-code named nvals ; info
1158 (emit-step-p node))))
1159 (move-lvar-result node block locs lvar))))
1160 (values))
1162 ;;; Do full call when unknown values are desired.
1163 (defun ir2-convert-multiple-full-call (node block)
1164 (declare (type combination node) (type ir2-block block))
1165 (multiple-value-bind (fp args arg-locs nargs)
1166 (ir2-convert-full-call-args node block)
1167 (let* ((lvar (node-lvar node))
1168 (locs (ir2-lvar-locs (lvar-info lvar)))
1169 (loc-refs (reference-tn-list locs t)))
1170 (multiple-value-bind (fun-tn named)
1171 (fun-lvar-tn node block (basic-combination-fun node))
1172 (cond ((not named)
1173 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1174 arg-locs nargs (emit-step-p node)))
1175 #!-immobile-code
1176 ((eq fun-tn named)
1177 (vop* static-multiple-call-named node block
1178 (fp args)
1179 (loc-refs)
1180 arg-locs nargs named
1181 (emit-step-p node)))
1183 (vop* multiple-call-named node block
1184 (fp #!-immobile-code fun-tn args) ; args
1185 (loc-refs) ; results
1186 arg-locs nargs #!+immobile-code named ; info
1187 (emit-step-p node)))))))
1188 (values))
1190 ;;; stuff to check in PONDER-FULL-CALL
1192 ;;; These came in handy when troubleshooting cold boot after making
1193 ;;; major changes in the package structure: various transforms and
1194 ;;; VOPs and stuff got attached to the wrong symbol, so that
1195 ;;; references to the right symbol were bogusly translated as full
1196 ;;; calls instead of primitives, sending the system off into infinite
1197 ;;; space. Having a report on all full calls generated makes it easier
1198 ;;; to figure out what form caused the problem this time.
1199 (declaim (type (member :minimal :detailed :very-detailed :maximal)
1200 *track-full-called-fnames*))
1201 (defvar *track-full-called-fnames* :minimal)
1203 ;;; Do some checks (and store some notes relevant for future checks)
1204 ;;; on a full call:
1205 ;;; * Is this a full call to something we have reason to know should
1206 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1207 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1208 ;;; been detected.)
1209 (defun ponder-full-call (node)
1210 (let* ((lvar (basic-combination-fun node))
1211 (fname (lvar-fun-name lvar t)))
1212 (declare (type (or symbol cons) fname))
1214 (when (and (symbolp fname)
1215 (eq (symbol-package fname) *cl-package*))
1216 ;; Never produce a warning from (DECLARE (INLINE LENGTH)) etc
1217 (return-from ponder-full-call))
1219 ;; Warn about cross-compiling certain full-calls,
1220 ;; as it is indicative of dependency order problems.
1221 #+sb-xc-host
1222 (let ((compname (component-name (node-component node))))
1223 ;; Don't care too much about macro performance.
1224 (unless (and (stringp compname) (string/= compname "DEFMACRO"))
1225 ;; Catch FOO and (SETF FOO) both.
1226 (let ((stem (if (atom fname) fname (second fname))))
1227 (when (member stem
1228 sb-cold::*full-calls-to-warn-about*
1229 :test #'string=)
1230 (warn "Full call to ~S" fname)))))
1232 (let* ((inlineable-p (not (let ((*lexenv* (node-lexenv node)))
1233 (fun-lexically-notinline-p fname))))
1234 (inlineable-bit (if inlineable-p 1 0))
1235 (cell (info :function :emitted-full-calls fname)))
1236 (if (not cell)
1237 ;; The low bit indicates whether any not-NOTINLINE call was seen.
1238 ;; The next-lowest bit is magic. Refer to %COMPILER-DEFMACRO
1239 ;; and WARN-IF-INLINE-FAILED/CALL for the pertinent logic.
1240 (setf cell (list (logior 4 inlineable-bit))
1241 (info :function :emitted-full-calls fname) cell)
1242 (incf (car cell) (+ 4 (if (oddp (car cell)) 0 inlineable-bit))))
1243 ;; If the full call was wanted, don't record anything.
1244 ;; (This was originally for debugging SBCL self-compilation)
1245 (when inlineable-p
1246 (unless *failure-p*
1247 (warn-if-inline-failed/call fname (node-lexenv node) cell))
1248 (case *track-full-called-fnames*
1249 (:detailed
1250 (when (boundp 'sb!xc:*compile-file-pathname*)
1251 (pushnew sb!xc:*compile-file-pathname* (cdr cell)
1252 :test #'equal)))
1253 (:very-detailed
1254 (pushnew (component-name *component-being-compiled*)
1255 (cdr cell) :test #'equalp)))))
1257 ;; Special mode, usually only for the cross-compiler
1258 ;; and only with the feature enabled.
1259 #!+sb-show (when (eq *track-full-called-fnames* :maximal)
1260 (/show "converting full call to named function" fname)
1261 (/show (basic-combination-args node))
1262 (/show (policy node speed) (policy node safety))
1263 (/show (policy node compilation-speed))
1264 (let ((arg-types (mapcar (lambda (lvar)
1265 (when lvar
1266 (type-specifier
1267 (lvar-type lvar))))
1268 (basic-combination-args node))))
1269 (/show arg-types)))
1271 ;; When illegal code is compiled, all sorts of perverse paths
1272 ;; through the compiler can be taken, and it's much harder -- and
1273 ;; probably pointless -- to guarantee that always-optimized-away
1274 ;; functions are actually optimized away. Thus, we skip the check
1275 ;; in that case.
1276 (unless *failure-p*
1277 ;; check to see if we know anything about the function
1278 (let ((info (info :function :info fname)))
1279 ;; if we know something, check to see if the full call was valid
1280 (when (and info (ir1-attributep (fun-info-attributes info)
1281 always-translatable))
1282 (/show (policy node speed) (policy node safety))
1283 (/show (policy node compilation-speed))
1284 (bug "full call to ~S" fname))))
1286 (when (consp fname)
1287 (aver (legal-fun-name-p fname))))) ;; FIXME: needless check?
1289 ;;; If the call is in a tail recursive position and the return
1290 ;;; convention is standard, then do a tail full call. If one or fewer
1291 ;;; values are desired, then use a single-value call, otherwise use a
1292 ;;; multiple-values call.
1293 (defun ir2-convert-full-call (node block)
1294 (declare (type combination node) (type ir2-block block))
1295 (ponder-full-call node)
1296 (cond ((node-tail-p node)
1297 (ir2-convert-tail-full-call node block))
1298 ((let ((lvar (node-lvar node)))
1299 (and lvar
1300 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1301 (ir2-convert-multiple-full-call node block))
1303 (ir2-convert-fixed-full-call node block)))
1304 (values))
1306 ;;;; entering functions
1308 #!+precise-arg-count-error
1309 (defun xep-verify-arg-count (node block fun arg-count-location)
1310 (when (policy fun (plusp verify-arg-count))
1311 (let* ((ef (functional-entry-fun fun))
1312 (optional (optional-dispatch-p ef))
1313 (min (and optional
1314 (optional-dispatch-min-args ef)))
1315 (max (cond ((not optional)
1316 (1- (length (lambda-vars fun))))
1317 ((and optional
1318 (not (optional-dispatch-more-entry ef)))
1319 (optional-dispatch-max-args ef)))))
1320 (unless (and (eql min 0) (not max))
1321 (vop verify-arg-count node block
1322 arg-count-location
1324 max)
1325 min))))
1327 ;;; Do all the stuff that needs to be done on XEP entry:
1328 ;;; -- Create frame.
1329 ;;; -- Copy any more arg.
1330 ;;; -- Set up the environment, accessing any closure variables.
1331 ;;; -- Move args from the standard passing locations to their internal
1332 ;;; locations.
1333 (defun init-xep-environment (node block fun)
1334 (declare (type bind node) (type ir2-block block) (type clambda fun))
1335 (let ((start-label (entry-info-offset (leaf-info fun)))
1336 (env (physenv-info (node-physenv node)))
1337 arg-count-tn)
1338 (let ((ef (functional-entry-fun fun)))
1339 (vop xep-allocate-frame node block start-label)
1340 ;; Arg verification needs to be done before the stack pointer is adjusted
1341 ;; so that the extra arguments are still present when the error is signalled
1342 (let ((verified (unless (eq (functional-kind fun) :toplevel)
1343 (setf arg-count-tn (make-arg-count-location))
1344 #!+precise-arg-count-error
1345 (xep-verify-arg-count node block fun arg-count-tn))))
1346 #!-x86-64
1347 (declare (ignore verified))
1348 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1349 ;; COPY-MORE-ARG should handle SP adjustemnt, but it
1350 ;; isn't done on all targets.
1351 #!-precise-arg-count-error
1352 (vop xep-setup-sp node block)
1353 (vop copy-more-arg node block (optional-dispatch-max-args ef)
1354 #!+x86-64 verified))
1356 (vop xep-setup-sp node block))))
1357 (when (ir2-physenv-closure env)
1358 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1359 (when (policy fun (> store-closure-debug-pointer 1))
1360 ;; Save the closure pointer on the stack.
1361 (let ((closure-save (make-representation-tn
1362 *backend-t-primitive-type*
1363 (sc-number-or-lose 'sb!vm::control-stack))))
1364 (vop setup-closure-environment node block start-label
1365 closure-save)
1366 (setf (ir2-physenv-closure-save-tn env) closure-save)
1367 (component-live-tn closure-save)))
1368 (vop setup-closure-environment node block start-label closure)
1369 (let ((n -1))
1370 (dolist (loc (ir2-physenv-closure env))
1371 (vop closure-ref node block closure (incf n) (cdr loc)))))))
1372 (unless (eq (functional-kind fun) :toplevel)
1373 (let ((vars (lambda-vars fun))
1374 (n 0))
1375 (when (leaf-refs (first vars))
1376 (emit-move node block arg-count-tn (leaf-info (first vars))))
1377 (dolist (arg (rest vars))
1378 (when (leaf-refs arg)
1379 (let ((pass (standard-arg-location n))
1380 (home (leaf-info arg)))
1381 (if (and (lambda-var-indirect arg)
1382 (lambda-var-explicit-value-cell arg))
1383 (emit-make-value-cell node block pass home)
1384 (emit-move node block pass home))))
1385 (incf n))))
1387 (emit-move node block (make-old-fp-passing-location t)
1388 (ir2-physenv-old-fp env)))
1390 (values))
1392 ;;; Emit function prolog code. This is only called on bind nodes for
1393 ;;; functions that allocate environments. All semantics of let calls
1394 ;;; are handled by IR2-CONVERT-LET.
1396 ;;; If not an XEP, all we do is move the return PC from its passing
1397 ;;; location, since in a local call, the caller allocates the frame
1398 ;;; and sets up the arguments.
1400 #!+unwind-to-frame-and-call-vop
1401 (defun save-bsp (node block env)
1402 ;; Save BSP on stack so that the binding environment can be restored
1403 ;; when restarting frames.
1404 ;; This is done inside functions, which leaves XEPs without saved
1405 ;; BSP, though the code in XEPs doesn't bind any variables, it can
1406 ;; call arbitrary code through the SATISFIES declaration.
1407 ;; And functions called by SATISFIES are not inlined, except for
1408 ;; source transforms, but these usually do not bind anything.
1409 ;; Thus when restarting it needs to check that the interrupt was in
1410 ;; the XEP itself.
1412 ;; It could be saved from the XEP, but some functions have both
1413 ;; external and internal entry points, so it will be saved twice.
1414 (let ((temp (make-normal-tn *backend-t-primitive-type*))
1415 (bsp-save-tn (make-representation-tn
1416 *backend-t-primitive-type*
1417 (sc-number-or-lose 'sb!vm::control-stack))))
1418 (vop current-binding-pointer node block temp)
1419 (emit-move node block temp bsp-save-tn)
1420 (setf (ir2-physenv-bsp-save-tn env) bsp-save-tn)
1421 (component-live-tn bsp-save-tn)))
1423 (defun ir2-convert-bind (node block)
1424 (declare (type bind node) (type ir2-block block))
1425 (let* ((fun (bind-lambda node))
1426 (env (physenv-info (lambda-physenv fun))))
1427 (aver (member (functional-kind fun)
1428 '(nil :external :optional :toplevel :cleanup)))
1430 (cond ((xep-p fun)
1431 (init-xep-environment node block fun)
1432 #!+sb-dyncount
1433 (when *collect-dynamic-statistics*
1434 (vop count-me node block *dynamic-counts-tn*
1435 (block-number (ir2-block-block block)))))
1436 ((policy fun (> store-closure-debug-pointer 1))
1437 ;; Propagate the location of the closure pointer from the
1438 ;; enclosing functions. (FIXME: Should make sure that this
1439 ;; handles closures inside closures correctly). [remark by JES]
1440 (let* ((entry-fun (lambda-entry-fun fun)))
1441 (when entry-fun
1442 (let ((2env (physenv-info (lambda-physenv fun)))
1443 (entry-2env (physenv-info (lambda-physenv entry-fun))))
1444 (setf (ir2-physenv-closure-save-tn 2env)
1445 (ir2-physenv-closure-save-tn entry-2env)))))))
1447 (emit-move node
1448 block
1449 (ir2-physenv-return-pc-pass env)
1450 (ir2-physenv-return-pc env))
1451 #!+unwind-to-frame-and-call-vop
1452 (when (and (lambda-allow-instrumenting fun)
1453 (not (lambda-inline-expanded fun))
1454 (policy fun (>= insert-debug-catch 1)))
1455 (save-bsp node block env))
1457 (let ((lab (gen-label)))
1458 (setf (ir2-physenv-environment-start env) lab)
1459 (vop note-environment-start node block lab)
1460 #!+sb-safepoint
1461 (unless (policy fun (>= inhibit-safepoints 2))
1462 (vop sb!vm::insert-safepoint node block))))
1464 (values))
1466 ;;;; function return
1468 ;;; Do stuff to return from a function with the specified values and
1469 ;;; convention. If the return convention is :FIXED and we aren't
1470 ;;; returning from an XEP, then we do a known return (letting
1471 ;;; representation selection insert the correct move-arg VOPs.)
1472 ;;; Otherwise, we use the unknown-values convention. If there is a
1473 ;;; fixed number of return values, then use RETURN, otherwise use
1474 ;;; RETURN-MULTIPLE.
1475 (defun ir2-convert-return (node block)
1476 (declare (type creturn node) (type ir2-block block))
1477 (let* ((lvar (return-result node))
1478 (2lvar (lvar-info lvar))
1479 (lvar-kind (ir2-lvar-kind 2lvar))
1480 (fun (return-lambda node))
1481 (env (physenv-info (lambda-physenv fun)))
1482 (old-fp (ir2-physenv-old-fp env))
1483 (return-pc (ir2-physenv-return-pc env))
1484 (returns (tail-set-info (lambda-tail-set fun))))
1485 (cond
1486 ((and (eq (return-info-kind returns) :fixed)
1487 (not (xep-p fun)))
1488 (let ((locs (lvar-tns node block lvar
1489 (return-info-types returns))))
1490 (vop* known-return node block
1491 (old-fp return-pc (reference-tn-list locs nil))
1492 (nil)
1493 (return-info-locations returns))))
1494 ((eq lvar-kind :fixed)
1495 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1496 (lvar-locs (lvar-tns node block lvar types))
1497 (nvals (length lvar-locs))
1498 (locs (make-standard-value-tns nvals)))
1499 (mapc (lambda (val loc)
1500 (emit-move node block val loc))
1501 lvar-locs
1502 locs)
1503 (if (= nvals 1)
1504 (vop return-single node block old-fp return-pc (car locs))
1505 (vop* return node block
1506 (old-fp return-pc (reference-tn-list locs nil))
1507 (nil)
1508 nvals))))
1510 (aver (eq lvar-kind :unknown))
1511 (vop* return-multiple node block
1512 (old-fp return-pc
1513 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1514 (nil)))))
1516 (values))
1518 ;;;; debugger hooks
1519 ;;;;
1520 ;;;; These are used by the debugger to find the top function on the
1521 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1522 ;;;; function as multiple values.
1524 (defoptimizer (%caller-frame ir2-convert) (() node block)
1525 (let ((ir2-physenv (physenv-info (node-physenv node))))
1526 (move-lvar-result node block
1527 (list (ir2-physenv-old-fp ir2-physenv))
1528 (node-lvar node))))
1530 (defoptimizer (%caller-pc ir2-convert) (() node block)
1531 (let ((ir2-physenv (physenv-info (node-physenv node))))
1532 (move-lvar-result node block
1533 (list (ir2-physenv-return-pc ir2-physenv))
1534 (node-lvar node))))
1536 ;;;; multiple values
1538 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1539 ;;; the lvar for the correct number of values (with the lvar user
1540 ;;; responsible for defaulting), we can just pick them up from the
1541 ;;; lvar.
1542 (defun ir2-convert-mv-bind (node block)
1543 (declare (type mv-combination node) (type ir2-block block))
1544 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1545 (args (basic-combination-args node))
1546 (vars (lambda-vars fun)))
1547 (aver (eq (functional-kind fun) :mv-let))
1548 (mapc (lambda (src var)
1549 (when (leaf-refs var)
1550 (let ((dest (leaf-info var)))
1551 (if (and (lambda-var-indirect var)
1552 (lambda-var-explicit-value-cell var))
1553 (emit-make-value-cell node block src dest)
1554 (emit-move node block src dest)))))
1555 (if (singleton-p args)
1556 (lvar-tns node block (first args)
1557 (mapcar (lambda (x)
1558 (primitive-type (leaf-type x)))
1559 vars))
1560 (let ((vars vars))
1561 (loop for lvar in args
1562 for values = (nth-value 1 (values-types
1563 (lvar-derived-type lvar)))
1564 while vars
1565 nconc
1566 (lvar-tns node block lvar (loop repeat values
1567 collect (primitive-type (leaf-type (pop vars))))))))
1568 vars))
1569 (values))
1571 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1572 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1573 ;;; the first argument: all the other argument lvar TNs are
1574 ;;; ignored. This is because we require all of the values globs to be
1575 ;;; contiguous and on stack top.
1576 (defun ir2-convert-mv-call (node block)
1577 (declare (type mv-combination node) (type ir2-block block))
1578 (aver (basic-combination-args node))
1579 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1580 (start (first (ir2-lvar-locs start-lvar)))
1581 (tails (and (node-tail-p node)
1582 (lambda-tail-set (node-home-lambda node))))
1583 (lvar (node-lvar node))
1584 (2lvar (and lvar (lvar-info lvar))))
1585 (multiple-value-bind (fun named)
1586 (fun-lvar-tn node block (basic-combination-fun node))
1587 (aver (and (not named)
1588 (eq (ir2-lvar-kind start-lvar) :unknown)))
1589 (cond
1590 (tails
1591 (let ((env (physenv-info (node-physenv node))))
1592 (vop tail-call-variable node block start fun
1593 (ir2-physenv-old-fp env)
1594 (ir2-physenv-return-pc env))))
1595 ((and 2lvar
1596 (eq (ir2-lvar-kind 2lvar) :unknown))
1597 (vop* multiple-call-variable node block (start fun nil)
1598 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1599 (emit-step-p node)))
1601 (let ((locs (standard-result-tns lvar)))
1602 (vop* call-variable node block (start fun nil)
1603 ((reference-tn-list locs t)) (length locs)
1604 (emit-step-p node))
1605 (move-lvar-result node block locs lvar)))))))
1607 ;;; Reset the stack pointer to the start of the specified
1608 ;;; unknown-values lvar (discarding it and all values globs on top of
1609 ;;; it.)
1610 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1611 (let* ((lvar (lvar-value %lvar))
1612 (2lvar (lvar-info lvar)))
1613 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1614 (vop reset-stack-pointer node block
1615 (first (ir2-lvar-locs 2lvar))))
1616 ((lvar-dynamic-extent lvar)
1617 (vop reset-stack-pointer node block
1618 (ir2-lvar-stack-pointer 2lvar)))
1619 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1620 lvar)))))
1622 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1623 &rest moved)
1624 node block)
1625 (let* ( ;; pointer immediately after the nipped block
1626 (after (lvar-value last-nipped))
1627 (2after (lvar-info after))
1628 ;; pointer to the first nipped word
1629 (first (lvar-value last-preserved))
1630 (2first (lvar-info first))
1632 (moved-tns (loop for lvar-ref in moved
1633 for lvar = (lvar-value lvar-ref)
1634 for 2lvar = (lvar-info lvar)
1635 ;when 2lvar
1636 collect (first (ir2-lvar-locs 2lvar)))))
1637 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1638 (lvar-dynamic-extent after)))
1639 (aver (eq (ir2-lvar-kind 2first) :unknown))
1640 (when *check-consistency*
1641 ;; we cannot move stack-allocated DX objects
1642 (dolist (moved-lvar moved)
1643 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1644 :unknown))))
1645 (flet ((nip-aligned (nipped)
1646 (vop* %%nip-values node block
1647 (nipped
1648 (first (ir2-lvar-locs 2first))
1649 (reference-tn-list moved-tns nil))
1650 ((reference-tn-list moved-tns t)))))
1651 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1652 (nip-aligned (first (ir2-lvar-locs 2after))))
1653 ((lvar-dynamic-extent after)
1654 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1656 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1658 (defoptimizer (%dummy-dx-alloc ir2-convert) ((target source) node block)
1659 (let* ((target-lvar (lvar-value target))
1660 (source-lvar (lvar-value source))
1661 (target-2lvar (lvar-info target-lvar))
1662 (source-2lvar (and source-lvar (lvar-info source-lvar))))
1663 (aver (lvar-dynamic-extent target-lvar))
1664 (cond ((not source-lvar)
1665 (vop current-stack-pointer node block
1666 (ir2-lvar-stack-pointer target-2lvar)))
1667 ((lvar-dynamic-extent source-lvar)
1668 (emit-move node block
1669 (ir2-lvar-stack-pointer source-2lvar)
1670 (ir2-lvar-stack-pointer target-2lvar)))
1671 ((eq (ir2-lvar-kind source-2lvar) :unknown)
1672 (emit-move node block
1673 (first (ir2-lvar-locs source-2lvar))
1674 (ir2-lvar-stack-pointer target-2lvar)))
1675 (t (bug "Trying to dummy up DX allocation from a ~
1676 not stack-allocated LVAR ~S." source-lvar)))))
1678 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1679 (defoptimizer (values ir2-convert) ((&rest values) node block)
1680 (let ((tns (mapcar (lambda (x)
1681 (lvar-tn node block x))
1682 values)))
1684 (move-lvar-result node block tns (node-lvar node))))
1686 ;;; In the normal case where unknown values are desired, we use the
1687 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1688 ;;; for a fixed number of values, we punt by doing a full call to the
1689 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1690 ;;; defaulting any unsupplied values. It seems unworthwhile to
1691 ;;; optimize this case.
1692 (defoptimizer (values-list ir2-convert) ((list) node block)
1693 (let* ((lvar (node-lvar node))
1694 (2lvar (and lvar (lvar-info lvar))))
1695 (cond ((and 2lvar
1696 (eq (ir2-lvar-kind 2lvar) :unknown))
1697 (let ((locs (ir2-lvar-locs 2lvar)))
1698 (vop* values-list node block
1699 ((lvar-tn node block list) nil)
1700 ((reference-tn-list locs t)))))
1701 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1702 (eq (ir2-lvar-kind 2lvar) :fixed)))
1703 (ir2-convert-full-call node block)))))
1705 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1706 (binding* ((lvar (node-lvar node) :exit-if-null)
1707 (2lvar (lvar-info lvar)))
1708 (ecase (ir2-lvar-kind 2lvar)
1709 (:fixed
1710 ;; KLUDGE: this is very much unsafe, and can leak random stack values.
1711 ;; OTOH, I think the :FIXED case can only happen with (safety 0) in the
1712 ;; first place.
1713 ;; -PK
1714 (loop for loc in (ir2-lvar-locs 2lvar)
1715 for idx upfrom 0
1716 do (vop sb!vm::more-arg node block
1717 (lvar-tn node block context)
1718 (emit-constant idx)
1719 loc)))
1720 (:unknown
1721 (let ((locs (ir2-lvar-locs 2lvar)))
1722 (vop* %more-arg-values node block
1723 ((lvar-tn node block context)
1724 (lvar-tn node block start)
1725 (lvar-tn node block count)
1726 nil)
1727 ((reference-tn-list locs t))))))))
1729 ;;;; special binding
1731 ;;; This is trivial, given our assumption of a shallow-binding
1732 ;;; implementation.
1733 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1734 (let ((name (leaf-source-name (lvar-value var))))
1735 ;; Emit either BIND or DYNBIND, preferring BIND if both exist.
1736 ;; If only one exists, it's DYNBIND.
1737 ;; Even if the backend supports load-time TLS index assignment,
1738 ;; there might be only one vop (as with arm64).
1739 (macrolet ((doit (bind dynbind)
1740 (if (gethash 'bind *backend-parsed-vops*) bind dynbind)))
1741 (doit
1742 (progn
1743 ;; Inform later SYMBOL-VALUE calls that they can
1744 ;; assume a nonzero tls-index.
1745 ;; FIXME: setting INFO is inefficient when not actually
1746 ;; changing anything
1747 (unless (info :variable :wired-tls name)
1748 (setf (info :variable :wired-tls name) :always-has-tls))
1749 ;; We force the symbol into the code constants in case BIND
1750 ;; does not actually reference it, as with x86.
1751 (emit-constant name)
1752 (vop bind node block (lvar-tn node block value) name))
1753 (vop dynbind node block (lvar-tn node block value)
1754 (emit-constant name))))))
1756 (defoptimizer (%special-unbind ir2-convert) ((n) node block)
1757 (declare (ignorable n))
1758 (vop unbind node block #!+(and sb-thread unbind-n-vop) (lvar-value n)))
1760 ;;; ### It's not clear that this really belongs in this file, or
1761 ;;; should really be done this way, but this is the least violation of
1762 ;;; abstraction in the current setup. We don't want to wire
1763 ;;; shallow-binding assumptions into IR1tran.
1764 (def-ir1-translator progv
1765 ((vars vals &body body) start next result)
1766 (ir1-convert
1767 start next result
1768 (with-unique-names (bind unbind)
1769 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1770 `(unwind-protect
1771 (progn
1772 (labels ((,unbind (vars)
1773 (declare (optimize (speed 2) (debug 0)))
1774 (let ((unbound-marker (%primitive make-unbound-marker)))
1775 (dolist (var vars)
1776 ;; CLHS says "bound and then made to have no value" -- user
1777 ;; should not be able to tell the difference between that and this.
1778 (about-to-modify-symbol-value var 'progv)
1779 (%primitive dynbind unbound-marker var))))
1780 (,bind (vars vals)
1781 (declare (optimize (speed 2) (debug 0)
1782 (insert-debug-catch 0)))
1783 (cond ((null vars))
1784 ((null vals) (,unbind vars))
1786 (let ((val (car vals))
1787 (var (car vars)))
1788 (about-to-modify-symbol-value var 'progv val t)
1789 (%primitive dynbind val var))
1790 (,bind (cdr vars) (cdr vals))))))
1791 (,bind ,vars ,vals))
1793 ,@body)
1794 ;; Technically ANSI CL doesn't allow declarations at the
1795 ;; start of the cleanup form. SBCL happens to allow for
1796 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1797 ;; is implemented; the cleanup forms are directly spliced
1798 ;; into an FLET definition body. And a declaration here
1799 ;; actually has exactly the right scope for what we need
1800 ;; (ensure that debug instrumentation is not emitted for the
1801 ;; cleanup function). -- JES, 2007-06-16
1802 (declare (optimize (insert-debug-catch 0)))
1803 (%primitive unbind-to-here ,n-save-bs))))))
1805 ;;;; non-local exit
1807 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1808 ;;; environment. Note that this is never called on the escape exits
1809 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1810 ;;; IR2 converted.
1811 (defun ir2-convert-exit (node block)
1812 (declare (type exit node) (type ir2-block block))
1813 (let* ((nlx (exit-nlx-info node))
1814 (loc (find-in-physenv nlx (node-physenv node)))
1815 (temp (make-stack-pointer-tn))
1816 (value (exit-value node)))
1817 (if (nlx-info-safe-p nlx)
1818 (vop value-cell-ref node block loc temp)
1819 (emit-move node block loc temp))
1820 (if value
1821 (let ((locs (ir2-lvar-locs (lvar-info value))))
1822 (vop unwind node block temp (first locs) (second locs)))
1823 (let ((0-tn (emit-constant 0)))
1824 (vop unwind node block temp 0-tn 0-tn))))
1826 (values))
1828 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1829 ;;; being entirely deleted.
1830 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1832 ;;; This function invalidates a lexical exit on exiting from the
1833 ;;; dynamic extent. This is done by storing 0 into the indirect value
1834 ;;; cell that holds the closed unwind block.
1835 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1836 (let ((nlx (lvar-value info)))
1837 (when (nlx-info-safe-p nlx)
1838 (vop value-cell-set node block
1839 (find-in-physenv nlx (node-physenv node))
1840 (emit-constant 0)))))
1842 ;;; We have to do a spurious move of no values to the result lvar so
1843 ;;; that lifetime analysis won't get confused.
1844 (defun ir2-convert-throw (node block)
1845 (declare (type mv-combination node) (type ir2-block block))
1846 (let ((args (basic-combination-args node)))
1847 (check-catch-tag-type (first args))
1848 (vop* throw node block
1849 ((lvar-tn node block (first args))
1850 (reference-tn-list
1851 (ir2-lvar-locs (lvar-info (second args)))
1852 nil))
1853 (nil)))
1854 (move-lvar-result node block () (node-lvar node))
1855 (values))
1857 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1858 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1859 ;;; the target PC by passing in the label to the vop. The vop is
1860 ;;; responsible for building a return-PC object.
1861 (defun emit-nlx-start (node block info tag)
1862 (declare (type node node) (type ir2-block block) (type nlx-info info)
1863 (type (or lvar null) tag))
1864 (let* ((2info (nlx-info-info info))
1865 (kind (cleanup-kind (nlx-info-cleanup info)))
1866 (block-tn (physenv-live-tn
1867 (make-normal-tn
1868 (primitive-type-or-lose
1869 (ecase kind
1870 (:catch
1871 'catch-block)
1872 ((:unwind-protect :block :tagbody)
1873 'unwind-block))))
1874 (node-physenv node)))
1875 (res (make-stack-pointer-tn))
1876 (target-label (ir2-nlx-info-target 2info)))
1878 (vop current-binding-pointer node block
1879 (car (ir2-nlx-info-dynamic-state 2info)))
1880 (vop* save-dynamic-state node block
1881 (nil)
1882 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1883 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1885 (ecase kind
1886 (:catch
1887 (vop make-catch-block node block block-tn
1888 (lvar-tn node block tag) target-label res))
1889 ((:unwind-protect :block :tagbody)
1890 (vop make-unwind-block node block block-tn target-label res)))
1892 (ecase kind
1893 ((:block :tagbody)
1894 (if (nlx-info-safe-p info)
1895 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1896 (emit-move node block res (ir2-nlx-info-home 2info))))
1897 (:unwind-protect
1898 (vop set-unwind-protect node block block-tn))
1899 (:catch)))
1901 (values))
1903 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1904 (defun ir2-convert-entry (node block)
1905 (declare (type entry node) (type ir2-block block))
1906 (let ((nlxes '()))
1907 (dolist (exit (entry-exits node))
1908 (let ((info (exit-nlx-info exit)))
1909 (when (and info
1910 (not (memq info nlxes))
1911 (member (cleanup-kind (nlx-info-cleanup info))
1912 '(:block :tagbody)))
1913 (push info nlxes)
1914 (emit-nlx-start node block info nil)))))
1915 (values))
1917 ;;; Set up the unwind block for these guys.
1918 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1919 (check-catch-tag-type tag)
1920 (emit-nlx-start node block (lvar-value info-lvar) tag))
1921 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1922 (declare (ignore cleanup))
1923 (emit-nlx-start node block (lvar-value info-lvar) nil))
1925 ;;; Emit the entry code for a non-local exit. We receive values and
1926 ;;; restore dynamic state.
1928 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1929 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1930 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1931 ;;; values, make the appropriate number of temps in the standard
1932 ;;; values locations and use the other variant, delivering the temps
1933 ;;; to the lvar using MOVE-LVAR-RESULT.
1935 ;;; In the UNWIND-PROTECT case, we deliver the first register
1936 ;;; argument, the argument count and the argument pointer to our lvar
1937 ;;; as multiple values. These values are the block exited to and the
1938 ;;; values start and count.
1940 ;;; After receiving values, we restore dynamic state. Except in the
1941 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1942 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1943 ;;; pointer alone, since the thrown values are still out there.
1944 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1945 (let* ((info (lvar-value info-lvar))
1946 (lvar (node-lvar node))
1947 (2info (nlx-info-info info))
1948 (top-loc (ir2-nlx-info-save-sp 2info))
1949 (start-loc (make-nlx-entry-arg-start-location))
1950 (count-loc (make-arg-count-location))
1951 (target (ir2-nlx-info-target 2info)))
1953 (ecase (cleanup-kind (nlx-info-cleanup info))
1954 ((:catch :block :tagbody)
1955 (let ((2lvar (and lvar (lvar-info lvar))))
1956 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1957 (vop* nlx-entry-multiple node block
1958 (top-loc start-loc count-loc nil)
1959 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1960 target)
1961 (let ((locs (standard-result-tns lvar)))
1962 (vop* nlx-entry node block
1963 (top-loc start-loc count-loc nil)
1964 ((reference-tn-list locs t))
1965 target
1966 (length locs))
1967 (move-lvar-result node block locs lvar)))))
1968 (:unwind-protect
1969 (let ((block-loc (standard-arg-location 0)))
1970 (vop uwp-entry node block target block-loc start-loc count-loc)
1971 (move-lvar-result
1972 node block
1973 (list block-loc start-loc count-loc)
1974 lvar))))
1976 #!+sb-dyncount
1977 (when *collect-dynamic-statistics*
1978 (vop count-me node block *dynamic-counts-tn*
1979 (block-number (ir2-block-block block))))
1981 (vop* restore-dynamic-state node block
1982 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1983 (nil))
1984 (vop unbind-to-here node block
1985 (car (ir2-nlx-info-dynamic-state 2info)))))
1987 ;;;; n-argument functions
1989 (macrolet ((def (name)
1990 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1991 (cond #!+gencgc
1992 ((>= (length args)
1993 (/ sb!vm:large-object-size
1994 (* sb!vm:n-word-bytes 2)))
1995 ;; The VOPs will try to allocate all space at once
1996 ;; And it'll end up in large objects, and no conses
1997 ;; are welcome there.
1998 (ir2-convert-full-call node block))
2000 (let* ((refs (reference-tn-list
2001 (loop for arg in args
2002 for tn = (make-normal-tn *backend-t-primitive-type*)
2004 (emit-move node block (lvar-tn node block arg) tn)
2005 collect tn)
2006 nil))
2007 (lvar (node-lvar node))
2008 (res (lvar-result-tns
2009 lvar
2010 (list (primitive-type (specifier-type 'list))))))
2011 (when (and lvar (lvar-dynamic-extent lvar))
2012 (vop current-stack-pointer node block
2013 (ir2-lvar-stack-pointer (lvar-info lvar))))
2014 (vop* ,name node block (refs) ((first res) nil)
2015 (length args))
2016 (move-lvar-result node block res lvar)))))))
2017 (def list)
2018 (def list*))
2021 (defoptimizer (mask-signed-field ir2-convert) ((width x) node block)
2022 (block nil
2023 (when (constant-lvar-p width)
2024 (case (lvar-value width)
2025 (#.(- sb!vm:n-word-bits sb!vm:n-fixnum-tag-bits)
2026 (when (or (csubtypep (lvar-type x)
2027 (specifier-type 'word))
2028 (csubtypep (lvar-type x)
2029 (specifier-type 'sb!vm:signed-word)))
2030 (let* ((lvar (node-lvar node))
2031 (temp (make-normal-tn
2032 (if (csubtypep (lvar-type x)
2033 (specifier-type 'word))
2034 (primitive-type-of most-positive-word)
2035 (primitive-type-of
2036 (- (ash most-positive-word -1))))))
2037 (results (lvar-result-tns
2038 lvar
2039 (list (primitive-type-or-lose 'fixnum)))))
2040 (emit-move node block (lvar-tn node block x) temp)
2041 (vop sb!vm::move-from-word/fixnum node block
2042 temp (first results))
2043 (move-lvar-result node block results lvar)
2044 (return))))
2045 (#.sb!vm:n-word-bits
2046 (when (csubtypep (lvar-type x) (specifier-type 'word))
2047 (let* ((lvar (node-lvar node))
2048 (temp (make-normal-tn
2049 (primitive-type-of most-positive-word)))
2050 (results (lvar-result-tns
2051 lvar
2052 (list (primitive-type
2053 (specifier-type 'sb!vm:signed-word))))))
2054 (emit-move node block (lvar-tn node block x) temp)
2055 (vop sb!vm::word-move node block
2056 temp (first results))
2057 (move-lvar-result node block results lvar)
2058 (return))))))
2059 (if (template-p (basic-combination-info node))
2060 (ir2-convert-template node block)
2061 (ir2-convert-full-call node block))))
2063 ;; just a fancy identity
2064 (defoptimizer (%typep-wrapper ir2-convert) ((value variable type) node block)
2065 (declare (ignore variable type))
2066 (let* ((lvar (node-lvar node))
2067 (results (lvar-result-tns lvar (list (primitive-type-or-lose t)))))
2068 (emit-move node block (lvar-tn node block value) (first results))
2069 (move-lvar-result node block results lvar)))
2071 ;;; An identity to avoid complaints about constant modification
2072 (defoptimizer (ltv-wrapper ir2-convert) ((x) node block)
2073 (let* ((lvar (node-lvar node))
2074 (results (lvar-result-tns lvar (list (primitive-type-or-lose t)))))
2075 (emit-move node block (lvar-tn node block x) (first results))
2076 (move-lvar-result node block results lvar)))
2078 #-sb-xc-host ;; package-lock-violation-p is not present yet
2079 (defoptimizer (set ir2-hook) ((symbol value) node block)
2080 (declare (ignore value block))
2081 (when (constant-lvar-p symbol)
2082 (let* ((symbol (lvar-value symbol))
2083 (kind (info :variable :kind symbol)))
2084 (when (and (eq kind :unknown)
2085 (sb!impl::package-lock-violation-p (symbol-package symbol) symbol))
2086 (let ((*compiler-error-context* node))
2087 (compiler-warn "violating package lock on ~/sb-ext:print-symbol-with-prefix/"
2088 symbol))))))
2090 (defoptimizer (restart-point ir2-convert) ((location) node block)
2091 (setf (restart-location-label (lvar-value location))
2092 (block-label (ir2-block-block block))))
2094 ;;; Convert the code in a component into VOPs.
2095 (defun ir2-convert (component)
2096 (declare (type component component))
2097 (let (#!+sb-dyncount
2098 (*dynamic-counts-tn*
2099 (when *collect-dynamic-statistics*
2100 (let* ((blocks
2101 (block-number (block-next (component-head component))))
2102 (counts (make-array blocks
2103 :element-type '(unsigned-byte 32)
2104 :initial-element 0))
2105 (info (make-dyncount-info
2106 :for (component-name component)
2107 :costs (make-array blocks
2108 :element-type '(unsigned-byte 32)
2109 :initial-element 0)
2110 :counts counts)))
2111 (setf (ir2-component-dyncount-info (component-info component))
2112 info)
2113 (emit-constant info)
2114 (emit-constant counts)))))
2115 (let ((num 0))
2116 (declare (type index num))
2117 (do-ir2-blocks (2block component)
2118 (let ((block (ir2-block-block 2block)))
2119 (when (block-start block)
2120 (setf (block-number block) num)
2121 #!+sb-dyncount
2122 (when *collect-dynamic-statistics*
2123 (let ((first-node (block-start-node block)))
2124 (unless (or (and (bind-p first-node)
2125 (xep-p (bind-lambda first-node)))
2126 (eq (lvar-fun-name
2127 (node-lvar first-node))
2128 '%nlx-entry))
2129 (vop count-me
2130 first-node
2131 2block
2132 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
2133 num))))
2134 #!+sb-safepoint
2135 (let ((first-node (block-start-node block)))
2136 (unless (or (and (bind-p first-node)
2137 ;; Bind-nodes already have safepoints
2138 (eq (bind-lambda first-node)
2139 (lambda-home (bind-lambda first-node))))
2140 (and (valued-node-p first-node)
2141 (node-lvar first-node)
2142 (eq (lvar-fun-name
2143 (node-lvar first-node))
2144 '%nlx-entry)))
2145 (when (and (rest (block-pred block))
2146 (block-loop block)
2147 (member (loop-kind (block-loop block))
2148 '(:natural :strange))
2149 (eq block (loop-head (block-loop block)))
2150 (policy first-node (< inhibit-safepoints 2)))
2151 (vop sb!vm::insert-safepoint first-node 2block))))
2152 (ir2-convert-block block)
2153 (incf num))))))
2154 (values))
2156 ;;; If necessary, emit a terminal unconditional branch to go to the
2157 ;;; successor block. If the successor is the component tail, then
2158 ;;; there isn't really any successor, but if the end is a non-tail
2159 ;;; call to a function that's not *known* to never return, then we
2160 ;;; emit an error trap just in case the function really does return.
2162 ;;; Trapping after known calls makes it easier to understand type
2163 ;;; derivation bugs at runtime: they show up as nil-fun-returned-error,
2164 ;;; rather than the execution of arbitrary code or error traps.
2165 (defun finish-ir2-block (block)
2166 (declare (type cblock block))
2167 (let* ((2block (block-info block))
2168 (last (block-last block))
2169 (succ (block-succ block)))
2170 (unless (if-p last)
2171 (aver (singleton-p succ))
2172 (let ((target (first succ)))
2173 (cond ((eq target (component-tail (block-component block)))
2174 (when (and (basic-combination-p last)
2175 (or (eq (basic-combination-kind last) :full)
2176 (and (eq (basic-combination-kind last) :known)
2177 (eq (basic-combination-info last) :full))))
2178 (let* ((fun (basic-combination-fun last))
2179 (use (lvar-uses fun))
2180 (name (and (ref-p use)
2181 (leaf-has-source-name-p (ref-leaf use))
2182 (leaf-source-name (ref-leaf use))))
2183 (ftype (and (info :function :info name) ; only use the FTYPE if
2184 (proclaimed-ftype name)))) ; NAME was DEFKNOWN
2185 (unless (or (node-tail-p last)
2186 (policy last (zerop safety))
2187 (and (fun-type-p ftype)
2188 (eq *empty-type* (fun-type-returns ftype))))
2189 (vop nil-fun-returned-error last 2block
2190 (if name
2191 (emit-constant name)
2192 (multiple-value-bind (tn named)
2193 (fun-lvar-tn last 2block fun)
2194 (aver (not named))
2195 tn)))))))
2196 ((not (eq (ir2-block-next 2block) (block-info target)))
2197 (vop branch last 2block (block-label target)))
2199 (register-drop-thru target))))))
2201 (values))
2203 ;;; Convert the code in a block into VOPs.
2204 (defun ir2-convert-block (block)
2205 (declare (type cblock block))
2206 (let ((2block (block-info block)))
2207 (do-nodes (node lvar block)
2208 (etypecase node
2209 (ref
2210 (when lvar
2211 (let ((2lvar (lvar-info lvar)))
2212 ;; function REF in a local call is not annotated
2213 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
2214 (ir2-convert-ref node 2block)))))
2215 (combination
2216 (let ((kind (basic-combination-kind node)))
2217 (ecase kind
2218 (:local
2219 (ir2-convert-local-call node 2block))
2220 (:full
2221 (ir2-convert-full-call node 2block))
2222 (:known
2223 (let* ((info (basic-combination-fun-info node))
2224 (fun (fun-info-ir2-convert info))
2225 (hook (fun-info-ir2-hook info)))
2226 (when hook
2227 (funcall hook node 2block))
2228 (cond (fun
2229 (funcall fun node 2block))
2230 ((eq (basic-combination-info node) :full)
2231 (ir2-convert-full-call node 2block))
2233 (ir2-convert-template node 2block))))))))
2234 (cif
2235 (when (lvar-info (if-test node))
2236 (ir2-convert-if node 2block)))
2237 (bind
2238 (let ((fun (bind-lambda node)))
2239 (when (eq (lambda-home fun) fun)
2240 (ir2-convert-bind node 2block))))
2241 (creturn
2242 (ir2-convert-return node 2block))
2243 (cset
2244 (ir2-convert-set node 2block))
2245 (cast
2246 (ir2-convert-cast node 2block))
2247 (mv-combination
2248 (cond
2249 ((eq (basic-combination-kind node) :local)
2250 (ir2-convert-mv-bind node 2block))
2251 ((eq (lvar-fun-name (basic-combination-fun node))
2252 '%throw)
2253 (ir2-convert-throw node 2block))
2255 (ir2-convert-mv-call node 2block))))
2256 (exit
2257 (when (exit-entry node)
2258 (ir2-convert-exit node 2block)))
2259 (entry
2260 (ir2-convert-entry node 2block)))))
2262 (finish-ir2-block block)
2264 (values))