1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list
) lambda-var
) varify-lambda-arg
))
28 (defun varify-lambda-arg (name names-so-far
)
29 (declare (inline member
))
30 (unless (symbolp name
)
31 (compiler-error "The lambda variable ~S is not a symbol." name
))
32 (when (member name names-so-far
:test
#'eq
)
33 (compiler-error "The variable ~S occurs more than once in the lambda list."
35 (let ((kind (info :variable
:kind name
)))
36 (when (or (keywordp name
) (eq kind
:constant
))
37 (compiler-error "The name of the lambda variable ~S is already in use to name a constant."
39 (cond ((eq kind
:special
)
40 (let ((specvar (find-free-var name
)))
41 (make-lambda-var :%source-name name
42 :type
(leaf-type specvar
)
43 :where-from
(leaf-where-from specvar
)
46 (make-lambda-var :%source-name name
)))))
48 ;;; Make the default keyword for a &KEY arg, checking that the keyword
49 ;;; isn't already used by one of the VARS.
50 (declaim (ftype (sfunction (symbol list t
) symbol
) make-keyword-for-arg
))
51 (defun make-keyword-for-arg (symbol vars keywordify
)
52 (let ((key (if (and keywordify
(not (keywordp symbol
)))
56 (let ((info (lambda-var-arg-info var
)))
58 (eq (arg-info-kind info
) :keyword
)
59 (eq (arg-info-key info
) key
))
61 "The keyword ~S appears more than once in the lambda list."
65 ;;; Parse a lambda list into a list of VAR structures, stripping off
66 ;;; any &AUX bindings. Each arg name is checked for legality, and
67 ;;; duplicate names are checked for. If an arg is globally special,
68 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
69 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
70 ;;; which contains the extra information. If we hit something losing,
71 ;;; we bug out with COMPILER-ERROR. These values are returned:
72 ;;; 1. a list of the var structures for each top level argument;
73 ;;; 2. a flag indicating whether &KEY was specified;
74 ;;; 3. a flag indicating whether other &KEY args are allowed;
75 ;;; 4. a list of the &AUX variables; and
76 ;;; 5. a list of the &AUX values.
77 (declaim (ftype (sfunction (list) (values list boolean boolean list list
))
79 (defun make-lambda-vars (list)
80 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
81 morep more-context more-count
)
82 (parse-lambda-list list
)
83 (declare (ignore auxp
)) ; since we just iterate over AUX regardless
88 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
89 ;; for optionals and keywords args.
90 (parse-default (spec info
)
91 (when (consp (cdr spec
))
92 (setf (arg-info-default info
) (second spec
))
93 (when (consp (cddr spec
))
94 (let* ((supplied-p (third spec
))
95 (supplied-var (varify-lambda-arg supplied-p
97 (setf (arg-info-supplied-p info
) supplied-var
)
98 (names-so-far supplied-p
)
99 (when (> (length (the list spec
)) 3)
101 "The list ~S is too long to be an arg specifier."
104 (dolist (name required
)
105 (let ((var (varify-lambda-arg name
(names-so-far))))
107 (names-so-far name
)))
109 (dolist (spec optional
)
111 (let ((var (varify-lambda-arg spec
(names-so-far))))
112 (setf (lambda-var-arg-info var
)
113 (make-arg-info :kind
:optional
))
116 (let* ((name (first spec
))
117 (var (varify-lambda-arg name
(names-so-far)))
118 (info (make-arg-info :kind
:optional
)))
119 (setf (lambda-var-arg-info var
) info
)
122 (parse-default spec info
))))
125 (let ((var (varify-lambda-arg rest
(names-so-far))))
126 (setf (lambda-var-arg-info var
) (make-arg-info :kind
:rest
))
128 (names-so-far rest
)))
131 (let ((var (varify-lambda-arg more-context
(names-so-far))))
132 (setf (lambda-var-arg-info var
)
133 (make-arg-info :kind
:more-context
))
135 (names-so-far more-context
))
136 (let ((var (varify-lambda-arg more-count
(names-so-far))))
137 (setf (lambda-var-arg-info var
)
138 (make-arg-info :kind
:more-count
))
140 (names-so-far more-count
)))
145 (let ((var (varify-lambda-arg spec
(names-so-far))))
146 (setf (lambda-var-arg-info var
)
147 (make-arg-info :kind
:keyword
148 :key
(make-keyword-for-arg spec
152 (names-so-far spec
)))
154 (let* ((name (first spec
))
155 (var (varify-lambda-arg name
(names-so-far)))
158 :key
(make-keyword-for-arg name
(vars) t
))))
159 (setf (lambda-var-arg-info var
) info
)
162 (parse-default spec info
)))
164 (let ((head (first spec
)))
165 (unless (proper-list-of-length-p head
2)
166 (error "malformed &KEY argument specifier: ~S" spec
))
167 (let* ((name (second head
))
168 (var (varify-lambda-arg name
(names-so-far)))
171 :key
(make-keyword-for-arg (first head
)
174 (setf (lambda-var-arg-info var
) info
)
177 (parse-default spec info
))))))
181 (let ((var (varify-lambda-arg spec nil
)))
184 (names-so-far spec
)))
186 (unless (proper-list-of-length-p spec
1 2)
187 (compiler-error "malformed &AUX binding specifier: ~S"
189 (let* ((name (first spec
))
190 (var (varify-lambda-arg name nil
)))
192 (aux-vals (second spec
))
193 (names-so-far name
)))))
195 (values (vars) keyp allowp
(aux-vars) (aux-vals))))))
197 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
198 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
199 ;;; converting the body. If there are no bindings, just convert the
200 ;;; body, otherwise do one binding and recurse on the rest.
202 ;;; FIXME: This could and probably should be converted to use
203 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
204 ;;; so I'm not motivated. Patches will be accepted...
205 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
207 (declare (type ctran start next
) (type (or lvar null
) result
)
208 (list body aux-vars aux-vals
))
210 (let ((*lexenv
* (make-lexenv :vars
(copy-list post-binding-lexenv
))))
211 (ir1-convert-progn-body start next result body
))
212 (let ((ctran (make-ctran))
213 (fun-lvar (make-lvar))
214 (fun (ir1-convert-lambda-body body
215 (list (first aux-vars
))
216 :aux-vars
(rest aux-vars
)
217 :aux-vals
(rest aux-vals
)
218 :post-binding-lexenv post-binding-lexenv
219 :debug-name
(debug-name
222 (reference-leaf start ctran fun-lvar fun
)
223 (ir1-convert-combination-args fun-lvar ctran next result
224 (list (first aux-vals
)))))
227 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
228 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
229 ;;; around the body. If there are no special bindings, we just convert
230 ;;; the body, otherwise we do one special binding and recurse on the
233 ;;; We make a cleanup and introduce it into the lexical
234 ;;; environment. If there are multiple special bindings, the cleanup
235 ;;; for the blocks will end up being the innermost one. We force NEXT
236 ;;; to start a block outside of this cleanup, causing cleanup code to
237 ;;; be emitted when the scope is exited.
238 (defun ir1-convert-special-bindings
239 (start next result body aux-vars aux-vals svars post-binding-lexenv
)
240 (declare (type ctran start next
) (type (or lvar null
) result
)
241 (list body aux-vars aux-vals svars
))
244 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
245 post-binding-lexenv
))
247 (ctran-starts-block next
)
248 (let ((cleanup (make-cleanup :kind
:special-bind
))
250 (bind-ctran (make-ctran))
251 (cleanup-ctran (make-ctran)))
252 (ir1-convert start bind-ctran nil
253 `(%special-bind
',(lambda-var-specvar var
) ,var
))
254 (setf (cleanup-mess-up cleanup
) (ctran-use bind-ctran
))
255 (let ((*lexenv
* (make-lexenv :cleanup cleanup
)))
256 (ir1-convert bind-ctran cleanup-ctran nil
'(%cleanup-point
))
257 (ir1-convert-special-bindings cleanup-ctran next result
258 body aux-vars aux-vals
260 post-binding-lexenv
)))))
263 ;;; Create a lambda node out of some code, returning the result. The
264 ;;; bindings are specified by the list of VAR structures VARS. We deal
265 ;;; with adding the names to the LEXENV-VARS for the conversion. The
266 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
267 ;;; and linked to the component head and tail.
269 ;;; We detect special bindings here, replacing the original VAR in the
270 ;;; lambda list with a temporary variable. We then pass a list of the
271 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
272 ;;; the special binding code.
274 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
275 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
277 ;;; AUX-VARS is a list of VAR structures for variables that are to be
278 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
279 ;;; to get the initial value for the corresponding AUX-VAR.
280 (defun ir1-convert-lambda-body (body
285 (source-name '.anonymous.
)
287 (note-lexical-bindings t
)
289 (declare (list body vars aux-vars aux-vals
))
291 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
292 (aver-live-component *current-component
*)
294 (let* ((bind (make-bind))
295 (lambda (make-lambda :vars vars
297 :%source-name source-name
298 :%debug-name debug-name
))
299 (result-ctran (make-ctran))
300 (result-lvar (make-lvar)))
302 (awhen (lexenv-lambda *lexenv
*)
303 (push lambda
(lambda-children it
))
304 (setf (lambda-parent lambda
) it
))
306 ;; just to check: This function should fail internal assertions if
307 ;; we didn't set up a valid debug name above.
309 ;; (In SBCL we try to make everything have a debug name, since we
310 ;; lack the omniscient perspective the original implementors used
311 ;; to decide which things didn't need one.)
312 (functional-debug-name lambda
)
314 (setf (lambda-home lambda
) lambda
)
319 ;; As far as I can see, LAMBDA-VAR-HOME should never have
320 ;; been set before. Let's make sure. -- WHN 2001-09-29
321 (aver (not (lambda-var-home var
)))
322 (setf (lambda-var-home var
) lambda
)
323 (let ((specvar (lambda-var-specvar var
)))
326 (new-venv (cons (leaf-source-name specvar
) specvar
)))
328 (when note-lexical-bindings
329 (note-lexical-binding (leaf-source-name var
)))
330 (new-venv (cons (leaf-source-name var
) var
))))))
332 (let ((*lexenv
* (make-lexenv :vars
(new-venv)
335 (setf (bind-lambda bind
) lambda
)
336 (setf (node-lexenv bind
) *lexenv
*)
338 (let ((block (ctran-starts-block result-ctran
)))
339 (let ((return (make-return :result result-lvar
:lambda lambda
))
340 (tail-set (make-tail-set :funs
(list lambda
))))
341 (setf (lambda-tail-set lambda
) tail-set
)
342 (setf (lambda-return lambda
) return
)
343 (setf (lvar-dest result-lvar
) return
)
344 (link-node-to-previous-ctran return result-ctran
)
345 (setf (block-last block
) return
))
346 (link-blocks block
(component-tail *current-component
*)))
348 (with-component-last-block (*current-component
*
349 (ctran-block result-ctran
))
350 (let ((prebind-ctran (make-ctran))
351 (postbind-ctran (make-ctran)))
352 (ctran-starts-block prebind-ctran
)
353 (link-node-to-previous-ctran bind prebind-ctran
)
354 (use-ctran bind postbind-ctran
)
355 (ir1-convert-special-bindings postbind-ctran result-ctran
357 aux-vars aux-vals
(svars)
358 post-binding-lexenv
)))))
360 (link-blocks (component-head *current-component
*) (node-block bind
))
361 (push lambda
(component-new-functionals *current-component
*))
365 ;;; Entry point CLAMBDAs have a special kind
366 (defun register-entry-point (entry dispatcher
)
367 (declare (type clambda entry
)
368 (type optional-dispatch dispatcher
))
369 (setf (functional-kind entry
) :optional
)
370 (setf (leaf-ever-used entry
) t
)
371 (setf (lambda-optional-dispatch entry
) dispatcher
)
374 ;;; Create the actual entry-point function for an optional entry
375 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
376 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
377 ;;; to the VARS by name. The VALS are passed in the reverse order.
379 ;;; If any of the copies of the vars are referenced more than once,
380 ;;; then we mark the corresponding var as EVER-USED to inhibit
381 ;;; "defined but not read" warnings for arguments that are only used
382 ;;; by default forms.
383 (defun convert-optional-entry (fun vars vals defaults name
)
384 (declare (type clambda fun
) (list vars vals defaults
))
385 (let* ((fvars (reverse vars
))
386 (arg-vars (mapcar (lambda (var)
388 :%source-name
(leaf-source-name var
)
389 :type
(leaf-type var
)
390 :where-from
(leaf-where-from var
)
391 :specvar
(lambda-var-specvar var
)))
393 (fun (collect ((default-bindings)
395 (dolist (default defaults
)
396 (if (constantp default
)
397 (default-vals default
)
398 (let ((var (gensym)))
399 (default-bindings `(,var
,default
))
400 (default-vals var
))))
401 (ir1-convert-lambda-body `((let (,@(default-bindings))
406 ;; FIXME: Would be nice to
407 ;; share these names instead
408 ;; of consing up several
409 ;; identical ones. Oh well.
410 :debug-name
(debug-name
413 :note-lexical-bindings nil
))))
414 (mapc (lambda (var arg-var
)
415 (when (cdr (leaf-refs arg-var
))
416 (setf (leaf-ever-used var
) t
)))
420 ;;; This function deals with supplied-p vars in optional arguments. If
421 ;;; the there is no supplied-p arg, then we just call
422 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
423 ;;; optional entry that calls the result. If there is a supplied-p
424 ;;; var, then we add it into the default vars and throw a T into the
425 ;;; entry values. The resulting entry point function is returned.
426 (defun generate-optional-default-entry (res default-vars default-vals
427 entry-vars entry-vals
428 vars supplied-p-p body
430 source-name debug-name
431 force post-binding-lexenv
)
432 (declare (type optional-dispatch res
)
433 (list default-vars default-vals entry-vars entry-vals vars body
435 (let* ((arg (first vars
))
436 (arg-name (leaf-source-name arg
))
437 (info (lambda-var-arg-info arg
))
438 (default (arg-info-default info
))
439 (supplied-p (arg-info-supplied-p info
))
441 (not (sb!xc
:constantp
(arg-info-default info
)))))
443 (ir1-convert-hairy-args
445 (list* supplied-p arg default-vars
)
446 (list* (leaf-source-name supplied-p
) arg-name default-vals
)
447 (cons arg entry-vars
)
448 (list* t arg-name entry-vals
)
449 (rest vars
) t body aux-vars aux-vals
450 source-name debug-name
451 force post-binding-lexenv
)
452 (ir1-convert-hairy-args
454 (cons arg default-vars
)
455 (cons arg-name default-vals
)
456 (cons arg entry-vars
)
457 (cons arg-name entry-vals
)
458 (rest vars
) supplied-p-p body aux-vars aux-vals
459 source-name debug-name
460 force post-binding-lexenv
))))
462 ;; We want to delay converting the entry, but there exist
463 ;; problems: hidden references should not be established to
464 ;; lambdas of kind NIL should not have (otherwise the compiler
465 ;; might let-convert or delete them) and to variables.
466 (let ((name (or debug-name source-name
)))
468 supplied-p-p
; this entry will be of kind NIL
469 (and (lambda-p ep
) (eq (lambda-kind ep
) nil
)))
470 (convert-optional-entry ep
471 default-vars default-vals
472 (if supplied-p
(list default nil
) (list default
))
474 (let* ((default `',(constant-form-value default
))
475 (defaults (if supplied-p
(list default nil
) (list default
))))
476 ;; DEFAULT can contain a reference to a
477 ;; to-be-optimized-away function/block/tag, so better to
478 ;; reduce code now (but we possibly lose syntax checking
479 ;; in an unreachable code).
481 (register-entry-point
482 (convert-optional-entry (force ep
)
483 default-vars default-vals
488 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
489 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
490 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
492 ;;; The most interesting thing that we do is parse keywords. We create
493 ;;; a bunch of temporary variables to hold the result of the parse,
494 ;;; and then loop over the supplied arguments, setting the appropriate
495 ;;; temps for the supplied keyword. Note that it is significant that
496 ;;; we iterate over the keywords in reverse order --- this implements
497 ;;; the CL requirement that (when a keyword appears more than once)
498 ;;; the first value is used.
500 ;;; If there is no supplied-p var, then we initialize the temp to the
501 ;;; default and just pass the temp into the main entry. Since
502 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
503 ;;; know that the default is constant, and thus safe to evaluate out
506 ;;; If there is a supplied-p var, then we create temps for both the
507 ;;; value and the supplied-p, and pass them into the main entry,
508 ;;; letting it worry about defaulting.
510 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
511 ;;; until we have scanned all the keywords.
512 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name
)
513 (declare (type optional-dispatch res
) (list entry-vars entry-vals keys
))
515 (arg-vals (reverse entry-vals
))
519 (dolist (var (reverse entry-vars
))
520 (arg-vars (make-lambda-var :%source-name
(leaf-source-name var
)
521 :type
(leaf-type var
)
522 :where-from
(leaf-where-from var
))))
524 (let* ((*allow-instrumenting
* nil
)
525 (n-context (gensym "N-CONTEXT-"))
526 (context-temp (make-lambda-var :%source-name n-context
))
527 (n-count (gensym "N-COUNT-"))
528 (count-temp (make-lambda-var :%source-name n-count
529 :type
(specifier-type 'index
))))
531 (arg-vars context-temp count-temp
)
534 (arg-vals `(%listify-rest-args
535 ,n-context
,n-count
)))
540 ;; The reason for all the noise with
541 ;; STACK-GROWS-DOWNWARD-NOT-UPWARD is to enable generation of
542 ;; slightly more efficient code on x86oid processors. (We can
543 ;; hoist the negation of the index outside the main parsing loop
544 ;; and take advantage of the base+index+displacement addressing
546 (when (optional-dispatch-keyp res
)
547 (let ((n-index (gensym "N-INDEX-"))
548 (n-key (gensym "N-KEY-"))
549 (n-value-temp (gensym "N-VALUE-TEMP-"))
550 (n-allowp (gensym "N-ALLOWP-"))
551 (n-losep (gensym "N-LOSEP-"))
552 (allowp (or (optional-dispatch-allowp res
)
553 (policy *lexenv
* (zerop safety
))))
556 (temps #!-stack-grows-downward-not-upward
557 `(,n-index
(1- ,n-count
))
558 #!+stack-grows-downward-not-upward
559 `(,n-index
(- (1- ,n-count
)))
560 #!-stack-grows-downward-not-upward n-value-temp
561 #!-stack-grows-downward-not-upward n-key
)
562 (body `(declare (fixnum ,n-index
)
563 #!-stack-grows-downward-not-upward
564 (ignorable ,n-value-temp
,n-key
)))
568 (let* ((info (lambda-var-arg-info key
))
569 (default (arg-info-default info
))
570 (keyword (arg-info-key info
))
571 (supplied-p (arg-info-supplied-p info
))
572 (n-value (gensym "N-VALUE-"))
573 (clause (cond (supplied-p
574 (let ((n-supplied (gensym "N-SUPPLIED-")))
576 (arg-vals n-value n-supplied
)
577 `((eq ,n-key
',keyword
)
579 (setq ,n-value
,n-value-temp
))))
582 `((eq ,n-key
',keyword
)
583 (setq ,n-value
,n-value-temp
))))))
584 (when (and (not allowp
) (eq keyword
:allow-other-keys
))
585 (setq found-allow-p t
)
587 (append clause
`((setq ,n-allowp
,n-value-temp
)))))
589 (temps `(,n-value
,default
))
593 (temps n-allowp n-losep
)
594 (unless found-allow-p
595 (tests `((eq ,n-key
:allow-other-keys
)
596 (setq ,n-allowp
,n-value-temp
))))
598 (setq ,n-losep
(list ,n-key
)))))
601 `(when (oddp ,n-count
)
602 (%odd-key-args-error
)))
605 #!-stack-grows-downward-not-upward
607 (declare (optimize (safety 0)))
609 (when (minusp ,n-index
) (return))
610 (setf ,n-value-temp
(%more-arg
,n-context
,n-index
))
612 (setq ,n-key
(%more-arg
,n-context
,n-index
))
615 #!+stack-grows-downward-not-upward
616 `(locally (declare (optimize (safety 0)))
618 (when (plusp ,n-index
) (return))
619 (multiple-value-bind (,n-value-temp
,n-key
)
620 (%more-kw-arg
,n-context
,n-index
)
621 (declare (ignorable ,n-value-temp
,n-key
))
626 (body `(when (and ,n-losep
(not ,n-allowp
))
627 (%unknown-key-arg-error
(car ,n-losep
))))))))
629 (let ((ep (ir1-convert-lambda-body
632 (%funcall
,(optional-dispatch-main-entry res
)
635 :debug-name
(debug-name '&more-processor name
)
636 :note-lexical-bindings nil
)))
637 (setf (optional-dispatch-more-entry res
)
638 (register-entry-point ep res
)))))
642 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
643 ;;; or &KEY arg. The arguments are similar to that function, but we
644 ;;; split off any &REST arg and pass it in separately. REST is the
645 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
646 ;;; the &KEY argument vars.
648 ;;; When there are &KEY arguments, we introduce temporary gensym
649 ;;; variables to hold the values while keyword defaulting is in
650 ;;; progress to get the required sequential binding semantics.
652 ;;; This gets interesting mainly when there are &KEY arguments with
653 ;;; supplied-p vars or non-constant defaults. In either case, pass in
654 ;;; a supplied-p var. If the default is non-constant, we introduce an
655 ;;; IF in the main entry that tests the supplied-p var and decides
656 ;;; whether to evaluate the default or not. In this case, the real
657 ;;; incoming value is NIL, so we must union NULL with the declared
658 ;;; type when computing the type for the main entry's argument.
659 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
660 rest more-context more-count keys supplied-p-p
661 body aux-vars aux-vals
662 source-name debug-name post-binding-lexenv
)
663 (declare (type optional-dispatch res
)
664 (list default-vars default-vals entry-vars entry-vals keys body
666 (collect ((main-vars (reverse default-vars
))
667 (main-vals default-vals cons
)
674 (main-vars more-context
)
676 (main-vars more-count
)
680 (let* ((info (lambda-var-arg-info key
))
681 (default (arg-info-default info
))
682 (hairy-default (not (sb!xc
:constantp default
)))
683 (supplied-p (arg-info-supplied-p info
))
684 (n-val (make-symbol (format nil
686 (leaf-source-name key
))))
687 (val-temp (make-lambda-var :%source-name n-val
)))
690 (cond ((or hairy-default supplied-p
)
691 (let* ((n-supplied (gensym "N-SUPPLIED-"))
692 (supplied-temp (make-lambda-var
693 :%source-name n-supplied
)))
695 (setf (arg-info-supplied-p info
) supplied-temp
))
697 (setf (arg-info-default info
) nil
))
698 (main-vars supplied-temp
)
701 (bind-vals `(if ,n-supplied
,n-val
,default
)))
703 (main-vals default nil
)
706 (bind-vars supplied-p
)
707 (bind-vals n-supplied
))))
709 (main-vals (arg-info-default info
))
710 (bind-vals n-val
)))))
712 (let* ((name (or debug-name source-name
))
713 (main-entry (ir1-convert-lambda-body
715 :aux-vars
(append (bind-vars) aux-vars
)
716 :aux-vals
(append (bind-vals) aux-vals
)
717 :post-binding-lexenv post-binding-lexenv
718 :debug-name
(debug-name 'varargs-entry name
)))
719 (last-entry (convert-optional-entry main-entry default-vars
720 (main-vals) () name
)))
721 (setf (optional-dispatch-main-entry res
)
722 (register-entry-point main-entry res
))
723 (convert-more-entry res entry-vars entry-vals rest more-context keys
726 (push (register-entry-point
728 (convert-optional-entry last-entry entry-vars entry-vals
732 (optional-dispatch-entry-points res
))
735 ;;; This function generates the entry point functions for the
736 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
737 ;;; of arguments, analyzing the arglist on the way down and generating
738 ;;; entry points on the way up.
740 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
741 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
742 ;;; names of the DEFAULT-VARS.
744 ;;; ENTRY-VARS is a reversed list of processed argument vars,
745 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
746 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
747 ;;; It has the var name for each required or optional arg, and has T
748 ;;; for each supplied-p arg.
750 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
751 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
752 ;;; argument has already been processed; only in this case are the
753 ;;; DEFAULT-XXX and ENTRY-XXX different.
755 ;;; The result at each point is a lambda which should be called by the
756 ;;; above level to default the remaining arguments and evaluate the
757 ;;; body. We cause the body to be evaluated by converting it and
758 ;;; returning it as the result when the recursion bottoms out.
760 ;;; Each level in the recursion also adds its entry point function to
761 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
762 ;;; function and the entry point function will be the same, but when
763 ;;; SUPPLIED-P args are present they may be different.
765 ;;; When we run into a &REST or &KEY arg, we punt out to
766 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
767 (defun ir1-convert-hairy-args (res default-vars default-vals
768 entry-vars entry-vals
769 vars supplied-p-p body aux-vars
771 source-name debug-name
772 force post-binding-lexenv
)
773 (declare (type optional-dispatch res
)
774 (list default-vars default-vals entry-vars entry-vals vars body
777 (if (optional-dispatch-keyp res
)
778 ;; Handle &KEY with no keys...
779 (ir1-convert-more res default-vars default-vals
780 entry-vars entry-vals
781 nil nil nil vars supplied-p-p body aux-vars
782 aux-vals source-name debug-name
784 (let* ((name (or debug-name source-name
))
785 (fun (ir1-convert-lambda-body
786 body
(reverse default-vars
)
789 :post-binding-lexenv post-binding-lexenv
790 :debug-name
(debug-name 'hairy-arg-processor name
))))
792 (setf (optional-dispatch-main-entry res
) fun
)
793 (register-entry-point fun res
)
794 (push (if supplied-p-p
795 (register-entry-point
796 (convert-optional-entry fun entry-vars entry-vals
()
800 (optional-dispatch-entry-points res
))
802 ((not (lambda-var-arg-info (first vars
)))
803 (let* ((arg (first vars
))
804 (nvars (cons arg default-vars
))
805 (nvals (cons (leaf-source-name arg
) default-vals
)))
806 (ir1-convert-hairy-args res nvars nvals nvars nvals
807 (rest vars
) nil body aux-vars aux-vals
808 source-name debug-name
809 nil post-binding-lexenv
)))
811 (let* ((arg (first vars
))
812 (info (lambda-var-arg-info arg
))
813 (kind (arg-info-kind info
)))
816 (let ((ep (generate-optional-default-entry
817 res default-vars default-vals
818 entry-vars entry-vals vars supplied-p-p body
820 source-name debug-name
821 force post-binding-lexenv
)))
822 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
823 (push (if (lambda-p ep
)
824 (register-entry-point
826 (convert-optional-entry
827 ep entry-vars entry-vals nil
828 (or debug-name source-name
))
831 (progn (aver (not supplied-p-p
))
833 (optional-dispatch-entry-points res
))
836 (ir1-convert-more res default-vars default-vals
837 entry-vars entry-vals
838 arg nil nil
(rest vars
) supplied-p-p body
840 source-name debug-name
841 post-binding-lexenv
))
843 (ir1-convert-more res default-vars default-vals
844 entry-vars entry-vals
845 nil arg
(second vars
) (cddr vars
) supplied-p-p
846 body aux-vars aux-vals
847 source-name debug-name
848 post-binding-lexenv
))
850 (ir1-convert-more res default-vars default-vals
851 entry-vars entry-vals
852 nil nil nil vars supplied-p-p body aux-vars
853 aux-vals source-name debug-name
854 post-binding-lexenv
)))))))
856 ;;; This function deals with the case where we have to make an
857 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
858 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
859 ;;; figure out the MIN-ARGS and MAX-ARGS.
860 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
863 (source-name '.anonymous.
)
865 (debug-name '&optional-dispatch vars
)))
866 (declare (list body vars aux-vars aux-vals
))
867 (let ((res (make-optional-dispatch :arglist vars
870 :%source-name source-name
871 :%debug-name debug-name
872 :plist
`(:ir1-environment
875 (min (or (position-if #'lambda-var-arg-info vars
) (length vars
))))
876 (aver-live-component *current-component
*)
877 (push res
(component-new-functionals *current-component
*))
878 (ir1-convert-hairy-args res
() () () () vars nil body aux-vars aux-vals
879 source-name debug-name nil post-binding-lexenv
)
880 (setf (optional-dispatch-min-args res
) min
)
881 (setf (optional-dispatch-max-args res
)
882 (+ (1- (length (optional-dispatch-entry-points res
))) min
))
886 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
887 (defun ir1-convert-lambda (form &key
(source-name '.anonymous.
)
888 debug-name maybe-add-debug-catch
)
890 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
893 (unless (eq (car form
) 'lambda
)
894 (compiler-error "~S was expected but ~S was found:~% ~S"
898 (unless (and (consp (cdr form
)) (listp (cadr form
)))
900 "The lambda expression has a missing or non-list lambda list:~% ~S"
903 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals
)
904 (make-lambda-vars (cadr form
))
905 (multiple-value-bind (forms decls
) (parse-body (cddr form
))
906 (binding* (((*lexenv
* result-type post-binding-lexenv
)
907 (process-decls decls
(append aux-vars vars
) nil
909 (debug-catch-p (and maybe-add-debug-catch
910 *allow-instrumenting
*
912 (>= insert-debug-catch
2))))
913 (forms (if debug-catch-p
914 (wrap-forms-in-debug-catch forms
)
916 (forms (if (eq result-type
*wild-type
*)
918 `((the ,result-type
(progn ,@forms
)))))
919 (res (if (or (find-if #'lambda-var-arg-info vars
) keyp
)
920 (ir1-convert-hairy-lambda forms vars keyp
923 :post-binding-lexenv post-binding-lexenv
924 :source-name source-name
925 :debug-name debug-name
)
926 (ir1-convert-lambda-body forms vars
929 :post-binding-lexenv post-binding-lexenv
930 :source-name source-name
931 :debug-name debug-name
))))
932 (setf (functional-inline-expansion res
) form
)
933 (setf (functional-arg-documentation res
) (cadr form
))
936 (defun wrap-forms-in-debug-catch (forms)
937 #!+unwind-to-frame-and-call-vop
938 `((multiple-value-prog1
941 ;; Just ensure that there won't be any tail-calls, IR2 magic will
944 #!-unwind-to-frame-and-call-vop
945 `( ;; Normally, we'll return from this block with the below RETURN-FROM.
948 ;; If DEBUG-CATCH-TAG is thrown (with a thunk as the value) the
949 ;; RETURN-FROM is elided and we funcall the thunk instead. That
950 ;; thunk might either return a value (for a RETURN-FROM-FRAME)
951 ;; or call this same function again (for a RESTART-FRAME).
952 ;; -- JES, 2007-01-09
955 ;; Use a constant catch tag instead of consing a new one for every
956 ;; entry to this block. The uniquencess of the catch tags is
957 ;; ensured when the tag is throw by the debugger. It'll allocate a
958 ;; new tag, and modify the reference this tag in the proper
959 ;; catch-block structure to refer to that new tag. This
960 ;; significantly decreases the runtime cost of high debug levels.
961 ;; -- JES, 2007-01-09
962 (catch 'debug-catch-tag
963 (return-from return-value-tag
967 ;;; helper for LAMBDA-like things, to massage them into a form
968 ;;; suitable for IR1-CONVERT-LAMBDA.
969 (defun ir1-convert-lambdalike (thing
971 (source-name '.anonymous.
)
975 (ir1-convert-lambda thing
976 :maybe-add-debug-catch t
977 :source-name source-name
978 :debug-name debug-name
))
980 (deprecation-warning 'instance-lambda
'lambda
)
981 (ir1-convert-lambda `(lambda ,@(cdr thing
))
982 :source-name source-name
983 :debug-name debug-name
))
985 (let ((name (cadr thing
))
986 (lambda-expression `(lambda ,@(cddr thing
))))
987 (if (legal-fun-name-p name
)
988 (let ((defined-fun-res (get-defined-fun name
))
989 (res (ir1-convert-lambda lambda-expression
990 :maybe-add-debug-catch t
992 (assert-global-function-definition-type name res
)
993 (setf (defined-fun-functional defined-fun-res
) res
)
994 (unless (eq (defined-fun-inlinep defined-fun-res
) :notinline
)
997 (policy ref
(> recognize-self-calls
0)))
998 res defined-fun-res
))
1000 (ir1-convert-lambda lambda-expression
1001 :maybe-add-debug-catch t
1002 :debug-name name
))))
1003 ((lambda-with-lexenv)
1004 (ir1-convert-inline-lambda thing
1005 :source-name source-name
1006 :debug-name debug-name
))))
1008 ;;;; defining global functions
1010 ;;; Convert FUN as a lambda in the null environment, but use the
1011 ;;; current compilation policy. Note that FUN may be a
1012 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
1013 ;;; reflect the state at the definition site.
1014 (defun ir1-convert-inline-lambda (fun
1016 (source-name '.anonymous.
)
1019 (destructuring-bind (decls macros symbol-macros
&rest body
)
1020 (if (eq (car fun
) 'lambda-with-lexenv
)
1022 `(() () () .
,(cdr fun
)))
1023 (let ((*lexenv
* (make-lexenv
1024 :default
(process-decls decls nil nil
1025 :lexenv
(make-null-lexenv))
1026 :vars
(copy-list symbol-macros
)
1027 :funs
(mapcar (lambda (x)
1029 (macro .
,(coerce (cdr x
) 'function
))))
1031 ;; Inherit MUFFLE-CONDITIONS from the call-site lexenv
1032 ;; rather than the definition-site lexenv, since it seems
1033 ;; like a much more common case.
1034 :handled-conditions
(lexenv-handled-conditions *lexenv
*)
1035 :policy
(lexenv-policy *lexenv
*)))
1036 (*allow-instrumenting
* (and (not system-lambda
) *allow-instrumenting
*)))
1037 (ir1-convert-lambda `(lambda ,@body
)
1038 :source-name source-name
1039 :debug-name debug-name
))))
1041 ;;; Get a DEFINED-FUN object for a function we are about to define. If
1042 ;;; the function has been forward referenced, then substitute for the
1043 ;;; previous references.
1044 (defun get-defined-fun (name)
1045 (proclaim-as-fun-name name
)
1046 (let ((found (find-free-fun name
"shouldn't happen! (defined-fun)")))
1047 (note-name-defined name
:function
)
1048 (cond ((not (defined-fun-p found
))
1049 (aver (not (info :function
:inlinep name
)))
1050 (let* ((where-from (leaf-where-from found
))
1051 (res (make-defined-fun
1053 :where-from
(if (eq where-from
:declared
)
1055 :type
(leaf-type found
))))
1056 (substitute-leaf res found
)
1057 (setf (gethash name
*free-funs
*) res
)))
1058 ;; If *FREE-FUNS* has a previously converted definition
1059 ;; for this name, then blow it away and try again.
1060 ((defined-fun-functional found
)
1061 (remhash name
*free-funs
*)
1062 (get-defined-fun name
))
1065 ;;; Check a new global function definition for consistency with
1066 ;;; previous declaration or definition, and assert argument/result
1067 ;;; types if appropriate. This assertion is suppressed by the
1068 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1069 ;;; check their argument types as a consequence of type dispatching.
1070 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1071 (defun assert-new-definition (var fun
)
1072 (let ((type (leaf-type var
))
1073 (for-real (eq (leaf-where-from var
) :declared
))
1074 (info (info :function
:info
(leaf-source-name var
))))
1075 (assert-definition-type
1077 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1078 ;; all we can do here in general is issue a STYLE-WARNING. It
1079 ;; would be nice to issue a full WARNING in the special case of
1080 ;; of type mismatches within a compilation unit (as in section
1081 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
1082 ;; keep track of whether the mismatched data came from the same
1083 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
1084 :lossage-fun
#'compiler-style-warn
1085 :unwinnage-fun
(cond (info #'compiler-style-warn
)
1086 (for-real #'compiler-notify
)
1091 (ir1-attributep (fun-info-attributes info
)
1094 "previous declaration"
1095 "previous definition"))))
1097 ;;; Used for global inline expansion. Earlier something like this was
1098 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1099 ;;; whether this function is a good idea at all.
1100 (defun ir1-convert-inline-expansion (name expansion var inlinep info
)
1101 ;; Unless a :INLINE function, we temporarily clobber the inline
1102 ;; expansion. This prevents recursive inline expansion of
1103 ;; opportunistic pseudo-inlines.
1104 (unless (eq inlinep
:inline
)
1105 (setf (defined-fun-inline-expansion var
) nil
))
1106 (let ((fun (ir1-convert-inline-lambda expansion
1108 ;; prevent instrumentation of
1109 ;; known function expansions
1110 :system-lambda
(and info t
))))
1111 (setf (functional-inlinep fun
) inlinep
)
1112 (assert-new-definition var fun
)
1113 (setf (defined-fun-inline-expansion var
) expansion
)
1114 ;; substitute for any old references
1115 (unless (or (not *block-compile
*)
1117 (or (fun-info-transforms info
)
1118 (fun-info-templates info
)
1119 (fun-info-ir2-convert info
))))
1120 (substitute-leaf fun var
))
1123 ;;; the even-at-compile-time part of DEFUN
1125 ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
1126 ;;; no inline expansion.
1127 (defun %compiler-defun
(name lambda-with-lexenv compile-toplevel
)
1128 (let ((defined-fun nil
)) ; will be set below if we're in the compiler
1129 (when compile-toplevel
1130 ;; better be in the compiler
1131 (aver (boundp '*lexenv
*))
1132 (remhash name
*free-funs
*)
1133 (setf defined-fun
(get-defined-fun name
))
1134 (aver (fasl-output-p *compile-object
*))
1135 (if (member name
*fun-names-in-this-file
* :test
#'equal
)
1136 (warn 'duplicate-definition
:name name
)
1137 (push name
*fun-names-in-this-file
*)))
1139 (become-defined-fun-name name
)
1141 (cond (lambda-with-lexenv
1142 (setf (info :function
:inline-expansion-designator name
)
1145 (setf (defined-fun-inline-expansion defined-fun
)
1146 lambda-with-lexenv
)))
1148 (clear-info :function
:inline-expansion-designator name
)))
1150 ;; old CMU CL comment:
1151 ;; If there is a type from a previous definition, blast it,
1152 ;; since it is obsolete.
1153 (when (and defined-fun
1154 (eq (leaf-where-from defined-fun
) :defined
))
1155 (setf (leaf-type defined-fun
)
1156 ;; FIXME: If this is a block compilation thing, shouldn't
1157 ;; we be setting the type to the full derived type for the
1158 ;; definition, instead of this most general function type?
1159 (specifier-type 'function
))))
1164 ;;; Entry point utilities
1166 ;;; Return a function for the Nth entry point.
1167 (defun optional-dispatch-entry-point-fun (dispatcher n
)
1168 (declare (type optional-dispatch dispatcher
)
1169 (type unsigned-byte n
))
1170 (let* ((env (getf (optional-dispatch-plist dispatcher
) :ir1-environment
))
1171 (*lexenv
* (first env
))
1172 (*current-path
* (second env
)))
1173 (force (nth n
(optional-dispatch-entry-points dispatcher
)))))