Declare EXPLICIT-CHECK on CONCATENATE, MAKE-STRING, SET-PPRINT-DISPATCH.
[sbcl.git] / src / code / late-type.lisp
blobf1de4f293e86636be06f55245b6b61a2f535684b
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier))
32 (:default-initargs
33 :specifier (missing-arg)))
35 ;;; This condition is signalled whenever we encounter a type (DEFTYPE,
36 ;;; structure, condition, class) that has been marked as deprecated.
37 (define-condition parse-deprecated-type (condition)
38 ((specifier :reader parse-deprecated-type-specifier :initarg :specifier))
39 (:default-initargs
40 :specifier (missing-arg)))
42 ;;; These functions are used as method for types which need a complex
43 ;;; subtypep method to handle some superclasses, but cover a subtree
44 ;;; of the type graph (i.e. there is no simple way for any other type
45 ;;; class to be a subtype.) There are always still complex ways,
46 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
47 ;;; chance to run, instead of immediately returning NIL, T.
48 (defun delegate-complex-subtypep-arg2 (type1 type2)
49 (let ((subtypep-arg1
50 (type-class-complex-subtypep-arg1 (type-class-info type1))))
51 (if subtypep-arg1
52 (funcall subtypep-arg1 type1 type2)
53 (values nil t))))
54 (defun delegate-complex-intersection2 (type1 type2)
55 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
56 (if (and method (not (eq method #'delegate-complex-intersection2)))
57 (funcall method type2 type1)
58 (hierarchical-intersection2 type1 type2))))
60 (defun contains-unknown-type-p (ctype)
61 (cond ((unknown-type-p ctype) t)
62 ((compound-type-p ctype)
63 (some #'contains-unknown-type-p (compound-type-types ctype)))
64 ((negation-type-p ctype)
65 (contains-unknown-type-p (negation-type-type ctype)))))
67 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
68 ;;; method. INFO is a list of conses
69 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
70 (defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
71 ;; If TYPE2 might be concealing something related to our class
72 ;; hierarchy
73 (if (type-might-contain-other-types-p type2)
74 ;; too confusing, gotta punt
75 (values nil nil)
76 ;; ordinary case expected by old CMU CL code, where the taxonomy
77 ;; of TYPE2's representation accurately reflects the taxonomy of
78 ;; the underlying set
79 (values
80 ;; FIXME: This old CMU CL code probably deserves a comment
81 ;; explaining to us mere mortals how it works...
82 (and (sb!xc:typep type2 'classoid)
83 (dolist (x info nil)
84 (when (or (not (cdr x))
85 (csubtypep type1 (specifier-type (cdr x))))
86 (return
87 (or (eq type2 (car x))
88 (let ((inherits (layout-inherits
89 (classoid-layout (car x)))))
90 (dotimes (i (length inherits) nil)
91 (when (eq type2 (layout-classoid (svref inherits i)))
92 (return t)))))))))
93 t)))
95 ;;; This function takes a list of specs, each of the form
96 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
97 ;;; Consider one spec (with no guard): any instance of the named
98 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
99 ;;; its superclasses. If there are multiple specs, then some will have
100 ;;; guards. We choose the first spec whose guard is a supertype of
101 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
102 ;;; G0, G1, G2
103 ;;; is actually
104 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
106 ;;; WHEN controls when the forms are executed.
107 (defmacro !define-superclasses (type-class-name specs when)
108 (with-unique-names (type-class info)
109 `(,when
110 (let ((,type-class (type-class-or-lose ',type-class-name))
111 (,info (mapcar (lambda (spec)
112 (destructuring-bind
113 (super &optional guard)
114 spec
115 (cons (find-classoid super) guard)))
116 ',specs)))
117 (setf (type-class-complex-subtypep-arg1 ,type-class)
118 (lambda (type1 type2)
119 (has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
120 (setf (type-class-complex-subtypep-arg2 ,type-class)
121 #'delegate-complex-subtypep-arg2)
122 (setf (type-class-complex-intersection2 ,type-class)
123 #'delegate-complex-intersection2)))))
125 ;;;; FUNCTION and VALUES types
126 ;;;;
127 ;;;; Pretty much all of the general type operations are illegal on
128 ;;;; VALUES types, since we can't discriminate using them, do
129 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
130 ;;;; operations, but are generally considered to be equivalent to
131 ;;;; FUNCTION. These really aren't true types in any type theoretic
132 ;;;; sense, but we still parse them into CTYPE structures for two
133 ;;;; reasons:
135 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
136 ;;;; tell whether a type is a function or values type without
137 ;;;; parsing it.
138 ;;;; -- Many of the places that can be annotated with real types can
139 ;;;; also be annotated with function or values types.
141 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
142 (type1 type2)
143 (declare (ignore type2))
144 ;; FIXME: should be TYPE-ERROR, here and in next method
145 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
147 (!define-type-method (values :complex-subtypep-arg2)
148 (type1 type2)
149 (declare (ignore type1))
150 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
152 (!define-type-method (values :negate) (type)
153 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
155 (!define-type-method (values :unparse) (type)
156 (cons 'values
157 (let ((unparsed (unparse-args-types type)))
158 (if (or (values-type-optional type)
159 (values-type-rest type)
160 (values-type-allowp type))
161 unparsed
162 (nconc unparsed '(&optional))))))
164 ;;; Return true if LIST1 and LIST2 have the same elements in the same
165 ;;; positions according to TYPE=. We return NIL, NIL if there is an
166 ;;; uncertain comparison.
167 (defun type=-list (list1 list2)
168 (declare (list list1 list2))
169 (do ((types1 list1 (cdr types1))
170 (types2 list2 (cdr types2)))
171 ((or (null types1) (null types2))
172 (if (or types1 types2)
173 (values nil t)
174 (values t t)))
175 (multiple-value-bind (val win)
176 (type= (first types1) (first types2))
177 (unless win
178 (return (values nil nil)))
179 (unless val
180 (return (values nil t))))))
182 (!define-type-method (values :simple-=) (type1 type2)
183 (type=-args type1 type2))
185 (!define-type-class function :enumerable nil
186 :might-contain-other-types nil)
188 ;;; a flag that we can bind to cause complex function types to be
189 ;;; unparsed as FUNCTION. This is useful when we want a type that we
190 ;;; can pass to TYPEP.
191 (!defvar *unparse-fun-type-simplify* nil)
192 ;;; A flag to prevent TYPE-OF calls by user applications from returning
193 ;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
194 (!defvar *unparse-allow-negation* t)
196 (!define-type-method (function :negate) (type)
197 (make-negation-type :type type))
199 (!define-type-method (function :unparse) (type)
200 (if *unparse-fun-type-simplify*
201 'function
202 (list 'function
203 (if (fun-type-wild-args type)
205 (unparse-args-types type))
206 (type-specifier
207 (fun-type-returns type)))))
209 ;;; The meaning of this is a little confused. On the one hand, all
210 ;;; function objects are represented the same way regardless of the
211 ;;; arglists and return values, and apps don't get to ask things like
212 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
213 ;;; other hand, Python wants to reason about function types. So...
214 (!define-type-method (function :simple-subtypep) (type1 type2)
215 (flet ((fun-type-simple-p (type)
216 (not (or (fun-type-rest type)
217 (fun-type-keyp type))))
218 (every-csubtypep (types1 types2)
219 (loop
220 for a1 in types1
221 for a2 in types2
222 do (multiple-value-bind (res sure-p)
223 (csubtypep a1 a2)
224 (unless res (return (values res sure-p))))
225 finally (return (values t t)))))
226 (and/type (values-subtypep (fun-type-returns type1)
227 (fun-type-returns type2))
228 (cond ((fun-type-wild-args type2) (values t t))
229 ((fun-type-wild-args type1)
230 (cond ((fun-type-keyp type2) (values nil nil))
231 ((not (fun-type-rest type2)) (values nil t))
232 ((not (null (fun-type-required type2)))
233 (values nil t))
234 (t (and/type (type= *universal-type*
235 (fun-type-rest type2))
236 (every/type #'type=
237 *universal-type*
238 (fun-type-optional
239 type2))))))
240 ((not (and (fun-type-simple-p type1)
241 (fun-type-simple-p type2)))
242 (values nil nil))
243 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
244 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
245 (cond ((or (> max1 max2) (< min1 min2))
246 (values nil t))
247 ((and (= min1 min2) (= max1 max2))
248 (and/type (every-csubtypep
249 (fun-type-required type1)
250 (fun-type-required type2))
251 (every-csubtypep
252 (fun-type-optional type1)
253 (fun-type-optional type2))))
254 (t (every-csubtypep
255 (concatenate 'list
256 (fun-type-required type1)
257 (fun-type-optional type1))
258 (concatenate 'list
259 (fun-type-required type2)
260 (fun-type-optional type2))))))))))))
262 (!define-superclasses function ((function)) !cold-init-forms)
264 ;;; The union or intersection of two FUNCTION types is FUNCTION.
265 (!define-type-method (function :simple-union2) (type1 type2)
266 (declare (ignore type1 type2))
267 (specifier-type 'function))
268 (!define-type-method (function :simple-intersection2) (type1 type2)
269 (let ((ftype (specifier-type 'function)))
270 (cond ((eq type1 ftype) type2)
271 ((eq type2 ftype) type1)
272 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
273 (fun-type-returns type2))))
274 (flet ((change-returns (ftype rtype)
275 (declare (type fun-type ftype) (type ctype rtype))
276 (make-fun-type :required (fun-type-required ftype)
277 :optional (fun-type-optional ftype)
278 :keyp (fun-type-keyp ftype)
279 :keywords (fun-type-keywords ftype)
280 :allowp (fun-type-allowp ftype)
281 :returns rtype)))
282 (cond
283 ((fun-type-wild-args type1)
284 (if (fun-type-wild-args type2)
285 (make-fun-type :wild-args t
286 :returns rtype)
287 (change-returns type2 rtype)))
288 ((fun-type-wild-args type2)
289 (change-returns type1 rtype))
290 (t (multiple-value-bind (req opt rest)
291 (args-type-op type1 type2 #'type-intersection #'max)
292 (make-fun-type :required req
293 :optional opt
294 :rest rest
295 ;; FIXME: :keys
296 :allowp (and (fun-type-allowp type1)
297 (fun-type-allowp type2))
298 :returns rtype))))))))))
300 ;;; The union or intersection of a subclass of FUNCTION with a
301 ;;; FUNCTION type is somewhat complicated.
302 (!define-type-method (function :complex-intersection2) (type1 type2)
303 (cond
304 ((type= type1 (specifier-type 'function)) type2)
305 ((csubtypep type1 (specifier-type 'function)) nil)
306 (t :call-other-method)))
307 (!define-type-method (function :complex-union2) (type1 type2)
308 (declare (ignore type2))
309 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
310 ;; FUNCTION, then it is the union of the two; otherwise, there is no
311 ;; special union.
312 (cond
313 ((type= type1 (specifier-type 'function)) type1)
314 (t nil)))
316 (!define-type-method (function :simple-=) (type1 type2)
317 (macrolet ((compare (comparator field)
318 (let ((reader (symbolicate '#:fun-type- field)))
319 `(,comparator (,reader type1) (,reader type2)))))
320 (and/type (compare type= returns)
321 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
322 (values nil t))
323 ((eq (fun-type-wild-args type1) t)
324 (values t t))
325 (t (type=-args type1 type2))))))
327 (!define-type-class constant :inherits values)
329 (!define-type-method (constant :negate) (type)
330 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
332 (!define-type-method (constant :unparse) (type)
333 `(constant-arg ,(type-specifier (constant-type-type type))))
335 (!define-type-method (constant :simple-=) (type1 type2)
336 (type= (constant-type-type type1) (constant-type-type type2)))
338 (!def-type-translator constant-arg (type)
339 (make-constant-type :type (single-value-specifier-type type)))
341 ;;; Return the lambda-list-like type specification corresponding
342 ;;; to an ARGS-TYPE.
343 (declaim (ftype (function (args-type) list) unparse-args-types))
344 (defun unparse-args-types (type)
345 (collect ((result))
347 (dolist (arg (args-type-required type))
348 (result (type-specifier arg)))
350 (when (args-type-optional type)
351 (result '&optional)
352 (dolist (arg (args-type-optional type))
353 (result (type-specifier arg))))
355 (when (args-type-rest type)
356 (result '&rest)
357 (result (type-specifier (args-type-rest type))))
359 (when (args-type-keyp type)
360 (result '&key)
361 (dolist (key (args-type-keywords type))
362 (result (list (key-info-name key)
363 (type-specifier (key-info-type key))))))
365 (when (args-type-allowp type)
366 (result '&allow-other-keys))
368 (result)))
370 (!def-type-translator function (&optional (args '*) (result '*))
371 (let ((result (coerce-to-values (values-specifier-type result))))
372 (if (eq args '*)
373 (if (eq result *wild-type*)
374 (specifier-type 'function)
375 (make-fun-type :wild-args t :returns result))
376 (multiple-value-bind (llks required optional rest keywords)
377 (parse-args-types args :function-type)
378 (if (and (null required)
379 (null optional)
380 (eq rest *universal-type*)
381 (not (ll-kwds-keyp llks)))
382 (if (eq result *wild-type*)
383 (specifier-type 'function)
384 (make-fun-type :wild-args t :returns result))
385 (make-fun-type :required required
386 :optional optional
387 :rest rest
388 :keyp (ll-kwds-keyp llks)
389 :keywords keywords
390 :allowp (ll-kwds-allowp llks)
391 :returns result))))))
393 (!def-type-translator values :list (&rest values)
394 (if (eq values '*)
395 *wild-type*
396 (multiple-value-bind (llks required optional rest)
397 (parse-args-types values :values-type)
398 (if (plusp llks)
399 (make-values-type :required required :optional optional :rest rest)
400 (make-short-values-type required)))))
402 ;;;; VALUES types interfaces
403 ;;;;
404 ;;;; We provide a few special operations that can be meaningfully used
405 ;;;; on VALUES types (as well as on any other type).
407 ;;; Return the minimum number of values possibly matching VALUES type
408 ;;; TYPE.
409 (defun values-type-min-value-count (type)
410 (etypecase type
411 (named-type
412 (ecase (named-type-name type)
413 ((t *) 0)
414 ((nil) 0)))
415 (values-type
416 (length (values-type-required type)))))
418 ;;; Return the maximum number of values possibly matching VALUES type
419 ;;; TYPE.
420 (defun values-type-max-value-count (type)
421 (etypecase type
422 (named-type
423 (ecase (named-type-name type)
424 ((t *) call-arguments-limit)
425 ((nil) 0)))
426 (values-type
427 (if (values-type-rest type)
428 call-arguments-limit
429 (+ (length (values-type-optional type))
430 (length (values-type-required type)))))))
432 (defun values-type-may-be-single-value-p (type)
433 (<= (values-type-min-value-count type)
435 (values-type-max-value-count type)))
437 ;;; VALUES type with a single value.
438 (defun type-single-value-p (type)
439 (and (%values-type-p type)
440 (not (values-type-rest type))
441 (null (values-type-optional type))
442 (singleton-p (values-type-required type))))
444 ;;; Return the type of the first value indicated by TYPE. This is used
445 ;;; by people who don't want to have to deal with VALUES types.
446 #!-sb-fluid (declaim (freeze-type values-type))
447 ; (inline single-value-type))
448 (defun single-value-type (type)
449 (declare (type ctype type))
450 (cond ((eq type *wild-type*)
451 *universal-type*)
452 ((eq type *empty-type*)
453 *empty-type*)
454 ((not (values-type-p type))
455 type)
456 ((car (args-type-required type)))
457 (t (type-union (specifier-type 'null)
458 (or (car (args-type-optional type))
459 (args-type-rest type)
460 (specifier-type 'null))))))
462 ;;; Return the minimum number of arguments that a function can be
463 ;;; called with, and the maximum number or NIL. If not a function
464 ;;; type, return NIL, NIL.
465 (defun fun-type-nargs (type)
466 (declare (type ctype type))
467 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
468 (let ((fixed (length (args-type-required type))))
469 (if (or (args-type-rest type)
470 (args-type-keyp type)
471 (args-type-allowp type))
472 (values fixed nil)
473 (values fixed (+ fixed (length (args-type-optional type))))))
474 (values nil nil)))
476 ;;; Determine whether TYPE corresponds to a definite number of values.
477 ;;; The first value is a list of the types for each value, and the
478 ;;; second value is the number of values. If the number of values is
479 ;;; not fixed, then return NIL and :UNKNOWN.
480 (defun values-types (type)
481 (declare (type ctype type))
482 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
483 (values nil :unknown))
484 ((or (args-type-optional type)
485 (args-type-rest type))
486 (values nil :unknown))
488 (let ((req (args-type-required type)))
489 (values req (length req))))))
491 ;;; Return two values:
492 ;;; 1. A list of all the positional (fixed and optional) types.
493 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
494 (defun values-type-types (type &optional (default-type *empty-type*))
495 (declare (type ctype type))
496 (if (eq type *wild-type*)
497 (values nil *universal-type*)
498 (values (append (args-type-required type)
499 (args-type-optional type))
500 (cond ((args-type-rest type))
501 (t default-type)))))
503 ;;; types of values in (the <type> (values o_1 ... o_n))
504 (defun values-type-out (type count)
505 (declare (type ctype type) (type unsigned-byte count))
506 (if (eq type *wild-type*)
507 (make-list count :initial-element *universal-type*)
508 (collect ((res))
509 (flet ((process-types (types)
510 (loop for type in types
511 while (plusp count)
512 do (decf count)
513 do (res type))))
514 (process-types (values-type-required type))
515 (process-types (values-type-optional type))
516 (when (plusp count)
517 (loop with rest = (the ctype (values-type-rest type))
518 repeat count
519 do (res rest))))
520 (res))))
522 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
523 (defun values-type-in (type count)
524 (declare (type ctype type) (type unsigned-byte count))
525 (if (eq type *wild-type*)
526 (make-list count :initial-element *universal-type*)
527 (collect ((res))
528 (let ((null-type (specifier-type 'null)))
529 (loop for type in (values-type-required type)
530 while (plusp count)
531 do (decf count)
532 do (res type))
533 (loop for type in (values-type-optional type)
534 while (plusp count)
535 do (decf count)
536 do (res (type-union type null-type)))
537 (when (plusp count)
538 (loop with rest = (acond ((values-type-rest type)
539 (type-union it null-type))
540 (t null-type))
541 repeat count
542 do (res rest))))
543 (res))))
545 ;;; Return a list of OPERATION applied to the types in TYPES1 and
546 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
547 ;;; than TYPES2. The second value is T if OPERATION always returned a
548 ;;; true second value.
549 (defun fixed-values-op (types1 types2 rest2 operation)
550 (declare (list types1 types2) (type ctype rest2) (type function operation))
551 (let ((exact t))
552 (values (mapcar (lambda (t1 t2)
553 (multiple-value-bind (res win)
554 (funcall operation t1 t2)
555 (unless win
556 (setq exact nil))
557 res))
558 types1
559 (append types2
560 (make-list (- (length types1) (length types2))
561 :initial-element rest2)))
562 exact)))
564 ;;; If TYPE isn't a values type, then make it into one.
565 (defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-hash-value)
566 ((type eq))
567 (cond ((multiple-value-bind (res sure)
568 (csubtypep (specifier-type 'null) type)
569 (and (not res) sure))
570 ;; FIXME: What should we do with (NOT SURE)?
571 (make-values-type :required (list type) :rest *universal-type*))
573 (make-values-type :optional (list type) :rest *universal-type*))))
575 (defun coerce-to-values (type)
576 (declare (type ctype type))
577 (cond ((or (eq type *universal-type*)
578 (eq type *wild-type*))
579 *wild-type*)
580 ((values-type-p type)
581 type)
582 (t (%coerce-to-values type))))
584 ;;; Return type, corresponding to ANSI short form of VALUES type
585 ;;; specifier.
586 (defun make-short-values-type (types)
587 (declare (list types))
588 (let ((last-required (position-if
589 (lambda (type)
590 (not/type (csubtypep (specifier-type 'null) type)))
591 types
592 :from-end t)))
593 (if last-required
594 (make-values-type :required (subseq types 0 (1+ last-required))
595 :optional (subseq types (1+ last-required))
596 :rest *universal-type*)
597 (make-values-type :optional types :rest *universal-type*))))
599 (defun make-single-value-type (type)
600 (make-values-type :required (list type)))
602 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
603 ;;; type, including VALUES types. With VALUES types such as:
604 ;;; (VALUES a0 a1)
605 ;;; (VALUES b0 b1)
606 ;;; we compute the more useful result
607 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
608 ;;; rather than the precise result
609 ;;; (<operation> (values a0 a1) (values b0 b1))
610 ;;; This has the virtue of always keeping the VALUES type specifier
611 ;;; outermost, and retains all of the information that is really
612 ;;; useful for static type analysis. We want to know what is always
613 ;;; true of each value independently. It is worthless to know that if
614 ;;; the first value is B0 then the second will be B1.
616 ;;; If the VALUES count signatures differ, then we produce a result with
617 ;;; the required VALUE count chosen by NREQ when applied to the number
618 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
619 ;;; &REST T (anyone who uses keyword values deserves to lose.)
621 ;;; The second value is true if the result is definitely empty or if
622 ;;; OPERATION returned true as its second value each time we called
623 ;;; it. Since we approximate the intersection of VALUES types, the
624 ;;; second value being true doesn't mean the result is exact.
625 (defun args-type-op (type1 type2 operation nreq)
626 (declare (type ctype type1 type2)
627 (type function operation nreq))
628 (when (eq type1 type2)
629 (values type1 t))
630 (multiple-value-bind (types1 rest1)
631 (values-type-types type1)
632 (multiple-value-bind (types2 rest2)
633 (values-type-types type2)
634 (multiple-value-bind (rest rest-exact)
635 (funcall operation rest1 rest2)
636 (multiple-value-bind (res res-exact)
637 (if (< (length types1) (length types2))
638 (fixed-values-op types2 types1 rest1 operation)
639 (fixed-values-op types1 types2 rest2 operation))
640 (let* ((req (funcall nreq
641 (length (args-type-required type1))
642 (length (args-type-required type2))))
643 (required (subseq res 0 req))
644 (opt (subseq res req)))
645 (values required opt rest
646 (and rest-exact res-exact))))))))
648 (defun values-type-op (type1 type2 operation nreq)
649 (multiple-value-bind (required optional rest exactp)
650 (args-type-op type1 type2 operation nreq)
651 (values (make-values-type :required required
652 :optional optional
653 :rest rest)
654 exactp)))
656 (defun compare-key-args (type1 type2)
657 (let ((keys1 (args-type-keywords type1))
658 (keys2 (args-type-keywords type2)))
659 (and (= (length keys1) (length keys2))
660 (eq (args-type-allowp type1)
661 (args-type-allowp type2))
662 (loop for key1 in keys1
663 for match = (find (key-info-name key1)
664 keys2 :key #'key-info-name)
665 always (and match
666 (type= (key-info-type key1)
667 (key-info-type match)))))))
669 (defun type=-args (type1 type2)
670 (macrolet ((compare (comparator field)
671 (let ((reader (symbolicate '#:args-type- field)))
672 `(,comparator (,reader type1) (,reader type2)))))
673 (and/type
674 (cond ((null (args-type-rest type1))
675 (values (null (args-type-rest type2)) t))
676 ((null (args-type-rest type2))
677 (values nil t))
679 (compare type= rest)))
680 (and/type (and/type (compare type=-list required)
681 (compare type=-list optional))
682 (if (or (args-type-keyp type1) (args-type-keyp type2))
683 (values (compare-key-args type1 type2) t)
684 (values t t))))))
686 ;;; Do a union or intersection operation on types that might be values
687 ;;; types. The result is optimized for utility rather than exactness,
688 ;;; but it is guaranteed that it will be no smaller (more restrictive)
689 ;;; than the precise result.
691 ;;; The return convention seems to be analogous to
692 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
693 (defun-cached (values-type-union :hash-function #'type-cache-hash
694 :hash-bits 8)
695 ((type1 eq) (type2 eq))
696 (declare (type ctype type1 type2))
697 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
698 ((eq type1 *empty-type*) type2)
699 ((eq type2 *empty-type*) type1)
701 (values (values-type-op type1 type2 #'type-union #'min)))))
703 (defun-cached (values-type-intersection :hash-function #'type-cache-hash
704 :hash-bits 8)
705 ((type1 eq) (type2 eq))
706 (declare (type ctype type1 type2))
707 (cond ((eq type1 *wild-type*)
708 (coerce-to-values type2))
709 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
710 type1)
711 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
712 *empty-type*)
713 ((and (not (values-type-p type2))
714 (values-type-required type1))
715 (let ((req1 (values-type-required type1)))
716 (make-values-type :required (cons (type-intersection (first req1) type2)
717 (rest req1))
718 :optional (values-type-optional type1)
719 :rest (values-type-rest type1)
720 :allowp (values-type-allowp type1))))
722 (values (values-type-op type1 (coerce-to-values type2)
723 #'type-intersection
724 #'max)))))
726 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
727 ;;; works on VALUES types. Note that due to the semantics of
728 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
729 ;;; there isn't really any intersection.
730 (defun values-types-equal-or-intersect (type1 type2)
731 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
732 (values t t))
733 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
734 (values t t))
736 (let ((res (values-type-intersection type1 type2)))
737 (values (not (eq res *empty-type*))
738 t)))))
740 ;;; a SUBTYPEP-like operation that can be used on any types, including
741 ;;; VALUES types
742 (defun-cached (values-subtypep :hash-function #'type-cache-hash
743 :hash-bits 8
744 :values 2)
745 ((type1 eq) (type2 eq))
746 (declare (type ctype type1 type2))
747 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
748 (eq type1 *empty-type*))
749 (values t t))
750 ((eq type1 *wild-type*)
751 (values (eq type2 *wild-type*) t))
752 ((or (eq type2 *empty-type*)
753 (not (values-types-equal-or-intersect type1 type2)))
754 (values nil t))
755 ((and (not (values-type-p type2))
756 (values-type-required type1))
757 (csubtypep (first (values-type-required type1))
758 type2))
759 (t (setq type2 (coerce-to-values type2))
760 (multiple-value-bind (types1 rest1) (values-type-types type1)
761 (multiple-value-bind (types2 rest2) (values-type-types type2)
762 (cond ((< (length (values-type-required type1))
763 (length (values-type-required type2)))
764 (values nil t))
765 ((< (length types1) (length types2))
766 (values nil nil))
768 (do ((t1 types1 (rest t1))
769 (t2 types2 (rest t2)))
770 ((null t2)
771 (csubtypep rest1 rest2))
772 (multiple-value-bind (res win-p)
773 (csubtypep (first t1) (first t2))
774 (unless win-p
775 (return (values nil nil)))
776 (unless res
777 (return (values nil t))))))))))))
779 ;;;; type method interfaces
781 ;;; like SUBTYPEP, only works on CTYPE structures
782 (defun-cached (csubtypep :hash-function #'type-cache-hash
783 :hash-bits 10
784 :memoizer memoize
785 :values 2)
786 ((type1 eq) (type2 eq))
787 (declare (type ctype type1 type2))
788 (cond ((or (eq type1 type2)
789 (eq type1 *empty-type*)
790 (eq type2 *universal-type*))
791 (values t t))
792 #+nil
793 ((eq type1 *universal-type*)
794 (values nil t))
796 (memoize
797 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
798 type1 type2
799 :complex-arg1 :complex-subtypep-arg1)))))
801 ;;; Just parse the type specifiers and call CSUBTYPE.
802 (defun sb!xc:subtypep (type1 type2 &optional environment)
803 #!+sb-doc
804 "Return two values indicating the relationship between type1 and type2.
805 If values are T and T, type1 definitely is a subtype of type2.
806 If values are NIL and T, type1 definitely is not a subtype of type2.
807 If values are NIL and NIL, it couldn't be determined."
808 (declare (type lexenv-designator environment) (ignore environment))
809 (csubtypep (specifier-type type1) (specifier-type type2)))
811 ;;; If two types are definitely equivalent, return true. The second
812 ;;; value indicates whether the first value is definitely correct.
813 ;;; This should only fail in the presence of HAIRY types.
814 (defun-cached (type= :hash-function #'type-cache-hash
815 :hash-bits 11
816 :memoizer memoize
817 :values 2)
818 ((type1 eq) (type2 eq))
819 (declare (type ctype type1 type2))
820 (cond ((eq type1 type2)
821 (values t t))
822 ;; If args are not EQ, but both allow TYPE= optimization,
823 ;; and at least one is interned, then return no and certainty.
824 ((and (minusp (logior (type-hash-value type1) (type-hash-value type2)))
825 (logtest (logand (type-hash-value type1) (type-hash-value type2))
826 +type-admits-type=-optimization+))
827 (values nil t))
829 (memoize (!invoke-type-method :simple-= :complex-= type1 type2)))))
831 ;;; Not exactly the negation of TYPE=, since when the relationship is
832 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
833 ;;; the conservative assumption is =.
834 (defun type/= (type1 type2)
835 (declare (type ctype type1 type2))
836 (multiple-value-bind (res win) (type= type1 type2)
837 (if win
838 (values (not res) t)
839 (values nil nil))))
841 ;;; the type method dispatch case of TYPE-UNION2
842 (defun %type-union2 (type1 type2)
843 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
844 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
845 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
846 ;; demonstrates this is actually necessary. Also unlike
847 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
848 ;; between not finding a method and having a method return NIL.
849 (flet ((1way (x y)
850 (!invoke-type-method :simple-union2 :complex-union2
852 :default nil)))
853 (declare (inline 1way))
854 (or (1way type1 type2)
855 (1way type2 type1))))
857 ;;; Find a type which includes both types. Any inexactness is
858 ;;; represented by the fuzzy element types; we return a single value
859 ;;; that is precise to the best of our knowledge. This result is
860 ;;; simplified into the canonical form, thus is not a UNION-TYPE
861 ;;; unless we find no other way to represent the result.
862 (defun-cached (type-union2 :hash-function #'type-cache-hash
863 :hash-bits 11
864 :memoizer memoize)
865 ((type1 eq) (type2 eq))
866 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
867 ;; Paste technique of programming. If it stays around (as opposed to
868 ;; e.g. fading away in favor of some CLOS solution) the shared logic
869 ;; should probably become shared code. -- WHN 2001-03-16
870 (declare (type ctype type1 type2))
871 (let ((t2 nil))
872 (if (eq type1 type2)
873 type1
874 (memoize
875 (cond
876 ;; CSUBTYPEP for array-types answers questions about the
877 ;; specialized type, yet for union we want to take the
878 ;; expressed type in account too.
879 ((and (not (and (array-type-p type1) (array-type-p type2)))
880 (or (setf t2 (csubtypep type1 type2))
881 (csubtypep type2 type1)))
882 (if t2 type2 type1))
883 ((or (union-type-p type1)
884 (union-type-p type2))
885 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
886 ;; values broken out and united separately. The full TYPE-UNION
887 ;; function knows how to do this, so let it handle it.
888 (type-union type1 type2))
890 ;; the ordinary case: we dispatch to type methods
891 (%type-union2 type1 type2)))))))
893 ;;; the type method dispatch case of TYPE-INTERSECTION2
894 (defun %type-intersection2 (type1 type2)
895 ;; We want to give both argument orders a chance at
896 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
897 ;; methods could give noncommutative results, e.g.
898 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
899 ;; => NIL, NIL
900 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
901 ;; => #<NAMED-TYPE NIL>, T
902 ;; We also need to distinguish between the case where we found a
903 ;; type method, and it returned NIL, and the case where we fell
904 ;; through without finding any type method. An example of the first
905 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
906 ;; An example of the second case is the intersection of two
907 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
908 ;; ARRAY.
910 ;; (Why yes, CLOS probably *would* be nicer..)
911 (flet ((1way (x y)
912 (!invoke-type-method :simple-intersection2 :complex-intersection2
914 :default :call-other-method)))
915 (declare (inline 1way))
916 (let ((xy (1way type1 type2)))
917 (or (and (not (eql xy :call-other-method)) xy)
918 (let ((yx (1way type2 type1)))
919 (or (and (not (eql yx :call-other-method)) yx)
920 (cond ((and (eql xy :call-other-method)
921 (eql yx :call-other-method))
922 *empty-type*)
924 nil))))))))
926 (defun-cached (type-intersection2 :hash-function #'type-cache-hash
927 :hash-bits 11
928 :memoizer memoize
929 :values 1)
930 ((type1 eq) (type2 eq))
931 (declare (type ctype type1 type2))
932 (if (eq type1 type2)
933 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
934 ;; type2 = (SPECIFIER-TYPE
935 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
936 type1
937 (memoize
938 (cond
939 ((or (intersection-type-p type1)
940 (intersection-type-p type2))
941 ;; Intersections of INTERSECTION-TYPE should have the
942 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
943 ;; separately. The full TYPE-INTERSECTION function knows how
944 ;; to do that, so let it handle it.
945 (type-intersection type1 type2))
947 ;; the ordinary case: we dispatch to type methods
948 (%type-intersection2 type1 type2))))))
950 ;;; Return as restrictive and simple a type as we can discover that is
951 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
952 ;;; worst, we arbitrarily return one of the arguments as the first
953 ;;; value (trying not to return a hairy type).
954 (defun type-approx-intersection2 (type1 type2)
955 (cond ((type-intersection2 type1 type2))
956 ((hairy-type-p type1) type2)
957 (t type1)))
959 ;;; a test useful for checking whether a derived type matches a
960 ;;; declared type
962 ;;; The first value is true unless the types don't intersect and
963 ;;; aren't equal. The second value is true if the first value is
964 ;;; definitely correct. NIL is considered to intersect with any type.
965 ;;; If T is a subtype of either type, then we also return T, T. This
966 ;;; way we recognize that hairy types might intersect with T.
968 ;;; Well now given the statement above that this is "useful for ..."
969 ;;; a particular thing, I see how treating *empty-type* magically could
970 ;;; be useful, however given all the _other_ calls to this function within
971 ;;; this file, it seems suboptimal, because logically it is wrong.
972 (defun types-equal-or-intersect (type1 type2)
973 (declare (type ctype type1 type2))
974 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
975 (values t t)
976 (let ((intersection2 (type-intersection2 type1 type2)))
977 (cond ((not intersection2)
978 (if (or (csubtypep *universal-type* type1)
979 (csubtypep *universal-type* type2))
980 (values t t)
981 (values t nil)))
982 ((eq intersection2 *empty-type*) (values nil t))
983 (t (values t t))))))
985 ;;; Return a Common Lisp type specifier corresponding to the TYPE
986 ;;; object.
987 (defun type-specifier (type)
988 (declare (type ctype type))
989 (funcall (type-class-unparse (type-class-info type)) type))
991 ;;; Don't try to define a print method until it's actually gonna work!
992 ;;; (Otherwise this would be near the DEFSTRUCT)
993 (def!method print-object ((ctype ctype) stream)
994 (print-unreadable-object (ctype stream :type t)
995 (prin1 (type-specifier ctype) stream)))
997 ;;; Same here.
998 ;;; Just dump it as a specifier. (We'll convert it back upon loading.)
999 (defun make-type-load-form (type)
1000 (declare (type ctype type))
1001 `(specifier-type ',(type-specifier type)))
1003 (defun-cached (type-negation :hash-function #'type-hash-value
1004 :hash-bits 8
1005 :values 1)
1006 ((type eq))
1007 (declare (type ctype type))
1008 (funcall (type-class-negate (type-class-info type)) type))
1010 (defun-cached (type-singleton-p :hash-function #'type-hash-value
1011 :hash-bits 8
1012 :values 2)
1013 ((type eq))
1014 (declare (type ctype type))
1015 (let ((function (type-class-singleton-p (type-class-info type))))
1016 (if function
1017 (funcall function type)
1018 (values nil nil))))
1020 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
1021 ;;; early-type.lisp by WHN ca. 19990201.)
1023 ;;; Take a list of type specifiers, computing the translation of each
1024 ;;; specifier and defining it as a builtin type.
1025 ;;; Seee the comments in 'type-init' for why this is a slightly
1026 ;;; screwy way to go about it.
1027 (declaim (ftype (function (list) (values)) !precompute-types))
1028 (defun !precompute-types (specs)
1029 (dolist (spec specs)
1030 (let ((res (handler-bind
1031 ((parse-unknown-type
1032 (lambda (c)
1033 (declare (ignore c))
1034 ;; We can handle conditions at this point,
1035 ;; but win32 can not perform i/o here because
1036 ;; !MAKE-COLD-STDERR-STREAM has no implementation.
1037 #!-win32
1038 (progn (write-string "//caught: parse-unknown ")
1039 (write spec)
1040 (terpri)))))
1041 (specifier-type spec))))
1042 (unless (unknown-type-p res)
1043 (setf (info :type :builtin spec) res)
1044 (setf (info :type :kind spec) :primitive))))
1045 (values))
1047 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
1048 ;;;;
1049 ;;;; These are fully general operations on CTYPEs: they'll always
1050 ;;;; return a CTYPE representing the result.
1052 ;;; shared logic for unions and intersections: Return a list of
1053 ;;; types representing the same types as INPUT-TYPES, but with
1054 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
1055 ;;; component types, and with any SIMPLY2 simplifications applied.
1056 (macrolet
1057 ((def (name compound-type-p simplify2)
1058 `(defun ,name (types)
1059 (when types
1060 (multiple-value-bind (first rest)
1061 (if (,compound-type-p (car types))
1062 (values (car (compound-type-types (car types)))
1063 (append (cdr (compound-type-types (car types)))
1064 (cdr types)))
1065 (values (car types) (cdr types)))
1066 (let ((rest (,name rest)) u)
1067 (dolist (r rest (cons first rest))
1068 (when (setq u (,simplify2 first r))
1069 (return (,name (nsubstitute u r rest)))))))))))
1070 (def simplify-intersections intersection-type-p type-intersection2)
1071 (def simplify-unions union-type-p type-union2))
1073 (defun maybe-distribute-one-union (union-type types)
1074 (let* ((intersection (apply #'type-intersection types))
1075 (union (mapcar (lambda (x) (type-intersection x intersection))
1076 (union-type-types union-type))))
1077 (if (notany (lambda (x) (or (hairy-type-p x)
1078 (intersection-type-p x)))
1079 union)
1080 union
1081 nil)))
1083 (defun type-intersection (&rest input-types)
1084 (%type-intersection input-types))
1085 (defun-cached (%type-intersection :hash-bits 10 :hash-function #'type-list-cache-hash)
1086 ((input-types equal))
1087 (let ((simplified-types (simplify-intersections input-types)))
1088 (declare (type list simplified-types))
1089 ;; We want to have a canonical representation of types (or failing
1090 ;; that, punt to HAIRY-TYPE). Canonical representation would have
1091 ;; intersections inside unions but not vice versa, since you can
1092 ;; always achieve that by the distributive rule. But we don't want
1093 ;; to just apply the distributive rule, since it would be too easy
1094 ;; to end up with unreasonably huge type expressions. So instead
1095 ;; we try to generate a simple type by distributing the union; if
1096 ;; the type can't be made simple, we punt to HAIRY-TYPE.
1097 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
1098 (let* ((first-union (find-if #'union-type-p simplified-types))
1099 (other-types (coerce (remove first-union simplified-types)
1100 'list))
1101 (distributed (maybe-distribute-one-union first-union
1102 other-types)))
1103 (if distributed
1104 (apply #'type-union distributed)
1105 (%make-hairy-type `(and ,@(map 'list #'type-specifier
1106 simplified-types)))))
1107 (cond
1108 ((null simplified-types) *universal-type*)
1109 ((null (cdr simplified-types)) (car simplified-types))
1110 (t (%make-intersection-type
1111 (some #'type-enumerable simplified-types)
1112 simplified-types))))))
1114 (defun type-union (&rest input-types)
1115 (%type-union input-types))
1116 (defun-cached (%type-union :hash-bits 8 :hash-function #'type-list-cache-hash)
1117 ((input-types equal))
1118 (let ((simplified-types (simplify-unions input-types)))
1119 (cond
1120 ((null simplified-types) *empty-type*)
1121 ((null (cdr simplified-types)) (car simplified-types))
1122 (t (make-union-type
1123 (every #'type-enumerable simplified-types)
1124 simplified-types)))))
1126 ;;;; built-in types
1128 (!define-type-class named :enumerable nil :might-contain-other-types nil)
1130 ;; This is used when parsing (SATISFIES KEYWORDP)
1131 ;; so that simplifications can be made when computing intersections,
1132 ;; without which we would see this kind of "empty-type in disguise"
1133 ;; (AND (SATISFIES KEYWORDP) CONS)
1134 ;; This isn't *keyword-type* because KEYWORD is implemented
1135 ;; as the intersection of SYMBOL and (SATISFIES KEYWORDP)
1136 ;; We could also intern the KEYWORD type but that would require
1137 ;; hacking the INTERSECTION logic.
1138 (defglobal *satisfies-keywordp-type* -1)
1140 ;; Here too I discovered more than 1000 instances in a particular
1141 ;; Lisp image, when really this is *EMPTY-TYPE*.
1142 ;; (AND (SATISFIES LEGAL-FUN-NAME-P) (SIMPLE-ARRAY CHARACTER (*)))
1143 (defglobal *fun-name-type* -1)
1145 ;; !LATE-TYPE-COLD-INIT can't be GCd - there are lambdas in the toplevel code
1146 ;; component that leak out and persist - but everything below is GCable.
1147 ;; This leads to about 20KB of extra code being retained on x86-64.
1148 ;; An educated guess is that DEFINE-SUPERCLASSES is responsible for the problem.
1149 (defun !late-type-cold-init2 ()
1150 (macrolet ((frob (name var)
1151 `(progn
1152 (setq ,var
1153 (mark-ctype-interned (make-named-type :name ',name)))
1154 (setf (info :type :kind ',name) :primitive)
1155 (setf (info :type :builtin ',name) ,var))))
1156 ;; KLUDGE: In ANSI, * isn't really the name of a type, it's just a
1157 ;; special symbol which can be stuck in some places where an
1158 ;; ordinary type can go, e.g. (ARRAY * 1) instead of (ARRAY T 1).
1159 ;; In SBCL it also used to denote universal VALUES type.
1160 (frob * *wild-type*)
1161 (frob nil *empty-type*)
1162 (frob t *universal-type*)
1163 (setf (sb!c::meta-info-default (sb!c::meta-info :variable :type))
1164 *universal-type*)
1165 ;; new in sbcl-0.9.5: these used to be CLASSOID types, but that
1166 ;; view of them was incompatible with requirements on the MOP
1167 ;; metaobject class hierarchy: the INSTANCE and
1168 ;; FUNCALLABLE-INSTANCE types are disjoint (instances have
1169 ;; instance-pointer-lowtag; funcallable-instances have
1170 ;; fun-pointer-lowtag), while FUNCALLABLE-STANDARD-OBJECT is
1171 ;; required to be a subclass of STANDARD-OBJECT. -- CSR,
1172 ;; 2005-09-09
1173 (frob instance *instance-type*)
1174 (frob funcallable-instance *funcallable-instance-type*)
1175 ;; new in sbcl-1.0.3.3: necessary to act as a join point for the
1176 ;; extended sequence hierarchy. (Might be removed later if we use
1177 ;; a dedicated FUNDAMENTAL-SEQUENCE class for this.)
1178 (frob extended-sequence *extended-sequence-type*))
1179 (!intern-important-fun-type-instances)
1180 (!intern-important-member-type-instances)
1181 (!intern-important-cons-type-instances)
1182 (!intern-important-numeric-type-instances)
1183 (!intern-important-character-set-type-instances)
1184 (!intern-important-array-type-instances) ; must be after numeric and char
1185 (setf *satisfies-keywordp-type*
1186 (mark-ctype-interned (%make-hairy-type '(satisfies keywordp))))
1187 (setf *fun-name-type*
1188 (mark-ctype-interned (%make-hairy-type '(satisfies legal-fun-name-p))))
1189 ;; This is not an important type- no attempt is made to return exactly this
1190 ;; object when parsing FUNCTION. In fact we return the classoid instead
1191 (setf *universal-fun-type*
1192 (make-fun-type :wild-args t :returns *wild-type*)))
1194 (!define-type-method (named :simple-=) (type1 type2)
1195 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1196 (values (eq type1 type2) t))
1198 (defun cons-type-might-be-empty-type (type)
1199 (declare (type cons-type type))
1200 (let ((car-type (cons-type-car-type type))
1201 (cdr-type (cons-type-cdr-type type)))
1203 (if (cons-type-p car-type)
1204 (cons-type-might-be-empty-type car-type)
1205 (multiple-value-bind (yes surep)
1206 (type= car-type *empty-type*)
1207 (aver (not yes))
1208 (not surep)))
1209 (if (cons-type-p cdr-type)
1210 (cons-type-might-be-empty-type cdr-type)
1211 (multiple-value-bind (yes surep)
1212 (type= cdr-type *empty-type*)
1213 (aver (not yes))
1214 (not surep))))))
1216 (defun cons-type-length-info (type)
1217 (declare (type cons-type type))
1218 (do ((min 1 (1+ min))
1219 (cdr (cons-type-cdr-type type) (cons-type-cdr-type cdr)))
1220 ((not (cons-type-p cdr))
1221 (cond
1222 ((csubtypep cdr (specifier-type 'null))
1223 (values min t))
1224 ((csubtypep *universal-type* cdr)
1225 (values min nil))
1226 ((type/= (type-intersection (specifier-type 'cons) cdr) *empty-type*)
1227 (values min nil))
1228 ((type/= (type-intersection (specifier-type 'null) cdr) *empty-type*)
1229 (values min t))
1230 (t (values min :maybe))))
1231 ()))
1233 (!define-type-method (named :complex-=) (type1 type2)
1234 (cond
1235 ((and (eq type2 *empty-type*)
1236 (or (and (intersection-type-p type1)
1237 ;; not allowed to be unsure on these... FIXME: keep
1238 ;; the list of CL types that are intersection types
1239 ;; once and only once.
1240 (not (or (type= type1 (specifier-type 'ratio))
1241 (type= type1 (specifier-type 'keyword)))))
1242 (and (cons-type-p type1)
1243 (cons-type-might-be-empty-type type1))))
1244 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1245 ;; STREAM) can get here. In general, we can't really tell
1246 ;; whether these are equal to NIL or not, so
1247 (values nil nil))
1248 ((type-might-contain-other-types-p type1)
1249 (invoke-complex-=-other-method type1 type2))
1250 (t (values nil t))))
1252 (!define-type-method (named :simple-subtypep) (type1 type2)
1253 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1254 (aver (not (eq type1 type2)))
1255 (values (or (eq type1 *empty-type*)
1256 (eq type2 *wild-type*)
1257 (eq type2 *universal-type*)) t))
1259 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1260 ;; This AVER causes problems if we write accurate methods for the
1261 ;; union (and possibly intersection) types which then delegate to
1262 ;; us; while a user shouldn't get here, because of the odd status of
1263 ;; *wild-type* a type-intersection executed by the compiler can. -
1264 ;; CSR, 2002-04-10
1266 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1267 (cond ((eq type1 *empty-type*)
1269 (;; When TYPE2 might be the universal type in disguise
1270 (type-might-contain-other-types-p type2)
1271 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1272 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1273 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1274 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1275 ;; problem (where at least part of the problem is cases like
1276 ;; (SUBTYPEP T '(SATISFIES FOO))
1277 ;; or
1278 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1279 ;; where the second type is a hairy type like SATISFIES, or
1280 ;; is a compound type which might contain a hairy type) by
1281 ;; returning uncertainty.
1282 (values nil nil))
1283 ((eq type1 *funcallable-instance-type*)
1284 (values (eq type2 (specifier-type 'function)) t))
1286 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1287 ;; method, and so shouldn't appear here.
1288 (aver (not (named-type-p type2)))
1289 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1290 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1291 (values nil t))))
1293 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1294 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1295 (cond ((eq type2 *universal-type*)
1296 (values t t))
1297 ;; some CONS types can conceal danger
1298 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1299 (values nil nil))
1300 ((type-might-contain-other-types-p type1)
1301 ;; those types can be other types in disguise. So we'd
1302 ;; better delegate.
1303 (invoke-complex-subtypep-arg1-method type1 type2))
1304 ((and (or (eq type2 *instance-type*)
1305 (eq type2 *funcallable-instance-type*))
1306 (member-type-p type1))
1307 ;; member types can be subtypep INSTANCE and
1308 ;; FUNCALLABLE-INSTANCE in surprising ways.
1309 (invoke-complex-subtypep-arg1-method type1 type2))
1310 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1311 (let* ((layout (classoid-layout type1))
1312 (inherits (layout-inherits layout))
1313 (sequencep (find (classoid-layout (find-classoid 'sequence))
1314 inherits)))
1315 (values (if sequencep t nil) t)))
1316 ((and (eq type2 *instance-type*) (classoid-p type1))
1317 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1318 (values nil t)
1319 (let* ((layout (classoid-layout type1))
1320 (inherits (layout-inherits layout))
1321 (functionp (find (classoid-layout (find-classoid 'function))
1322 inherits)))
1323 (cond
1324 (functionp
1325 (values nil t))
1326 ((eq type1 (find-classoid 'function))
1327 (values nil t))
1328 ((or (structure-classoid-p type1)
1329 #+nil
1330 (condition-classoid-p type1))
1331 (values t t))
1332 (t (values nil nil))))))
1333 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1334 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1335 (values nil t)
1336 (let* ((layout (classoid-layout type1))
1337 (inherits (layout-inherits layout))
1338 (functionp (find (classoid-layout (find-classoid 'function))
1339 inherits)))
1340 (values (if functionp t nil) t))))
1342 ;; FIXME: This seems to rely on there only being 4 or 5
1343 ;; NAMED-TYPE values, and the exclusion of various
1344 ;; possibilities above. It would be good to explain it and/or
1345 ;; rewrite it so that it's clearer.
1346 (values nil t))))
1348 (!define-type-method (named :complex-intersection2) (type1 type2)
1349 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1350 ;; Perhaps when bug 85 is fixed it can be reenabled.
1351 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1352 (cond
1353 ((eq type2 *extended-sequence-type*)
1354 (typecase type1
1355 (structure-classoid *empty-type*)
1356 (classoid
1357 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1358 *empty-type*
1359 (if (find (classoid-layout (find-classoid 'sequence))
1360 (layout-inherits (classoid-layout type1)))
1361 type1
1362 nil)))
1364 (if (or (type-might-contain-other-types-p type1)
1365 (member-type-p type1))
1367 *empty-type*))))
1368 ((eq type2 *instance-type*)
1369 (typecase type1
1370 (structure-classoid type1)
1371 (classoid
1372 (if (and (not (member type1 *non-instance-classoid-types*
1373 :key #'find-classoid))
1374 (not (eq type1 (find-classoid 'function)))
1375 (not (find (classoid-layout (find-classoid 'function))
1376 (layout-inherits (classoid-layout type1)))))
1378 *empty-type*))
1380 (if (or (type-might-contain-other-types-p type1)
1381 (member-type-p type1))
1383 *empty-type*))))
1384 ((eq type2 *funcallable-instance-type*)
1385 (typecase type1
1386 (structure-classoid *empty-type*)
1387 (classoid
1388 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1389 *empty-type*
1390 (if (find (classoid-layout (find-classoid 'function))
1391 (layout-inherits (classoid-layout type1)))
1392 type1
1393 (if (type= type1 (find-classoid 'function))
1394 type2
1395 nil))))
1396 (fun-type nil)
1398 (if (or (type-might-contain-other-types-p type1)
1399 (member-type-p type1))
1401 *empty-type*))))
1402 (t (hierarchical-intersection2 type1 type2))))
1404 (!define-type-method (named :complex-union2) (type1 type2)
1405 ;; Perhaps when bug 85 is fixed this can be reenabled.
1406 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1407 (cond
1408 ((eq type2 *extended-sequence-type*)
1409 (if (classoid-p type1)
1410 (if (or (member type1 *non-instance-classoid-types*
1411 :key #'find-classoid)
1412 (not (find (classoid-layout (find-classoid 'sequence))
1413 (layout-inherits (classoid-layout type1)))))
1415 type2)
1416 nil))
1417 ((eq type2 *instance-type*)
1418 (if (classoid-p type1)
1419 (if (or (member type1 *non-instance-classoid-types*
1420 :key #'find-classoid)
1421 (find (classoid-layout (find-classoid 'function))
1422 (layout-inherits (classoid-layout type1))))
1424 type2)
1425 nil))
1426 ((eq type2 *funcallable-instance-type*)
1427 (if (classoid-p type1)
1428 (if (or (member type1 *non-instance-classoid-types*
1429 :key #'find-classoid)
1430 (not (find (classoid-layout (find-classoid 'function))
1431 (layout-inherits (classoid-layout type1)))))
1433 (if (eq type1 (specifier-type 'function))
1434 type1
1435 type2))
1436 nil))
1437 (t (hierarchical-union2 type1 type2))))
1439 (!define-type-method (named :negate) (x)
1440 (aver (not (eq x *wild-type*)))
1441 (cond
1442 ((eq x *universal-type*) *empty-type*)
1443 ((eq x *empty-type*) *universal-type*)
1444 ((or (eq x *instance-type*)
1445 (eq x *funcallable-instance-type*)
1446 (eq x *extended-sequence-type*))
1447 (make-negation-type :type x))
1448 (t (bug "NAMED type unexpected: ~S" x))))
1450 (!define-type-method (named :unparse) (x)
1451 (named-type-name x))
1453 ;;;; hairy and unknown types
1454 ;;;; DEFINE-TYPE-CLASS HAIRY is in 'early-type'
1456 (!define-type-method (hairy :negate) (x)
1457 (make-negation-type :type x))
1459 (!define-type-method (hairy :unparse) (x)
1460 (hairy-type-specifier x))
1462 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1463 (let ((hairy-spec1 (hairy-type-specifier type1))
1464 (hairy-spec2 (hairy-type-specifier type2)))
1465 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1466 (values t t))
1467 ((maybe-reparse-specifier! type1)
1468 (csubtypep type1 type2))
1469 ((maybe-reparse-specifier! type2)
1470 (csubtypep type1 type2))
1472 (values nil nil)))))
1474 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1475 (if (maybe-reparse-specifier! type2)
1476 (csubtypep type1 type2)
1477 (let ((specifier (hairy-type-specifier type2)))
1478 (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
1479 (case (cadr specifier)
1480 ((keywordp) (if (type= type1 (specifier-type 'symbol))
1481 (values nil t)
1482 (invoke-complex-subtypep-arg1-method type1 type2)))
1483 (t (invoke-complex-subtypep-arg1-method type1 type2))))
1485 (invoke-complex-subtypep-arg1-method type1 type2))))))
1487 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1488 (if (maybe-reparse-specifier! type1)
1489 (csubtypep type1 type2)
1490 (values nil nil)))
1492 (!define-type-method (hairy :complex-=) (type1 type2)
1493 (if (maybe-reparse-specifier! type2)
1494 (type= type1 type2)
1495 (values nil nil)))
1497 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1498 (type1 type2)
1499 (acond ((type= type1 type2)
1500 type1)
1501 ((eq type2 *satisfies-keywordp-type*)
1502 ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
1503 ;; if A is re-homed as :A. However as a special case that really
1504 ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
1505 ;; is empty because of the illegality of changing NIL's package.
1506 (if (eq type1 *null-type*)
1507 *empty-type*
1508 (multiple-value-bind (answer certain)
1509 (types-equal-or-intersect type1 (specifier-type 'symbol))
1510 (and (not answer) certain *empty-type*))))
1511 ((eq type2 *fun-name-type*)
1512 (multiple-value-bind (answer certain)
1513 (types-equal-or-intersect type1 (specifier-type 'symbol))
1514 (and (not answer)
1515 certain
1516 (multiple-value-bind (answer certain)
1517 (types-equal-or-intersect type1 (specifier-type 'cons))
1518 (and (not answer) certain *empty-type*)))))
1519 ((and (typep (hairy-type-specifier type2) '(cons (eql satisfies)))
1520 (info :function :predicate-truth-constraint
1521 (cadr (hairy-type-specifier type2))))
1522 (multiple-value-bind (answer certain)
1523 (types-equal-or-intersect type1 (specifier-type it))
1524 (and (not answer) certain *empty-type*)))))
1526 (!define-type-method (hairy :simple-union2)
1527 (type1 type2)
1528 (if (type= type1 type2)
1529 type1
1530 nil))
1532 (!define-type-method (hairy :simple-=) (type1 type2)
1533 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1534 (hairy-type-specifier type2))
1535 (values t t)
1536 (values nil nil)))
1538 (!def-type-translator satisfies :list (&whole whole predicate-name)
1539 (unless (symbolp predicate-name)
1540 (error 'simple-type-error
1541 :datum predicate-name
1542 :expected-type 'symbol
1543 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1544 :format-arguments (list predicate-name)))
1545 (case predicate-name
1546 (keywordp *satisfies-keywordp-type*)
1547 (legal-fun-name-p *fun-name-type*)
1548 (t (%make-hairy-type whole))))
1550 ;;;; negation types
1552 (!define-type-method (negation :negate) (x)
1553 (negation-type-type x))
1555 (!define-type-method (negation :unparse) (x)
1556 (if (type= (negation-type-type x) (specifier-type 'cons))
1557 'atom
1558 `(not ,(type-specifier (negation-type-type x)))))
1560 (!define-type-method (negation :simple-subtypep) (type1 type2)
1561 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1563 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1564 (let* ((complement-type2 (negation-type-type type2))
1565 (intersection2 (type-intersection2 type1
1566 complement-type2)))
1567 (if intersection2
1568 ;; FIXME: if uncertain, maybe try arg1?
1569 (type= intersection2 *empty-type*)
1570 (invoke-complex-subtypep-arg1-method type1 type2))))
1572 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1573 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1574 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1576 ;; You may not believe this. I couldn't either. But then I sat down
1577 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1578 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1579 (block nil
1580 ;; (Several logical truths in this block are true as long as
1581 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1582 ;; case with b=T where we actually reach this type method, but
1583 ;; we'll test for and exclude this case anyway, since future
1584 ;; maintenance might make it possible for it to end up in this
1585 ;; code.)
1586 (multiple-value-bind (equal certain)
1587 (type= type2 *universal-type*)
1588 (unless certain
1589 (return (values nil nil)))
1590 (when equal
1591 (return (values t t))))
1592 (let ((complement-type1 (negation-type-type type1)))
1593 ;; Do the special cases first, in order to give us a chance if
1594 ;; subtype/supertype relationships are hairy.
1595 (multiple-value-bind (equal certain)
1596 (type= complement-type1 type2)
1597 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1598 ;; excluded above).
1599 (unless certain
1600 (return (values nil nil)))
1601 (when equal
1602 (return (values nil t))))
1603 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1604 ;; two built-in atomic type specifiers never be uncertain. This
1605 ;; is hard to do cleanly for the built-in types whose
1606 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1607 ;; we can do it with this hack, which uses our global knowledge
1608 ;; that our implementation of the type system uses disjoint
1609 ;; implementation types to represent disjoint sets (except when
1610 ;; types are contained in other types). (This is a KLUDGE
1611 ;; because it's fragile. Various changes in internal
1612 ;; representation in the type system could make it start
1613 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1614 (unless (or (type-might-contain-other-types-p complement-type1)
1615 (type-might-contain-other-types-p type2))
1616 ;; Because of the way our types which don't contain other
1617 ;; types are disjoint subsets of the space of possible values,
1618 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1619 ;; is not T, as checked above).
1620 (return (values nil t)))
1621 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1622 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1623 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1624 ;; But a CSUBTYPEP relationship might still hold:
1625 (multiple-value-bind (equal certain)
1626 (csubtypep complement-type1 type2)
1627 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1628 ;; b=T, which was excluded above).
1629 (unless certain
1630 (return (values nil nil)))
1631 (when equal
1632 (return (values nil t))))
1633 (multiple-value-bind (equal certain)
1634 (csubtypep type2 complement-type1)
1635 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1636 ;; That's not true if a=T. Do we know at this point that a is
1637 ;; not T?)
1638 (unless certain
1639 (return (values nil nil)))
1640 (when equal
1641 (return (values nil t))))
1642 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1643 ;; KLUDGE case above: Other cases here would rely on being able
1644 ;; to catch all possible cases, which the fragility of this type
1645 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1646 ;; then we want T, T; if this is not the case and the types are
1647 ;; disjoint (have an intersection of *empty-type*) then we want
1648 ;; NIL, T; else if the union of a and b is the *universal-type*
1649 ;; then we want T, T. So currently we still claim to be unsure
1650 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1652 ;; OTOH we might still get here:
1653 (values nil nil))))
1655 (!define-type-method (negation :complex-=) (type1 type2)
1656 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1657 ;; type, except possibly a type that might contain it in disguise.
1658 (declare (ignore type2))
1659 (if (type-might-contain-other-types-p type1)
1660 (values nil nil)
1661 (values nil t)))
1663 (!define-type-method (negation :simple-intersection2) (type1 type2)
1664 (let ((not1 (negation-type-type type1))
1665 (not2 (negation-type-type type2)))
1666 (cond
1667 ((csubtypep not1 not2) type2)
1668 ((csubtypep not2 not1) type1)
1669 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1670 ;; method, below? The clause would read
1672 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1674 ;; but with proper canonicalization of negation types, there's
1675 ;; no way of constructing two negation types with union of their
1676 ;; negations being the universal type.
1678 (aver (not (eq (type-union not1 not2) *universal-type*)))
1679 nil))))
1681 (defun maybe-complex-array-refinement (type1 type2)
1682 (let* ((ntype (negation-type-type type2))
1683 (ndims (array-type-dimensions ntype))
1684 (ncomplexp (array-type-complexp ntype))
1685 (nseltype (array-type-specialized-element-type ntype))
1686 (neltype (array-type-element-type ntype)))
1687 (if (and (eql ndims '*) (null ncomplexp)
1688 (eq neltype *wild-type*) (eq nseltype *wild-type*))
1689 (make-array-type (array-type-dimensions type1)
1690 :complexp t
1691 :element-type (array-type-element-type type1)
1692 :specialized-element-type (array-type-specialized-element-type type1)))))
1694 (!define-type-method (negation :complex-intersection2) (type1 type2)
1695 (cond
1696 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1697 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1698 type1)
1699 ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
1700 (maybe-complex-array-refinement type1 type2))
1701 (t nil)))
1703 (!define-type-method (negation :simple-union2) (type1 type2)
1704 (let ((not1 (negation-type-type type1))
1705 (not2 (negation-type-type type2)))
1706 (cond
1707 ((csubtypep not1 not2) type1)
1708 ((csubtypep not2 not1) type2)
1709 ((eq (type-intersection not1 not2) *empty-type*)
1710 *universal-type*)
1711 (t nil))))
1713 (!define-type-method (negation :complex-union2) (type1 type2)
1714 (cond
1715 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1716 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1717 type2)
1718 (t nil)))
1720 (!define-type-method (negation :simple-=) (type1 type2)
1721 (type= (negation-type-type type1) (negation-type-type type2)))
1723 (!def-type-translator not :list (typespec)
1724 (type-negation (specifier-type typespec)))
1726 ;;;; numeric types
1728 (!define-type-class number :enumerable #'numeric-type-enumerable
1729 :might-contain-other-types nil)
1731 (declaim (inline numeric-type-equal))
1732 (defun numeric-type-equal (type1 type2)
1733 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1734 (eq (numeric-type-format type1) (numeric-type-format type2))
1735 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1737 (!define-type-method (number :simple-=) (type1 type2)
1738 (values
1739 (and (numeric-type-equal type1 type2)
1740 (equalp (numeric-type-low type1) (numeric-type-low type2))
1741 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1744 (!define-type-method (number :negate) (type)
1745 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1746 (make-negation-type :type type)
1747 (type-union
1748 (make-negation-type
1749 :type (modified-numeric-type type :low nil :high nil))
1750 (cond
1751 ((null (numeric-type-low type))
1752 (modified-numeric-type
1753 type
1754 :low (let ((h (numeric-type-high type)))
1755 (if (consp h) (car h) (list h)))
1756 :high nil))
1757 ((null (numeric-type-high type))
1758 (modified-numeric-type
1759 type
1760 :low nil
1761 :high (let ((l (numeric-type-low type)))
1762 (if (consp l) (car l) (list l)))))
1763 (t (type-union
1764 (modified-numeric-type
1765 type
1766 :low nil
1767 :high (let ((l (numeric-type-low type)))
1768 (if (consp l) (car l) (list l))))
1769 (modified-numeric-type
1770 type
1771 :low (let ((h (numeric-type-high type)))
1772 (if (consp h) (car h) (list h)))
1773 :high nil)))))))
1775 (!define-type-method (number :unparse) (type)
1776 (let* ((complexp (numeric-type-complexp type))
1777 (low (numeric-type-low type))
1778 (high (numeric-type-high type))
1779 (base (case (numeric-type-class type)
1780 (integer 'integer)
1781 (rational 'rational)
1782 (float (or (numeric-type-format type) 'float))
1783 (t 'real))))
1784 (let ((base+bounds
1785 (cond ((and (eq base 'integer) high low)
1786 (let ((high-count (logcount high))
1787 (high-length (integer-length high)))
1788 (cond ((= low 0)
1789 (cond ((= high 0) '(integer 0 0))
1790 ((= high 1) 'bit)
1791 ((and (= high-count high-length)
1792 (plusp high-length))
1793 `(unsigned-byte ,high-length))
1795 `(mod ,(1+ high)))))
1796 ((and (= low sb!xc:most-negative-fixnum)
1797 (= high sb!xc:most-positive-fixnum))
1798 'fixnum)
1799 ((and (= low (lognot high))
1800 (= high-count high-length)
1801 (> high-count 0))
1802 `(signed-byte ,(1+ high-length)))
1804 `(integer ,low ,high)))))
1805 (high `(,base ,(or low '*) ,high))
1806 (low
1807 (if (and (eq base 'integer) (= low 0))
1808 'unsigned-byte
1809 `(,base ,low)))
1810 (t base))))
1811 (ecase complexp
1812 (:real
1813 base+bounds)
1814 (:complex
1815 (aver (neq base+bounds 'real))
1816 `(complex ,base+bounds))
1817 ((nil)
1818 (aver (eq base+bounds 'real))
1819 'number)))))
1821 (!define-type-method (number :singleton-p) (type)
1822 (let ((low (numeric-type-low type))
1823 (high (numeric-type-high type)))
1824 (if (and low
1825 (eql low high)
1826 (eql (numeric-type-complexp type) :real)
1827 (member (numeric-type-class type) '(integer rational
1828 #-sb-xc-host float)))
1829 (values t (numeric-type-low type))
1830 (values nil nil))))
1832 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1833 ;;; into consideration. CLOSED is the predicate used to test the bound
1834 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1835 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1836 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1837 ;;; whereas if X is infinite, then the test fails (unless Y is also
1838 ;;; infinite).
1840 ;;; This is for comparing bounds of the same kind, e.g. upper and
1841 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1842 (defmacro numeric-bound-test (x y closed open)
1843 `(cond ((not ,y) t)
1844 ((not ,x) nil)
1845 ((consp ,x)
1846 (if (consp ,y)
1847 (,closed (car ,x) (car ,y))
1848 (,closed (car ,x) ,y)))
1850 (if (consp ,y)
1851 (,open ,x (car ,y))
1852 (,closed ,x ,y)))))
1854 ;;; This is used to compare upper and lower bounds. This is different
1855 ;;; from the same-bound case:
1856 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1857 ;;; return true if *either* arg is NIL.
1858 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1859 ;;; causing us to use the OPEN test for those cases as well.
1860 (defmacro numeric-bound-test* (x y closed open)
1861 `(cond ((not ,y) t)
1862 ((not ,x) t)
1863 ((consp ,x)
1864 (if (consp ,y)
1865 (,open (car ,x) (car ,y))
1866 (,open (car ,x) ,y)))
1868 (if (consp ,y)
1869 (,open ,x (car ,y))
1870 (,closed ,x ,y)))))
1872 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1873 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1874 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1875 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1876 ;;; otherwise we return the other arg.
1877 (defmacro numeric-bound-max (x y closed open max-p)
1878 (once-only ((n-x x)
1879 (n-y y))
1880 `(cond ((not ,n-x) ,(if max-p nil n-y))
1881 ((not ,n-y) ,(if max-p nil n-x))
1882 ((consp ,n-x)
1883 (if (consp ,n-y)
1884 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1885 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1887 (if (consp ,n-y)
1888 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1889 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1891 (!define-type-method (number :simple-subtypep) (type1 type2)
1892 (let ((class1 (numeric-type-class type1))
1893 (class2 (numeric-type-class type2))
1894 (complexp2 (numeric-type-complexp type2))
1895 (format2 (numeric-type-format type2))
1896 (low1 (numeric-type-low type1))
1897 (high1 (numeric-type-high type1))
1898 (low2 (numeric-type-low type2))
1899 (high2 (numeric-type-high type2)))
1900 ;; If one is complex and the other isn't, they are disjoint.
1901 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1902 (null complexp2)))
1903 (values nil t))
1904 ;; If the classes are specified and different, the types are
1905 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1906 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1907 ;; X X) for integral X, but this is dealt with in the
1908 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1909 ((not (or (eq class1 class2)
1910 (null class2)
1911 (and (eq class1 'integer) (eq class2 'rational))))
1912 (values nil t))
1913 ;; If the float formats are specified and different, the types
1914 ;; are disjoint.
1915 ((not (or (eq (numeric-type-format type1) format2)
1916 (null format2)))
1917 (values nil t))
1918 ;; Check the bounds.
1919 ((and (numeric-bound-test low1 low2 >= >)
1920 (numeric-bound-test high1 high2 <= <))
1921 (values t t))
1923 (values nil t)))))
1925 (!define-superclasses number ((number)) !cold-init-forms)
1927 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1928 ;;; then return true, otherwise NIL.
1929 (defun numeric-types-adjacent (low high)
1930 (let ((low-bound (numeric-type-high low))
1931 (high-bound (numeric-type-low high)))
1932 (cond ((not (and low-bound high-bound)) nil)
1933 ((and (consp low-bound) (consp high-bound)) nil)
1934 ((consp low-bound)
1935 (let ((low-value (car low-bound)))
1936 (or (eql low-value high-bound)
1937 (and (eql low-value
1938 (load-time-value (make-unportable-float
1939 :single-float-negative-zero)))
1940 (eql high-bound 0f0))
1941 (and (eql low-value 0f0)
1942 (eql high-bound
1943 (load-time-value (make-unportable-float
1944 :single-float-negative-zero))))
1945 (and (eql low-value
1946 (load-time-value (make-unportable-float
1947 :double-float-negative-zero)))
1948 (eql high-bound 0d0))
1949 (and (eql low-value 0d0)
1950 (eql high-bound
1951 (load-time-value (make-unportable-float
1952 :double-float-negative-zero)))))))
1953 ((consp high-bound)
1954 (let ((high-value (car high-bound)))
1955 (or (eql high-value low-bound)
1956 (and (eql high-value
1957 (load-time-value (make-unportable-float
1958 :single-float-negative-zero)))
1959 (eql low-bound 0f0))
1960 (and (eql high-value 0f0)
1961 (eql low-bound
1962 (load-time-value (make-unportable-float
1963 :single-float-negative-zero))))
1964 (and (eql high-value
1965 (load-time-value (make-unportable-float
1966 :double-float-negative-zero)))
1967 (eql low-bound 0d0))
1968 (and (eql high-value 0d0)
1969 (eql low-bound
1970 (load-time-value (make-unportable-float
1971 :double-float-negative-zero)))))))
1972 ((and (eq (numeric-type-class low) 'integer)
1973 (eq (numeric-type-class high) 'integer))
1974 (eql (1+ low-bound) high-bound))
1976 nil))))
1978 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
1980 ;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
1981 ;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
1982 ;;; the compiler does this occasionally during type-derivation to avoid
1983 ;;; creating absurdly complex unions of numeric types.
1984 (defvar *approximate-numeric-unions* nil)
1986 (!define-type-method (number :simple-union2) (type1 type2)
1987 (declare (type numeric-type type1 type2))
1988 (cond ((csubtypep type1 type2) type2)
1989 ((csubtypep type2 type1) type1)
1991 (let ((class1 (numeric-type-class type1))
1992 (format1 (numeric-type-format type1))
1993 (complexp1 (numeric-type-complexp type1))
1994 (class2 (numeric-type-class type2))
1995 (format2 (numeric-type-format type2))
1996 (complexp2 (numeric-type-complexp type2)))
1997 (cond
1998 ((and (eq class1 class2)
1999 (eq format1 format2)
2000 (eq complexp1 complexp2)
2001 (or *approximate-numeric-unions*
2002 (numeric-types-intersect type1 type2)
2003 (numeric-types-adjacent type1 type2)
2004 (numeric-types-adjacent type2 type1)))
2005 (make-numeric-type
2006 :class class1
2007 :format format1
2008 :complexp complexp1
2009 :low (numeric-bound-max (numeric-type-low type1)
2010 (numeric-type-low type2)
2011 <= < t)
2012 :high (numeric-bound-max (numeric-type-high type1)
2013 (numeric-type-high type2)
2014 >= > t)))
2015 ;; FIXME: These two clauses are almost identical, and the
2016 ;; consequents are in fact identical in every respect.
2017 ((and (eq class1 'rational)
2018 (eq class2 'integer)
2019 (eq format1 format2)
2020 (eq complexp1 complexp2)
2021 (integerp (numeric-type-low type2))
2022 (integerp (numeric-type-high type2))
2023 (= (numeric-type-low type2) (numeric-type-high type2))
2024 (or *approximate-numeric-unions*
2025 (numeric-types-adjacent type1 type2)
2026 (numeric-types-adjacent type2 type1)))
2027 (make-numeric-type
2028 :class 'rational
2029 :format format1
2030 :complexp complexp1
2031 :low (numeric-bound-max (numeric-type-low type1)
2032 (numeric-type-low type2)
2033 <= < t)
2034 :high (numeric-bound-max (numeric-type-high type1)
2035 (numeric-type-high type2)
2036 >= > t)))
2037 ((and (eq class1 'integer)
2038 (eq class2 'rational)
2039 (eq format1 format2)
2040 (eq complexp1 complexp2)
2041 (integerp (numeric-type-low type1))
2042 (integerp (numeric-type-high type1))
2043 (= (numeric-type-low type1) (numeric-type-high type1))
2044 (or *approximate-numeric-unions*
2045 (numeric-types-adjacent type1 type2)
2046 (numeric-types-adjacent type2 type1)))
2047 (make-numeric-type
2048 :class 'rational
2049 :format format1
2050 :complexp complexp1
2051 :low (numeric-bound-max (numeric-type-low type1)
2052 (numeric-type-low type2)
2053 <= < t)
2054 :high (numeric-bound-max (numeric-type-high type1)
2055 (numeric-type-high type2)
2056 >= > t)))
2057 (t nil))))))
2060 (!cold-init-forms ;; is !PRECOMPUTE-TYPES not doing the right thing?
2061 (setf (info :type :kind 'number) :primitive)
2062 (setf (info :type :builtin 'number)
2063 (make-numeric-type :complexp nil)))
2065 (!def-type-translator complex (&optional (typespec '*))
2066 (if (eq typespec '*)
2067 (specifier-type '(complex real))
2068 (labels ((not-numeric ()
2069 (error "The component type for COMPLEX is not numeric: ~S"
2070 typespec))
2071 (not-real ()
2072 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
2073 typespec))
2074 (complex1 (component-type)
2075 (unless (numeric-type-p component-type)
2076 (not-numeric))
2077 (when (eq (numeric-type-complexp component-type) :complex)
2078 (not-real))
2079 (if (csubtypep component-type (specifier-type '(eql 0)))
2080 *empty-type*
2081 (modified-numeric-type component-type
2082 :complexp :complex)))
2083 (do-complex (ctype)
2084 (cond
2085 ((eq ctype *empty-type*) *empty-type*)
2086 ((eq ctype *universal-type*) (not-real))
2087 ((typep ctype 'numeric-type) (complex1 ctype))
2088 ((typep ctype 'union-type)
2089 (apply #'type-union
2090 (mapcar #'do-complex (union-type-types ctype))))
2091 ((typep ctype 'member-type)
2092 (apply #'type-union
2093 (mapcar-member-type-members
2094 (lambda (x) (do-complex (ctype-of x)))
2095 ctype)))
2096 ((and (typep ctype 'intersection-type)
2097 ;; FIXME: This is very much a
2098 ;; not-quite-worst-effort, but we are required to do
2099 ;; something here because of our representation of
2100 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
2101 ;; allow users to ask about (COMPLEX RATIO). This
2102 ;; will of course fail to work right on such types
2103 ;; as (AND INTEGER (SATISFIES ZEROP))...
2104 (let ((numbers (remove-if-not
2105 #'numeric-type-p
2106 (intersection-type-types ctype))))
2107 (and (car numbers)
2108 (null (cdr numbers))
2109 (eq (numeric-type-complexp (car numbers)) :real)
2110 (complex1 (car numbers))))))
2112 (multiple-value-bind (subtypep certainly)
2113 (csubtypep ctype (specifier-type 'real))
2114 (if (and (not subtypep) certainly)
2115 (not-real)
2116 ;; ANSI just says that TYPESPEC is any subtype of
2117 ;; type REAL, not necessarily a NUMERIC-TYPE. In
2118 ;; particular, at this point TYPESPEC could legally
2119 ;; be a hairy type like (AND NUMBER (SATISFIES
2120 ;; REALP) (SATISFIES ZEROP)), in which case we fall
2121 ;; through the logic above and end up here,
2122 ;; stumped.
2123 ;; FIXME: (COMPLEX NUMBER) is not rejected but should
2124 ;; be, as NUMBER is clearly not a subtype of real.
2125 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
2126 used for a COMPLEX component.~:@>"
2127 typespec)))))))
2128 (let ((ctype (specifier-type typespec)))
2129 (do-complex ctype)))))
2131 ;;; If X is *, return NIL, otherwise return the bound, which must be a
2132 ;;; member of TYPE or a one-element list of a member of TYPE.
2133 #!-sb-fluid (declaim (inline canonicalized-bound))
2134 (defun canonicalized-bound (bound type)
2135 (cond ((eq bound '*) nil)
2136 ((or (sb!xc:typep bound type)
2137 (and (consp bound)
2138 (sb!xc:typep (car bound) type)
2139 (null (cdr bound))))
2140 bound)
2142 (error "Bound is not ~S, a ~S or a list of a ~S: ~S"
2144 type
2145 type
2146 bound))))
2148 (!def-type-translator integer (&optional (low '*) (high '*))
2149 (let* ((l (canonicalized-bound low 'integer))
2150 (lb (if (consp l) (1+ (car l)) l))
2151 (h (canonicalized-bound high 'integer))
2152 (hb (if (consp h) (1- (car h)) h)))
2153 (if (and hb lb (< hb lb))
2154 *empty-type*
2155 (make-numeric-type :class 'integer
2156 :complexp :real
2157 :enumerable (not (null (and l h)))
2158 :low lb
2159 :high hb))))
2161 (defmacro !def-bounded-type (type class format)
2162 `(!def-type-translator ,type (&optional (low '*) (high '*))
2163 (let ((lb (canonicalized-bound low ',type))
2164 (hb (canonicalized-bound high ',type)))
2165 (if (not (numeric-bound-test* lb hb <= <))
2166 *empty-type*
2167 (make-numeric-type :class ',class
2168 :format ',format
2169 :low lb
2170 :high hb)))))
2172 (!def-bounded-type rational rational nil)
2174 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
2175 ;;; UNION-TYPEs of more primitive types, in order to make
2176 ;;; type representation more unique, avoiding problems in the
2177 ;;; simplification of things like
2178 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
2179 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
2180 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
2181 ;;; it was too easy for the first argument to be simplified to
2182 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
2183 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
2184 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
2185 ;;; the first argument can't be seen to be a subtype of any of the
2186 ;;; terms in the second argument.
2188 ;;; The old CMU CL way was:
2189 ;;; (!def-bounded-type float float nil)
2190 ;;; (!def-bounded-type real nil nil)
2192 ;;; FIXME: If this new way works for a while with no weird new
2193 ;;; problems, we can go back and rip out support for separate FLOAT
2194 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
2195 ;;; sbcl-0.6.11.22, 2001-03-21.
2197 ;;; FIXME: It's probably necessary to do something to fix the
2198 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
2199 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
2200 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
2201 (declare (type function inner-coerce-bound-fun))
2202 (if (eql bound '*)
2203 bound
2204 (funcall inner-coerce-bound-fun bound type upperp)))
2205 (defun inner-coerce-real-bound (bound type upperp)
2206 #+sb-xc-host (declare (ignore upperp))
2207 (let #+sb-xc-host ()
2208 #-sb-xc-host
2209 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
2210 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
2211 (let ((nbound (if (consp bound) (car bound) bound))
2212 (consp (consp bound)))
2213 (ecase type
2214 (rational
2215 (if consp
2216 (list (rational nbound))
2217 (rational nbound)))
2218 (float
2219 (cond
2220 ((floatp nbound) bound)
2222 ;; Coerce to the widest float format available, to avoid
2223 ;; unnecessary loss of precision, but don't coerce
2224 ;; unrepresentable numbers, except on the host where we
2225 ;; shouldn't be making these types (but KLUDGE: can't even
2226 ;; assert portably that we're not).
2227 #-sb-xc-host
2228 (ecase upperp
2229 ((nil)
2230 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2231 ((t)
2232 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2233 (let ((result (coerce nbound 'long-float)))
2234 (if consp (list result) result)))))))))
2235 (defun inner-coerce-float-bound (bound type upperp)
2236 #+sb-xc-host (declare (ignore upperp))
2237 (let #+sb-xc-host ()
2238 #-sb-xc-host
2239 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
2240 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
2241 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
2242 (ps (load-time-value
2243 (symbol-value 'sb!xc:most-positive-single-float))))
2244 (let ((nbound (if (consp bound) (car bound) bound))
2245 (consp (consp bound)))
2246 (ecase type
2247 (single-float
2248 (cond
2249 ((typep nbound 'single-float) bound)
2251 #-sb-xc-host
2252 (ecase upperp
2253 ((nil)
2254 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2255 ((t)
2256 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2257 (let ((result (coerce nbound 'single-float)))
2258 (if consp (list result) result)))))
2259 (double-float
2260 (cond
2261 ((typep nbound 'double-float) bound)
2263 #-sb-xc-host
2264 (ecase upperp
2265 ((nil)
2266 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2267 ((t)
2268 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2269 (let ((result (coerce nbound 'double-float)))
2270 (if consp (list result) result)))))))))
2271 (defun coerced-real-bound (bound type upperp)
2272 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2273 (defun coerced-float-bound (bound type upperp)
2274 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2275 (!def-type-translator real (&optional (low '*) (high '*))
2276 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2277 ,(coerced-real-bound high 'float t))
2278 (rational ,(coerced-real-bound low 'rational nil)
2279 ,(coerced-real-bound high 'rational t)))))
2280 (!def-type-translator float (&optional (low '*) (high '*))
2281 (specifier-type
2282 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2283 ,(coerced-float-bound high 'single-float t))
2284 (double-float ,(coerced-float-bound low 'double-float nil)
2285 ,(coerced-float-bound high 'double-float t))
2286 #!+long-float ,(error "stub: no long float support yet"))))
2288 (defmacro !define-float-format (f)
2289 `(!def-bounded-type ,f float ,f))
2291 ;; (!define-float-format short-float) ; it's a DEFTYPE
2292 (!define-float-format single-float)
2293 (!define-float-format double-float)
2294 ;; long-float support is dead.
2295 ;; (!define-float-format long-float) ; also a DEFTYPE
2297 (defun numeric-types-intersect (type1 type2)
2298 (declare (type numeric-type type1 type2))
2299 (let* ((class1 (numeric-type-class type1))
2300 (class2 (numeric-type-class type2))
2301 (complexp1 (numeric-type-complexp type1))
2302 (complexp2 (numeric-type-complexp type2))
2303 (format1 (numeric-type-format type1))
2304 (format2 (numeric-type-format type2))
2305 (low1 (numeric-type-low type1))
2306 (high1 (numeric-type-high type1))
2307 (low2 (numeric-type-low type2))
2308 (high2 (numeric-type-high type2)))
2309 ;; If one is complex and the other isn't, then they are disjoint.
2310 (cond ((not (or (eq complexp1 complexp2)
2311 (null complexp1) (null complexp2)))
2312 nil)
2313 ;; If either type is a float, then the other must either be
2314 ;; specified to be a float or unspecified. Otherwise, they
2315 ;; are disjoint.
2316 ((and (eq class1 'float)
2317 (not (member class2 '(float nil)))) nil)
2318 ((and (eq class2 'float)
2319 (not (member class1 '(float nil)))) nil)
2320 ;; If the float formats are specified and different, the
2321 ;; types are disjoint.
2322 ((not (or (eq format1 format2) (null format1) (null format2)))
2323 nil)
2325 ;; Check the bounds. This is a bit odd because we must
2326 ;; always have the outer bound of the interval as the
2327 ;; second arg.
2328 (if (numeric-bound-test high1 high2 <= <)
2329 (or (and (numeric-bound-test low1 low2 >= >)
2330 (numeric-bound-test* low1 high2 <= <))
2331 (and (numeric-bound-test low2 low1 >= >)
2332 (numeric-bound-test* low2 high1 <= <)))
2333 (or (and (numeric-bound-test* low2 high1 <= <)
2334 (numeric-bound-test low2 low1 >= >))
2335 (and (numeric-bound-test high2 high1 <= <)
2336 (numeric-bound-test* high2 low1 >= >))))))))
2338 ;;; Take the numeric bound X and convert it into something that can be
2339 ;;; used as a bound in a numeric type with the specified CLASS and
2340 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2341 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2343 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2344 ;;; the appropriate type number. X may only be a float when CLASS is
2345 ;;; FLOAT.
2347 ;;; ### Note: it is possible for the coercion to a float to overflow
2348 ;;; or underflow. This happens when the bound doesn't fit in the
2349 ;;; specified format. In this case, we should really return the
2350 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2351 ;;; of desired format. But these conditions aren't currently signalled
2352 ;;; in any useful way.
2354 ;;; Also, when converting an open rational bound into a float we
2355 ;;; should probably convert it to a closed bound of the closest float
2356 ;;; in the specified format. KLUDGE: In general, open float bounds are
2357 ;;; screwed up. -- (comment from original CMU CL)
2358 (defun round-numeric-bound (x class format up-p)
2359 (if x
2360 (let ((cx (if (consp x) (car x) x)))
2361 (ecase class
2362 ((nil rational) x)
2363 (integer
2364 (if (and (consp x) (integerp cx))
2365 (if up-p (1+ cx) (1- cx))
2366 (if up-p (ceiling cx) (floor cx))))
2367 (float
2368 (let ((res
2369 (cond
2370 ((and format (subtypep format 'double-float))
2371 (if (<= most-negative-double-float cx most-positive-double-float)
2372 (coerce cx format)
2373 nil))
2375 (if (<= most-negative-single-float cx most-positive-single-float)
2376 ;; FIXME: bug #389
2377 (coerce cx (or format 'single-float))
2378 nil)))))
2379 (if (consp x) (list res) res)))))
2380 nil))
2382 ;;; Handle the case of type intersection on two numeric types. We use
2383 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2384 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2385 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2386 ;;; types intersect, then the only attributes that can be specified
2387 ;;; and different are the class and the bounds.
2389 ;;; When the class differs, we use the more restrictive class. The
2390 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2391 ;;; INTEGER.
2393 ;;; We make the result lower (upper) bound the maximum (minimum) of
2394 ;;; the argument lower (upper) bounds. We convert the bounds into the
2395 ;;; appropriate numeric type before maximizing. This avoids possible
2396 ;;; confusion due to mixed-type comparisons (but I think the result is
2397 ;;; the same).
2398 (!define-type-method (number :simple-intersection2) (type1 type2)
2399 (declare (type numeric-type type1 type2))
2400 (if (numeric-types-intersect type1 type2)
2401 (let* ((class1 (numeric-type-class type1))
2402 (class2 (numeric-type-class type2))
2403 (class (ecase class1
2404 ((nil) class2)
2405 ((integer float) class1)
2406 (rational (if (eq class2 'integer)
2407 'integer
2408 'rational))))
2409 (format (or (numeric-type-format type1)
2410 (numeric-type-format type2))))
2411 (make-numeric-type
2412 :class class
2413 :format format
2414 :complexp (or (numeric-type-complexp type1)
2415 (numeric-type-complexp type2))
2416 :low (numeric-bound-max
2417 (round-numeric-bound (numeric-type-low type1)
2418 class format t)
2419 (round-numeric-bound (numeric-type-low type2)
2420 class format t)
2421 > >= nil)
2422 :high (numeric-bound-max
2423 (round-numeric-bound (numeric-type-high type1)
2424 class format nil)
2425 (round-numeric-bound (numeric-type-high type2)
2426 class format nil)
2427 < <= nil)))
2428 *empty-type*))
2430 ;;; Given two float formats, return the one with more precision. If
2431 ;;; either one is null, return NIL.
2432 (defun float-format-max (f1 f2)
2433 (when (and f1 f2)
2434 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2435 (when (or (eq f f1) (eq f f2))
2436 (return f)))))
2438 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2439 ;;; the rules of numeric contagion. This is always NUMBER, some float
2440 ;;; format (possibly complex) or RATIONAL. Due to rational
2441 ;;; canonicalization, there isn't much we can do here with integers or
2442 ;;; rational complex numbers.
2444 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2445 ;;; is useful mainly for allowing types that are technically numbers,
2446 ;;; but not a NUMERIC-TYPE.
2447 (defun numeric-contagion (type1 type2)
2448 (if (and (numeric-type-p type1) (numeric-type-p type2))
2449 (let ((class1 (numeric-type-class type1))
2450 (class2 (numeric-type-class type2))
2451 (format1 (numeric-type-format type1))
2452 (format2 (numeric-type-format type2))
2453 (complexp1 (numeric-type-complexp type1))
2454 (complexp2 (numeric-type-complexp type2)))
2455 (cond ((or (null complexp1)
2456 (null complexp2))
2457 (specifier-type 'number))
2458 ((eq class1 'float)
2459 (make-numeric-type
2460 :class 'float
2461 :format (ecase class2
2462 (float (float-format-max format1 format2))
2463 ((integer rational) format1)
2464 ((nil)
2465 ;; A double-float with any real number is a
2466 ;; double-float.
2467 #!-long-float
2468 (if (eq format1 'double-float)
2469 'double-float
2470 nil)
2471 ;; A long-float with any real number is a
2472 ;; long-float.
2473 #!+long-float
2474 (if (eq format1 'long-float)
2475 'long-float
2476 nil)))
2477 :complexp (if (or (eq complexp1 :complex)
2478 (eq complexp2 :complex))
2479 :complex
2480 :real)))
2481 ((eq class2 'float) (numeric-contagion type2 type1))
2482 ((and (eq complexp1 :real) (eq complexp2 :real))
2483 (make-numeric-type
2484 :class (and class1 class2 'rational)
2485 :complexp :real))
2487 (specifier-type 'number))))
2488 (specifier-type 'number)))
2490 ;;;; array types
2492 (!define-type-class array :enumerable nil
2493 :might-contain-other-types nil)
2495 (!define-type-method (array :simple-=) (type1 type2)
2496 (cond ((not (and (equal (array-type-dimensions type1)
2497 (array-type-dimensions type2))
2498 (eq (array-type-complexp type1)
2499 (array-type-complexp type2))))
2500 (values nil t))
2501 ((or (unknown-type-p (array-type-element-type type1))
2502 (unknown-type-p (array-type-element-type type2)))
2503 (type= (array-type-element-type type1)
2504 (array-type-element-type type2)))
2506 (values (type= (array-type-specialized-element-type type1)
2507 (array-type-specialized-element-type type2))
2508 t))))
2510 (!define-type-method (array :negate) (type)
2511 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2512 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2513 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2514 ;; A symptom of the aforementioned is that the following are not TYPE=
2515 ;; (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
2516 ;; (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
2517 ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
2518 ;; only provide one additional bit of information: that the vector
2519 ;; is complex as opposed to simple. The rank and element-type are fixed.
2520 (if (and (eq (array-type-dimensions type) '*)
2521 (eq (array-type-complexp type) 't)
2522 (eq (array-type-element-type type) *wild-type*))
2523 ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
2524 ;; This is deliberately asymmetric - trying to say that NOT simple-array
2525 ;; equals hairy-array leads to infinite recursion.
2526 (type-union (make-array-type '* :complexp nil
2527 :element-type *wild-type*)
2528 (make-negation-type
2529 :type (make-array-type '* :element-type *wild-type*)))
2530 (make-negation-type :type type)))
2532 (!define-type-method (array :unparse) (type)
2533 (let* ((dims (array-type-dimensions type))
2534 ;; Compare the specialised element type and the
2535 ;; derived element type. If the derived type
2536 ;; is so small that it jumps to a smaller upgraded
2537 ;; element type, use the specialised element type.
2539 ;; This protects from unparsing
2540 ;; (and (vector (or bit symbol))
2541 ;; (vector (or bit character)))
2542 ;; i.e., the intersection of two T array types,
2543 ;; as a bit vector.
2544 (stype (array-type-specialized-element-type type))
2545 (dtype (array-type-element-type type))
2546 (utype (%upgraded-array-element-type dtype))
2547 (eltype (type-specifier (if (type= stype utype)
2548 dtype
2549 stype)))
2550 (complexp (array-type-complexp type)))
2551 (if (and (eq complexp t) (not *unparse-allow-negation*))
2552 (setq complexp :maybe))
2553 (cond ((eq dims '*)
2554 (if (eq eltype '*)
2555 (ecase complexp
2556 ((t) '(and array (not simple-array)))
2557 ((:maybe) 'array)
2558 ((nil) 'simple-array))
2559 (ecase complexp
2560 ((t) `(and (array ,eltype) (not simple-array)))
2561 ((:maybe) `(array ,eltype))
2562 ((nil) `(simple-array ,eltype)))))
2563 ((= (length dims) 1)
2564 (if complexp
2565 (let ((answer
2566 (if (eq (car dims) '*)
2567 (case eltype
2568 (bit 'bit-vector)
2569 ((base-char #!-sb-unicode character) 'base-string)
2570 (* 'vector)
2571 (t `(vector ,eltype)))
2572 (case eltype
2573 (bit `(bit-vector ,(car dims)))
2574 ((base-char #!-sb-unicode character)
2575 `(base-string ,(car dims)))
2576 (t `(vector ,eltype ,(car dims)))))))
2577 (if (eql complexp :maybe)
2578 answer
2579 `(and ,answer (not simple-array))))
2580 (if (eq (car dims) '*)
2581 (case eltype
2582 (bit 'simple-bit-vector)
2583 ((base-char #!-sb-unicode character) 'simple-base-string)
2584 ((t) 'simple-vector)
2585 (t `(simple-array ,eltype (*))))
2586 (case eltype
2587 (bit `(simple-bit-vector ,(car dims)))
2588 ((base-char #!-sb-unicode character)
2589 `(simple-base-string ,(car dims)))
2590 ((t) `(simple-vector ,(car dims)))
2591 (t `(simple-array ,eltype ,dims))))))
2593 (ecase complexp
2594 ((t) `(and (array ,eltype ,dims) (not simple-array)))
2595 ((:maybe) `(array ,eltype ,dims))
2596 ((nil) `(simple-array ,eltype ,dims)))))))
2598 (!define-type-method (array :simple-subtypep) (type1 type2)
2599 (let ((dims1 (array-type-dimensions type1))
2600 (dims2 (array-type-dimensions type2))
2601 (complexp2 (array-type-complexp type2)))
2602 (cond (;; not subtypep unless dimensions are compatible
2603 (not (or (eq dims2 '*)
2604 (and (not (eq dims1 '*))
2605 ;; (sbcl-0.6.4 has trouble figuring out that
2606 ;; DIMS1 and DIMS2 must be lists at this
2607 ;; point, and knowing that is important to
2608 ;; compiling EVERY efficiently.)
2609 (= (length (the list dims1))
2610 (length (the list dims2)))
2611 (every (lambda (x y)
2612 (or (eq y '*) (eql x y)))
2613 (the list dims1)
2614 (the list dims2)))))
2615 (values nil t))
2616 ;; not subtypep unless complexness is compatible
2617 ((not (or (eq complexp2 :maybe)
2618 (eq (array-type-complexp type1) complexp2)))
2619 (values nil t))
2620 ;; Since we didn't fail any of the tests above, we win
2621 ;; if the TYPE2 element type is wild.
2622 ((eq (array-type-element-type type2) *wild-type*)
2623 (values t t))
2624 (;; Since we didn't match any of the special cases above, if
2625 ;; either element type is unknown we can only give a good
2626 ;; answer if they are the same.
2627 (or (unknown-type-p (array-type-element-type type1))
2628 (unknown-type-p (array-type-element-type type2)))
2629 (if (type= (array-type-element-type type1)
2630 (array-type-element-type type2))
2631 (values t t)
2632 (values nil nil)))
2633 (;; Otherwise, the subtype relationship holds iff the
2634 ;; types are equal, and they're equal iff the specialized
2635 ;; element types are identical.
2637 (values (type= (array-type-specialized-element-type type1)
2638 (array-type-specialized-element-type type2))
2639 t)))))
2641 (!define-superclasses array
2642 ((vector vector) (array))
2643 !cold-init-forms)
2645 (defun array-types-intersect (type1 type2)
2646 (declare (type array-type type1 type2))
2647 (let ((dims1 (array-type-dimensions type1))
2648 (dims2 (array-type-dimensions type2))
2649 (complexp1 (array-type-complexp type1))
2650 (complexp2 (array-type-complexp type2)))
2651 ;; See whether dimensions are compatible.
2652 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2653 (and (= (length dims1) (length dims2))
2654 (every (lambda (x y)
2655 (or (eq x '*) (eq y '*) (= x y)))
2656 dims1 dims2))))
2657 (values nil t))
2658 ;; See whether complexpness is compatible.
2659 ((not (or (eq complexp1 :maybe)
2660 (eq complexp2 :maybe)
2661 (eq complexp1 complexp2)))
2662 (values nil t))
2663 ;; Old comment:
2665 ;; If either element type is wild, then they intersect.
2666 ;; Otherwise, the types must be identical.
2668 ;; FIXME: There seems to have been a fair amount of
2669 ;; confusion about the distinction between requested element
2670 ;; type and specialized element type; here is one of
2671 ;; them. If we request an array to hold objects of an
2672 ;; unknown type, we can do no better than represent that
2673 ;; type as an array specialized on wild-type. We keep the
2674 ;; requested element-type in the -ELEMENT-TYPE slot, and
2675 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2676 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2677 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2678 ;; in that specific case should be T, NIL? Or maybe this
2679 ;; function should really be called
2680 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2681 ;; was responsible for bug #123, and this whole issue could
2682 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2683 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2684 (eq (array-type-specialized-element-type type2) *wild-type*)
2685 (type= (array-type-specialized-element-type type1)
2686 (array-type-specialized-element-type type2)))
2688 (values t t))
2690 (values nil t)))))
2692 (defun unite-array-types-complexp (type1 type2)
2693 (let ((complexp1 (array-type-complexp type1))
2694 (complexp2 (array-type-complexp type2)))
2695 (cond
2696 ((eq complexp1 complexp2)
2697 ;; both types are the same complexp-ity
2698 (values complexp1 t))
2699 ((eq complexp1 :maybe)
2700 ;; type1 is wild-complexp
2701 (values :maybe type1))
2702 ((eq complexp2 :maybe)
2703 ;; type2 is wild-complexp
2704 (values :maybe type2))
2706 ;; both types partition the complexp-space
2707 (values :maybe nil)))))
2709 (defun unite-array-types-dimensions (type1 type2)
2710 (let ((dims1 (array-type-dimensions type1))
2711 (dims2 (array-type-dimensions type2)))
2712 (cond ((equal dims1 dims2)
2713 ;; both types are same dimensionality
2714 (values dims1 t))
2715 ((eq dims1 '*)
2716 ;; type1 is wild-dimensions
2717 (values '* type1))
2718 ((eq dims2 '*)
2719 ;; type2 is wild-dimensions
2720 (values '* type2))
2721 ((not (= (length dims1) (length dims2)))
2722 ;; types have different number of dimensions
2723 (values :incompatible nil))
2725 ;; we need to check on a per-dimension basis
2726 (let* ((supertype1 t)
2727 (supertype2 t)
2728 (compatible t)
2729 (result (mapcar (lambda (dim1 dim2)
2730 (cond
2731 ((equal dim1 dim2)
2732 dim1)
2733 ((eq dim1 '*)
2734 (setf supertype2 nil)
2736 ((eq dim2 '*)
2737 (setf supertype1 nil)
2740 (setf compatible nil))))
2741 dims1 dims2)))
2742 (cond
2743 ((or (not compatible)
2744 (and (not supertype1)
2745 (not supertype2)))
2746 (values :incompatible nil))
2747 ((and supertype1 supertype2)
2748 (values result supertype1))
2750 (values result (if supertype1 type1 type2)))))))))
2752 (defun unite-array-types-element-types (type1 type2)
2753 ;; FIXME: We'd love to be able to unite the full set of specialized
2754 ;; array element types up to *wild-type*, but :simple-union2 is
2755 ;; performed pairwise, so we don't have a good hook for it and our
2756 ;; representation doesn't allow us to easily detect the situation
2757 ;; anyway.
2758 ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
2759 (let* ((eltype1 (array-type-element-type type1))
2760 (eltype2 (array-type-element-type type2))
2761 (stype1 (array-type-specialized-element-type type1))
2762 (stype2 (array-type-specialized-element-type type2))
2763 (wild1 (eq eltype1 *wild-type*))
2764 (wild2 (eq eltype2 *wild-type*)))
2765 (cond
2766 ((type= eltype1 eltype2)
2767 (values eltype1 stype1 t))
2768 (wild1
2769 (values eltype1 stype1 type1))
2770 (wild2
2771 (values eltype2 stype2 type2))
2772 ((not (type= stype1 stype2))
2773 ;; non-wild types that don't share UAET don't unite
2774 (values :incompatible nil nil))
2775 ((csubtypep eltype1 eltype2)
2776 (values eltype2 stype2 type2))
2777 ((csubtypep eltype2 eltype1)
2778 (values eltype1 stype1 type1))
2780 (values :incompatible nil nil)))))
2782 (defun unite-array-types-supertypes-compatible-p (&rest supertypes)
2783 ;; supertypes are compatible if they are all T, if there is a single
2784 ;; NIL and all the rest are T, or if all non-T supertypes are the
2785 ;; same and not NIL.
2786 (let ((interesting-supertypes
2787 (remove t supertypes)))
2788 (or (not interesting-supertypes)
2789 (equal interesting-supertypes '(nil))
2790 ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
2791 (typep (remove-duplicates interesting-supertypes)
2792 '(cons array-type null)))))
2794 (!define-type-method (array :simple-union2) (type1 type2)
2795 (multiple-value-bind
2796 (result-eltype result-stype eltype-supertype)
2797 (unite-array-types-element-types type1 type2)
2798 (multiple-value-bind
2799 (result-complexp complexp-supertype)
2800 (unite-array-types-complexp type1 type2)
2801 (multiple-value-bind
2802 (result-dimensions dimensions-supertype)
2803 (unite-array-types-dimensions type1 type2)
2804 (when (and (not (eq result-dimensions :incompatible))
2805 (not (eq result-eltype :incompatible))
2806 (unite-array-types-supertypes-compatible-p
2807 eltype-supertype complexp-supertype dimensions-supertype))
2808 (make-array-type result-dimensions
2809 :complexp result-complexp
2810 :element-type result-eltype
2811 :specialized-element-type result-stype))))))
2813 (!define-type-method (array :simple-intersection2) (type1 type2)
2814 (declare (type array-type type1 type2))
2815 (if (array-types-intersect type1 type2)
2816 (let ((dims1 (array-type-dimensions type1))
2817 (dims2 (array-type-dimensions type2))
2818 (complexp1 (array-type-complexp type1))
2819 (complexp2 (array-type-complexp type2))
2820 (eltype1 (array-type-element-type type1))
2821 (eltype2 (array-type-element-type type2))
2822 (stype1 (array-type-specialized-element-type type1))
2823 (stype2 (array-type-specialized-element-type type2)))
2824 (make-array-type (cond ((eq dims1 '*) dims2)
2825 ((eq dims2 '*) dims1)
2827 (mapcar (lambda (x y) (if (eq x '*) y x))
2828 dims1 dims2)))
2829 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2830 :element-type (cond
2831 ((eq eltype1 *wild-type*) eltype2)
2832 ((eq eltype2 *wild-type*) eltype1)
2833 (t (type-intersection eltype1 eltype2)))
2834 :specialized-element-type (cond
2835 ((eq stype1 *wild-type*) stype2)
2836 ((eq stype2 *wild-type*) stype1)
2838 (aver (type= stype1 stype2))
2839 stype1))))
2840 *empty-type*))
2842 ;;; Check a supplied dimension list to determine whether it is legal,
2843 ;;; and return it in canonical form (as either '* or a list).
2844 (defun canonical-array-dimensions (dims)
2845 (typecase dims
2846 ((member *) dims)
2847 (integer
2848 (when (minusp dims)
2849 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2850 (when (>= dims sb!xc:array-rank-limit)
2851 (error "array type with too many dimensions: ~S" dims))
2852 (make-list dims :initial-element '*))
2853 (list
2854 (when (>= (length dims) sb!xc:array-rank-limit)
2855 (error "array type with too many dimensions: ~S" dims))
2856 (dolist (dim dims)
2857 (unless (eq dim '*)
2858 (unless (and (integerp dim)
2859 (>= dim 0)
2860 (< dim sb!xc:array-dimension-limit))
2861 (error "bad dimension in array type: ~S" dim))))
2862 dims)
2864 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2866 ;;;; MEMBER types
2868 (!define-type-class member :enumerable t
2869 :might-contain-other-types nil)
2871 (!define-type-method (member :negate) (type)
2872 (let ((xset (member-type-xset type))
2873 (fp-zeroes (member-type-fp-zeroes type)))
2874 (if fp-zeroes
2875 ;; Hairy case, which needs to do a bit of float type
2876 ;; canonicalization.
2877 (apply #'type-intersection
2878 (if (xset-empty-p xset)
2879 *universal-type*
2880 (make-negation-type :type (make-member-type xset nil)))
2881 (mapcar
2882 (lambda (x)
2883 (let* ((opposite (neg-fp-zero x))
2884 (type (ctype-of opposite)))
2885 (type-union
2886 (make-negation-type
2887 :type (modified-numeric-type type :low nil :high nil))
2888 (modified-numeric-type type :low nil :high (list opposite))
2889 (make-eql-type opposite)
2890 (modified-numeric-type type :low (list opposite) :high nil))))
2891 fp-zeroes))
2892 ;; Easy case
2893 (make-negation-type :type type))))
2895 (!define-type-method (member :unparse) (type)
2896 (let ((members (member-type-members type)))
2897 (cond ((equal members '(nil)) 'null)
2898 (t `(member ,@members)))))
2900 (!define-type-method (member :singleton-p) (type)
2901 (if (eql 1 (member-type-size type))
2902 (values t (first (member-type-members type)))
2903 (values nil nil)))
2905 (!define-type-method (member :simple-subtypep) (type1 type2)
2906 (values (and (xset-subset-p (member-type-xset type1)
2907 (member-type-xset type2))
2908 (subsetp (member-type-fp-zeroes type1)
2909 (member-type-fp-zeroes type2)))
2912 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2913 (block punt
2914 (mapc-member-type-members
2915 (lambda (elt)
2916 (multiple-value-bind (ok surep) (ctypep elt type2)
2917 (unless surep
2918 (return-from punt (values nil nil)))
2919 (unless ok
2920 (return-from punt (values nil t)))))
2921 type1)
2922 (values t t)))
2924 ;;; We punt if the odd type is enumerable and intersects with the
2925 ;;; MEMBER type. If not enumerable, then it is definitely not a
2926 ;;; subtype of the MEMBER type.
2927 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2928 (cond ((not (type-enumerable type1)) (values nil t))
2929 ((types-equal-or-intersect type1 type2)
2930 (invoke-complex-subtypep-arg1-method type1 type2))
2931 (t (values nil t))))
2933 (!define-type-method (member :simple-intersection2) (type1 type2)
2934 (make-member-type (xset-intersection (member-type-xset type1)
2935 (member-type-xset type2))
2936 (intersection (member-type-fp-zeroes type1)
2937 (member-type-fp-zeroes type2))))
2939 (!define-type-method (member :complex-intersection2) (type1 type2)
2940 (block punt
2941 (let ((xset (alloc-xset))
2942 (fp-zeroes nil))
2943 (mapc-member-type-members
2944 (lambda (member)
2945 (multiple-value-bind (ok sure) (ctypep member type1)
2946 (unless sure
2947 (return-from punt nil))
2948 (when ok
2949 (if (fp-zero-p member)
2950 (pushnew member fp-zeroes)
2951 (add-to-xset member xset)))))
2952 type2)
2953 (if (and (xset-empty-p xset) (not fp-zeroes))
2954 *empty-type*
2955 (make-member-type xset fp-zeroes)))))
2957 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2958 ;;; a union type, and the member/union interaction is handled by the
2959 ;;; union type method.
2960 (!define-type-method (member :simple-union2) (type1 type2)
2961 (make-member-type (xset-union (member-type-xset type1)
2962 (member-type-xset type2))
2963 (union (member-type-fp-zeroes type1)
2964 (member-type-fp-zeroes type2))))
2966 (!define-type-method (member :simple-=) (type1 type2)
2967 (let ((xset1 (member-type-xset type1))
2968 (xset2 (member-type-xset type2))
2969 (l1 (member-type-fp-zeroes type1))
2970 (l2 (member-type-fp-zeroes type2)))
2971 (values (and (eql (xset-count xset1) (xset-count xset2))
2972 (xset-subset-p xset1 xset2)
2973 (xset-subset-p xset2 xset1)
2974 (subsetp l1 l2)
2975 (subsetp l2 l1))
2976 t)))
2978 (!define-type-method (member :complex-=) (type1 type2)
2979 (if (type-enumerable type1)
2980 (multiple-value-bind (val win) (csubtypep type2 type1)
2981 (if (or val (not win))
2982 (values nil nil)
2983 (values nil t)))
2984 (values nil t)))
2986 (!def-type-translator member :list (&rest members)
2987 (if members
2988 (let (ms numbers char-codes)
2989 (dolist (m (remove-duplicates members))
2990 (typecase m
2991 (character (push (sb!xc:char-code m) char-codes))
2992 (real (if (and (floatp m) (zerop m))
2993 (push m ms)
2994 (push (ctype-of m) numbers)))
2995 (t (push m ms))))
2996 (apply #'type-union
2997 (member-type-from-list ms)
2998 (make-character-set-type
2999 :pairs (mapcar (lambda (x) (cons x x))
3000 (sort char-codes #'<)))
3001 (nreverse numbers)))
3002 *empty-type*))
3004 ;;;; intersection types
3005 ;;;;
3006 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
3007 ;;;; of punting on all AND types, not just the unreasonably complicated
3008 ;;;; ones. The change was motivated by trying to get the KEYWORD type
3009 ;;;; to behave sensibly:
3010 ;;;; ;; reasonable definition
3011 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
3012 ;;;; ;; reasonable behavior
3013 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
3014 ;;;; Without understanding a little about the semantics of AND, we'd
3015 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
3016 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
3017 ;;;; not so good..)
3018 ;;;;
3019 ;;;; We still follow the example of CMU CL to some extent, by punting
3020 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
3021 ;;;; involving AND.
3023 (!define-type-class intersection
3024 :enumerable #'compound-type-enumerable
3025 :might-contain-other-types t)
3027 (!define-type-method (intersection :negate) (type)
3028 (apply #'type-union
3029 (mapcar #'type-negation (intersection-type-types type))))
3031 ;;; A few intersection types have special names. The others just get
3032 ;;; mechanically unparsed.
3033 (!define-type-method (intersection :unparse) (type)
3034 (declare (type ctype type))
3035 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
3036 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
3038 ;;; shared machinery for type equality: true if every type in the set
3039 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
3040 (defun type=-set (types1 types2)
3041 (flet ((type<=-set (x y)
3042 (declare (type list x y))
3043 (every/type (lambda (x y-element)
3044 (any/type #'type= y-element x))
3045 x y)))
3046 (and/type (type<=-set types1 types2)
3047 (type<=-set types2 types1))))
3049 ;;; Two intersection types are equal if their subtypes are equal sets.
3051 ;;; FIXME: Might it be better to use
3052 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
3053 ;;; instead, since SUBTYPEP is the usual relationship that we care
3054 ;;; most about, so it would be good to leverage any ingenuity there
3055 ;;; in this more obscure method?
3056 (!define-type-method (intersection :simple-=) (type1 type2)
3057 (type=-set (intersection-type-types type1)
3058 (intersection-type-types type2)))
3060 (defun %intersection-complex-subtypep-arg1 (type1 type2)
3061 (type= type1 (type-intersection type1 type2)))
3063 (defun %intersection-simple-subtypep (type1 type2)
3064 (every/type #'%intersection-complex-subtypep-arg1
3065 type1
3066 (intersection-type-types type2)))
3068 (!define-type-method (intersection :simple-subtypep) (type1 type2)
3069 (%intersection-simple-subtypep type1 type2))
3071 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
3072 (%intersection-complex-subtypep-arg1 type1 type2))
3074 (defun %intersection-complex-subtypep-arg2 (type1 type2)
3075 (every/type #'csubtypep type1 (intersection-type-types type2)))
3077 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
3078 (%intersection-complex-subtypep-arg2 type1 type2))
3080 ;;; FIXME: This will look eeriely familiar to readers of the UNION
3081 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
3082 ;;; because it was generated by cut'n'paste methods. Given that
3083 ;;; intersections and unions have all sorts of symmetries known to
3084 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
3085 ;;; reflect those symmetries in code in a way that ties them together
3086 ;;; more strongly than having two independent near-copies :-/
3087 (!define-type-method (intersection :simple-union2 :complex-union2)
3088 (type1 type2)
3089 ;; Within this method, type2 is guaranteed to be an intersection
3090 ;; type:
3091 (aver (intersection-type-p type2))
3092 ;; Make sure to call only the applicable methods...
3093 (cond ((and (intersection-type-p type1)
3094 (%intersection-simple-subtypep type1 type2)) type2)
3095 ((and (intersection-type-p type1)
3096 (%intersection-simple-subtypep type2 type1)) type1)
3097 ((and (not (intersection-type-p type1))
3098 (%intersection-complex-subtypep-arg2 type1 type2))
3099 type2)
3100 ((and (not (intersection-type-p type1))
3101 (%intersection-complex-subtypep-arg1 type2 type1))
3102 type1)
3103 ;; KLUDGE: This special (and somewhat hairy) magic is required
3104 ;; to deal with the RATIONAL/INTEGER special case. The UNION
3105 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
3106 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
3107 ((and (csubtypep type2 (specifier-type 'ratio))
3108 (numeric-type-p type1)
3109 (csubtypep type1 (specifier-type 'integer))
3110 (csubtypep type2
3111 (make-numeric-type
3112 :class 'rational
3113 :complexp nil
3114 :low (if (null (numeric-type-low type1))
3116 (list (1- (numeric-type-low type1))))
3117 :high (if (null (numeric-type-high type1))
3119 (list (1+ (numeric-type-high type1)))))))
3120 (let* ((intersected (intersection-type-types type2))
3121 (remaining (remove (specifier-type '(not integer))
3122 intersected
3123 :test #'type=)))
3124 (and (not (equal intersected remaining))
3125 (type-union type1 (apply #'type-intersection remaining)))))
3127 (let ((accumulator *universal-type*))
3128 (do ((t2s (intersection-type-types type2) (cdr t2s)))
3129 ((null t2s) accumulator)
3130 (let ((union (type-union type1 (car t2s))))
3131 (when (union-type-p union)
3132 ;; we have to give up here -- there are all sorts of
3133 ;; ordering worries, but it's better than before.
3134 ;; Doing exactly the same as in the UNION
3135 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
3136 ;; overflow with the mutual recursion never bottoming
3137 ;; out.
3138 (if (and (eq accumulator *universal-type*)
3139 (null (cdr t2s)))
3140 ;; KLUDGE: if we get here, we have a partially
3141 ;; simplified result. While this isn't by any
3142 ;; means a universal simplification, including
3143 ;; this logic here means that we can get (OR
3144 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
3145 (return union)
3146 (return nil)))
3147 (setf accumulator
3148 (type-intersection accumulator union))))))))
3150 (!def-type-translator and :list (&rest type-specifiers)
3151 (apply #'type-intersection
3152 (mapcar #'specifier-type type-specifiers)))
3154 ;;;; union types
3156 (!define-type-class union
3157 :enumerable #'compound-type-enumerable
3158 :might-contain-other-types t)
3160 (!define-type-method (union :negate) (type)
3161 (declare (type ctype type))
3162 (apply #'type-intersection
3163 (mapcar #'type-negation (union-type-types type))))
3165 ;;; The LIST, FLOAT and REAL types have special names. Other union
3166 ;;; types just get mechanically unparsed.
3167 (!define-type-method (union :unparse) (type)
3168 (declare (type ctype type))
3169 (cond
3170 ((type= type (specifier-type 'list)) 'list)
3171 ((type= type (specifier-type 'float)) 'float)
3172 ((type= type (specifier-type 'real)) 'real)
3173 ((type= type (specifier-type 'sequence)) 'sequence)
3174 ((type= type (specifier-type 'bignum)) 'bignum)
3175 ((type= type (specifier-type 'simple-string)) 'simple-string)
3176 ((type= type (specifier-type 'string)) 'string)
3177 ((type= type (specifier-type 'complex)) 'complex)
3178 ((type= type (specifier-type 'standard-char)) 'standard-char)
3179 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
3181 ;;; Two union types are equal if they are each subtypes of each
3182 ;;; other. We need to be this clever because our complex subtypep
3183 ;;; methods are now more accurate; we don't get infinite recursion
3184 ;;; because the simple-subtypep method delegates to complex-subtypep
3185 ;;; of the individual types of type1. - CSR, 2002-04-09
3187 ;;; Previous comment, now obsolete, but worth keeping around because
3188 ;;; it is true, though too strong a condition:
3190 ;;; Two union types are equal if their subtypes are equal sets.
3191 (!define-type-method (union :simple-=) (type1 type2)
3192 (multiple-value-bind (subtype certain?)
3193 (csubtypep type1 type2)
3194 (if subtype
3195 (csubtypep type2 type1)
3196 ;; we might as well become as certain as possible.
3197 (if certain?
3198 (values nil t)
3199 (multiple-value-bind (subtype certain?)
3200 (csubtypep type2 type1)
3201 (declare (ignore subtype))
3202 (values nil certain?))))))
3204 (!define-type-method (union :complex-=) (type1 type2)
3205 (declare (ignore type1))
3206 (if (some #'type-might-contain-other-types-p
3207 (union-type-types type2))
3208 (values nil nil)
3209 (values nil t)))
3211 ;;; Similarly, a union type is a subtype of another if and only if
3212 ;;; every element of TYPE1 is a subtype of TYPE2.
3213 (defun union-simple-subtypep (type1 type2)
3214 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
3215 type2
3216 (union-type-types type1)))
3218 (!define-type-method (union :simple-subtypep) (type1 type2)
3219 (union-simple-subtypep type1 type2))
3221 (defun union-complex-subtypep-arg1 (type1 type2)
3222 (every/type (swapped-args-fun #'csubtypep)
3223 type2
3224 (union-type-types type1)))
3226 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
3227 (union-complex-subtypep-arg1 type1 type2))
3229 (defun union-complex-subtypep-arg2 (type1 type2)
3230 ;; At this stage, we know that type2 is a union type and type1
3231 ;; isn't. We might as well check this, though:
3232 (aver (union-type-p type2))
3233 (aver (not (union-type-p type1)))
3234 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
3235 ;; turns out to be too restrictive, causing bug 91.
3237 ;; the following reimplementation might look dodgy. It is dodgy. It
3238 ;; depends on the union :complex-= method not doing very much work
3239 ;; -- certainly, not using subtypep. Reasoning:
3241 ;; A is a subset of (B1 u B2)
3242 ;; <=> A n (B1 u B2) = A
3243 ;; <=> (A n B1) u (A n B2) = A
3245 ;; But, we have to be careful not to delegate this type= to
3246 ;; something that could invoke subtypep, which might get us back
3247 ;; here -> stack explosion. We therefore ensure that the second type
3248 ;; (which is the one that's dispatched on) is either a union type
3249 ;; (where we've ensured that the complex-= method will not call
3250 ;; subtypep) or something with no union types involved, in which
3251 ;; case we'll never come back here.
3253 ;; If we don't do this, then e.g.
3254 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
3255 ;; would loop infinitely, as the member :complex-= method is
3256 ;; implemented in terms of subtypep.
3258 ;; Ouch. - CSR, 2002-04-10
3259 (multiple-value-bind (sub-value sub-certain?)
3260 (type= type1
3261 (apply #'type-union
3262 (mapcar (lambda (x) (type-intersection type1 x))
3263 (union-type-types type2))))
3264 (if sub-certain?
3265 (values sub-value sub-certain?)
3266 ;; The ANY/TYPE expression above is a sufficient condition for
3267 ;; subsetness, but not a necessary one, so we might get a more
3268 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
3269 ;; ANY/TYPE expression is uncertain.
3270 (invoke-complex-subtypep-arg1-method type1 type2))))
3272 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
3273 (union-complex-subtypep-arg2 type1 type2))
3275 (!define-type-method (union :simple-intersection2 :complex-intersection2)
3276 (type1 type2)
3277 ;; The CSUBTYPEP clauses here let us simplify e.g.
3278 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
3279 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
3280 ;; (where LIST is (OR CONS NULL)).
3282 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
3283 ;; versa, but it's important that we pre-expand them into
3284 ;; specialized operations on individual elements of
3285 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
3286 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
3287 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
3288 ;; cause infinite recursion.
3290 ;; Within this method, type2 is guaranteed to be a union type:
3291 (aver (union-type-p type2))
3292 ;; Make sure to call only the applicable methods...
3293 (cond ((and (union-type-p type1)
3294 (union-simple-subtypep type1 type2)) type1)
3295 ((and (union-type-p type1)
3296 (union-simple-subtypep type2 type1)) type2)
3297 ((and (not (union-type-p type1))
3298 (union-complex-subtypep-arg2 type1 type2))
3299 type1)
3300 ((and (not (union-type-p type1))
3301 (union-complex-subtypep-arg1 type2 type1))
3302 type2)
3304 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
3305 ;; operations in a particular order, and gives up if any of
3306 ;; the sub-unions turn out not to be simple. In other cases
3307 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
3308 ;; bad idea, since it can overlook simplifications which
3309 ;; might occur if the terms were accumulated in a different
3310 ;; order. It's possible that that will be a problem here too.
3311 ;; However, I can't think of a good example to demonstrate
3312 ;; it, and without an example to demonstrate it I can't write
3313 ;; test cases, and without test cases I don't want to
3314 ;; complicate the code to address what's still a hypothetical
3315 ;; problem. So I punted. -- WHN 2001-03-20
3316 (let ((accumulator *empty-type*))
3317 (dolist (t2 (union-type-types type2) accumulator)
3318 (setf accumulator
3319 (type-union accumulator
3320 (type-intersection type1 t2))))))))
3322 (!def-type-translator or :list (&rest type-specifiers)
3323 (let ((type (apply #'type-union
3324 (mapcar #'specifier-type type-specifiers))))
3325 (if (union-type-p type)
3326 (sb!kernel::simplify-array-unions type)
3327 type)))
3329 ;;;; CONS types
3331 (!define-type-class cons :enumerable nil :might-contain-other-types nil)
3333 (!def-type-translator cons (&optional (car-type-spec '*) (cdr-type-spec '*))
3334 (let ((car-type (single-value-specifier-type car-type-spec))
3335 (cdr-type (single-value-specifier-type cdr-type-spec)))
3336 (make-cons-type car-type cdr-type)))
3338 (!define-type-method (cons :negate) (type)
3339 (if (and (eq (cons-type-car-type type) *universal-type*)
3340 (eq (cons-type-cdr-type type) *universal-type*))
3341 (make-negation-type :type type)
3342 (type-union
3343 (make-negation-type :type (specifier-type 'cons))
3344 (cond
3345 ((and (not (eq (cons-type-car-type type) *universal-type*))
3346 (not (eq (cons-type-cdr-type type) *universal-type*)))
3347 (type-union
3348 (make-cons-type
3349 (type-negation (cons-type-car-type type))
3350 *universal-type*)
3351 (make-cons-type
3352 *universal-type*
3353 (type-negation (cons-type-cdr-type type)))))
3354 ((not (eq (cons-type-car-type type) *universal-type*))
3355 (make-cons-type
3356 (type-negation (cons-type-car-type type))
3357 *universal-type*))
3358 ((not (eq (cons-type-cdr-type type) *universal-type*))
3359 (make-cons-type
3360 *universal-type*
3361 (type-negation (cons-type-cdr-type type))))
3362 (t (bug "Weird CONS type ~S" type))))))
3364 (!define-type-method (cons :unparse) (type)
3365 (let ((car-eltype (type-specifier (cons-type-car-type type)))
3366 (cdr-eltype (type-specifier (cons-type-cdr-type type))))
3367 (if (and (member car-eltype '(t *))
3368 (member cdr-eltype '(t *)))
3369 'cons
3370 `(cons ,car-eltype ,cdr-eltype))))
3372 (!define-type-method (cons :simple-=) (type1 type2)
3373 (declare (type cons-type type1 type2))
3374 (multiple-value-bind (car-match car-win)
3375 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3376 (multiple-value-bind (cdr-match cdr-win)
3377 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3378 (cond ((and car-match cdr-match)
3379 (aver (and car-win cdr-win))
3380 (values t t))
3382 (values nil
3383 ;; FIXME: Ideally we would like to detect and handle
3384 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3385 ;; but just returning a secondary true on (and car-win cdr-win)
3386 ;; unfortunately breaks other things. --NS 2006-08-16
3387 (and (or (and (not car-match) car-win)
3388 (and (not cdr-match) cdr-win))
3389 (not (and (cons-type-might-be-empty-type type1)
3390 (cons-type-might-be-empty-type type2))))))))))
3392 (!define-type-method (cons :simple-subtypep) (type1 type2)
3393 (declare (type cons-type type1 type2))
3394 (multiple-value-bind (val-car win-car)
3395 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3396 (multiple-value-bind (val-cdr win-cdr)
3397 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3398 (if (and val-car val-cdr)
3399 (values t (and win-car win-cdr))
3400 (values nil (or (and (not val-car) win-car)
3401 (and (not val-cdr) win-cdr)))))))
3403 ;;; Give up if a precise type is not possible, to avoid returning
3404 ;;; overly general types.
3405 (!define-type-method (cons :simple-union2) (type1 type2)
3406 (declare (type cons-type type1 type2))
3407 (let ((car-type1 (cons-type-car-type type1))
3408 (car-type2 (cons-type-car-type type2))
3409 (cdr-type1 (cons-type-cdr-type type1))
3410 (cdr-type2 (cons-type-cdr-type type2))
3411 car-not1
3412 car-not2)
3413 ;; UGH. -- CSR, 2003-02-24
3414 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3415 &optional (not1 nil not1p))
3416 `(type-union
3417 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3418 (make-cons-type
3419 (type-intersection ,car2
3420 ,(if not1p
3421 not1
3422 `(type-negation ,car1)))
3423 ,cdr2))))
3424 (cond ((type= car-type1 car-type2)
3425 (make-cons-type car-type1
3426 (type-union cdr-type1 cdr-type2)))
3427 ((type= cdr-type1 cdr-type2)
3428 (make-cons-type (type-union car-type1 car-type2)
3429 cdr-type1))
3430 ((csubtypep car-type1 car-type2)
3431 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3432 ((csubtypep car-type2 car-type1)
3433 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3434 ;; more general case of the above, but harder to compute
3435 ((progn
3436 (setf car-not1 (type-negation car-type1))
3437 (multiple-value-bind (yes win)
3438 (csubtypep car-type2 car-not1)
3439 (and (not yes) win)))
3440 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3441 ((progn
3442 (setf car-not2 (type-negation car-type2))
3443 (multiple-value-bind (yes win)
3444 (csubtypep car-type1 car-not2)
3445 (and (not yes) win)))
3446 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3447 ;; Don't put these in -- consider the effect of taking the
3448 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3449 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3450 #+nil
3451 ((csubtypep cdr-type1 cdr-type2)
3452 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3453 #+nil
3454 ((csubtypep cdr-type2 cdr-type1)
3455 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3457 (!define-type-method (cons :simple-intersection2) (type1 type2)
3458 (declare (type cons-type type1 type2))
3459 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3460 (cons-type-car-type type2)))
3461 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3462 (cons-type-cdr-type type2))))
3463 (cond
3464 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3465 (car-int2 (make-cons-type car-int2
3466 (type-intersection
3467 (cons-type-cdr-type type1)
3468 (cons-type-cdr-type type2))))
3469 (cdr-int2 (make-cons-type
3470 (type-intersection (cons-type-car-type type1)
3471 (cons-type-car-type type2))
3472 cdr-int2)))))
3474 (!define-superclasses cons ((cons)) !cold-init-forms)
3476 ;;;; CHARACTER-SET types
3478 ;; all character-set types are enumerable, but it's not possible
3479 ;; for one to be TYPE= to a MEMBER type because (MEMBER #\x)
3480 ;; is not internally represented as a MEMBER type.
3481 ;; So in case it wasn't clear already ENUMERABLE-P does not mean
3482 ;; "possibly a MEMBER type in the Lisp-theoretic sense",
3483 ;; but means "could be implemented in SBCL as a MEMBER type".
3484 (!define-type-class character-set :enumerable nil
3485 :might-contain-other-types nil)
3487 (!def-type-translator character-set
3488 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3489 (make-character-set-type :pairs pairs))
3491 (!define-type-method (character-set :negate) (type)
3492 (let ((pairs (character-set-type-pairs type)))
3493 (if (and (= (length pairs) 1)
3494 (= (caar pairs) 0)
3495 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3496 (make-negation-type :type type)
3497 (let ((not-character
3498 (make-negation-type
3499 :type (make-character-set-type
3500 :pairs '((0 . #.(1- sb!xc:char-code-limit)))))))
3501 (type-union
3502 not-character
3503 (make-character-set-type
3504 :pairs (let (not-pairs)
3505 (when (> (caar pairs) 0)
3506 (push (cons 0 (1- (caar pairs))) not-pairs))
3507 (do* ((tail pairs (cdr tail))
3508 (high1 (cdar tail) (cdar tail))
3509 (low2 (caadr tail) (caadr tail)))
3510 ((null (cdr tail))
3511 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3512 (push (cons (1+ (cdar tail))
3513 (1- sb!xc:char-code-limit))
3514 not-pairs))
3515 (nreverse not-pairs))
3516 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3518 (!define-type-method (character-set :unparse) (type)
3519 (cond
3520 ((type= type (specifier-type 'character)) 'character)
3521 ((type= type (specifier-type 'base-char)) 'base-char)
3522 ((type= type (specifier-type 'extended-char)) 'extended-char)
3523 ((type= type (specifier-type 'standard-char)) 'standard-char)
3525 ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
3526 ;; are at most as many characters as there are character code ranges.
3527 ;; (basically saying to use MEMBER if each range is one character)
3528 (let* ((pairs (character-set-type-pairs type))
3529 (count (length pairs))
3530 (chars (loop named outer
3531 for (low . high) in pairs
3532 nconc (loop for code from low upto high
3533 collect (sb!xc:code-char code)
3534 when (minusp (decf count))
3535 do (return-from outer t)))))
3536 (if (eq chars t)
3537 `(character-set ,pairs)
3538 `(member ,@chars))))))
3540 (!define-type-method (character-set :singleton-p) (type)
3541 (let* ((pairs (character-set-type-pairs type))
3542 (pair (first pairs)))
3543 (if (and (typep pairs '(cons t null))
3544 (eql (car pair) (cdr pair)))
3545 (values t (code-char (car pair)))
3546 (values nil nil))))
3548 (!define-type-method (character-set :simple-=) (type1 type2)
3549 (let ((pairs1 (character-set-type-pairs type1))
3550 (pairs2 (character-set-type-pairs type2)))
3551 (values (equal pairs1 pairs2) t)))
3553 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3554 (values
3555 (dolist (pair (character-set-type-pairs type1) t)
3556 (unless (position pair (character-set-type-pairs type2)
3557 :test (lambda (x y) (and (>= (car x) (car y))
3558 (<= (cdr x) (cdr y)))))
3559 (return nil)))
3562 (!define-type-method (character-set :simple-union2) (type1 type2)
3563 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3564 ;; actually does the union for us. It might be a little fragile to
3565 ;; rely on it.
3566 (make-character-set-type
3567 :pairs (merge 'list
3568 (copy-alist (character-set-type-pairs type1))
3569 (copy-alist (character-set-type-pairs type2))
3570 #'< :key #'car)))
3572 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3573 ;; KLUDGE: brute force.
3575 (let (pairs)
3576 (dolist (pair1 (character-set-type-pairs type1)
3577 (make-character-set-type
3578 :pairs (sort pairs #'< :key #'car)))
3579 (dolist (pair2 (character-set-type-pairs type2))
3580 (cond
3581 ((<= (car pair1) (car pair2) (cdr pair1))
3582 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3583 ((<= (car pair2) (car pair1) (cdr pair2))
3584 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3586 (make-character-set-type
3587 :pairs (intersect-type-pairs
3588 (character-set-type-pairs type1)
3589 (character-set-type-pairs type2))))
3592 ;;; Intersect two ordered lists of pairs
3593 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3594 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3595 ;;; Each pair represents the integer interval start..end.
3597 (defun intersect-type-pairs (alist1 alist2)
3598 (if (and alist1 alist2)
3599 (let ((res nil)
3600 (pair1 (pop alist1))
3601 (pair2 (pop alist2)))
3602 (loop
3603 (when (> (car pair1) (car pair2))
3604 (rotatef pair1 pair2)
3605 (rotatef alist1 alist2))
3606 (let ((pair1-cdr (cdr pair1)))
3607 (cond
3608 ((> (car pair2) pair1-cdr)
3609 ;; No over lap -- discard pair1
3610 (unless alist1 (return))
3611 (setq pair1 (pop alist1)))
3612 ((<= (cdr pair2) pair1-cdr)
3613 (push (cons (car pair2) (cdr pair2)) res)
3614 (cond
3615 ((= (cdr pair2) pair1-cdr)
3616 (unless alist1 (return))
3617 (unless alist2 (return))
3618 (setq pair1 (pop alist1)
3619 pair2 (pop alist2)))
3620 (t ;; (< (cdr pair2) pair1-cdr)
3621 (unless alist2 (return))
3622 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3623 (setq pair2 (pop alist2)))))
3624 (t ;; (> (cdr pair2) (cdr pair1))
3625 (push (cons (car pair2) pair1-cdr) res)
3626 (unless alist1 (return))
3627 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3628 (setq pair1 (pop alist1))))))
3629 (nreverse res))
3630 nil))
3633 ;;; Return the type that describes all objects that are in X but not
3634 ;;; in Y. If we can't determine this type, then return NIL.
3636 ;;; For now, we only are clever dealing with union and member types.
3637 ;;; If either type is not a union type, then we pretend that it is a
3638 ;;; union of just one type. What we do is remove from X all the types
3639 ;;; that are a subtype any type in Y. If any type in X intersects with
3640 ;;; a type in Y but is not a subtype, then we give up.
3642 ;;; We must also special-case any member type that appears in the
3643 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3644 ;;; If Y has any members, we must be careful that none of those
3645 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3646 ;;; this case, since to compute that difference we would have to break
3647 ;;; the type from X into some collection of types that represents the
3648 ;;; type without that particular element. This seems too hairy to be
3649 ;;; worthwhile, given its low utility.
3650 (defun type-difference (x y)
3651 (if (and (numeric-type-p x) (numeric-type-p y))
3652 ;; Numeric types are easy. Are there any others we should handle like this?
3653 (type-intersection x (type-negation y))
3654 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3655 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3656 (collect ((res))
3657 (dolist (x-type x-types)
3658 (if (member-type-p x-type)
3659 (let ((xset (alloc-xset))
3660 (fp-zeroes nil))
3661 (mapc-member-type-members
3662 (lambda (elt)
3663 (multiple-value-bind (ok sure) (ctypep elt y)
3664 (unless sure
3665 (return-from type-difference nil))
3666 (unless ok
3667 (if (fp-zero-p elt)
3668 (pushnew elt fp-zeroes)
3669 (add-to-xset elt xset)))))
3670 x-type)
3671 (unless (and (xset-empty-p xset) (not fp-zeroes))
3672 (res (make-member-type xset fp-zeroes))))
3673 (dolist (y-type y-types (res x-type))
3674 (multiple-value-bind (val win) (csubtypep x-type y-type)
3675 (unless win (return-from type-difference nil))
3676 (when val (return))
3677 (when (types-equal-or-intersect x-type y-type)
3678 (return-from type-difference nil))))))
3679 (let ((y-mem (find-if #'member-type-p y-types)))
3680 (when y-mem
3681 (dolist (x-type x-types)
3682 (unless (member-type-p x-type)
3683 (mapc-member-type-members
3684 (lambda (member)
3685 (multiple-value-bind (ok sure) (ctypep member x-type)
3686 (when (or (not sure) ok)
3687 (return-from type-difference nil))))
3688 y-mem)))))
3689 (apply #'type-union (res))))))
3691 (!def-type-translator array (&optional (element-type '*)
3692 (dimensions '*))
3693 (let ((eltype (if (eq element-type '*)
3694 *wild-type*
3695 (specifier-type element-type))))
3696 (make-array-type (canonical-array-dimensions dimensions)
3697 :complexp :maybe
3698 :element-type eltype
3699 :specialized-element-type (%upgraded-array-element-type
3700 eltype))))
3702 (!def-type-translator simple-array (&optional (element-type '*)
3703 (dimensions '*))
3704 (let ((eltype (if (eq element-type '*)
3705 *wild-type*
3706 (specifier-type element-type))))
3707 (make-array-type (canonical-array-dimensions dimensions)
3708 :complexp nil
3709 :element-type eltype
3710 :specialized-element-type (%upgraded-array-element-type
3711 eltype))))
3713 ;;;; SIMD-PACK types
3714 #!+sb-simd-pack
3715 (progn
3716 (!define-type-class simd-pack :enumerable nil
3717 :might-contain-other-types nil)
3719 (!def-type-translator simd-pack (&optional (element-type-spec '*))
3720 (if (eql element-type-spec '*)
3721 (%make-simd-pack-type *simd-pack-element-types*)
3722 (make-simd-pack-type (single-value-specifier-type element-type-spec))))
3724 (!define-type-method (simd-pack :negate) (type)
3725 (let ((remaining (set-difference *simd-pack-element-types*
3726 (simd-pack-type-element-type type)))
3727 (not-simd-pack (make-negation-type :type (specifier-type 'simd-pack))))
3728 (if remaining
3729 (type-union not-simd-pack (%make-simd-pack-type remaining))
3730 not-simd-pack)))
3732 (!define-type-method (simd-pack :unparse) (type)
3733 (let ((eltypes (simd-pack-type-element-type type)))
3734 (cond ((equal eltypes *simd-pack-element-types*)
3735 'simd-pack)
3736 ((= 1 (length eltypes))
3737 `(simd-pack ,(first eltypes)))
3739 `(or ,@(mapcar (lambda (eltype)
3740 `(simd-pack ,eltype))
3741 eltypes))))))
3743 (!define-type-method (simd-pack :simple-=) (type1 type2)
3744 (declare (type simd-pack-type type1 type2))
3745 (null (set-exclusive-or (simd-pack-type-element-type type1)
3746 (simd-pack-type-element-type type2))))
3748 (!define-type-method (simd-pack :simple-subtypep) (type1 type2)
3749 (declare (type simd-pack-type type1 type2))
3750 (subsetp (simd-pack-type-element-type type1)
3751 (simd-pack-type-element-type type2)))
3753 (!define-type-method (simd-pack :simple-union2) (type1 type2)
3754 (declare (type simd-pack-type type1 type2))
3755 (%make-simd-pack-type (union (simd-pack-type-element-type type1)
3756 (simd-pack-type-element-type type2))))
3758 (!define-type-method (simd-pack :simple-intersection2) (type1 type2)
3759 (declare (type simd-pack-type type1 type2))
3760 (let ((intersection (intersection (simd-pack-type-element-type type1)
3761 (simd-pack-type-element-type type2))))
3762 (if intersection
3763 (%make-simd-pack-type intersection)
3764 *empty-type*)))
3766 (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
3768 ;;;; utilities shared between cross-compiler and target system
3770 ;;; Does the type derived from compilation of an actual function
3771 ;;; definition satisfy declarations of a function's type?
3772 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3773 (declare (type ctype defined-ftype declared-ftype))
3774 (flet ((is-built-in-class-function-p (ctype)
3775 (and (built-in-classoid-p ctype)
3776 (eq (built-in-classoid-name ctype) 'function))))
3777 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3778 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3779 (is-built-in-class-function-p declared-ftype)
3780 ;; In that case, any definition satisfies the declaration.
3782 (;; It's not clear whether or how DEFINED-FTYPE might be
3783 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3784 ;; invalid, so let's handle that case too, just in case.
3785 (is-built-in-class-function-p defined-ftype)
3786 ;; No matter what DECLARED-FTYPE might be, we can't prove
3787 ;; that an object of type FUNCTION doesn't satisfy it, so
3788 ;; we return success no matter what.
3790 (;; Otherwise both of them must be FUN-TYPE objects.
3792 ;; FIXME: For now we only check compatibility of the return
3793 ;; type, not argument types, and we don't even check the
3794 ;; return type very precisely (as per bug 94a). It would be
3795 ;; good to do a better job. Perhaps to check the
3796 ;; compatibility of the arguments, we should (1) redo
3797 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3798 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3799 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3800 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3801 (values-types-equal-or-intersect
3802 (fun-type-returns defined-ftype)
3803 (fun-type-returns declared-ftype))))))
3805 ;;; This messy case of CTYPE for NUMBER is shared between the
3806 ;;; cross-compiler and the target system.
3807 (defun ctype-of-number (x)
3808 (let ((num (if (complexp x) (realpart x) x)))
3809 (multiple-value-bind (complexp low high)
3810 (if (complexp x)
3811 (let ((imag (imagpart x)))
3812 (values :complex (min num imag) (max num imag)))
3813 (values :real num num))
3814 (make-numeric-type :class (etypecase num
3815 (integer (if (complexp x)
3816 (if (integerp (imagpart x))
3817 'integer
3818 'rational)
3819 'integer))
3820 (rational 'rational)
3821 (float 'float))
3822 :format (and (floatp num) (float-format-name num))
3823 :complexp complexp
3824 :low low
3825 :high high))))
3827 ;;; The following function is a generic driver for approximating
3828 ;;; set-valued functions over types. Putting this here because it'll
3829 ;;; probably be useful for a lot of type analyses.
3831 ;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
3833 ;;; We compute an over or under-approximation of the set
3835 ;;; F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
3837 ;;; via set-valued approximations of f, OVER and UNDER.
3839 ;;; These functions must have the property that
3840 ;;; Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
3841 ;;; Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
3843 ;;; The driver is also parameterised over the finite set
3844 ;;; representation.
3846 ;;; Union, intersection and difference are binary functions to compute
3847 ;;; set union, intersection and difference. Top and bottom are the
3848 ;;; concrete representations for the universe and empty sets; we never
3849 ;;; call the set functions on top or bottom, so it's safe to use
3850 ;;; special values there.
3852 ;;; Arguments:
3854 ;;; TYPE: the ctype for which we wish to approximate F(TYPE)
3855 ;;; OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
3856 ;;; You usually want T.
3857 ;;; UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
3858 ;;; Conform to cl::(union/intersection/set-difference). Passing NIL will
3859 ;;; disable some cleverness and result in quicker computation of coarser
3860 ;;; approximations. However, passing difference without union and intersection
3861 ;;; will probably not end well.
3862 ;;; TOP/BOTTOM: concrete representation of the universe and empty set. Finite
3863 ;;; set operations are never called on TOP/BOTTOM, so it's safe to use special
3864 ;;; values there.
3865 ;;; OVER/UNDER: the set-valued approximations of F.
3867 ;;; Implementation details.
3869 ;;; It's a straightforward walk down the type.
3870 ;;; Union types -> take the union of children, intersection ->
3871 ;;; intersect. There is some complication for negation types: we must
3872 ;;; not only negate the result, but also flip from overapproximating
3873 ;;; to underapproximating in the children (or vice versa).
3875 ;;; We represent sets as a pair of (negate-p finite-set) in order to
3876 ;;; support negation types.
3878 (declaim (inline generic-abstract-type-function))
3879 (defun generic-abstract-type-function
3880 (type overapproximate
3881 union intersection difference
3882 top bottom
3883 over under)
3884 (labels ((union* (x y)
3885 ;; wrappers to avoid calling union/intersection on
3886 ;; top/bottom.
3887 (cond ((or (eql x top)
3888 (eql y top))
3889 top)
3890 ((eql x bottom) y)
3891 ((eql y bottom) x)
3893 (funcall union x y))))
3894 (intersection* (x y)
3895 (cond ((or (eql x bottom)
3896 (eql y bottom))
3897 bottom)
3898 ((eql x top) y)
3899 ((eql y top) x)
3901 (funcall intersection x y))))
3902 (unite (not-x-p x not-y-p y)
3903 ;; if we only have one negated set, it's x.
3904 (when not-y-p
3905 (rotatef not-x-p not-y-p)
3906 (rotatef x y))
3907 (cond ((and not-x-p not-y-p)
3908 ;; -x \/ -y = -(x /\ y)
3909 (normalize t (intersection* x y)))
3910 (not-x-p
3911 ;; -x \/ y = -(x \ y)
3912 (cond ((eql x top)
3913 (values nil y))
3914 ((or (eql y top)
3915 (eql x bottom))
3916 (values nil top))
3917 ((eql y bottom)
3918 (values t x))
3920 (normalize t
3921 (funcall difference x y)))))
3923 (values nil (union* x y)))))
3924 (intersect (not-x-p x not-y-p y)
3925 (when not-y-p
3926 (rotatef not-x-p not-y-p)
3927 (rotatef x y))
3928 (cond ((and not-x-p not-y-p)
3929 ;; -x /\ -y = -(x \/ y)
3930 (normalize t (union* x y)))
3931 (not-x-p
3932 ;; -x /\ y = y \ x
3933 (cond ((or (eql x top) (eql y bottom))
3934 (values nil bottom))
3935 ((eql x bottom)
3936 (values nil y))
3937 ((eql y top)
3938 (values t x))
3940 (values nil (funcall difference y x)))))
3942 (values nil (intersection* x y)))))
3943 (normalize (not-x-p x)
3944 ;; catch some easy cases of redundant negation.
3945 (cond ((not not-x-p)
3946 (values nil x))
3947 ((eql x top)
3948 bottom)
3949 ((eql x bottom)
3950 top)
3952 (values t x))))
3953 (default (overapproximate)
3954 ;; default value
3955 (if overapproximate top bottom))
3956 (walk-union (types overapproximate)
3957 ;; Only do this if union is provided.
3958 (unless union
3959 (return-from walk-union (default overapproximate)))
3960 ;; Reduce/union from bottom.
3961 (let ((not-acc-p nil)
3962 (acc bottom))
3963 (dolist (type types (values not-acc-p acc))
3964 (multiple-value-bind (not x)
3965 (walk type overapproximate)
3966 (setf (values not-acc-p acc)
3967 (unite not-acc-p acc not x)))
3968 ;; Early exit on top set.
3969 (when (and (eql acc top)
3970 (not not-acc-p))
3971 (return (values nil top))))))
3972 (walk-intersection (types overapproximate)
3973 ;; Skip if we don't know how to intersect sets
3974 (unless intersection
3975 (return-from walk-intersection (default overapproximate)))
3976 ;; Reduce/intersection from top
3977 (let ((not-acc-p nil)
3978 (acc top))
3979 (dolist (type types (values not-acc-p acc))
3980 (multiple-value-bind (not x)
3981 (walk type overapproximate)
3982 (setf (values not-acc-p acc)
3983 (intersect not-acc-p acc not x)))
3984 (when (and (eql acc bottom)
3985 (not not-acc-p))
3986 (return (values nil bottom))))))
3987 (walk-negate (type overapproximate)
3988 ;; Don't introduce negated types if we don't know how to
3989 ;; subtract sets.
3990 (unless difference
3991 (return-from walk-negate (default overapproximate)))
3992 (multiple-value-bind (not x)
3993 (walk type (not overapproximate))
3994 (normalize (not not) x)))
3995 (walk (type overapproximate)
3996 (typecase type
3997 (union-type
3998 (walk-union (union-type-types type) overapproximate))
3999 ((cons (member or union))
4000 (walk-union (rest type) overapproximate))
4001 (intersection-type
4002 (walk-intersection (intersection-type-types type) overapproximate))
4003 ((cons (member and intersection))
4004 (walk-intersection (rest type) overapproximate))
4005 (negation-type
4006 (walk-negate (negation-type-type type) overapproximate))
4007 ((cons (eql not))
4008 (walk-negate (second type) overapproximate))
4010 (values nil
4011 (if overapproximate
4012 (if over
4013 (funcall over type)
4014 (default t))
4015 (if under
4016 (funcall under type)
4017 (default nil))))))))
4018 (multiple-value-call #'normalize (walk type overapproximate))))
4019 (declaim (notinline generic-abstract-type-function))
4021 ;;; Standard list representation of sets. Use CL:* for the universe.
4022 (defun list-abstract-type-function (type over &key under (overapproximate t))
4023 (declare (inline generic-abstract-type-function))
4024 (generic-abstract-type-function
4025 type overapproximate
4026 #'union #'intersection #'set-difference
4027 '* nil
4028 over under))
4030 (!defun-from-collected-cold-init-forms !late-type-cold-init)
4032 #-sb-xc (!late-type-cold-init2)
4034 (/show0 "late-type.lisp end of file")