Declare EXPLICIT-CHECK on CONCATENATE, MAKE-STRING, SET-PPRINT-DISPATCH.
[sbcl.git] / src / code / float.lisp
blob53610f2d091dbe1e6a031bc9856d6a75a92adb4f
1 ;;;; This file contains the definitions of float-specific number
2 ;;;; support (other than irrational stuff, which is in irrat.) There is
3 ;;;; code in here that assumes there are only two float formats: IEEE
4 ;;;; single and double. (LONG-FLOAT support has been added, but bugs
5 ;;;; may still remain due to old code which assumes this dichotomy.)
7 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; more information.
9 ;;;;
10 ;;;; This software is derived from the CMU CL system, which was
11 ;;;; written at Carnegie Mellon University and released into the
12 ;;;; public domain. The software is in the public domain and is
13 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
14 ;;;; files for more information.
16 (in-package "SB!KERNEL")
18 ;;;; float predicates and environment query
20 #!-sb-fluid
21 (declaim (maybe-inline float-denormalized-p float-infinity-p float-nan-p
22 float-trapping-nan-p))
24 (defun float-denormalized-p (x)
25 #!+sb-doc
26 "Return true if the float X is denormalized."
27 (number-dispatch ((x float))
28 ((single-float)
29 (and (zerop (ldb sb!vm:single-float-exponent-byte (single-float-bits x)))
30 (not (zerop x))))
31 ((double-float)
32 (and (zerop (ldb sb!vm:double-float-exponent-byte
33 (double-float-high-bits x)))
34 (not (zerop x))))
35 #!+(and long-float x86)
36 ((long-float)
37 (and (zerop (ldb sb!vm:long-float-exponent-byte (long-float-exp-bits x)))
38 (not (zerop x))))))
40 (defmacro !define-float-dispatching-function
41 (name doc single double #!+(and long-float x86) long)
42 (declare (ignorable doc))
43 `(defun ,name (x)
44 #!+sb-doc ,doc
45 (number-dispatch ((x float))
46 ((single-float)
47 (let ((bits (single-float-bits x)))
48 (and (> (ldb sb!vm:single-float-exponent-byte bits)
49 sb!vm:single-float-normal-exponent-max)
50 ,single)))
51 ((double-float)
52 (let ((hi (double-float-high-bits x))
53 (lo (double-float-low-bits x)))
54 (declare (ignorable lo))
55 (and (> (ldb sb!vm:double-float-exponent-byte hi)
56 sb!vm:double-float-normal-exponent-max)
57 ,double)))
58 #!+(and long-float x86)
59 ((long-float)
60 (let ((exp (long-float-exp-bits x))
61 (hi (long-float-high-bits x))
62 (lo (long-float-low-bits x)))
63 (declare (ignorable lo))
64 (and (> (ldb sb!vm:long-float-exponent-byte exp)
65 sb!vm:long-float-normal-exponent-max)
66 ,long))))))
68 (!define-float-dispatching-function float-infinity-p
69 "Return true if the float X is an infinity (+ or -)."
70 (zerop (ldb sb!vm:single-float-significand-byte bits))
71 (and (zerop (ldb sb!vm:double-float-significand-byte hi))
72 (zerop lo))
73 #!+(and long-float x86)
74 (and (zerop (ldb sb!vm:long-float-significand-byte hi))
75 (zerop lo)))
77 (!define-float-dispatching-function float-nan-p
78 "Return true if the float X is a NaN (Not a Number)."
79 #!-(or mips hppa)
80 (not (zerop (ldb sb!vm:single-float-significand-byte bits)))
81 #!+(or mips hppa)
82 (zerop (logand (ldb sb!vm:single-float-significand-byte bits)
83 sb!vm:single-float-trapping-nan-bit))
84 #!-(or mips hppa)
85 (or (not (zerop (ldb sb!vm:double-float-significand-byte hi)))
86 (not (zerop lo)))
87 #!+(or mips hppa)
88 (zerop (logand (ldb sb!vm:double-float-significand-byte hi)
89 sb!vm:double-float-trapping-nan-bit))
90 #!+(and long-float x86)
91 (or (not (zerop (ldb sb!vm:long-float-significand-byte hi)))
92 (not (zerop lo))))
94 (!define-float-dispatching-function float-trapping-nan-p
96 "Return true if the float X is a trapping NaN (Not a Number)."
97 #!-(or mips hppa)
98 (zerop (logand (ldb sb!vm:single-float-significand-byte bits)
99 sb!vm:single-float-trapping-nan-bit))
100 #!+(or mips hppa)
101 (not (zerop (ldb sb!vm:single-float-significand-byte bits)))
102 #!-(or mips hppa)
103 (zerop (logand (ldb sb!vm:double-float-significand-byte hi)
104 sb!vm:double-float-trapping-nan-bit))
105 #!+(or mips hppa)
106 (or (not (zerop (ldb sb!vm:double-float-significand-byte hi)))
107 (not (zerop lo)))
108 #!+(and long-float x86)
109 (zerop (logand (ldb sb!vm:long-float-significand-byte hi)
110 sb!vm:long-float-trapping-nan-bit)))
112 ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the
113 ;;; actual exponent (and hence how denormalized it is), otherwise we just
114 ;;; return the number of digits or 0.
115 #!-sb-fluid (declaim (maybe-inline float-precision))
116 (defun float-precision (f)
117 #!+sb-doc
118 "Return a non-negative number of significant digits in its float argument.
119 Will be less than FLOAT-DIGITS if denormalized or zero."
120 (macrolet ((frob (digits bias decode)
121 `(cond ((zerop f) 0)
122 ((float-denormalized-p f)
123 (multiple-value-bind (ignore exp) (,decode f)
124 (declare (ignore ignore))
125 (truly-the fixnum
126 (+ ,digits (1- ,digits) ,bias exp))))
128 ,digits))))
129 (number-dispatch ((f float))
130 ((single-float)
131 (frob sb!vm:single-float-digits sb!vm:single-float-bias
132 integer-decode-single-denorm))
133 ((double-float)
134 (frob sb!vm:double-float-digits sb!vm:double-float-bias
135 integer-decode-double-denorm))
136 #!+long-float
137 ((long-float)
138 (frob sb!vm:long-float-digits sb!vm:long-float-bias
139 integer-decode-long-denorm)))))
141 (defun float-sign (float1 &optional (float2 (float 1 float1)))
142 #!+sb-doc
143 "Return a floating-point number that has the same sign as
144 FLOAT1 and, if FLOAT2 is given, has the same absolute value
145 as FLOAT2."
146 (declare (float float1 float2))
147 (* (if (etypecase float1
148 (single-float (minusp (single-float-bits float1)))
149 (double-float (minusp (double-float-high-bits float1)))
150 #!+long-float
151 (long-float (minusp (long-float-exp-bits float1))))
152 (float -1 float1)
153 (float 1 float1))
154 (abs float2)))
156 (defun float-format-digits (format)
157 (ecase format
158 ((short-float single-float) sb!vm:single-float-digits)
159 ((double-float #!-long-float long-float) sb!vm:double-float-digits)
160 #!+long-float
161 (long-float sb!vm:long-float-digits)))
163 #!-sb-fluid (declaim (inline float-digits float-radix))
165 (defun float-digits (f)
166 (number-dispatch ((f float))
167 ((single-float) sb!vm:single-float-digits)
168 ((double-float) sb!vm:double-float-digits)
169 #!+long-float
170 ((long-float) sb!vm:long-float-digits)))
172 (defun float-radix (x)
173 #!+sb-doc
174 "Return (as an integer) the radix b of its floating-point argument."
175 (declare (ignore x) (type float x))
178 ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT
180 #!-sb-fluid
181 (declaim (maybe-inline integer-decode-single-float
182 integer-decode-double-float))
184 ;;; Handle the denormalized case of INTEGER-DECODE-FLOAT for SINGLE-FLOAT.
185 (defun integer-decode-single-denorm (x)
186 (declare (type single-float x))
187 (let* ((bits (single-float-bits (abs x)))
188 (sig (ash (ldb sb!vm:single-float-significand-byte bits) 1))
189 (extra-bias 0))
190 (declare (type (unsigned-byte 24) sig)
191 (type (integer 0 23) extra-bias))
192 (loop
193 (unless (zerop (logand sig sb!vm:single-float-hidden-bit))
194 (return))
195 (setq sig (ash sig 1))
196 (incf extra-bias))
197 (values sig
198 (- (- sb!vm:single-float-bias)
199 sb!vm:single-float-digits
200 extra-bias)
201 (if (minusp (float-sign x)) -1 1))))
203 ;;; Handle the single-float case of INTEGER-DECODE-FLOAT. If an infinity or
204 ;;; NaN, error. If a denorm, call i-d-s-DENORM to handle it.
205 (defun integer-decode-single-float (x)
206 (declare (single-float x))
207 (let* ((bits (single-float-bits (abs x)))
208 (exp (ldb sb!vm:single-float-exponent-byte bits))
209 (sig (ldb sb!vm:single-float-significand-byte bits))
210 (sign (if (minusp (float-sign x)) -1 1))
211 (biased (- exp sb!vm:single-float-bias sb!vm:single-float-digits)))
212 (declare (fixnum biased))
213 (unless (<= exp sb!vm:single-float-normal-exponent-max)
214 (error "can't decode NaN or infinity: ~S" x))
215 (cond ((and (zerop exp) (zerop sig))
216 (values 0 biased sign))
217 ((< exp sb!vm:single-float-normal-exponent-min)
218 (integer-decode-single-denorm x))
220 (values (logior sig sb!vm:single-float-hidden-bit) biased sign)))))
222 ;;; like INTEGER-DECODE-SINGLE-DENORM, only doubly so
223 (defun integer-decode-double-denorm (x)
224 (declare (type double-float x))
225 (let* ((high-bits (double-float-high-bits (abs x)))
226 (sig-high (ldb sb!vm:double-float-significand-byte high-bits))
227 (low-bits (double-float-low-bits x))
228 (sign (if (minusp (float-sign x)) -1 1))
229 (biased (- (- sb!vm:double-float-bias) sb!vm:double-float-digits)))
230 (if (zerop sig-high)
231 (let ((sig low-bits)
232 (extra-bias (- sb!vm:double-float-digits 33))
233 (bit (ash 1 31)))
234 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
235 (loop
236 (unless (zerop (logand sig bit)) (return))
237 (setq sig (ash sig 1))
238 (incf extra-bias))
239 (values (ash sig (- sb!vm:double-float-digits 32))
240 (truly-the fixnum (- biased extra-bias))
241 sign))
242 (let ((sig (ash sig-high 1))
243 (extra-bias 0))
244 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
245 (loop
246 (unless (zerop (logand sig sb!vm:double-float-hidden-bit))
247 (return))
248 (setq sig (ash sig 1))
249 (incf extra-bias))
250 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
251 (truly-the fixnum (- biased extra-bias))
252 sign)))))
254 ;;; like INTEGER-DECODE-SINGLE-FLOAT, only doubly so
255 (defun integer-decode-double-float (x)
256 (declare (double-float x))
257 (let* ((abs (abs x))
258 (hi (double-float-high-bits abs))
259 (lo (double-float-low-bits abs))
260 (exp (ldb sb!vm:double-float-exponent-byte hi))
261 (sig (ldb sb!vm:double-float-significand-byte hi))
262 (sign (if (minusp (float-sign x)) -1 1))
263 (biased (- exp sb!vm:double-float-bias sb!vm:double-float-digits)))
264 (declare (fixnum biased))
265 (unless (<= exp sb!vm:double-float-normal-exponent-max)
266 (error "Can't decode NaN or infinity: ~S." x))
267 (cond ((and (zerop exp) (zerop sig) (zerop lo))
268 (values 0 biased sign))
269 ((< exp sb!vm:double-float-normal-exponent-min)
270 (integer-decode-double-denorm x))
272 (values
273 (logior (ash (logior (ldb sb!vm:double-float-significand-byte hi)
274 sb!vm:double-float-hidden-bit)
277 biased sign)))))
279 #!+(and long-float x86)
280 (defun integer-decode-long-denorm (x)
281 (declare (type long-float x))
282 (let* ((high-bits (long-float-high-bits (abs x)))
283 (sig-high (ldb sb!vm:long-float-significand-byte high-bits))
284 (low-bits (long-float-low-bits x))
285 (sign (if (minusp (float-sign x)) -1 1))
286 (biased (- (- sb!vm:long-float-bias) sb!vm:long-float-digits)))
287 (if (zerop sig-high)
288 (let ((sig low-bits)
289 (extra-bias (- sb!vm:long-float-digits 33))
290 (bit (ash 1 31)))
291 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
292 (loop
293 (unless (zerop (logand sig bit)) (return))
294 (setq sig (ash sig 1))
295 (incf extra-bias))
296 (values (ash sig (- sb!vm:long-float-digits 32))
297 (truly-the fixnum (- biased extra-bias))
298 sign))
299 (let ((sig (ash sig-high 1))
300 (extra-bias 0))
301 (declare (type (unsigned-byte 32) sig) (fixnum extra-bias))
302 (loop
303 (unless (zerop (logand sig sb!vm:long-float-hidden-bit))
304 (return))
305 (setq sig (ash sig 1))
306 (incf extra-bias))
307 (values (logior (ash sig 32) (ash low-bits (1- extra-bias)))
308 (truly-the fixnum (- biased extra-bias))
309 sign)))))
311 #!+(and long-float x86)
312 (defun integer-decode-long-float (x)
313 (declare (long-float x))
314 (let* ((hi (long-float-high-bits x))
315 (lo (long-float-low-bits x))
316 (exp-bits (long-float-exp-bits x))
317 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
318 (sign (if (minusp exp-bits) -1 1))
319 (biased (- exp sb!vm:long-float-bias sb!vm:long-float-digits)))
320 (declare (fixnum biased))
321 (unless (<= exp sb!vm:long-float-normal-exponent-max)
322 (error "can't decode NaN or infinity: ~S" x))
323 (cond ((and (zerop exp) (zerop hi) (zerop lo))
324 (values 0 biased sign))
325 ((< exp sb!vm:long-float-normal-exponent-min)
326 (integer-decode-long-denorm x))
328 (values (logior (ash hi 32) lo) biased sign)))))
330 ;;; Dispatch to the correct type-specific i-d-f function.
331 (defun integer-decode-float (x)
332 #!+sb-doc
333 "Return three values:
334 1) an integer representation of the significand.
335 2) the exponent for the power of 2 that the significand must be multiplied
336 by to get the actual value. This differs from the DECODE-FLOAT exponent
337 by FLOAT-DIGITS, since the significand has been scaled to have all its
338 digits before the radix point.
339 3) -1 or 1 (i.e. the sign of the argument.)"
340 (number-dispatch ((x float))
341 ((single-float)
342 (integer-decode-single-float x))
343 ((double-float)
344 (integer-decode-double-float x))
345 #!+long-float
346 ((long-float)
347 (integer-decode-long-float x))))
349 #!-sb-fluid (declaim (maybe-inline decode-single-float decode-double-float))
351 ;;; Handle the denormalized case of DECODE-SINGLE-FLOAT. We call
352 ;;; INTEGER-DECODE-SINGLE-DENORM and then make the result into a float.
353 (defun decode-single-denorm (x)
354 (declare (type single-float x))
355 (multiple-value-bind (sig exp sign) (integer-decode-single-denorm x)
356 (values (make-single-float
357 (dpb sig sb!vm:single-float-significand-byte
358 (dpb sb!vm:single-float-bias
359 sb!vm:single-float-exponent-byte
360 0)))
361 (truly-the fixnum (+ exp sb!vm:single-float-digits))
362 (float sign x))))
364 ;;; Handle the single-float case of DECODE-FLOAT. If an infinity or NaN,
365 ;;; error. If a denorm, call d-s-DENORM to handle it.
366 (defun decode-single-float (x)
367 (declare (single-float x))
368 (let* ((bits (single-float-bits (abs x)))
369 (exp (ldb sb!vm:single-float-exponent-byte bits))
370 (sign (float-sign x))
371 (biased (truly-the single-float-exponent
372 (- exp sb!vm:single-float-bias))))
373 (unless (<= exp sb!vm:single-float-normal-exponent-max)
374 (error "can't decode NaN or infinity: ~S" x))
375 (cond ((zerop x)
376 (values 0.0f0 biased sign))
377 ((< exp sb!vm:single-float-normal-exponent-min)
378 (decode-single-denorm x))
380 (values (make-single-float
381 (dpb sb!vm:single-float-bias
382 sb!vm:single-float-exponent-byte
383 bits))
384 biased sign)))))
386 ;;; like DECODE-SINGLE-DENORM, only doubly so
387 (defun decode-double-denorm (x)
388 (declare (double-float x))
389 (multiple-value-bind (sig exp sign) (integer-decode-double-denorm x)
390 (values (make-double-float
391 (dpb (logand (ash sig -32) (lognot sb!vm:double-float-hidden-bit))
392 sb!vm:double-float-significand-byte
393 (dpb sb!vm:double-float-bias
394 sb!vm:double-float-exponent-byte 0))
395 (ldb (byte 32 0) sig))
396 (truly-the fixnum (+ exp sb!vm:double-float-digits))
397 (float sign x))))
399 ;;; like DECODE-SINGLE-FLOAT, only doubly so
400 (defun decode-double-float (x)
401 (declare (double-float x))
402 (let* ((abs (abs x))
403 (hi (double-float-high-bits abs))
404 (lo (double-float-low-bits abs))
405 (exp (ldb sb!vm:double-float-exponent-byte hi))
406 (sign (float-sign x))
407 (biased (truly-the double-float-exponent
408 (- exp sb!vm:double-float-bias))))
409 (unless (<= exp sb!vm:double-float-normal-exponent-max)
410 (error "can't decode NaN or infinity: ~S" x))
411 (cond ((zerop x)
412 (values 0.0d0 biased sign))
413 ((< exp sb!vm:double-float-normal-exponent-min)
414 (decode-double-denorm x))
416 (values (make-double-float
417 (dpb sb!vm:double-float-bias
418 sb!vm:double-float-exponent-byte hi)
420 biased sign)))))
422 #!+(and long-float x86)
423 (defun decode-long-denorm (x)
424 (declare (long-float x))
425 (multiple-value-bind (sig exp sign) (integer-decode-long-denorm x)
426 (values (make-long-float sb!vm:long-float-bias (ash sig -32)
427 (ldb (byte 32 0) sig))
428 (truly-the fixnum (+ exp sb!vm:long-float-digits))
429 (float sign x))))
431 #!+(and long-float x86)
432 (defun decode-long-float (x)
433 (declare (long-float x))
434 (let* ((hi (long-float-high-bits x))
435 (lo (long-float-low-bits x))
436 (exp-bits (long-float-exp-bits x))
437 (exp (ldb sb!vm:long-float-exponent-byte exp-bits))
438 (sign (if (minusp exp-bits) -1l0 1l0))
439 (biased (truly-the long-float-exponent
440 (- exp sb!vm:long-float-bias))))
441 (unless (<= exp sb!vm:long-float-normal-exponent-max)
442 (error "can't decode NaN or infinity: ~S" x))
443 (cond ((zerop x)
444 (values 0.0l0 biased sign))
445 ((< exp sb!vm:long-float-normal-exponent-min)
446 (decode-long-denorm x))
448 (values (make-long-float
449 (dpb sb!vm:long-float-bias sb!vm:long-float-exponent-byte
450 exp-bits)
453 biased sign)))))
455 ;;; Dispatch to the appropriate type-specific function.
456 (defun decode-float (f)
457 #!+sb-doc
458 "Return three values:
459 1) a floating-point number representing the significand. This is always
460 between 0.5 (inclusive) and 1.0 (exclusive).
461 2) an integer representing the exponent.
462 3) -1.0 or 1.0 (i.e. the sign of the argument.)"
463 (number-dispatch ((f float))
464 ((single-float)
465 (decode-single-float f))
466 ((double-float)
467 (decode-double-float f))
468 #!+long-float
469 ((long-float)
470 (decode-long-float f))))
472 ;;;; SCALE-FLOAT
474 #!-sb-fluid (declaim (maybe-inline scale-single-float scale-double-float))
476 ;;; Handle float scaling where the X is denormalized or the result is
477 ;;; denormalized or underflows to 0.
478 (defun scale-float-maybe-underflow (x exp)
479 (multiple-value-bind (sig old-exp) (integer-decode-float x)
480 (let* ((digits (float-digits x))
481 (new-exp (+ exp old-exp digits
482 (etypecase x
483 (single-float sb!vm:single-float-bias)
484 (double-float sb!vm:double-float-bias))))
485 (sign (if (minusp (float-sign x)) 1 0)))
486 (cond
487 ((< new-exp
488 (etypecase x
489 (single-float sb!vm:single-float-normal-exponent-min)
490 (double-float sb!vm:double-float-normal-exponent-min)))
491 (when (sb!vm:current-float-trap :inexact)
492 (error 'floating-point-inexact :operation 'scale-float
493 :operands (list x exp)))
494 (when (sb!vm:current-float-trap :underflow)
495 (error 'floating-point-underflow :operation 'scale-float
496 :operands (list x exp)))
497 (let ((shift (1- new-exp)))
498 (if (< shift (- (1- digits)))
499 (float-sign x 0.0)
500 (etypecase x
501 (single-float (single-from-bits sign 0 (ash sig shift)))
502 (double-float (double-from-bits sign 0 (ash sig shift)))))))
504 (etypecase x
505 (single-float (single-from-bits sign new-exp sig))
506 (double-float (double-from-bits sign new-exp sig))))))))
508 ;;; Called when scaling a float overflows, or the original float was a
509 ;;; NaN or infinity. If overflow errors are trapped, then error,
510 ;;; otherwise return the appropriate infinity. If a NaN, signal or not
511 ;;; as appropriate.
512 (defun scale-float-maybe-overflow (x exp)
513 (cond
514 ((float-infinity-p x)
515 ;; Infinity is infinity, no matter how small...
517 ((float-nan-p x)
518 (when (and (float-trapping-nan-p x)
519 (sb!vm:current-float-trap :invalid))
520 (error 'floating-point-invalid-operation :operation 'scale-float
521 :operands (list x exp)))
524 (when (sb!vm:current-float-trap :overflow)
525 (error 'floating-point-overflow :operation 'scale-float
526 :operands (list x exp)))
527 (when (sb!vm:current-float-trap :inexact)
528 (error 'floating-point-inexact :operation 'scale-float
529 :operands (list x exp)))
530 (* (float-sign x)
531 (etypecase x
532 (single-float
533 ;; SINGLE-FLOAT-POSITIVE-INFINITY
534 (single-from-bits 0 (1+ sb!vm:single-float-normal-exponent-max) 0))
535 (double-float
536 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
537 (double-from-bits 0 (1+ sb!vm:double-float-normal-exponent-max) 0)))))))
539 ;;; Scale a single or double float, calling the correct over/underflow
540 ;;; functions.
541 (defun scale-single-float (x exp)
542 (declare (single-float x) (integer exp))
543 (etypecase exp
544 (fixnum
545 (let* ((bits (single-float-bits x))
546 (old-exp (ldb sb!vm:single-float-exponent-byte bits))
547 (new-exp (+ old-exp exp)))
548 (cond
549 ((zerop x) x)
550 ((or (< old-exp sb!vm:single-float-normal-exponent-min)
551 (< new-exp sb!vm:single-float-normal-exponent-min))
552 (scale-float-maybe-underflow x exp))
553 ((or (> old-exp sb!vm:single-float-normal-exponent-max)
554 (> new-exp sb!vm:single-float-normal-exponent-max))
555 (scale-float-maybe-overflow x exp))
557 (make-single-float (dpb new-exp
558 sb!vm:single-float-exponent-byte
559 bits))))))
560 (unsigned-byte (scale-float-maybe-overflow x exp))
561 ((integer * 0) (scale-float-maybe-underflow x exp))))
562 (defun scale-double-float (x exp)
563 (declare (double-float x) (integer exp))
564 (etypecase exp
565 (fixnum
566 (let* ((hi (double-float-high-bits x))
567 (lo (double-float-low-bits x))
568 (old-exp (ldb sb!vm:double-float-exponent-byte hi))
569 (new-exp (+ old-exp exp)))
570 (cond
571 ((zerop x) x)
572 ((or (< old-exp sb!vm:double-float-normal-exponent-min)
573 (< new-exp sb!vm:double-float-normal-exponent-min))
574 (scale-float-maybe-underflow x exp))
575 ((or (> old-exp sb!vm:double-float-normal-exponent-max)
576 (> new-exp sb!vm:double-float-normal-exponent-max))
577 (scale-float-maybe-overflow x exp))
579 (make-double-float (dpb new-exp sb!vm:double-float-exponent-byte hi)
580 lo)))))
581 (unsigned-byte (scale-float-maybe-overflow x exp))
582 ((integer * 0) (scale-float-maybe-underflow x exp))))
584 #!+(and x86 long-float)
585 (defun scale-long-float (x exp)
586 (declare (long-float x) (integer exp))
587 (scale-float x exp))
589 ;;; Dispatch to the correct type-specific scale-float function.
590 (defun scale-float (f ex)
591 #!+sb-doc
592 "Return the value (* f (expt (float 2 f) ex)), but with no unnecessary loss
593 of precision or overflow."
594 (number-dispatch ((f float))
595 ((single-float)
596 (scale-single-float f ex))
597 ((double-float)
598 (scale-double-float f ex))
599 #!+long-float
600 ((long-float)
601 (scale-long-float f ex))))
603 ;;;; converting to/from floats
605 (defun float (number &optional (other () otherp))
606 #!+sb-doc
607 "Converts any REAL to a float. If OTHER is not provided, it returns a
608 SINGLE-FLOAT if NUMBER is not already a FLOAT. If OTHER is provided, the
609 result is the same float format as OTHER."
610 (if otherp
611 (number-dispatch ((number real) (other float))
612 (((foreach rational single-float double-float #!+long-float long-float)
613 (foreach single-float double-float #!+long-float long-float))
614 (coerce number '(dispatch-type other))))
615 (if (floatp number)
616 number
617 (coerce number 'single-float))))
619 (macrolet ((frob (name type)
620 `(defun ,name (x)
621 (number-dispatch ((x real))
622 (((foreach single-float double-float #!+long-float long-float
623 fixnum))
624 (coerce x ',type))
625 ((bignum)
626 (bignum-to-float x ',type))
627 ((ratio)
628 (float-ratio x ',type))))))
629 (frob %single-float single-float)
630 (frob %double-float double-float)
631 #!+long-float
632 (frob %long-float long-float))
634 ;;; Convert a ratio to a float. We avoid any rounding error by doing an
635 ;;; integer division. Accuracy is important to preserve print-read
636 ;;; consistency, since this is ultimately how the reader reads a float. We
637 ;;; scale the numerator by a power of two until the division results in the
638 ;;; desired number of fraction bits, then do round-to-nearest.
639 (defun float-ratio (x format)
640 (let* ((signed-num (numerator x))
641 (plusp (plusp signed-num))
642 (num (if plusp signed-num (- signed-num)))
643 (den (denominator x))
644 (digits (float-format-digits format))
645 (scale 0))
646 (declare (fixnum digits scale))
647 ;; Strip any trailing zeros from the denominator and move it into the scale
648 ;; factor (to minimize the size of the operands.)
649 (let ((den-twos (1- (integer-length (logxor den (1- den))))))
650 (declare (fixnum den-twos))
651 (decf scale den-twos)
652 (setq den (ash den (- den-twos))))
653 ;; Guess how much we need to scale by from the magnitudes of the numerator
654 ;; and denominator. We want one extra bit for a guard bit.
655 (let* ((num-len (integer-length num))
656 (den-len (integer-length den))
657 (delta (- den-len num-len))
658 (shift (1+ (the fixnum (+ delta digits))))
659 (shifted-num (ash num shift)))
660 (declare (fixnum delta shift))
661 (decf scale delta)
662 (labels ((float-and-scale (bits)
663 (let* ((bits (ash bits -1))
664 (len (integer-length bits)))
665 (cond ((> len digits)
666 (aver (= len (the fixnum (1+ digits))))
667 (scale-float (floatit (ash bits -1)) (1+ scale)))
669 (scale-float (floatit bits) scale)))))
670 (floatit (bits)
671 (let ((sign (if plusp 0 1)))
672 (case format
673 (single-float
674 (single-from-bits sign sb!vm:single-float-bias bits))
675 (double-float
676 (double-from-bits sign sb!vm:double-float-bias bits))
677 #!+long-float
678 (long-float
679 (long-from-bits sign sb!vm:long-float-bias bits))))))
680 (loop
681 (multiple-value-bind (fraction-and-guard rem)
682 (truncate shifted-num den)
683 (let ((extra (- (integer-length fraction-and-guard) digits)))
684 (declare (fixnum extra))
685 (cond ((/= extra 1)
686 (aver (> extra 1)))
687 ((oddp fraction-and-guard)
688 (return
689 (if (zerop rem)
690 (float-and-scale
691 (if (zerop (logand fraction-and-guard 2))
692 fraction-and-guard
693 (1+ fraction-and-guard)))
694 (float-and-scale (1+ fraction-and-guard)))))
696 (return (float-and-scale fraction-and-guard)))))
697 (setq shifted-num (ash shifted-num -1))
698 (incf scale)))))))
700 ;;; These might be useful if we ever have a machine without float/integer
701 ;;; conversion hardware. For now, we'll use special ops that
702 ;;; uninterruptibly frob the rounding modes & do ieee round-to-integer.
703 #+nil
704 (progn
705 ;; The compiler compiles a call to this when we are doing %UNARY-TRUNCATE
706 ;; and the result is known to be a fixnum. We can avoid some generic
707 ;; arithmetic in this case.
708 (defun %unary-truncate-single-float/fixnum (x)
709 (declare (single-float x) (values fixnum))
710 (locally (declare (optimize (speed 3) (safety 0)))
711 (let* ((bits (single-float-bits x))
712 (exp (ldb sb!vm:single-float-exponent-byte bits))
713 (frac (logior (ldb sb!vm:single-float-significand-byte bits)
714 sb!vm:single-float-hidden-bit))
715 (shift (- exp sb!vm:single-float-digits sb!vm:single-float-bias)))
716 (when (> exp sb!vm:single-float-normal-exponent-max)
717 (error 'floating-point-invalid-operation :operator 'truncate
718 :operands (list x)))
719 (if (<= shift (- sb!vm:single-float-digits))
721 (let ((res (ash frac shift)))
722 (declare (type (unsigned-byte 31) res))
723 (if (minusp bits)
724 (- res)
725 res))))))
726 ;; Double-float version of this operation (see above single op).
727 (defun %unary-truncate-double-float/fixnum (x)
728 (declare (double-float x) (values fixnum))
729 (locally (declare (optimize (speed 3) (safety 0)))
730 (let* ((hi-bits (double-float-high-bits x))
731 (exp (ldb sb!vm:double-float-exponent-byte hi-bits))
732 (frac (logior (ldb sb!vm:double-float-significand-byte hi-bits)
733 sb!vm:double-float-hidden-bit))
734 (shift (- exp (- sb!vm:double-float-digits sb!vm:n-word-bits)
735 sb!vm:double-float-bias)))
736 (when (> exp sb!vm:double-float-normal-exponent-max)
737 (error 'floating-point-invalid-operation :operator 'truncate
738 :operands (list x)))
739 (if (<= shift (- sb!vm:n-word-bits sb!vm:double-float-digits))
741 (let* ((res-hi (ash frac shift))
742 (res (if (plusp shift)
743 (logior res-hi
744 (the fixnum
745 (ash (double-float-low-bits x)
746 (- shift sb!vm:n-word-bits))))
747 res-hi)))
748 (declare (type (unsigned-byte 31) res-hi res))
749 (if (minusp hi-bits)
750 (- res)
751 res)))))))
753 ;;; This function is called when we are doing a truncate without any funky
754 ;;; divisor, i.e. converting a float or ratio to an integer. Note that we do
755 ;;; *not* return the second value of truncate, so it must be computed by the
756 ;;; caller if needed.
758 ;;; In the float case, we pick off small arguments so that compiler
759 ;;; can use special-case operations. We use an exclusive test, since
760 ;;; (due to round-off error), (float most-positive-fixnum) is likely
761 ;;; to be equal to (1+ most-positive-fixnum). An exclusive test is
762 ;;; good enough, because most-positive-fixnum will be one less than a
763 ;;; power of two, and that power of two will be exactly representable
764 ;;; as a float (at least until we get 128-bit fixnums).
765 (defun %unary-truncate (number)
766 (number-dispatch ((number real))
767 ((integer) number)
768 ((ratio) (values (truncate (numerator number) (denominator number))))
769 (((foreach single-float double-float #!+long-float long-float))
770 (if (< (float most-negative-fixnum number)
771 number
772 (float most-positive-fixnum number))
773 (truly-the fixnum (%unary-truncate number))
774 (multiple-value-bind (bits exp) (integer-decode-float number)
775 (let ((res (ash bits exp)))
776 (if (minusp number)
777 (- res)
778 res)))))))
780 ;;; Specialized versions for floats.
781 (macrolet ((def (type name)
782 `(defun ,name (number)
783 (if (< ,(coerce sb!xc:most-negative-fixnum type)
784 number
785 ,(coerce sb!xc:most-positive-fixnum type))
786 (truly-the fixnum (,name number))
787 ;; General -- slow -- case.
788 (multiple-value-bind (bits exp) (integer-decode-float number)
789 (let ((res (ash bits exp)))
790 (if (minusp number)
791 (- res)
792 res)))))))
793 (def single-float %unary-truncate/single-float)
794 (def double-float %unary-truncate/double-float)
795 #!+long-float
796 (def double-float %unary-truncate/long-float))
798 ;;; Similar to %UNARY-TRUNCATE, but rounds to the nearest integer. If we
799 ;;; can't use the round primitive, then we do our own round-to-nearest on the
800 ;;; result of i-d-f. [Note that this rounding will really only happen with
801 ;;; double floats, since the whole single-float fraction will fit in a fixnum,
802 ;;; so all single-floats larger than most-positive-fixnum can be precisely
803 ;;; represented by an integer.]
804 (defun %unary-round (number)
805 (number-dispatch ((number real))
806 ((integer) number)
807 ((ratio) (values (round (numerator number) (denominator number))))
808 (((foreach single-float double-float #!+long-float long-float))
809 (if (< (float most-negative-fixnum number)
810 number
811 (float most-positive-fixnum number))
812 (truly-the fixnum (%unary-round number))
813 (multiple-value-bind (bits exp) (integer-decode-float number)
814 (let* ((shifted (ash bits exp))
815 (rounded (if (minusp exp)
816 (let ((fractional-bits (logand bits (lognot (ash -1 (- exp)))))
817 (0.5bits (ash 1 (- -1 exp))))
818 (cond
819 ((> fractional-bits 0.5bits) (1+ shifted))
820 ((< fractional-bits 0.5bits) shifted)
821 (t (if (oddp shifted) (1+ shifted) shifted))))
822 shifted)))
823 (if (minusp number)
824 (- rounded)
825 rounded)))))))
827 (defun %unary-ftruncate (number)
828 (number-dispatch ((number real))
829 ((integer) (float number))
830 ((ratio) (float (truncate (numerator number) (denominator number))))
831 (((foreach single-float double-float #!+long-float long-float))
832 (%unary-ftruncate number))))
834 (defun rational (x)
835 #!+sb-doc
836 "RATIONAL produces a rational number for any real numeric argument. This is
837 more efficient than RATIONALIZE, but it assumes that floating-point is
838 completely accurate, giving a result that isn't as pretty."
839 (number-dispatch ((x real))
840 (((foreach single-float double-float #!+long-float long-float))
841 (multiple-value-bind (bits exp) (integer-decode-float x)
842 (if (eql bits 0)
844 (let* ((int (if (minusp x) (- bits) bits))
845 (digits (float-digits x))
846 (ex (+ exp digits)))
847 (if (minusp ex)
848 (integer-/-integer int (ash 1 (+ digits (- ex))))
849 (integer-/-integer (ash int ex) (ash 1 digits)))))))
850 ((rational) x)))
852 ;;; This algorithm for RATIONALIZE, due to Bruno Haible, is included
853 ;;; with permission.
855 ;;; Algorithm (recursively presented):
856 ;;; If x is a rational number, return x.
857 ;;; If x = 0.0, return 0.
858 ;;; If x < 0.0, return (- (rationalize (- x))).
859 ;;; If x > 0.0:
860 ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
861 ;;; exponent, sign).
862 ;;; If m = 0 or e >= 0: return x = m*2^e.
863 ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
864 ;;; with smallest possible numerator and denominator.
865 ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
866 ;;; But in this case the result will be x itself anyway, regardless of
867 ;;; the choice of a. Therefore we can simply ignore this case.
868 ;;; Note 2: At first, we need to consider the closed interval [a,b].
869 ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself
870 ;;; has a denominator <= 2^|e|, we can restrict the seach to the open
871 ;;; interval (a,b).
872 ;;; So, for given a and b (0 < a < b) we are searching a rational number
873 ;;; y with a <= y <= b.
874 ;;; Recursive algorithm fraction_between(a,b):
875 ;;; c := (ceiling a)
876 ;;; if c < b
877 ;;; then return c ; because a <= c < b, c integer
878 ;;; else
879 ;;; ; a is not integer (otherwise we would have had c = a < b)
880 ;;; k := c-1 ; k = floor(a), k < a < b <= k+1
881 ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
882 ;;; ; note 1 <= 1/(b-k) < 1/(a-k)
884 ;;; You can see that we are actually computing a continued fraction expansion.
886 ;;; Algorithm (iterative):
887 ;;; If x is rational, return x.
888 ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa,
889 ;;; exponent, sign).
890 ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
891 ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
892 ;;; (positive and already in lowest terms because the denominator is a
893 ;;; power of two and the numerator is odd).
894 ;;; Start a continued fraction expansion
895 ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
896 ;;; Loop
897 ;;; c := (ceiling a)
898 ;;; if c >= b
899 ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
900 ;;; goto Loop
901 ;;; finally partial_quotient(c).
902 ;;; Here partial_quotient(c) denotes the iteration
903 ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
904 ;;; At the end, return s * (p[i]/q[i]).
905 ;;; This rational number is already in lowest terms because
906 ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
908 ;;; See also
909 ;;; Hardy, Wright: An introduction to number theory
910 ;;; and/or
911 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture17/>
912 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture18/>
914 (defun rationalize (x)
915 #!+sb-doc
916 "Converts any REAL to a RATIONAL. Floats are converted to a simple rational
917 representation exploiting the assumption that floats are only accurate to
918 their precision. RATIONALIZE (and also RATIONAL) preserve the invariant:
919 (= x (float (rationalize x) x))"
920 (number-dispatch ((x real))
921 (((foreach single-float double-float #!+long-float long-float))
922 ;; This is a fairly straigtforward implementation of the
923 ;; iterative algorithm above.
924 (multiple-value-bind (frac expo sign)
925 (integer-decode-float x)
926 (cond ((or (zerop frac) (>= expo 0))
927 (if (minusp sign)
928 (- (ash frac expo))
929 (ash frac expo)))
931 ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e),
932 ;; so build the fraction up immediately, without having to do
933 ;; a gcd.
934 (let ((a (build-ratio (- (* 2 frac) 1) (ash 1 (- 1 expo))))
935 (b (build-ratio (+ (* 2 frac) 1) (ash 1 (- 1 expo))))
936 (p0 0)
937 (q0 1)
938 (p1 1)
939 (q1 0))
940 (do ((c (ceiling a) (ceiling a)))
941 ((< c b)
942 (let ((top (+ (* c p1) p0))
943 (bot (+ (* c q1) q0)))
944 (build-ratio (if (minusp sign)
945 (- top)
946 top)
947 bot)))
948 (let* ((k (- c 1))
949 (p2 (+ (* k p1) p0))
950 (q2 (+ (* k q1) q0)))
951 (psetf a (/ (- b k))
952 b (/ (- a k)))
953 (setf p0 p1
954 q0 q1
955 p1 p2
956 q1 q2))))))))
957 ((rational) x)))