Eliminate style-warning about undefined type GLOBAL-VAR
[sbcl.git] / src / code / bignum.lisp
bloba39733fcc740351be01ae9741baa3bca97bbe913
1 ;;;; code to implement bignum support
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!BIGNUM")
14 ;;;; notes
16 ;;; comments from CMU CL:
17 ;;; These symbols define the interface to the number code:
18 ;;; add-bignums multiply-bignums negate-bignum subtract-bignum
19 ;;; multiply-bignum-and-fixnum multiply-fixnums
20 ;;; bignum-ashift-right bignum-ashift-left bignum-gcd
21 ;;; bignum-to-float bignum-integer-length
22 ;;; bignum-logical-and bignum-logical-ior bignum-logical-xor
23 ;;; bignum-logical-not bignum-load-byte
24 ;;; bignum-truncate bignum-plus-p bignum-compare make-small-bignum
25 ;;; bignum-logbitp bignum-logcount
26 ;;; These symbols define the interface to the compiler:
27 ;;; bignum-type bignum-element-type bignum-index %allocate-bignum
28 ;;; %bignum-length %bignum-set-length %bignum-ref %bignum-set
29 ;;; %digit-0-or-plusp %add-with-carry %subtract-with-borrow
30 ;;; %multiply-and-add %multiply %lognot %logand %logior %logxor
31 ;;; %fixnum-to-digit %bigfloor %fixnum-digit-with-correct-sign %ashl
32 ;;; %ashr %digit-logical-shift-right))
34 ;;; The following interfaces will either be assembler routines or code
35 ;;; sequences expanded into the code as basic bignum operations:
36 ;;; General:
37 ;;; %BIGNUM-LENGTH
38 ;;; %ALLOCATE-BIGNUM
39 ;;; %BIGNUM-REF
40 ;;; %NORMALIZE-BIGNUM
41 ;;; %BIGNUM-SET-LENGTH
42 ;;; %FIXNUM-DIGIT-WITH-CORRECT-SIGN
43 ;;; %SIGN-DIGIT
44 ;;; %ASHR
45 ;;; %ASHL
46 ;;; %BIGNUM-0-OR-PLUSP
47 ;;; %DIGIT-LOGICAL-SHIFT-RIGHT
48 ;;; General (May not exist when done due to sole use in %-routines.)
49 ;;; %DIGIT-0-OR-PLUSP
50 ;;; Addition:
51 ;;; %ADD-WITH-CARRY
52 ;;; Subtraction:
53 ;;; %SUBTRACT-WITH-BORROW
54 ;;; Multiplication
55 ;;; %MULTIPLY
56 ;;; Negation
57 ;;; %LOGNOT
58 ;;; Shifting (in place)
59 ;;; %NORMALIZE-BIGNUM-BUFFER
60 ;;; GCD/Relational operators:
61 ;;; %DIGIT-COMPARE
62 ;;; %DIGIT-GREATER
63 ;;; Relational operators:
64 ;;; %LOGAND
65 ;;; %LOGIOR
66 ;;; %LOGXOR
67 ;;; LDB
68 ;;; %FIXNUM-TO-DIGIT
69 ;;; TRUNCATE
70 ;;; %BIGFLOOR
71 ;;;
72 ;;; Note: The floating routines know about the float representation.
73 ;;;
74 ;;; PROBLEM 1:
75 ;;; There might be a problem with various LET's and parameters that take a
76 ;;; digit value. We need to write these so those things stay in machine
77 ;;; registers and number stack slots. I bind locals to these values, and I
78 ;;; use function on them -- ZEROP, ASH, etc.
79 ;;;
80 ;;; PROBLEM 2:
81 ;;; In shifting and byte operations, I use masks and logical operations that
82 ;;; could result in intermediate bignums. This is hidden by the current system,
83 ;;; but I may need to write these in a way that keeps these masks and logical
84 ;;; operations from diving into the Lisp level bignum code.
85 ;;;
86 ;;; To do:
87 ;;; fixnums
88 ;;; logior, logxor, logand
89 ;;; depending on relationals, < (twice) and <= (twice)
90 ;;; or write compare thing (twice).
91 ;;; LDB on fixnum with bignum result.
92 ;;; DPB on fixnum with bignum result.
93 ;;; TRUNCATE returns zero or one as one value and fixnum or minus fixnum
94 ;;; for the other value when given (truncate fixnum bignum).
95 ;;; Returns (truncate bignum fixnum) otherwise.
96 ;;; addition
97 ;;; subtraction (twice)
98 ;;; multiply
99 ;;; GCD
100 ;;; Write MASK-FIELD and DEPOSIT-FIELD in terms of logical operations.
101 ;;; DIVIDE
102 ;;; IF (/ x y) with bignums:
103 ;;; do the truncate, and if rem is 0, return quotient.
104 ;;; if rem is non-0
105 ;;; gcd of x and y.
106 ;;; "truncate" each by gcd, ignoring remainder 0.
107 ;;; form ratio of each result, bottom is positive.
109 ;;;; What's a bignum?
111 (defconstant digit-size sb!vm:n-word-bits)
113 (defconstant maximum-bignum-length (1- (ash 1 (- sb!vm:n-word-bits
114 sb!vm:n-widetag-bits))))
116 (defconstant all-ones-digit (1- (ash 1 sb!vm:n-word-bits)))
118 ;;;; internal inline routines
120 ;;; %ALLOCATE-BIGNUM must zero all elements.
121 (defun %allocate-bignum (length)
122 (declare (type bignum-length length))
123 (%allocate-bignum length))
125 ;;; Extract the length of the bignum.
126 (defun %bignum-length (bignum)
127 (declare (type bignum-type bignum))
128 (%bignum-length bignum))
130 ;;; %BIGNUM-REF needs to access bignums as obviously as possible, and it needs
131 ;;; to be able to return the digit somewhere no one looks for real objects.
132 (defun %bignum-ref (bignum i)
133 (declare (type bignum-type bignum)
134 (type bignum-index i))
135 (%bignum-ref bignum i))
136 (defun %bignum-set (bignum i value)
137 (declare (type bignum-type bignum)
138 (type bignum-index i)
139 (type bignum-element-type value))
140 (%bignum-set bignum i value))
142 ;;; Return T if digit is positive, or NIL if negative.
143 (defun %digit-0-or-plusp (digit)
144 (declare (type bignum-element-type digit))
145 (not (logbitp (1- digit-size) digit)))
147 #!-sb-fluid (declaim (inline %bignum-0-or-plusp))
148 (defun %bignum-0-or-plusp (bignum len)
149 (declare (type bignum-type bignum)
150 (type bignum-length len))
151 (%digit-0-or-plusp (%bignum-ref bignum (1- len))))
153 ;;; This should be in assembler, and should not cons intermediate
154 ;;; results. It returns a bignum digit and a carry resulting from adding
155 ;;; together a, b, and an incoming carry.
156 (defun %add-with-carry (a b carry)
157 (declare (type bignum-element-type a b)
158 (type (mod 2) carry))
159 (%add-with-carry a b carry))
161 ;;; This should be in assembler, and should not cons intermediate
162 ;;; results. It returns a bignum digit and a borrow resulting from
163 ;;; subtracting b from a, and subtracting a possible incoming borrow.
165 ;;; We really do: a - b - 1 + borrow, where borrow is either 0 or 1.
166 (defun %subtract-with-borrow (a b borrow)
167 (declare (type bignum-element-type a b)
168 (type (mod 2) borrow))
169 (%subtract-with-borrow a b borrow))
171 ;;; Multiply two digit-size numbers, returning a 2*digit-size result
172 ;;; split into two digit-size quantities.
173 (defun %multiply (x y)
174 (declare (type bignum-element-type x y))
175 (%multiply x y))
177 ;;; This multiplies x-digit and y-digit, producing high and low digits
178 ;;; manifesting the result. Then it adds the low digit, res-digit, and
179 ;;; carry-in-digit. Any carries (note, you still have to add two digits
180 ;;; at a time possibly producing two carries) from adding these three
181 ;;; digits get added to the high digit from the multiply, producing the
182 ;;; next carry digit. Res-digit is optional since two uses of this
183 ;;; primitive multiplies a single digit bignum by a multiple digit
184 ;;; bignum, and in this situation there is no need for a result buffer
185 ;;; accumulating partial results which is where the res-digit comes
186 ;;; from.
187 (defun %multiply-and-add (x-digit y-digit carry-in-digit
188 &optional (res-digit 0))
189 (declare (type bignum-element-type x-digit y-digit res-digit carry-in-digit))
190 (%multiply-and-add x-digit y-digit carry-in-digit res-digit))
192 (defun %lognot (digit)
193 (declare (type bignum-element-type digit))
194 (%lognot digit))
196 ;;; Each of these does the digit-size unsigned op.
197 (declaim (inline %logand %logior %logxor))
198 (defun %logand (a b)
199 (declare (type bignum-element-type a b))
200 (logand a b))
201 (defun %logior (a b)
202 (declare (type bignum-element-type a b))
203 (logior a b))
204 (defun %logxor (a b)
205 (declare (type bignum-element-type a b))
206 (logxor a b))
208 ;;; This takes a fixnum and sets it up as an unsigned digit-size
209 ;;; quantity.
210 (defun %fixnum-to-digit (x)
211 (declare (fixnum x))
212 (logand x (1- (ash 1 digit-size))))
214 #!-32x16-divide
215 ;;; This takes three digits and returns the FLOOR'ed result of
216 ;;; dividing the first two as a 2*digit-size integer by the third.
218 ;;; Do weird LET and SETQ stuff to bamboozle the compiler into allowing
219 ;;; the %BIGFLOOR transform to expand into pseudo-assembler for which the
220 ;;; compiler can later correctly allocate registers.
221 (defun %bigfloor (a b c)
222 (let ((a a) (b b) (c c))
223 (declare (type bignum-element-type a b c))
224 (setq a a b b c c)
225 (%bigfloor a b c)))
227 ;;; Convert the digit to a regular integer assuming that the digit is signed.
228 (defun %fixnum-digit-with-correct-sign (digit)
229 (declare (type bignum-element-type digit))
230 (if (logbitp (1- digit-size) digit)
231 (logior digit (ash -1 digit-size))
232 digit))
234 ;;; Do an arithmetic shift right of data even though bignum-element-type is
235 ;;; unsigned.
236 (defun %ashr (data count)
237 (declare (type bignum-element-type data)
238 (type (mod #.sb!vm:n-word-bits) count))
239 (%ashr data count))
241 ;;; This takes a digit-size quantity and shifts it to the left,
242 ;;; returning a digit-size quantity.
243 (defun %ashl (data count)
244 (declare (type bignum-element-type data)
245 (type (mod #.sb!vm:n-word-bits) count))
246 (%ashl data count))
248 ;;; Do an unsigned (logical) right shift of a digit by Count.
249 (defun %digit-logical-shift-right (data count)
250 (declare (type bignum-element-type data)
251 (type (mod #.sb!vm:n-word-bits) count))
252 (%digit-logical-shift-right data count))
254 ;;; Change the length of bignum to be newlen. Newlen must be the same or
255 ;;; smaller than the old length, and any elements beyond newlen must be zeroed.
256 (defun %bignum-set-length (bignum newlen)
257 (declare (type bignum-type bignum)
258 (type bignum-length newlen))
259 (%bignum-set-length bignum newlen))
261 ;;; This returns 0 or "-1" depending on whether the bignum is positive. This
262 ;;; is suitable for infinite sign extension to complete additions,
263 ;;; subtractions, negations, etc. This cannot return a -1 represented as
264 ;;; a negative fixnum since it would then have to low zeros.
265 #!-sb-fluid (declaim (inline %sign-digit))
266 (defun %sign-digit (bignum len)
267 (declare (type bignum-type bignum)
268 (type bignum-length len))
269 (%ashr (%bignum-ref bignum (1- len)) (1- digit-size)))
271 ;;; These take two digit-size quantities and compare or contrast them
272 ;;; without wasting time with incorrect type checking.
273 (declaim (inline %digit-compare %digit-greater))
274 (defun %digit-compare (x y)
275 (= x y))
276 (defun %digit-greater (x y)
277 (> x y))
279 (declaim (optimize (speed 3) (safety 0)))
281 ;;;; addition
283 (defun add-bignums (a b)
284 (declare (type bignum-type a b))
285 (declare (muffle-conditions compiler-note)) ; returns lispobj, so what.
286 (let ((len-a (%bignum-length a))
287 (len-b (%bignum-length b)))
288 (multiple-value-bind (a len-a b len-b)
289 (if (> len-a len-b)
290 (values a len-a b len-b)
291 (values b len-b a len-a))
292 (declare (type bignum-type a b)
293 (type bignum-length len-a len-b))
294 (let* ((len-res (1+ len-a))
295 (res (%allocate-bignum len-res))
296 (carry 0))
297 (declare (type bignum-length len-res)
298 (type bignum-type res)
299 (type (mod 2) carry))
300 (dotimes (i len-b)
301 (declare (type bignum-index i))
302 (multiple-value-bind (v k)
303 (%add-with-carry (%bignum-ref a i) (%bignum-ref b i) carry)
304 (declare (type bignum-element-type v)
305 (type (mod 2) k))
306 (setf (%bignum-ref res i) v)
307 (setf carry k)))
308 (if (/= len-a len-b)
309 (finish-add a res carry (%sign-digit b len-b) len-b len-a)
310 (setf (%bignum-ref res len-a)
311 (%add-with-carry (%sign-digit a len-a)
312 (%sign-digit b len-b)
313 carry)))
314 (%normalize-bignum res len-res)))))
316 ;;; This takes the longer of two bignums and propagates the carry through its
317 ;;; remaining high order digits.
318 (defun finish-add (a res carry sign-digit-b start end)
319 (declare (type bignum-type a res)
320 (type (mod 2) carry)
321 (type bignum-element-type sign-digit-b)
322 (type bignum-index start)
323 (type bignum-length end))
324 (do ((i start (1+ i)))
325 ((= i end)
326 (setf (%bignum-ref res end)
327 (%add-with-carry (%sign-digit a end) sign-digit-b carry)))
328 (declare (type bignum-index i))
329 (multiple-value-bind (v k)
330 (%add-with-carry (%bignum-ref a i) sign-digit-b carry)
331 (setf (%bignum-ref res i) v)
332 (setf carry k)))
333 (values))
335 ;;;; subtraction
337 (eval-when (:compile-toplevel :execute)
339 ;;; This subtracts b from a plugging result into res. Return-fun is the
340 ;;; function to call that fixes up the result returning any useful values, such
341 ;;; as the result. This macro may evaluate its arguments more than once.
342 (sb!xc:defmacro subtract-bignum-loop (a len-a b len-b res len-res return-fun)
343 (with-unique-names (borrow a-digit a-sign b-digit b-sign i v k)
344 `(let* ((,borrow 1)
345 (,a-sign (%sign-digit ,a ,len-a))
346 (,b-sign (%sign-digit ,b ,len-b)))
347 (declare (type bignum-element-type ,a-sign ,b-sign))
348 (dotimes (,i ,len-res)
349 (declare (type bignum-index ,i))
350 (let ((,a-digit (if (< ,i ,len-a) (%bignum-ref ,a ,i) ,a-sign))
351 (,b-digit (if (< ,i ,len-b) (%bignum-ref ,b ,i) ,b-sign)))
352 (declare (type bignum-element-type ,a-digit ,b-digit))
353 (multiple-value-bind (,v ,k)
354 (%subtract-with-borrow ,a-digit ,b-digit ,borrow)
355 (setf (%bignum-ref ,res ,i) ,v)
356 (setf ,borrow ,k))))
357 (,return-fun ,res ,len-res))))
359 ) ;EVAL-WHEN
361 (defun subtract-bignum (a b)
362 (declare (type bignum-type a b))
363 (let* ((len-a (%bignum-length a))
364 (len-b (%bignum-length b))
365 (len-res (1+ (max len-a len-b)))
366 (res (%allocate-bignum len-res)))
367 (declare (type bignum-length len-a len-b len-res)) ;Test len-res for bounds?
368 (subtract-bignum-loop a len-a b len-b res len-res %normalize-bignum)))
370 ;;; Operations requiring a subtraction without the overhead of intermediate
371 ;;; results, such as GCD, use this. It assumes Result is big enough for the
372 ;;; result.
373 (defun subtract-bignum-buffers-with-len (a len-a b len-b result len-res)
374 (declare (type bignum-type a b result)
375 (type bignum-length len-a len-b len-res))
376 (subtract-bignum-loop a len-a b len-b result len-res
377 %normalize-bignum-buffer))
379 (defun subtract-bignum-buffers (a len-a b len-b result)
380 (declare (type bignum-type a b result)
381 (type bignum-length len-a len-b))
382 (subtract-bignum-loop a len-a b len-b result (max len-a len-b)
383 %normalize-bignum-buffer))
385 ;;;; multiplication
387 (defun multiply-bignums (a b)
388 (declare (type bignum-type a b))
389 (let* ((a-plusp (%bignum-0-or-plusp a (%bignum-length a)))
390 (b-plusp (%bignum-0-or-plusp b (%bignum-length b)))
391 (a (if a-plusp a (negate-bignum a)))
392 (b (if b-plusp b (negate-bignum b)))
393 (len-a (%bignum-length a))
394 (len-b (%bignum-length b))
395 (len-res (+ len-a len-b))
396 (res (%allocate-bignum len-res))
397 (negate-res (not (eq a-plusp b-plusp))))
398 (declare (type bignum-length len-a len-b len-res))
399 (dotimes (i len-a)
400 (declare (type bignum-index i))
401 (let ((carry-digit 0)
402 (x (%bignum-ref a i))
403 (k i))
404 (declare (type bignum-index k)
405 (type bignum-element-type carry-digit x))
406 (dotimes (j len-b)
407 (multiple-value-bind (big-carry res-digit)
408 (%multiply-and-add x
409 (%bignum-ref b j)
410 (%bignum-ref res k)
411 carry-digit)
412 (declare (type bignum-element-type big-carry res-digit))
413 (setf (%bignum-ref res k) res-digit)
414 (setf carry-digit big-carry)
415 (incf k)))
416 (setf (%bignum-ref res k) carry-digit)))
417 (when negate-res (negate-bignum-in-place res))
418 (%normalize-bignum res len-res)))
420 (defun multiply-bignum-and-fixnum (bignum fixnum)
421 (declare (type bignum-type bignum) (type fixnum fixnum))
422 (let* ((bignum-plus-p (%bignum-0-or-plusp bignum (%bignum-length bignum)))
423 (fixnum-plus-p (not (minusp fixnum)))
424 (bignum (if bignum-plus-p bignum (negate-bignum bignum)))
425 (bignum-len (%bignum-length bignum))
426 (fixnum (if fixnum-plus-p fixnum (- fixnum)))
427 (result (%allocate-bignum (1+ bignum-len)))
428 (carry-digit 0))
429 (declare (type bignum-type bignum result)
430 (type bignum-element-type fixnum carry-digit))
431 (dotimes (index bignum-len)
432 (declare (type bignum-index index))
433 (multiple-value-bind (next-digit low)
434 (%multiply-and-add (%bignum-ref bignum index) fixnum carry-digit)
435 (declare (type bignum-element-type next-digit low))
436 (setf carry-digit next-digit)
437 (setf (%bignum-ref result index) low)))
438 (setf (%bignum-ref result bignum-len) carry-digit)
439 (unless (eq bignum-plus-p fixnum-plus-p)
440 (negate-bignum-in-place result))
441 (%normalize-bignum result (1+ bignum-len))))
443 (defun multiply-fixnums (a b)
444 (declare (fixnum a b))
445 (declare (muffle-conditions compiler-note)) ; returns lispobj, so what.
446 (let* ((a-minusp (minusp a))
447 (b-minusp (minusp b)))
448 (multiple-value-bind (high low)
449 (%multiply (if a-minusp (- a) a)
450 (if b-minusp (- b) b))
451 (declare (type bignum-element-type high low))
452 (if (and (zerop high)
453 (%digit-0-or-plusp low))
454 (let ((low (truly-the (unsigned-byte #.(1- sb!vm:n-word-bits))
455 (%fixnum-digit-with-correct-sign low))))
456 (if (eq a-minusp b-minusp)
458 (- low)))
459 (let ((res (%allocate-bignum 2)))
460 (%bignum-set res 0 low)
461 (%bignum-set res 1 high)
462 (unless (eq a-minusp b-minusp) (negate-bignum-in-place res))
463 (%normalize-bignum res 2))))))
465 ;;;; BIGNUM-REPLACE and WITH-BIGNUM-BUFFERS
467 (eval-when (:compile-toplevel :execute)
469 (sb!xc:defmacro bignum-replace (dest
471 &key
472 (start1 '0)
473 end1
474 (start2 '0)
475 end2
476 from-end)
477 (sb!int:once-only ((n-dest dest)
478 (n-src src))
479 (with-unique-names (n-start1 n-end1 n-start2 n-end2 i1 i2)
480 (let ((end1 (or end1 `(%bignum-length ,n-dest)))
481 (end2 (or end2 `(%bignum-length ,n-src))))
482 (if from-end
483 `(let ((,n-start1 ,start1)
484 (,n-start2 ,start2))
485 (do ((,i1 (1- ,end1) (1- ,i1))
486 (,i2 (1- ,end2) (1- ,i2)))
487 ((or (< ,i1 ,n-start1) (< ,i2 ,n-start2)))
488 (declare (fixnum ,i1 ,i2))
489 (%bignum-set ,n-dest ,i1 (%bignum-ref ,n-src ,i2))))
490 (if (eql start1 start2)
491 `(let ((,n-end1 (min ,end1 ,end2)))
492 (do ((,i1 ,start1 (1+ ,i1)))
493 ((>= ,i1 ,n-end1))
494 (declare (type bignum-index ,i1))
495 (%bignum-set ,n-dest ,i1 (%bignum-ref ,n-src ,i1))))
496 `(let ((,n-end1 ,end1)
497 (,n-end2 ,end2))
498 (do ((,i1 ,start1 (1+ ,i1))
499 (,i2 ,start2 (1+ ,i2)))
500 ((or (>= ,i1 ,n-end1) (>= ,i2 ,n-end2)))
501 (declare (type bignum-index ,i1 ,i2))
502 (%bignum-set ,n-dest ,i1 (%bignum-ref ,n-src ,i2))))))))))
504 (sb!xc:defmacro with-bignum-buffers (specs &body body)
505 #!+sb-doc
506 "WITH-BIGNUM-BUFFERS ({(var size [init])}*) Form*"
507 (sb!int:collect ((binds)
508 (inits))
509 (dolist (spec specs)
510 (let ((name (first spec))
511 (size (second spec)))
512 (binds `(,name (%allocate-bignum ,size)))
513 (let ((init (third spec)))
514 (when init
515 (inits `(bignum-replace ,name ,init))))))
516 `(let* ,(binds)
517 ,@(inits)
518 ,@body)))
520 ) ;EVAL-WHEN
522 ;;;; GCD
524 (eval-when (:compile-toplevel :load-toplevel :execute)
525 ;; The asserts in the GCD implementation are way too expensive to
526 ;; check in normal use, and are disabled here.
527 (sb!xc:defmacro gcd-assert (&rest args)
528 (if nil
529 `(assert ,@args)))
530 ;; We'll be doing a lot of modular arithmetic.
531 (sb!xc:defmacro modularly (form)
532 `(logand all-ones-digit ,form)))
534 ;;; I'm not sure why I need this FTYPE declaration. Compiled by the
535 ;;; target compiler, it can deduce the return type fine, but without
536 ;;; it, we pay a heavy price in BIGNUM-GCD when compiled by the
537 ;;; cross-compiler. -- CSR, 2004-07-19
538 (declaim (ftype (sfunction (bignum-type bignum-length bignum-type bignum-length)
539 (and unsigned-byte fixnum))
540 bignum-factors-of-two))
541 (defun bignum-factors-of-two (a len-a b len-b)
542 (declare (type bignum-length len-a len-b) (type bignum-type a b))
543 (do ((i 0 (1+ i))
544 (end (min len-a len-b)))
545 ((= i end) (error "Unexpected zero bignums?"))
546 (declare (type bignum-index i)
547 (type bignum-length end))
548 (let ((or-digits (%logior (%bignum-ref a i) (%bignum-ref b i))))
549 (unless (zerop or-digits)
550 (return (do ((j 0 (1+ j))
551 (or-digits or-digits (%ashr or-digits 1)))
552 ((oddp or-digits) (+ (* i digit-size) j))
553 (declare (type (mod #.sb!vm:n-word-bits) j))))))))
555 ;;; Multiply a bignum buffer with a fixnum or a digit, storing the
556 ;;; result in another bignum buffer, and without using any
557 ;;; temporaries. Inlined to avoid boxing smallnum if it's actually a
558 ;;; digit. Needed by GCD, should possibly OAOO with
559 ;;; MULTIPLY-BIGNUM-AND-FIXNUM.
560 (declaim (inline multiply-bignum-buffer-and-smallnum-to-buffer))
561 (defun multiply-bignum-buffer-and-smallnum-to-buffer (bignum bignum-len
562 smallnum res)
563 (declare (type bignum-type bignum))
564 (let* ((bignum-plus-p (%bignum-0-or-plusp bignum bignum-len))
565 (smallnum-plus-p (not (minusp smallnum)))
566 (smallnum (if smallnum-plus-p smallnum (- smallnum)))
567 (carry-digit 0))
568 (declare (type bignum-type bignum res)
569 (type bignum-length bignum-len)
570 (type bignum-element-type smallnum carry-digit))
571 (unless bignum-plus-p
572 (negate-bignum-buffer-in-place bignum bignum-len))
573 (dotimes (index bignum-len)
574 (declare (type bignum-index index))
575 (multiple-value-bind (next-digit low)
576 (%multiply-and-add (%bignum-ref bignum index)
577 smallnum
578 carry-digit)
579 (declare (type bignum-element-type next-digit low))
580 (setf carry-digit next-digit)
581 (setf (%bignum-ref res index) low)))
582 (setf (%bignum-ref res bignum-len) carry-digit)
583 (unless bignum-plus-p
584 (negate-bignum-buffer-in-place bignum bignum-len))
585 (let ((res-len (%normalize-bignum-buffer res (1+ bignum-len))))
586 (unless (eq bignum-plus-p smallnum-plus-p)
587 (negate-bignum-buffer-in-place res res-len))
588 res-len)))
590 ;;; Given U and V, return U / V mod 2^32. Implements the algorithm in the
591 ;;; paper, but uses some clever bit-twiddling nicked from Nickle to do it.
592 (declaim (inline bmod))
593 (defun bmod (u v)
594 (declare (muffle-conditions compiler-note)) ; returns lispobj, so what.
595 (let ((ud (%bignum-ref u 0))
596 (vd (%bignum-ref v 0))
597 (umask 0)
598 (imask 1)
599 (m 0))
600 (declare (type (unsigned-byte #.sb!vm:n-word-bits) ud vd umask imask m))
601 (dotimes (i digit-size)
602 (setf umask (logior umask imask))
603 (when (logtest ud umask)
604 (setf ud (modularly (- ud vd)))
605 (setf m (modularly (logior m imask))))
606 (setf imask (modularly (ash imask 1)))
607 (setf vd (modularly (ash vd 1))))
610 (defun dmod (u u-len v v-len tmp1)
611 (loop while (> (bignum-buffer-integer-length u u-len)
612 (+ (bignum-buffer-integer-length v v-len)
613 digit-size))
615 (unless (zerop (%bignum-ref u 0))
616 (let* ((bmod (bmod u v))
617 (tmp1-len (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
618 bmod
619 tmp1)))
620 (setf u-len (subtract-bignum-buffers u u-len
621 tmp1 tmp1-len
623 (bignum-abs-buffer u u-len)))
624 (gcd-assert (zerop (%bignum-ref u 0)))
625 (setf u-len (bignum-buffer-ashift-right u u-len digit-size)))
626 (let* ((d (+ 1 (- (bignum-buffer-integer-length u u-len)
627 (bignum-buffer-integer-length v v-len))))
628 (n (1- (ash 1 d))))
629 (declare (type (unsigned-byte #.(integer-length #.sb!vm:n-word-bits)) d)
630 (type (unsigned-byte #.sb!vm:n-word-bits) n))
631 (gcd-assert (>= d 0))
632 (when (logtest (%bignum-ref u 0) n)
633 (let ((tmp1-len
634 (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
635 (logand n (bmod u
637 tmp1)))
638 (setf u-len (subtract-bignum-buffers u u-len
639 tmp1 tmp1-len
641 (bignum-abs-buffer u u-len)))
642 u-len))
644 (defconstant lower-ones-digit (1- (ash 1 (truncate sb!vm:n-word-bits 2))))
646 ;;; Find D and N such that (LOGAND ALL-ONES-DIGIT (- (* D X) (* N Y))) is 0,
647 ;;; (< 0 N LOWER-ONES-DIGIT) and (< 0 (ABS D) LOWER-ONES-DIGIT).
648 (defun reduced-ratio-mod (x y)
649 (let* ((c (bmod x y))
650 (n1 c)
651 (d1 1)
652 (n2 (modularly (1+ (modularly (lognot n1)))))
653 (d2 (modularly -1)))
654 (declare (type (unsigned-byte #.sb!vm:n-word-bits) n1 d1 n2 d2))
655 (loop while (> n2 (expt 2 (truncate digit-size 2))) do
656 (loop for i of-type (mod #.sb!vm:n-word-bits)
657 downfrom (- (integer-length n1) (integer-length n2))
658 while (>= n1 n2) do
659 (when (>= n1 (modularly (ash n2 i)))
660 (psetf n1 (modularly (- n1 (modularly (ash n2 i))))
661 d1 (modularly (- d1 (modularly (ash d2 i)))))))
662 (psetf n1 n2
663 d1 d2
664 n2 n1
665 d2 d1))
666 (values n2 (if (>= d2 (expt 2 (1- digit-size)))
667 (lognot (logand most-positive-fixnum (lognot d2)))
668 (logand lower-ones-digit d2)))))
671 (defun copy-bignum (a &optional (len (%bignum-length a)))
672 (let ((b (%allocate-bignum len)))
673 (bignum-replace b a)
674 (%bignum-set-length b len)
677 ;;; Allocate a single word bignum that holds fixnum. This is useful when
678 ;;; we are trying to mix fixnum and bignum operands.
679 #!-sb-fluid (declaim (inline make-small-bignum))
680 (defun make-small-bignum (fixnum)
681 (let ((res (%allocate-bignum 1)))
682 (setf (%bignum-ref res 0) (%fixnum-to-digit fixnum))
683 res))
685 ;; When the larger number is less than this many bignum digits long, revert
686 ;; to old algorithm.
687 (defparameter *accelerated-gcd-cutoff* 3)
689 ;;; Alternate between k-ary reduction with the help of
690 ;;; REDUCED-RATIO-MOD and digit modulus reduction via DMOD. Once the
691 ;;; arguments get small enough, drop through to BIGNUM-MOD-GCD (since
692 ;;; k-ary reduction can introduce spurious factors, which need to be
693 ;;; filtered out). Reference: Kenneth Weber, "The accelerated integer
694 ;;; GCD algorithm", ACM Transactions on Mathematical Software, volume
695 ;;; 21, number 1, March 1995, epp. 111-122.
696 (defun bignum-gcd (u0 v0)
697 (declare (type bignum-type u0 v0))
698 (let* ((u1 (if (%bignum-0-or-plusp u0 (%bignum-length u0))
700 (negate-bignum u0 nil)))
701 (v1 (if (%bignum-0-or-plusp v0 (%bignum-length v0))
703 (negate-bignum v0 nil))))
704 (if (zerop v1)
705 (return-from bignum-gcd u1))
706 (when (> u1 v1)
707 (rotatef u1 v1))
708 (let ((n (mod v1 u1)))
709 (setf v1 (if (fixnump n)
710 (make-small-bignum n)
711 n)))
712 (if (and (= 1 (%bignum-length v1))
713 (zerop (%bignum-ref v1 0)))
714 (return-from bignum-gcd (%normalize-bignum u1
715 (%bignum-length u1))))
716 (let* ((buffer-len (+ 2 (%bignum-length u1)))
717 (u (%allocate-bignum buffer-len))
718 (u-len (%bignum-length u1))
719 (v (%allocate-bignum buffer-len))
720 (v-len (%bignum-length v1))
721 (tmp1 (%allocate-bignum buffer-len))
722 (tmp1-len 0)
723 (tmp2 (%allocate-bignum buffer-len))
724 (tmp2-len 0)
725 (factors-of-two
726 (bignum-factors-of-two u1 (%bignum-length u1)
727 v1 (%bignum-length v1))))
728 (declare (type (or null bignum-length)
729 buffer-len u-len v-len tmp1-len tmp2-len))
730 (bignum-replace u u1)
731 (bignum-replace v v1)
732 (setf u-len
733 (make-gcd-bignum-odd u
734 (bignum-buffer-ashift-right u u-len
735 factors-of-two)))
736 (setf v-len
737 (make-gcd-bignum-odd v
738 (bignum-buffer-ashift-right v v-len
739 factors-of-two)))
740 (loop until (or (< u-len *accelerated-gcd-cutoff*)
741 (not v-len)
742 (zerop v-len)
743 (and (= 1 v-len)
744 (zerop (%bignum-ref v 0))))
746 (gcd-assert (= buffer-len (%bignum-length u)
747 (%bignum-length v)
748 (%bignum-length tmp1)
749 (%bignum-length tmp2)))
750 (if (> (bignum-buffer-integer-length u u-len)
751 (+ #.(truncate sb!vm:n-word-bits 4)
752 (bignum-buffer-integer-length v v-len)))
753 (setf u-len (dmod u u-len
754 v v-len
755 tmp1))
756 (multiple-value-bind (n d) (reduced-ratio-mod u v)
757 (setf tmp1-len
758 (multiply-bignum-buffer-and-smallnum-to-buffer v v-len
759 n tmp1))
760 (setf tmp2-len
761 (multiply-bignum-buffer-and-smallnum-to-buffer u u-len
762 d tmp2))
763 (gcd-assert (= (copy-bignum tmp2 tmp2-len)
764 (* (copy-bignum u u-len) d)))
765 (gcd-assert (= (copy-bignum tmp1 tmp1-len)
766 (* (copy-bignum v v-len) n)))
767 (setf u-len
768 (subtract-bignum-buffers-with-len tmp1 tmp1-len
769 tmp2 tmp2-len
771 (1+ (max tmp1-len
772 tmp2-len))))
773 (gcd-assert (or (zerop (- (copy-bignum tmp1 tmp1-len)
774 (copy-bignum tmp2 tmp2-len)))
775 (= (copy-bignum u u-len)
776 (- (copy-bignum tmp1 tmp1-len)
777 (copy-bignum tmp2 tmp2-len)))))
778 (bignum-abs-buffer u u-len)
779 (gcd-assert (zerop (modularly u)))))
780 (setf u-len (make-gcd-bignum-odd u u-len))
781 (rotatef u v)
782 (rotatef u-len v-len))
783 (bignum-abs-buffer u u-len)
784 (setf u (copy-bignum u u-len))
785 (let ((n (bignum-mod-gcd v1 u)))
786 (ash (bignum-mod-gcd u1 (if (fixnump n)
787 (make-small-bignum n)
789 factors-of-two)))))
791 (defun bignum-mod-gcd (a b)
792 (declare (type bignum-type a b))
793 (when (< a b)
794 (rotatef a b))
795 ;; While the length difference of A and B is sufficiently large,
796 ;; reduce using MOD (slowish, but it should equalize the sizes of
797 ;; A and B pretty quickly). After that, use the binary GCD
798 ;; algorithm to handle the rest.
799 (loop until (and (= (%bignum-length b) 1) (zerop (%bignum-ref b 0))) do
800 (when (<= (%bignum-length a) (1+ (%bignum-length b)))
801 (return-from bignum-mod-gcd (bignum-binary-gcd a b)))
802 (let ((rem (mod a b)))
803 (if (fixnump rem)
804 (setf a (make-small-bignum rem))
805 (setf a rem))
806 (rotatef a b)))
807 (if (= (%bignum-length a) 1)
808 (%normalize-bignum a 1)
811 (defun bignum-binary-gcd (a b)
812 (declare (type bignum-type a b))
813 (let* ((len-a (%bignum-length a))
814 (len-b (%bignum-length b)))
815 (with-bignum-buffers ((a-buffer len-a a)
816 (b-buffer len-b b)
817 (res-buffer (max len-a len-b)))
818 (let* ((factors-of-two
819 (bignum-factors-of-two a-buffer len-a
820 b-buffer len-b))
821 (len-a (make-gcd-bignum-odd
822 a-buffer
823 (bignum-buffer-ashift-right a-buffer len-a
824 factors-of-two)))
825 (len-b (make-gcd-bignum-odd
826 b-buffer
827 (bignum-buffer-ashift-right b-buffer len-b
828 factors-of-two))))
829 (declare (type bignum-length len-a len-b))
830 (let ((x a-buffer)
831 (len-x len-a)
832 (y b-buffer)
833 (len-y len-b)
834 (z res-buffer))
835 (loop
836 (multiple-value-bind (u v len-v r len-r)
837 (bignum-gcd-order-and-subtract x len-x y len-y z)
838 (declare (type bignum-length len-v len-r))
839 (when (and (= len-r 1) (zerop (%bignum-ref r 0)))
840 (if (zerop factors-of-two)
841 (let ((ret (%allocate-bignum len-v)))
842 (dotimes (i len-v)
843 (setf (%bignum-ref ret i) (%bignum-ref v i)))
844 (return (%normalize-bignum ret len-v)))
845 (return (bignum-ashift-left v factors-of-two len-v))))
846 (setf x v len-x len-v)
847 (setf y r len-y (make-gcd-bignum-odd r len-r))
848 (setf z u))))))))
850 (defun bignum-gcd-order-and-subtract (a len-a b len-b res)
851 (declare (type bignum-length len-a len-b) (type bignum-type a b))
852 (cond ((= len-a len-b)
853 (do ((i (1- len-a) (1- i)))
854 ((= i -1)
855 (setf (%bignum-ref res 0) 0)
856 (values a b len-b res 1))
857 (let ((a-digit (%bignum-ref a i))
858 (b-digit (%bignum-ref b i)))
859 (cond ((%digit-compare a-digit b-digit))
860 ((%digit-greater a-digit b-digit)
861 (return
862 (values a b len-b res
863 (subtract-bignum-buffers a len-a b len-b
864 res))))
866 (return
867 (values b a len-a res
868 (subtract-bignum-buffers b len-b
869 a len-a
870 res))))))))
871 ((> len-a len-b)
872 (values a b len-b res
873 (subtract-bignum-buffers a len-a b len-b res)))
875 (values b a len-a res
876 (subtract-bignum-buffers b len-b a len-a res)))))
878 (defun make-gcd-bignum-odd (a len-a)
879 (declare (type bignum-type a) (type bignum-length len-a))
880 (dotimes (index len-a)
881 (declare (type bignum-index index))
882 (do ((digit (%bignum-ref a index) (%ashr digit 1))
883 (increment 0 (1+ increment)))
884 ((zerop digit))
885 (declare (type (mod #.sb!vm:n-word-bits) increment))
886 (when (oddp digit)
887 (return-from make-gcd-bignum-odd
888 (bignum-buffer-ashift-right a len-a
889 (+ (* index digit-size)
890 increment)))))))
893 ;;;; negation
895 (eval-when (:compile-toplevel :execute)
897 ;;; This negates bignum-len digits of bignum, storing the resulting digits into
898 ;;; result (possibly EQ to bignum) and returning whatever end-carry there is.
899 (sb!xc:defmacro bignum-negate-loop
900 (bignum bignum-len &optional (result nil resultp))
901 (with-unique-names (carry end value last)
902 `(let* (,@(if (not resultp) `(,last))
903 (,carry
904 (multiple-value-bind (,value ,carry)
905 (%add-with-carry (%lognot (%bignum-ref ,bignum 0)) 1 0)
906 ,(if resultp
907 `(setf (%bignum-ref ,result 0) ,value)
908 `(setf ,last ,value))
909 ,carry))
910 (i 1)
911 (,end ,bignum-len))
912 (declare (type bit ,carry)
913 (type bignum-index i)
914 (type bignum-length ,end))
915 (loop
916 (when (= i ,end) (return))
917 (multiple-value-bind (,value temp)
918 (%add-with-carry (%lognot (%bignum-ref ,bignum i)) 0 ,carry)
919 ,(if resultp
920 `(setf (%bignum-ref ,result i) ,value)
921 `(setf ,last ,value))
922 (setf ,carry temp))
923 (incf i))
924 ,(if resultp carry `(values ,carry ,last)))))
926 ) ; EVAL-WHEN
928 ;;; Fully-normalize is an internal optional. It cause this to always return
929 ;;; a bignum, without any extraneous digits, and it never returns a fixnum.
930 (defun negate-bignum (x &optional (fully-normalize t))
931 (declare (type bignum-type x))
932 (let* ((len-x (%bignum-length x))
933 (len-res (1+ len-x))
934 (res (%allocate-bignum len-res)))
935 (declare (type bignum-length len-x len-res)) ;Test len-res for range?
936 (let ((carry (bignum-negate-loop x len-x res)))
937 (setf (%bignum-ref res len-x)
938 (%add-with-carry (%lognot (%sign-digit x len-x)) 0 carry)))
939 (if fully-normalize
940 (%normalize-bignum res len-res)
941 (%mostly-normalize-bignum res len-res))))
943 ;;; This assumes bignum is positive; that is, the result of negating it will
944 ;;; stay in the provided allocated bignum.
945 (declaim (maybe-inline negate-bignum-buffer-in-place))
946 (defun negate-bignum-buffer-in-place (bignum bignum-len)
947 (bignum-negate-loop bignum bignum-len bignum)
948 bignum)
950 (defun negate-bignum-in-place (bignum)
951 (declare (inline negate-bignum-buffer-in-place))
952 (negate-bignum-buffer-in-place bignum (%bignum-length bignum)))
954 (defun bignum-abs-buffer (bignum len)
955 (unless (%bignum-0-or-plusp bignum len)
956 (negate-bignum-buffer-in-place bignum len)))
958 ;;;; shifting
960 (eval-when (:compile-toplevel :execute)
962 ;;; This macro is used by BIGNUM-ASHIFT-RIGHT, BIGNUM-BUFFER-ASHIFT-RIGHT, and
963 ;;; BIGNUM-LDB-BIGNUM-RES. They supply a termination form that references
964 ;;; locals established by this form. Source is the source bignum. Start-digit
965 ;;; is the first digit in source from which we pull bits. Start-pos is the
966 ;;; first bit we want. Res-len-form is the form that computes the length of
967 ;;; the resulting bignum. Termination is a DO termination form with a test and
968 ;;; body. When result is supplied, it is the variable to which this binds a
969 ;;; newly allocated bignum.
971 ;;; Given start-pos, 1-31 inclusively, of shift, we form the j'th resulting
972 ;;; digit from high bits of the i'th source digit and the start-pos number of
973 ;;; bits from the i+1'th source digit.
974 (sb!xc:defmacro shift-right-unaligned (source
975 start-digit
976 start-pos
977 res-len-form
978 termination
979 &optional result)
980 `(let* ((high-bits-in-first-digit (- digit-size ,start-pos))
981 (res-len ,res-len-form)
982 (res-len-1 (1- res-len))
983 ,@(if result `((,result (%allocate-bignum res-len)))))
984 (declare (type bignum-length res-len res-len-1))
985 (do ((i ,start-digit (1+ i))
986 (j 0 (1+ j)))
987 ,termination
988 (declare (type bignum-index i j))
989 (setf (%bignum-ref ,(if result result source) j)
990 (%logior (%digit-logical-shift-right (%bignum-ref ,source i)
991 ,start-pos)
992 (%ashl (%bignum-ref ,source (1+ i))
993 high-bits-in-first-digit))))))
995 ) ; EVAL-WHEN
997 ;;; First compute the number of whole digits to shift, shifting them by
998 ;;; skipping them when we start to pick up bits, and the number of bits to
999 ;;; shift the remaining digits into place. If the number of digits is greater
1000 ;;; than the length of the bignum, then the result is either 0 or -1. If we
1001 ;;; shift on a digit boundary (that is, n-bits is zero), then we just copy
1002 ;;; digits. The last branch handles the general case which uses a macro that a
1003 ;;; couple other routines use. The fifth argument to the macro references
1004 ;;; locals established by the macro.
1005 (defun bignum-ashift-right (bignum count)
1006 (declare (type bignum-type bignum)
1007 (type unsigned-byte count))
1008 (let ((bignum-len (%bignum-length bignum)))
1009 (cond ((fixnump count)
1010 (multiple-value-bind (digits n-bits) (truncate count digit-size)
1011 (declare (type bignum-length digits))
1012 (cond
1013 ((>= digits bignum-len)
1014 (if (%bignum-0-or-plusp bignum bignum-len) 0 -1))
1015 ((zerop n-bits)
1016 (bignum-ashift-right-digits bignum digits))
1018 (shift-right-unaligned bignum digits n-bits (- bignum-len digits)
1019 ((= j res-len-1)
1020 (setf (%bignum-ref res j)
1021 (%ashr (%bignum-ref bignum i) n-bits))
1022 (%normalize-bignum res res-len))
1023 res)))))
1024 ((> count bignum-len)
1025 (if (%bignum-0-or-plusp bignum bignum-len) 0 -1))
1026 ;; Since a FIXNUM should be big enough to address anything in
1027 ;; memory, including arrays of bits, and since arrays of bits
1028 ;; take up about the same space as corresponding fixnums, there
1029 ;; should be no way that we fall through to this case: any shift
1030 ;; right by a bignum should give zero. But let's check anyway:
1031 (t (error "bignum overflow: can't shift right by ~S" count)))))
1033 (defun bignum-ashift-right-digits (bignum digits)
1034 (declare (type bignum-type bignum)
1035 (type bignum-length digits))
1036 (let* ((res-len (- (%bignum-length bignum) digits))
1037 (res (%allocate-bignum res-len)))
1038 (declare (type bignum-length res-len)
1039 (type bignum-type res))
1040 (bignum-replace res bignum :start2 digits)
1041 (%normalize-bignum res res-len)))
1043 ;;; GCD uses this for an in-place shifting operation. This is different enough
1044 ;;; from BIGNUM-ASHIFT-RIGHT that it isn't worth folding the bodies into a
1045 ;;; macro, but they share the basic algorithm. This routine foregoes a first
1046 ;;; test for digits being greater than or equal to bignum-len since that will
1047 ;;; never happen for its uses in GCD. We did fold the last branch into a macro
1048 ;;; since it was duplicated a few times, and the fifth argument to it
1049 ;;; references locals established by the macro.
1050 (defun bignum-buffer-ashift-right (bignum bignum-len x)
1051 (declare (type bignum-length bignum-len) (fixnum x))
1052 (multiple-value-bind (digits n-bits) (truncate x digit-size)
1053 (declare (type bignum-length digits))
1054 (cond
1055 ((zerop n-bits)
1056 (let ((new-end (- bignum-len digits)))
1057 (bignum-replace bignum bignum :end1 new-end :start2 digits
1058 :end2 bignum-len)
1059 (%normalize-bignum-buffer bignum new-end)))
1061 (shift-right-unaligned bignum digits n-bits (- bignum-len digits)
1062 ((= j res-len-1)
1063 (setf (%bignum-ref bignum j)
1064 (%ashr (%bignum-ref bignum i) n-bits))
1065 (%normalize-bignum-buffer bignum res-len)))))))
1067 ;;; This handles shifting a bignum buffer to provide fresh bignum data for some
1068 ;;; internal routines. We know bignum is safe when called with bignum-len.
1069 ;;; First we compute the number of whole digits to shift, shifting them
1070 ;;; starting to store farther along the result bignum. If we shift on a digit
1071 ;;; boundary (that is, n-bits is zero), then we just copy digits. The last
1072 ;;; branch handles the general case.
1073 (defun bignum-ashift-left (bignum x &optional bignum-len)
1074 (declare (type bignum-type bignum)
1075 (type unsigned-byte x)
1076 (type (or null bignum-length) bignum-len))
1077 (if (fixnump x)
1078 (multiple-value-bind (digits n-bits) (truncate x digit-size)
1079 (let* ((bignum-len (or bignum-len (%bignum-length bignum)))
1080 (res-len (+ digits bignum-len 1)))
1081 (when (> res-len maximum-bignum-length)
1082 (error "can't represent result of left shift"))
1083 (if (zerop n-bits)
1084 (bignum-ashift-left-digits bignum bignum-len digits)
1085 (bignum-ashift-left-unaligned bignum digits n-bits res-len))))
1086 ;; Left shift by a number too big to be represented as a fixnum
1087 ;; would exceed our memory capacity, since a fixnum is big enough
1088 ;; to index any array, including a bit array.
1089 (error "can't represent result of left shift")))
1091 (defun bignum-ashift-left-digits (bignum bignum-len digits)
1092 (declare (type bignum-length bignum-len digits))
1093 (let* ((res-len (+ bignum-len digits))
1094 (res (%allocate-bignum res-len)))
1095 (declare (type bignum-length res-len))
1096 (bignum-replace res bignum :start1 digits :end1 res-len :end2 bignum-len
1097 :from-end t)
1098 res))
1100 ;;; BIGNUM-TRUNCATE uses this to store into a bignum buffer by supplying res.
1101 ;;; When res comes in non-nil, then this foregoes allocating a result, and it
1102 ;;; normalizes the buffer instead of the would-be allocated result.
1104 ;;; We start storing into one digit higher than digits, storing a whole result
1105 ;;; digit from parts of two contiguous digits from bignum. When the loop
1106 ;;; finishes, we store the remaining bits from bignum's first digit in the
1107 ;;; first non-zero result digit, digits. We also grab some left over high
1108 ;;; bits from the last digit of bignum.
1109 (defun bignum-ashift-left-unaligned (bignum digits n-bits res-len
1110 &optional (res nil resp))
1111 (declare (type bignum-length digits res-len)
1112 (type (mod #.digit-size) n-bits))
1113 (let* ((remaining-bits (- digit-size n-bits))
1114 (res-len-1 (1- res-len))
1115 (res (or res (%allocate-bignum res-len))))
1116 (declare (type bignum-length res-len res-len-1))
1117 (do ((i 0 (1+ i))
1118 (j (1+ digits) (1+ j)))
1119 ((= j res-len-1)
1120 (setf (%bignum-ref res digits)
1121 (%ashl (%bignum-ref bignum 0) n-bits))
1122 (setf (%bignum-ref res j)
1123 (%ashr (%bignum-ref bignum i) remaining-bits))
1124 (if resp
1125 (%normalize-bignum-buffer res res-len)
1126 (%normalize-bignum res res-len)))
1127 (declare (type bignum-index i j))
1128 (setf (%bignum-ref res j)
1129 (%logior (%digit-logical-shift-right (%bignum-ref bignum i)
1130 remaining-bits)
1131 (%ashl (%bignum-ref bignum (1+ i)) n-bits))))))
1133 ;;;; relational operators
1135 ;;; Return T iff bignum is positive.
1136 (defun bignum-plus-p (bignum)
1137 (declare (type bignum-type bignum))
1138 (%bignum-0-or-plusp bignum (%bignum-length bignum)))
1140 ;;; This compares two bignums returning -1, 0, or 1, depending on
1141 ;;; whether a is less than, equal to, or greater than b.
1142 (declaim (ftype (function (bignum bignum) (integer -1 1)) bignum-compare))
1143 (defun bignum-compare (a b)
1144 (declare (type bignum-type a b))
1145 (let* ((len-a (%bignum-length a))
1146 (len-b (%bignum-length b))
1147 (a-plusp (%bignum-0-or-plusp a len-a))
1148 (b-plusp (%bignum-0-or-plusp b len-b)))
1149 (declare (type bignum-length len-a len-b))
1150 (cond ((not (eq a-plusp b-plusp))
1151 (if a-plusp 1 -1))
1152 ((= len-a len-b)
1153 (do ((i (1- len-a) (1- i)))
1154 (())
1155 (declare (type bignum-index i))
1156 (let ((a-digit (%bignum-ref a i))
1157 (b-digit (%bignum-ref b i)))
1158 (declare (type bignum-element-type a-digit b-digit))
1159 (when (%digit-greater a-digit b-digit)
1160 (return 1))
1161 (when (%digit-greater b-digit a-digit)
1162 (return -1)))
1163 (when (zerop i) (return 0))))
1164 ((> len-a len-b)
1165 (if a-plusp 1 -1))
1166 (t (if a-plusp -1 1)))))
1168 ;;;; float conversion
1170 ;;; Make a single or double float with the specified significand,
1171 ;;; exponent and sign.
1172 (defun single-float-from-bits (bits exp plusp)
1173 (declare (fixnum exp))
1174 (declare (optimize #-sb-xc-host (inhibit-warnings 3)))
1175 (let ((res (dpb exp
1176 sb!vm:single-float-exponent-byte
1177 (logandc2 (logand #xffffffff
1178 (%bignum-ref bits 1))
1179 sb!vm:single-float-hidden-bit))))
1180 (make-single-float
1181 (if plusp
1183 (logior res (ash -1 sb!vm:float-sign-shift))))))
1184 (defun double-float-from-bits (bits exp plusp)
1185 (declare (fixnum exp))
1186 (declare (optimize #-sb-xc-host (inhibit-warnings 3)))
1187 (let ((hi (dpb exp
1188 sb!vm:double-float-exponent-byte
1189 (logandc2 (ecase sb!vm::n-word-bits
1190 (32 (%bignum-ref bits 2))
1191 (64 (ash (%bignum-ref bits 1) -32)))
1192 sb!vm:double-float-hidden-bit)))
1193 (lo (logand #xffffffff (%bignum-ref bits 1))))
1194 (make-double-float (if plusp
1196 (logior hi (ash -1 sb!vm:float-sign-shift)))
1197 lo)))
1198 #!+(and long-float x86)
1199 (defun long-float-from-bits (bits exp plusp)
1200 (declare (fixnum exp))
1201 (declare (optimize #-sb-xc-host (inhibit-warnings 3)))
1202 (make-long-float
1203 (if plusp
1205 (logior exp (ash 1 15)))
1206 (%bignum-ref bits 2)
1207 (%bignum-ref bits 1)))
1209 ;;; Convert Bignum to a float in the specified Format, rounding to the best
1210 ;;; approximation.
1211 (defun bignum-to-float (bignum format)
1212 (let* ((plusp (bignum-plus-p bignum))
1213 (x (if plusp bignum (negate-bignum bignum)))
1214 (len (bignum-integer-length x))
1215 (digits (float-format-digits format))
1216 (keep (+ digits digit-size))
1217 (shift (- keep len))
1218 (shifted (if (minusp shift)
1219 (bignum-ashift-right x (- shift))
1220 (bignum-ashift-left x shift)))
1221 (low (%bignum-ref shifted 0))
1222 (round-bit (ash 1 (1- digit-size))))
1223 (declare (type bignum-length len digits keep) (fixnum shift))
1224 (labels ((round-up ()
1225 (let ((rounded (add-bignums shifted round-bit)))
1226 (if (> (integer-length rounded) keep)
1227 (float-from-bits (bignum-ashift-right rounded 1)
1228 (1+ len))
1229 (float-from-bits rounded len))))
1230 (float-from-bits (bits len)
1231 (declare (type bignum-length len))
1232 (ecase format
1233 (single-float
1234 (single-float-from-bits
1235 bits
1236 (check-exponent len sb!vm:single-float-bias
1237 sb!vm:single-float-normal-exponent-max)
1238 plusp))
1239 (double-float
1240 (double-float-from-bits
1241 bits
1242 (check-exponent len sb!vm:double-float-bias
1243 sb!vm:double-float-normal-exponent-max)
1244 plusp))
1245 #!+long-float
1246 (long-float
1247 (long-float-from-bits
1248 bits
1249 (check-exponent len sb!vm:long-float-bias
1250 sb!vm:long-float-normal-exponent-max)
1251 plusp))))
1252 (check-exponent (exp bias max)
1253 (declare (type bignum-length len))
1254 (let ((exp (+ exp bias)))
1255 (when (> exp max)
1256 ;; Why a SIMPLE-TYPE-ERROR? Well, this is mainly
1257 ;; called by COERCE, which requires an error of
1258 ;; TYPE-ERROR if the conversion can't happen
1259 ;; (except in certain circumstances when we are
1260 ;; coercing to a FUNCTION) -- CSR, 2002-09-18
1261 (error 'simple-type-error
1262 :format-control "Too large to be represented as a ~S:~% ~S"
1263 :format-arguments (list format x)
1264 :expected-type format
1265 :datum x))
1266 exp)))
1268 (cond
1269 ;; Round down if round bit is 0.
1270 ((not (logtest round-bit low))
1271 (float-from-bits shifted len))
1272 ;; If only round bit is set, then round to even.
1273 ((and (= low round-bit)
1274 (dotimes (i (- (%bignum-length x) (ceiling keep digit-size))
1276 (unless (zerop (%bignum-ref x i)) (return nil))))
1277 (let ((next (%bignum-ref shifted 1)))
1278 (if (oddp next)
1279 (round-up)
1280 (float-from-bits shifted len))))
1281 ;; Otherwise, round up.
1283 (round-up))))))
1285 ;;;; integer length and logbitp/logcount
1287 (defun bignum-buffer-integer-length (bignum len)
1288 (declare (type bignum-type bignum))
1289 (let* ((len-1 (1- len))
1290 (digit (%bignum-ref bignum len-1)))
1291 (declare (type bignum-length len len-1)
1292 (type bignum-element-type digit))
1293 (+ (integer-length (%fixnum-digit-with-correct-sign digit))
1294 (* len-1 digit-size))))
1296 (defun bignum-integer-length (bignum)
1297 (declare (type bignum-type bignum))
1298 (bignum-buffer-integer-length bignum (%bignum-length bignum)))
1300 (defun bignum-logbitp (index bignum)
1301 (declare (type bignum-type bignum)
1302 (type bignum-index index))
1303 (let ((len (%bignum-length bignum)))
1304 (declare (type bignum-length len))
1305 (multiple-value-bind (word-index bit-index)
1306 (floor index digit-size)
1307 (if (>= word-index len)
1308 (not (bignum-plus-p bignum))
1309 (logbitp bit-index (%bignum-ref bignum word-index))))))
1311 (defun bignum-logcount (bignum)
1312 (declare (type bignum-type bignum)
1313 (optimize speed))
1314 (declare (muffle-conditions compiler-note)) ; returns lispobj, so what.
1315 (let ((length (%bignum-length bignum))
1316 (result 0))
1317 (declare (type bignum-length length)
1318 (fixnum result))
1319 (do ((index 0 (1+ index)))
1320 ((= index length)
1321 (if (%bignum-0-or-plusp bignum length)
1322 result
1323 (- (* length digit-size) result)))
1324 (let ((digit (%bignum-ref bignum index)))
1325 (declare (type bignum-element-type digit))
1326 (incf result (logcount digit))))))
1328 ;;;; logical operations
1330 ;;;; NOT
1332 (defun bignum-logical-not (a)
1333 (declare (type bignum-type a))
1334 (let* ((len (%bignum-length a))
1335 (res (%allocate-bignum len)))
1336 (declare (type bignum-length len))
1337 (dotimes (i len res)
1338 (declare (type bignum-index i))
1339 (setf (%bignum-ref res i) (%lognot (%bignum-ref a i))))))
1341 ;;;; AND
1343 (defun bignum-logical-and (a b)
1344 (declare (type bignum-type a b))
1345 (let* ((len-a (%bignum-length a))
1346 (len-b (%bignum-length b))
1347 (a-plusp (%bignum-0-or-plusp a len-a))
1348 (b-plusp (%bignum-0-or-plusp b len-b)))
1349 (declare (type bignum-length len-a len-b))
1350 (cond
1351 ((< len-a len-b)
1352 (if a-plusp
1353 (logand-shorter-positive a len-a b (%allocate-bignum len-a))
1354 (logand-shorter-negative a len-a b len-b (%allocate-bignum len-b))))
1355 ((< len-b len-a)
1356 (if b-plusp
1357 (logand-shorter-positive b len-b a (%allocate-bignum len-b))
1358 (logand-shorter-negative b len-b a len-a (%allocate-bignum len-a))))
1359 (t (logand-shorter-positive a len-a b (%allocate-bignum len-a))))))
1361 ;;; This takes a shorter bignum, a and len-a, that is positive. Because this
1362 ;;; is AND, we don't care about any bits longer than a's since its infinite 0
1363 ;;; sign bits will mask the other bits out of b. The result is len-a big.
1364 (defun logand-shorter-positive (a len-a b res)
1365 (declare (type bignum-type a b res)
1366 (type bignum-length len-a))
1367 (dotimes (i len-a)
1368 (declare (type bignum-index i))
1369 (setf (%bignum-ref res i)
1370 (%logand (%bignum-ref a i) (%bignum-ref b i))))
1371 (%normalize-bignum res len-a))
1373 ;;; This takes a shorter bignum, a and len-a, that is negative. Because this
1374 ;;; is AND, we just copy any bits longer than a's since its infinite 1 sign
1375 ;;; bits will include any bits from b. The result is len-b big.
1376 (defun logand-shorter-negative (a len-a b len-b res)
1377 (declare (type bignum-type a b res)
1378 (type bignum-length len-a len-b))
1379 (dotimes (i len-a)
1380 (declare (type bignum-index i))
1381 (setf (%bignum-ref res i)
1382 (%logand (%bignum-ref a i) (%bignum-ref b i))))
1383 (do ((i len-a (1+ i)))
1384 ((= i len-b))
1385 (declare (type bignum-index i))
1386 (setf (%bignum-ref res i) (%bignum-ref b i)))
1387 (%normalize-bignum res len-b))
1389 ;;;; IOR
1391 (defun bignum-logical-ior (a b)
1392 (declare (type bignum-type a b))
1393 (let* ((len-a (%bignum-length a))
1394 (len-b (%bignum-length b))
1395 (a-plusp (%bignum-0-or-plusp a len-a))
1396 (b-plusp (%bignum-0-or-plusp b len-b)))
1397 (declare (type bignum-length len-a len-b))
1398 (cond
1399 ((< len-a len-b)
1400 (if a-plusp
1401 (logior-shorter-positive a len-a b len-b (%allocate-bignum len-b))
1402 (logior-shorter-negative a len-a b len-b (%allocate-bignum len-b))))
1403 ((< len-b len-a)
1404 (if b-plusp
1405 (logior-shorter-positive b len-b a len-a (%allocate-bignum len-a))
1406 (logior-shorter-negative b len-b a len-a (%allocate-bignum len-a))))
1407 (t (logior-shorter-positive a len-a b len-b (%allocate-bignum len-a))))))
1409 ;;; This takes a shorter bignum, a and len-a, that is positive. Because this
1410 ;;; is IOR, we don't care about any bits longer than a's since its infinite
1411 ;;; 0 sign bits will mask the other bits out of b out to len-b. The result
1412 ;;; is len-b long.
1413 (defun logior-shorter-positive (a len-a b len-b res)
1414 (declare (type bignum-type a b res)
1415 (type bignum-length len-a len-b))
1416 (dotimes (i len-a)
1417 (declare (type bignum-index i))
1418 (setf (%bignum-ref res i)
1419 (%logior (%bignum-ref a i) (%bignum-ref b i))))
1420 (do ((i len-a (1+ i)))
1421 ((= i len-b))
1422 (declare (type bignum-index i))
1423 (setf (%bignum-ref res i) (%bignum-ref b i)))
1424 (%normalize-bignum res len-b))
1426 ;;; This takes a shorter bignum, a and len-a, that is negative. Because this
1427 ;;; is IOR, we just copy any bits longer than a's since its infinite 1 sign
1428 ;;; bits will include any bits from b. The result is len-b long.
1429 (defun logior-shorter-negative (a len-a b len-b res)
1430 (declare (type bignum-type a b res)
1431 (type bignum-length len-a len-b))
1432 (dotimes (i len-a)
1433 (declare (type bignum-index i))
1434 (setf (%bignum-ref res i)
1435 (%logior (%bignum-ref a i) (%bignum-ref b i))))
1436 (do ((i len-a (1+ i))
1437 (sign (%sign-digit a len-a)))
1438 ((= i len-b))
1439 (declare (type bignum-index i))
1440 (setf (%bignum-ref res i) sign))
1441 (%normalize-bignum res len-b))
1443 ;;;; XOR
1445 (defun bignum-logical-xor (a b)
1446 (declare (type bignum-type a b))
1447 (let ((len-a (%bignum-length a))
1448 (len-b (%bignum-length b)))
1449 (declare (type bignum-length len-a len-b))
1450 (if (< len-a len-b)
1451 (bignum-logical-xor-aux a len-a b len-b (%allocate-bignum len-b))
1452 (bignum-logical-xor-aux b len-b a len-a (%allocate-bignum len-a)))))
1454 ;;; This takes the shorter of two bignums in a and len-a. Res is len-b
1455 ;;; long. Do the XOR.
1456 (defun bignum-logical-xor-aux (a len-a b len-b res)
1457 (declare (type bignum-type a b res)
1458 (type bignum-length len-a len-b))
1459 (dotimes (i len-a)
1460 (declare (type bignum-index i))
1461 (setf (%bignum-ref res i)
1462 (%logxor (%bignum-ref a i) (%bignum-ref b i))))
1463 (do ((i len-a (1+ i))
1464 (sign (%sign-digit a len-a)))
1465 ((= i len-b))
1466 (declare (type bignum-index i))
1467 (setf (%bignum-ref res i) (%logxor sign (%bignum-ref b i))))
1468 (%normalize-bignum res len-b))
1470 ;;;; There used to be a bunch of code to implement "efficient" versions of LDB
1471 ;;;; and DPB here. But it apparently was never used, so it's been deleted.
1472 ;;;; --njf, 2007-02-04
1474 ;;;; TRUNCATE
1476 ;;; This is the original sketch of the algorithm from which I implemented this
1477 ;;; TRUNCATE, assuming both operands are bignums. I should modify this to work
1478 ;;; with the documentation on my functions, as a general introduction. I've
1479 ;;; left this here just in case someone needs it in the future. Don't look at
1480 ;;; this unless reading the functions' comments leaves you at a loss. Remember
1481 ;;; this comes from Knuth, so the book might give you the right general
1482 ;;; overview.
1484 ;;; (truncate x y):
1486 ;;; If X's magnitude is less than Y's, then result is 0 with remainder X.
1488 ;;; Make x and y positive, copying x if it is already positive.
1490 ;;; Shift y left until there's a 1 in the 30'th bit (most significant, non-sign
1491 ;;; digit)
1492 ;;; Just do most sig digit to determine how much to shift whole number.
1493 ;;; Shift x this much too.
1494 ;;; Remember this initial shift count.
1496 ;;; Allocate q to be len-x minus len-y quantity plus 1.
1498 ;;; i = last digit of x.
1499 ;;; k = last digit of q.
1501 ;;; LOOP
1503 ;;; j = last digit of y.
1505 ;;; compute guess.
1506 ;;; if x[i] = y[j] then g = (1- (ash 1 digit-size))
1507 ;;; else g = x[i]x[i-1]/y[j].
1509 ;;; check guess.
1510 ;;; %UNSIGNED-MULTIPLY returns b and c defined below.
1511 ;;; a = x[i-1] - (logand (* g y[j]) #xFFFFFFFF).
1512 ;;; Use %UNSIGNED-MULTIPLY taking low-order result.
1513 ;;; b = (logand (ash (* g y[j-1]) (- digit-size)) (1- (ash 1 digit-size))).
1514 ;;; c = (logand (* g y[j-1]) (1- (ash 1 digit-size))).
1515 ;;; if a < b, okay.
1516 ;;; if a > b, guess is too high
1517 ;;; g = g - 1; go back to "check guess".
1518 ;;; if a = b and c > x[i-2], guess is too high
1519 ;;; g = g - 1; go back to "check guess".
1520 ;;; GUESS IS 32-BIT NUMBER, SO USE THING TO KEEP IN SPECIAL REGISTER
1521 ;;; SAME FOR A, B, AND C.
1523 ;;; Subtract g * y from x[i - len-y+1]..x[i]. See paper for doing this in step.
1524 ;;; If x[i] < 0, guess is screwed up.
1525 ;;; negative g, then add 1
1526 ;;; zero or positive g, then subtract 1
1527 ;;; AND add y back into x[len-y+1..i].
1529 ;;; q[k] = g.
1530 ;;; i = i - 1.
1531 ;;; k = k - 1.
1533 ;;; If k>=0, goto LOOP.
1535 ;;; Now quotient is good, but remainder is not.
1536 ;;; Shift x right by saved initial left shifting count.
1538 ;;; Check quotient and remainder signs.
1539 ;;; x pos y pos --> q pos r pos
1540 ;;; x pos y neg --> q neg r pos
1541 ;;; x neg y pos --> q neg r neg
1542 ;;; x neg y neg --> q pos r neg
1544 ;;; Normalize quotient and remainder. Cons result if necessary.
1547 ;;; This used to be split into multiple functions, which shared state
1548 ;;; in special variables *TRUNCATE-X* and *TRUNCATE-Y*. Having so many
1549 ;;; special variable accesses in tight inner loops was having a large
1550 ;;; effect on performance, so the helper functions have now been
1551 ;;; refactored into local functions and the special variables into
1552 ;;; lexicals. There was also a lot of boxing and unboxing of
1553 ;;; (UNSIGNED-BYTE 32)'s going on, which this refactoring
1554 ;;; eliminated. This improves the performance on some CL-BENCH tests
1555 ;;; by up to 50%, which is probably signigicant enough to justify the
1556 ;;; reduction in readability that was introduced. --JES, 2004-08-07
1557 (defun bignum-truncate (x y)
1558 (declare (type bignum-type x y))
1559 (declare (muffle-conditions compiler-note)) ; returns lispobj, so what.
1560 (let (truncate-x truncate-y)
1561 (labels
1562 ;;; Divide X by Y when Y is a single bignum digit. BIGNUM-TRUNCATE
1563 ;;; fixes up the quotient and remainder with respect to sign and
1564 ;;; normalization.
1566 ;;; We don't have to worry about shifting Y to make its most
1567 ;;; significant digit sufficiently large for %BIGFLOOR to return
1568 ;;; digit-size quantities for the q-digit and r-digit. If Y is
1569 ;;; a single digit bignum, it is already large enough for
1570 ;;; %BIGFLOOR. That is, it has some bits on pretty high in the
1571 ;;; digit.
1572 ((bignum-truncate-single-digit (x len-x y)
1573 (declare (type bignum-length len-x))
1574 (let ((y (%bignum-ref y 0)))
1575 (declare (type bignum-element-type y))
1576 (if (not (logtest y (1- y)))
1577 ;; Y is a power of two.
1578 ;; SHIFT-RIGHT-UNALIGNED won't do the right thing
1579 ;; with a shift count of 0 or -1, so special case this.
1580 (cond ((= y 0)
1581 (error 'division-by-zero :operation 'truncate
1582 :operands (list x y)))
1583 ((= y 1)
1584 ;; We could probably get away with (VALUES X 0)
1585 ;; here, but it's not clear that some of the
1586 ;; normalization logic further down would avoid
1587 ;; mutilating X. Just go ahead and cons, consing's
1588 ;; cheap.
1589 (values (copy-bignum x len-x) 0))
1591 (let ((n-bits (1- (integer-length y))))
1592 (values
1593 (shift-right-unaligned x 0 n-bits len-x
1594 ((= j res-len-1)
1595 (setf (%bignum-ref res j)
1596 (%ashr (%bignum-ref x i) n-bits))
1597 res)
1598 res)
1599 (logand (%bignum-ref x 0) (1- y))))))
1600 (do ((i (1- len-x) (1- i))
1601 (q (%allocate-bignum len-x))
1602 (r 0))
1603 ((minusp i)
1604 (let ((rem (%allocate-bignum 1)))
1605 (setf (%bignum-ref rem 0) r)
1606 (values q rem)))
1607 (declare (type bignum-element-type r))
1608 (multiple-value-bind (q-digit r-digit)
1609 (%bigfloor r (%bignum-ref x i) y)
1610 (declare (type bignum-element-type q-digit r-digit))
1611 (setf (%bignum-ref q i) q-digit)
1612 (setf r r-digit))))))
1613 ;;; This returns a guess for the next division step. Y1 is the
1614 ;;; highest y digit, and y2 is the second to highest y
1615 ;;; digit. The x... variables are the three highest x digits
1616 ;;; for the next division step.
1618 ;;; From Knuth, our guess is either all ones or x-i and x-i-1
1619 ;;; divided by y1, depending on whether x-i and y1 are the
1620 ;;; same. We test this guess by determining whether guess*y2
1621 ;;; is greater than the three high digits of x minus guess*y1
1622 ;;; shifted left one digit:
1623 ;;; ------------------------------
1624 ;;; | x-i | x-i-1 | x-i-2 |
1625 ;;; ------------------------------
1626 ;;; ------------------------------
1627 ;;; - | g*y1 high | g*y1 low | 0 |
1628 ;;; ------------------------------
1629 ;;; ... < guess*y2 ???
1630 ;;; If guess*y2 is greater, then we decrement our guess by one
1631 ;;; and try again. This returns a guess that is either
1632 ;;; correct or one too large.
1633 (bignum-truncate-guess (y1 y2 x-i x-i-1 x-i-2)
1634 (declare (type bignum-element-type y1 y2 x-i x-i-1 x-i-2))
1635 (let ((guess (if (%digit-compare x-i y1)
1636 all-ones-digit
1637 (%bigfloor x-i x-i-1 y1))))
1638 (declare (type bignum-element-type guess))
1639 (loop
1640 (multiple-value-bind (high-guess*y1 low-guess*y1)
1641 (%multiply guess y1)
1642 (declare (type bignum-element-type low-guess*y1
1643 high-guess*y1))
1644 (multiple-value-bind (high-guess*y2 low-guess*y2)
1645 (%multiply guess y2)
1646 (declare (type bignum-element-type high-guess*y2
1647 low-guess*y2))
1648 (multiple-value-bind (middle-digit borrow)
1649 (%subtract-with-borrow x-i-1 low-guess*y1 1)
1650 (declare (type bignum-element-type middle-digit)
1651 (fixnum borrow))
1652 ;; Supplying borrow of 1 means there was no
1653 ;; borrow, and we know x-i-2 minus 0 requires
1654 ;; no borrow.
1655 (let ((high-digit (%subtract-with-borrow x-i
1656 high-guess*y1
1657 borrow)))
1658 (declare (type bignum-element-type high-digit))
1659 (if (and (%digit-compare high-digit 0)
1660 (or (%digit-greater high-guess*y2
1661 middle-digit)
1662 (and (%digit-compare middle-digit
1663 high-guess*y2)
1664 (%digit-greater low-guess*y2
1665 x-i-2))))
1666 (setf guess (%subtract-with-borrow guess 1 1))
1667 (return guess)))))))))
1668 ;;; Divide TRUNCATE-X by TRUNCATE-Y, returning the quotient
1669 ;;; and destructively modifying TRUNCATE-X so that it holds
1670 ;;; the remainder.
1672 ;;; LEN-X and LEN-Y tell us how much of the buffers we care about.
1674 ;;; TRUNCATE-X definitely has at least three digits, and it has one
1675 ;;; more than TRUNCATE-Y. This keeps i, i-1, i-2, and low-x-digit
1676 ;;; happy. Thanks to SHIFT-AND-STORE-TRUNCATE-BUFFERS.
1677 (return-quotient-leaving-remainder (len-x len-y)
1678 (declare (type bignum-length len-x len-y))
1679 (let* ((len-q (- len-x len-y))
1680 ;; Add one for extra sign digit in case high bit is on.
1681 (q (%allocate-bignum (1+ len-q)))
1682 (k (1- len-q))
1683 (y1 (%bignum-ref truncate-y (1- len-y)))
1684 (y2 (%bignum-ref truncate-y (- len-y 2)))
1685 (i (1- len-x))
1686 (i-1 (1- i))
1687 (i-2 (1- i-1))
1688 (low-x-digit (- i len-y)))
1689 (declare (type bignum-length len-q)
1690 (type bignum-index k i i-1 i-2 low-x-digit)
1691 (type bignum-element-type y1 y2))
1692 (loop
1693 (setf (%bignum-ref q k)
1694 (try-bignum-truncate-guess
1695 ;; This modifies TRUNCATE-X. Must access
1696 ;; elements each pass.
1697 (bignum-truncate-guess y1 y2
1698 (%bignum-ref truncate-x i)
1699 (%bignum-ref truncate-x i-1)
1700 (%bignum-ref truncate-x i-2))
1701 len-y low-x-digit))
1702 (cond ((zerop k) (return))
1703 (t (decf k)
1704 (decf low-x-digit)
1705 (shiftf i i-1 i-2 (1- i-2)))))
1707 ;;; This takes a digit guess, multiplies it by TRUNCATE-Y for a
1708 ;;; result one greater in length than LEN-Y, and subtracts this result
1709 ;;; from TRUNCATE-X. LOW-X-DIGIT is the first digit of X to start
1710 ;;; the subtraction, and we know X is long enough to subtract a LEN-Y
1711 ;;; plus one length bignum from it. Next we check the result of the
1712 ;;; subtraction, and if the high digit in X became negative, then our
1713 ;;; guess was one too big. In this case, return one less than GUESS
1714 ;;; passed in, and add one value of Y back into X to account for
1715 ;;; subtracting one too many. Knuth shows that the guess is wrong on
1716 ;;; the order of 3/b, where b is the base (2 to the digit-size power)
1717 ;;; -- pretty rarely.
1718 (try-bignum-truncate-guess (guess len-y low-x-digit)
1719 (declare (type bignum-index low-x-digit)
1720 (type bignum-length len-y)
1721 (type bignum-element-type guess))
1722 (let ((carry-digit 0)
1723 (borrow 1)
1724 (i low-x-digit))
1725 (declare (type bignum-element-type carry-digit)
1726 (type bignum-index i)
1727 (fixnum borrow))
1728 ;; Multiply guess and divisor, subtracting from dividend
1729 ;; simultaneously.
1730 (dotimes (j len-y)
1731 (multiple-value-bind (high-digit low-digit)
1732 (%multiply-and-add guess
1733 (%bignum-ref truncate-y j)
1734 carry-digit)
1735 (declare (type bignum-element-type high-digit low-digit))
1736 (setf carry-digit high-digit)
1737 (multiple-value-bind (x temp-borrow)
1738 (%subtract-with-borrow (%bignum-ref truncate-x i)
1739 low-digit
1740 borrow)
1741 (declare (type bignum-element-type x)
1742 (fixnum temp-borrow))
1743 (setf (%bignum-ref truncate-x i) x)
1744 (setf borrow temp-borrow)))
1745 (incf i))
1746 (setf (%bignum-ref truncate-x i)
1747 (%subtract-with-borrow (%bignum-ref truncate-x i)
1748 carry-digit borrow))
1749 ;; See whether guess is off by one, adding one
1750 ;; Y back in if necessary.
1751 (cond ((%digit-0-or-plusp (%bignum-ref truncate-x i))
1752 guess)
1754 ;; If subtraction has negative result, add one
1755 ;; divisor value back in. The guess was one too
1756 ;; large in magnitude.
1757 (let ((i low-x-digit)
1758 (carry 0))
1759 (dotimes (j len-y)
1760 (multiple-value-bind (v k)
1761 (%add-with-carry (%bignum-ref truncate-y j)
1762 (%bignum-ref truncate-x i)
1763 carry)
1764 (declare (type bignum-element-type v))
1765 (setf (%bignum-ref truncate-x i) v)
1766 (setf carry k))
1767 (incf i))
1768 (setf (%bignum-ref truncate-x i)
1769 (%add-with-carry (%bignum-ref truncate-x i)
1770 0 carry)))
1771 (%subtract-with-borrow guess 1 1)))))
1772 ;;; This returns the amount to shift y to place a one in the
1773 ;;; second highest bit. Y must be positive. If the last digit
1774 ;;; of y is zero, then y has a one in the previous digit's
1775 ;;; sign bit, so we know it will take one less than digit-size
1776 ;;; to get a one where we want. Otherwise, we count how many
1777 ;;; right shifts it takes to get zero; subtracting this value
1778 ;;; from digit-size tells us how many high zeros there are
1779 ;;; which is one more than the shift amount sought.
1781 ;;; Note: This is exactly the same as one less than the
1782 ;;; integer-length of the last digit subtracted from the
1783 ;;; digit-size.
1785 ;;; We shift y to make it sufficiently large that doing the
1786 ;;; 2*digit-size by digit-size %BIGFLOOR calls ensures the quotient and
1787 ;;; remainder fit in digit-size.
1788 (shift-y-for-truncate (y)
1789 (let* ((len (%bignum-length y))
1790 (last (%bignum-ref y (1- len))))
1791 (declare (type bignum-length len)
1792 (type bignum-element-type last))
1793 (- digit-size (integer-length last) 1)))
1794 ;;; Stores two bignums into the truncation bignum buffers,
1795 ;;; shifting them on the way in. This assumes x and y are
1796 ;;; positive and at least two in length, and it assumes
1797 ;;; truncate-x and truncate-y are one digit longer than x and
1798 ;;; y.
1799 (shift-and-store-truncate-buffers (x len-x y len-y shift)
1800 (declare (type bignum-length len-x len-y)
1801 (type (integer 0 (#.digit-size)) shift))
1802 (cond ((zerop shift)
1803 (bignum-replace truncate-x x :end1 len-x)
1804 (bignum-replace truncate-y y :end1 len-y))
1806 (bignum-ashift-left-unaligned x 0 shift (1+ len-x)
1807 truncate-x)
1808 (bignum-ashift-left-unaligned y 0 shift (1+ len-y)
1809 truncate-y))))) ;; LABELS
1810 ;;; Divide X by Y returning the quotient and remainder. In the
1811 ;;; general case, we shift Y to set up for the algorithm, and we
1812 ;;; use two buffers to save consing intermediate values. X gets
1813 ;;; destructively modified to become the remainder, and we have
1814 ;;; to shift it to account for the initial Y shift. After we
1815 ;;; multiple bind q and r, we first fix up the signs and then
1816 ;;; return the normalized results.
1817 (let* ((x-plusp (%bignum-0-or-plusp x (%bignum-length x)))
1818 (y-plusp (%bignum-0-or-plusp y (%bignum-length y)))
1819 (x (if x-plusp x (negate-bignum x nil)))
1820 (y (if y-plusp y (negate-bignum y nil)))
1821 (len-x (%bignum-length x))
1822 (len-y (%bignum-length y)))
1823 (multiple-value-bind (q r)
1824 (cond ((< len-y 2)
1825 (bignum-truncate-single-digit x len-x y))
1826 ((plusp (bignum-compare y x))
1827 (let ((res (%allocate-bignum len-x)))
1828 (dotimes (i len-x)
1829 (setf (%bignum-ref res i) (%bignum-ref x i)))
1830 (values 0 res)))
1832 (let ((len-x+1 (1+ len-x)))
1833 (setf truncate-x (%allocate-bignum len-x+1))
1834 (setf truncate-y (%allocate-bignum (1+ len-y)))
1835 (let ((y-shift (shift-y-for-truncate y)))
1836 (shift-and-store-truncate-buffers x len-x y
1837 len-y y-shift)
1838 (values (return-quotient-leaving-remainder len-x+1
1839 len-y)
1840 ;; Now that RETURN-QUOTIENT-LEAVING-REMAINDER
1841 ;; has executed, we just tidy up the remainder
1842 ;; (in TRUNCATE-X) and return it.
1843 (cond
1844 ((zerop y-shift)
1845 (let ((res (%allocate-bignum len-y)))
1846 (declare (type bignum-type res))
1847 (bignum-replace res truncate-x :end2 len-y)
1848 (%normalize-bignum res len-y)))
1850 (shift-right-unaligned
1851 truncate-x 0 y-shift len-y
1852 ((= j res-len-1)
1853 (setf (%bignum-ref res j)
1854 (%ashr (%bignum-ref truncate-x i)
1855 y-shift))
1856 (%normalize-bignum res res-len))
1857 res))))))))
1858 (let ((quotient (cond ((eq x-plusp y-plusp) q)
1859 ((typep q 'fixnum) (the fixnum (- q)))
1860 (t (negate-bignum-in-place q))))
1861 (rem (cond (x-plusp r)
1862 ((typep r 'fixnum) (the fixnum (- r)))
1863 (t (negate-bignum-in-place r)))))
1864 (values (if (typep quotient 'fixnum)
1865 quotient
1866 (%normalize-bignum quotient (%bignum-length quotient)))
1867 (if (typep rem 'fixnum)
1869 (%normalize-bignum rem (%bignum-length rem))))))))))
1872 ;;;; There used to be a pile of code for implementing division for bignum digits
1873 ;;;; for machines that don't have a 2*digit-size by digit-size divide instruction.
1874 ;;;; This happens to be most machines, but all the SBCL ports seem to be content
1875 ;;;; to implement SB-BIGNUM:%BIGFLOOR as a VOP rather than using the code here.
1876 ;;;; So it's been deleted. --njf, 2007-02-04
1878 ;;;; general utilities
1880 ;;; Internal in-place operations use this to fixup remaining digits in the
1881 ;;; incoming data, such as in-place shifting. This is basically the same as
1882 ;;; the first form in %NORMALIZE-BIGNUM, but we return the length of the buffer
1883 ;;; instead of shrinking the bignum.
1884 #!-sb-fluid (declaim (maybe-inline %normalize-bignum-buffer))
1885 (defun %normalize-bignum-buffer (result len)
1886 (declare (type bignum-type result)
1887 (type bignum-length len))
1888 (unless (= len 1)
1889 (do ((next-digit (%bignum-ref result (- len 2))
1890 (%bignum-ref result (- len 2)))
1891 (sign-digit (%bignum-ref result (1- len)) next-digit))
1892 ((not (zerop (logxor sign-digit (%ashr next-digit (1- digit-size))))))
1893 (decf len)
1894 (setf (%bignum-ref result len) 0)
1895 (when (= len 1)
1896 (return))))
1897 len)
1899 ;;; This drops the last digit if it is unnecessary sign information. It repeats
1900 ;;; this as needed, possibly ending with a fixnum. If the resulting length from
1901 ;;; shrinking is one, see whether our one word is a fixnum. Shift the possible
1902 ;;; fixnum bits completely out of the word, and compare this with shifting the
1903 ;;; sign bit all the way through. If the bits are all 1's or 0's in both words,
1904 ;;; then there are just sign bits between the fixnum bits and the sign bit. If
1905 ;;; we do have a fixnum, shift it over for the two low-tag bits.
1906 (defun %normalize-bignum (result len)
1907 (declare (type bignum-type result)
1908 (type bignum-length len)
1909 (muffle-conditions compiler-note)
1910 (inline %normalize-bignum-buffer))
1911 (let ((newlen (%normalize-bignum-buffer result len)))
1912 (declare (type bignum-length newlen))
1913 (unless (= newlen len)
1914 (%bignum-set-length result newlen))
1915 (if (= newlen 1)
1916 (let ((digit (%bignum-ref result 0)))
1917 (if (= (%ashr digit sb!vm:n-positive-fixnum-bits)
1918 (%ashr digit (1- digit-size)))
1919 (%fixnum-digit-with-correct-sign digit)
1920 result))
1921 result)))
1923 ;;; This drops the last digit if it is unnecessary sign information. It
1924 ;;; repeats this as needed, possibly ending with a fixnum magnitude but never
1925 ;;; returning a fixnum.
1926 (defun %mostly-normalize-bignum (result len)
1927 (declare (type bignum-type result)
1928 (type bignum-length len)
1929 (inline %normalize-bignum-buffer))
1930 (let ((newlen (%normalize-bignum-buffer result len)))
1931 (declare (type bignum-length newlen))
1932 (unless (= newlen len)
1933 (%bignum-set-length result newlen))
1934 result))
1936 ;;;; hashing
1938 ;;; the bignum case of the SXHASH function
1939 (defun sxhash-bignum (x)
1940 (let ((result 316495330))
1941 (declare (type fixnum result))
1942 (dotimes (i (%bignum-length x))
1943 (declare (type index i))
1944 (let ((xi (%bignum-ref x i)))
1945 (mixf result
1946 (logand most-positive-fixnum
1947 (logxor xi
1948 (ash xi -7))))))
1949 result))