1 ;;;; that part of the description of the x86-64 instruction set
2 ;;;; which can live on the cross-compilation host
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
14 ;;; FIXME: SB!DISASSEM: prefixes are used so widely in this file that
15 ;;; I wonder whether the separation of the disassembler from the
16 ;;; virtual machine is valid or adds value.
18 ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS.
19 (setf sb
!disassem
:*disassem-inst-alignment-bytes
* 1)
21 ;;; This type is used mostly in disassembly and represents legacy
22 ;;; registers only. R8-R15 are handled separately.
23 (deftype reg
() '(unsigned-byte 3))
25 ;;; This includes legacy registers and R8-R15.
26 (deftype full-reg
() '(unsigned-byte 4))
28 ;;; The XMM registers XMM0 - XMM15.
29 (deftype xmmreg
() '(unsigned-byte 4))
31 ;;; Default word size for the chip: if the operand size /= :dword
32 ;;; we need to output #x66 (or REX) prefix
33 (def!constant
+default-operand-size
+ :dword
)
35 ;;; The default address size for the chip. It could be overwritten
36 ;;; to :dword with a #x67 prefix, but this is never needed by SBCL
37 ;;; and thus not supported by this assembler/disassembler.
38 (def!constant
+default-address-size
+ :qword
)
40 (eval-when (#-sb-xc
:compile-toplevel
:load-toplevel
:execute
)
42 (defun offset-next (value dstate
)
43 (declare (type integer value
)
44 (type sb
!disassem
:disassem-state dstate
))
45 (+ (sb!disassem
:dstate-next-addr dstate
) value
))
47 (defparameter *byte-reg-names
*
48 #(al cl dl bl spl bpl sil dil r8b r9b r10b r11b r12b r13b r14b r15b
))
49 (defparameter *high-byte-reg-names
*
51 (defparameter *word-reg-names
*
52 #(ax cx dx bx sp bp si di r8w r9w r10w r11w r12w r13w r14w r15w
))
53 (defparameter *dword-reg-names
*
54 #(eax ecx edx ebx esp ebp esi edi r8d r9d r10d r11d r12d r13d r14d r15d
))
55 (defparameter *qword-reg-names
*
56 #(rax rcx rdx rbx rsp rbp rsi rdi r8 r9 r10 r11 r12 r13 r14 r15
))
58 ;;; The printers for registers, memory references and immediates need to
59 ;;; take into account the width bit in the instruction, whether a #x66
60 ;;; or a REX prefix was issued, and the contents of the REX prefix.
61 ;;; This is implemented using prefilters to put flags into the slot
62 ;;; INST-PROPERTIES of the DSTATE. These flags are the following
65 ;;; OPERAND-SIZE-8 The width bit was zero
66 ;;; OPERAND-SIZE-16 The "operand size override" prefix (#x66) was found
67 ;;; REX A REX prefix was found
68 ;;; REX-W A REX prefix with the "operand width" bit set was
70 ;;; REX-R A REX prefix with the "register" bit set was found
71 ;;; REX-X A REX prefix with the "index" bit set was found
72 ;;; REX-B A REX prefix with the "base" bit set was found
74 ;;; Return the operand size depending on the prefixes and width bit as
76 (defun inst-operand-size (dstate)
77 (declare (type sb
!disassem
:disassem-state dstate
))
78 (cond ((sb!disassem
:dstate-get-inst-prop dstate
'operand-size-8
)
80 ((sb!disassem
:dstate-get-inst-prop dstate
'rex-w
)
82 ((sb!disassem
:dstate-get-inst-prop dstate
'operand-size-16
)
85 +default-operand-size
+)))
87 ;;; The same as INST-OPERAND-SIZE, but for those instructions (e.g.
88 ;;; PUSH, JMP) that have a default operand size of :qword. It can only
89 ;;; be overwritten to :word.
90 (defun inst-operand-size-default-qword (dstate)
91 (declare (type sb
!disassem
:disassem-state dstate
))
92 (if (sb!disassem
:dstate-get-inst-prop dstate
'operand-size-16
)
96 ;;; Print to STREAM the name of the general-purpose register encoded by
97 ;;; VALUE and of size WIDTH. For robustness, the high byte registers
98 ;;; (AH, BH, CH, DH) are correctly detected, too, although the compiler
99 ;;; does not use them.
100 (defun print-reg-with-width (value width stream dstate
)
101 (declare (type full-reg value
)
103 (type sb
!disassem
:disassem-state dstate
))
104 (princ (if (and (eq width
:byte
)
106 (not (sb!disassem
:dstate-get-inst-prop dstate
'rex
)))
107 (aref *high-byte-reg-names
* (- value
4))
109 (:byte
*byte-reg-names
*)
110 (:word
*word-reg-names
*)
111 (:dword
*dword-reg-names
*)
112 (:qword
*qword-reg-names
*))
115 ;; XXX plus should do some source-var notes
118 (defun print-reg (value stream dstate
)
119 (declare (type full-reg value
)
121 (type sb
!disassem
:disassem-state dstate
))
122 (print-reg-with-width value
123 (inst-operand-size dstate
)
127 (defun print-reg-default-qword (value stream dstate
)
128 (declare (type full-reg value
)
130 (type sb
!disassem
:disassem-state dstate
))
131 (print-reg-with-width value
132 (inst-operand-size-default-qword dstate
)
136 (defun print-byte-reg (value stream dstate
)
137 (declare (type full-reg value
)
139 (type sb
!disassem
:disassem-state dstate
))
140 (print-reg-with-width value
:byte stream dstate
))
142 (defun print-addr-reg (value stream dstate
)
143 (declare (type full-reg value
)
145 (type sb
!disassem
:disassem-state dstate
))
146 (print-reg-with-width value
+default-address-size
+ stream dstate
))
148 ;;; Print a register or a memory reference of the given WIDTH.
149 ;;; If SIZED-P is true, add an explicit size indicator for memory
151 (defun print-reg/mem-with-width
(value width sized-p stream dstate
)
152 (declare (type (or list full-reg
) value
)
153 (type (member :byte
:word
:dword
:qword
) width
)
154 (type boolean sized-p
)
156 (type sb
!disassem
:disassem-state dstate
))
157 (if (typep value
'full-reg
)
158 (print-reg-with-width value width stream dstate
)
159 (print-mem-ref (if sized-p
:sized-ref
:ref
) value width stream dstate
)))
161 ;;; Print a register or a memory reference. The width is determined by
162 ;;; calling INST-OPERAND-SIZE.
163 (defun print-reg/mem
(value stream dstate
)
164 (declare (type (or list full-reg
) value
)
166 (type sb
!disassem
:disassem-state dstate
))
167 (print-reg/mem-with-width
168 value
(inst-operand-size dstate
) nil stream dstate
))
170 ;; Same as print-reg/mem, but prints an explicit size indicator for
171 ;; memory references.
172 (defun print-sized-reg/mem
(value stream dstate
)
173 (declare (type (or list full-reg
) value
)
175 (type sb
!disassem
:disassem-state dstate
))
176 (print-reg/mem-with-width
177 value
(inst-operand-size dstate
) t stream dstate
))
179 ;;; Same as print-sized-reg/mem, but with a default operand size of
181 (defun print-sized-reg/mem-default-qword
(value stream dstate
)
182 (declare (type (or list full-reg
) value
)
184 (type sb
!disassem
:disassem-state dstate
))
185 (print-reg/mem-with-width
186 value
(inst-operand-size-default-qword dstate
) t stream dstate
))
188 (defun print-sized-byte-reg/mem
(value stream dstate
)
189 (declare (type (or list full-reg
) value
)
191 (type sb
!disassem
:disassem-state dstate
))
192 (print-reg/mem-with-width value
:byte t stream dstate
))
194 (defun print-sized-word-reg/mem
(value stream dstate
)
195 (declare (type (or list full-reg
) value
)
197 (type sb
!disassem
:disassem-state dstate
))
198 (print-reg/mem-with-width value
:word t stream dstate
))
200 (defun print-sized-dword-reg/mem
(value stream dstate
)
201 (declare (type (or list full-reg
) value
)
203 (type sb
!disassem
:disassem-state dstate
))
204 (print-reg/mem-with-width value
:dword t stream dstate
))
206 (defun print-label (value stream dstate
)
207 (declare (ignore dstate
))
208 (sb!disassem
:princ16 value stream
))
210 (defun print-xmmreg (value stream dstate
)
211 (declare (type xmmreg value
)
214 (format stream
"XMM~d" value
))
216 (defun print-xmmreg/mem
(value stream dstate
)
217 (declare (type (or list xmmreg
) value
)
219 (type sb
!disassem
:disassem-state dstate
))
220 (if (typep value
'xmmreg
)
221 (print-xmmreg value stream dstate
)
222 (print-mem-ref :ref value nil stream dstate
)))
224 ;;; This prefilter is used solely for its side effects, namely to put
225 ;;; the bits found in the REX prefix into the DSTATE for use by other
226 ;;; prefilters and by printers.
227 (defun prefilter-wrxb (value dstate
)
228 (declare (type (unsigned-byte 4) value
)
229 (type sb
!disassem
:disassem-state dstate
))
230 (sb!disassem
:dstate-put-inst-prop dstate
'rex
)
231 (when (plusp (logand value
#b1000
))
232 (sb!disassem
:dstate-put-inst-prop dstate
'rex-w
))
233 (when (plusp (logand value
#b0100
))
234 (sb!disassem
:dstate-put-inst-prop dstate
'rex-r
))
235 (when (plusp (logand value
#b0010
))
236 (sb!disassem
:dstate-put-inst-prop dstate
'rex-x
))
237 (when (plusp (logand value
#b0001
))
238 (sb!disassem
:dstate-put-inst-prop dstate
'rex-b
))
241 ;;; The two following prefilters are used instead of prefilter-wrxb when
242 ;;; the bits of the REX prefix need to be treated individually. They are
243 ;;; always used together, so only the first one sets the REX property.
244 (defun prefilter-rex-w (value dstate
)
245 (declare (type bit value
)
246 (type sb
!disassem
:disassem-state dstate
))
247 (sb!disassem
:dstate-put-inst-prop dstate
'rex
)
249 (sb!disassem
:dstate-put-inst-prop dstate
'rex-w
)))
250 (defun prefilter-rex-b (value dstate
)
251 (declare (type bit value
)
252 (type sb
!disassem
:disassem-state dstate
))
254 (sb!disassem
:dstate-put-inst-prop dstate
'rex-b
)))
256 ;;; This prefilter is used solely for its side effect, namely to put
257 ;;; the property OPERAND-SIZE-8 into the DSTATE if VALUE is 0.
258 (defun prefilter-width (value dstate
)
259 (declare (type bit value
)
260 (type sb
!disassem
:disassem-state dstate
))
262 (sb!disassem
:dstate-put-inst-prop dstate
'operand-size-8
))
265 ;;; This prefilter is used solely for its side effect, namely to put
266 ;;; the property OPERAND-SIZE-16 into the DSTATE.
267 (defun prefilter-x66 (value dstate
)
268 (declare (type (eql #x66
) value
)
270 (type sb
!disassem
:disassem-state dstate
))
271 (sb!disassem
:dstate-put-inst-prop dstate
'operand-size-16
))
273 ;;; A register field that can be extended by REX.R.
274 (defun prefilter-reg-r (value dstate
)
275 (declare (type reg value
)
276 (type sb
!disassem
:disassem-state dstate
))
277 (if (sb!disassem
::dstate-get-inst-prop dstate
'rex-r
)
281 ;;; A register field that can be extended by REX.B.
282 (defun prefilter-reg-b (value dstate
)
283 (declare (type reg value
)
284 (type sb
!disassem
:disassem-state dstate
))
285 (if (sb!disassem
::dstate-get-inst-prop dstate
'rex-b
)
289 ;;; Returns either an integer, meaning a register, or a list of
290 ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component
291 ;;; may be missing or nil to indicate that it's not used or has the
292 ;;; obvious default value (e.g., 1 for the index-scale). VALUE is a list
293 ;;; of the mod and r/m field of the ModRM byte of the instruction.
294 ;;; Depending on VALUE a SIB byte and/or an offset may be read. The
295 ;;; REX.B bit from DSTATE is used to extend the sole register or the
296 ;;; BASE-REG to a full register, the REX.X bit does the same for the
298 (defun prefilter-reg/mem
(value dstate
)
299 (declare (type list value
)
300 (type sb
!disassem
:disassem-state dstate
))
301 (flet ((extend (bit-name reg
)
302 (logior (if (sb!disassem
:dstate-get-inst-prop dstate bit-name
) 8 0)
304 (declare (inline extend
))
305 (let* ((mod (the (unsigned-byte 2) (first value
)))
306 (r/m
(the (unsigned-byte 3) (second value
)))
307 (full-reg (extend 'rex-b r
/m
)))
311 ((= r
/m
#b100
) ; SIB byte - rex.b is "don't care"
312 (let* ((sib (the (unsigned-byte 8)
313 (sb!disassem
:read-suffix
8 dstate
)))
314 (base-reg (ldb (byte 3 0) sib
))
315 (index-reg (extend 'rex-x
(ldb (byte 3 3) sib
)))
319 (if (= base-reg
#b101
)
320 (sb!disassem
:read-signed-suffix
32 dstate
)
323 (sb!disassem
:read-signed-suffix
8 dstate
))
325 (sb!disassem
:read-signed-suffix
32 dstate
)))))
326 (list (unless (and (= mod
#b00
) (= base-reg
#b101
))
327 (extend 'rex-b base-reg
))
329 (unless (= index-reg
#b100
) index-reg
) ; index can't be RSP
330 (ash 1 (ldb (byte 2 6) sib
)))))
331 ;; rex.b is not decoded in determining RIP-relative mode
332 ((and (= mod
#b00
) (= r
/m
#b101
))
333 (list 'rip
(sb!disassem
:read-signed-suffix
32 dstate
)))
337 (list full-reg
(sb!disassem
:read-signed-suffix
8 dstate
)))
339 (list full-reg
(sb!disassem
:read-signed-suffix
32 dstate
)))))))
341 (defun read-address (value dstate
)
342 (declare (ignore value
)) ; always nil anyway
343 (sb!disassem
:read-suffix
(width-bits (inst-operand-size dstate
)) dstate
))
345 (defun width-bits (width)
352 (defun print-imm/asm-routine
(value stream dstate
)
353 (sb!disassem
:maybe-note-assembler-routine value nil dstate
)
354 (sb!disassem
:maybe-note-static-symbol value dstate
)
355 (princ value stream
))
358 ;;;; disassembler argument types
360 ;;; Used to capture the lower four bits of the REX prefix all at once ...
361 (sb!disassem
:define-arg-type wrxb
362 :prefilter
#'prefilter-wrxb
)
363 ;;; ... or individually (not needed for REX.R and REX.X).
364 (sb!disassem
:define-arg-type rex-w
365 :prefilter
#'prefilter-rex-w
)
366 (sb!disassem
:define-arg-type rex-b
367 :prefilter
#'prefilter-rex-b
)
369 (sb!disassem
:define-arg-type width
370 :prefilter
#'prefilter-width
371 :printer
(lambda (value stream dstate
)
372 (declare (ignore value
))
373 (princ (schar (symbol-name (inst-operand-size dstate
)) 0)
376 ;;; Used to capture the effect of the #x66 operand size override prefix.
377 (sb!disassem
:define-arg-type x66
378 :prefilter
#'prefilter-x66
)
380 (sb!disassem
:define-arg-type displacement
382 :use-label
#'offset-next
383 :printer
(lambda (value stream dstate
)
384 (sb!disassem
:maybe-note-assembler-routine value nil dstate
)
385 (print-label value stream dstate
)))
387 (sb!disassem
:define-arg-type accum
388 :printer
(lambda (value stream dstate
)
389 (declare (ignore value
)
391 (type sb
!disassem
:disassem-state dstate
))
392 (print-reg 0 stream dstate
)))
394 (sb!disassem
:define-arg-type reg
395 :prefilter
#'prefilter-reg-r
396 :printer
#'print-reg
)
398 (sb!disassem
:define-arg-type reg-b
399 :prefilter
#'prefilter-reg-b
400 :printer
#'print-reg
)
402 (sb!disassem
:define-arg-type reg-b-default-qword
403 :prefilter
#'prefilter-reg-b
404 :printer
#'print-reg-default-qword
)
406 (sb!disassem
:define-arg-type imm-addr
407 :prefilter
#'read-address
408 :printer
#'print-label
)
410 ;;; Normally, immediate values for an operand size of :qword are of size
411 ;;; :dword and are sign-extended to 64 bits. For an exception, see the
412 ;;; argument type definition of SIGNED-IMM-DATA-UPTO-QWORD below.
413 (sb!disassem
:define-arg-type signed-imm-data
414 :prefilter
(lambda (value dstate
)
415 (declare (ignore value
)) ; always nil anyway
416 (let ((width (width-bits (inst-operand-size dstate
))))
419 (sb!disassem
:read-signed-suffix width dstate
))))
421 (sb!disassem
:define-arg-type signed-imm-data
/asm-routine
422 :type
'signed-imm-data
423 :printer
#'print-imm
/asm-routine
)
425 ;;; Used by the variant of the MOV instruction with opcode B8 which can
426 ;;; move immediates of all sizes (i.e. including :qword) into a
428 (sb!disassem
:define-arg-type signed-imm-data-upto-qword
429 :prefilter
(lambda (value dstate
)
430 (declare (ignore value
)) ; always nil anyway
431 (sb!disassem
:read-signed-suffix
432 (width-bits (inst-operand-size dstate
))
435 (sb!disassem
:define-arg-type signed-imm-data-upto-qword
/asm-routine
436 :type
'signed-imm-data-upto-qword
437 :printer
#'print-imm
/asm-routine
)
440 ;;; Used by those instructions that have a default operand size of
441 ;;; :qword. Nevertheless the immediate is at most of size :dword.
442 ;;; The only instruction of this kind having a variant with an immediate
443 ;;; argument is PUSH.
444 (sb!disassem
:define-arg-type signed-imm-data-default-qword
445 :prefilter
(lambda (value dstate
)
446 (declare (ignore value
)) ; always nil anyway
447 (let ((width (width-bits
448 (inst-operand-size-default-qword dstate
))))
451 (sb!disassem
:read-signed-suffix width dstate
))))
453 (sb!disassem
:define-arg-type signed-imm-byte
454 :prefilter
(lambda (value dstate
)
455 (declare (ignore value
)) ; always nil anyway
456 (sb!disassem
:read-signed-suffix
8 dstate
)))
458 (sb!disassem
:define-arg-type imm-byte
459 :prefilter
(lambda (value dstate
)
460 (declare (ignore value
)) ; always nil anyway
461 (sb!disassem
:read-suffix
8 dstate
)))
463 ;;; needed for the ret imm16 instruction
464 (sb!disassem
:define-arg-type imm-word-16
465 :prefilter
(lambda (value dstate
)
466 (declare (ignore value
)) ; always nil anyway
467 (sb!disassem
:read-suffix
16 dstate
)))
469 (sb!disassem
:define-arg-type reg
/mem
470 :prefilter
#'prefilter-reg
/mem
471 :printer
#'print-reg
/mem
)
472 (sb!disassem
:define-arg-type sized-reg
/mem
473 ;; Same as reg/mem, but prints an explicit size indicator for
474 ;; memory references.
475 :prefilter
#'prefilter-reg
/mem
476 :printer
#'print-sized-reg
/mem
)
478 ;;; Arguments of type reg/mem with a fixed size.
479 (sb!disassem
:define-arg-type sized-byte-reg
/mem
480 :prefilter
#'prefilter-reg
/mem
481 :printer
#'print-sized-byte-reg
/mem
)
482 (sb!disassem
:define-arg-type sized-word-reg
/mem
483 :prefilter
#'prefilter-reg
/mem
484 :printer
#'print-sized-word-reg
/mem
)
485 (sb!disassem
:define-arg-type sized-dword-reg
/mem
486 :prefilter
#'prefilter-reg
/mem
487 :printer
#'print-sized-dword-reg
/mem
)
489 ;;; Same as sized-reg/mem, but with a default operand size of :qword.
490 (sb!disassem
:define-arg-type sized-reg
/mem-default-qword
491 :prefilter
#'prefilter-reg
/mem
492 :printer
#'print-sized-reg
/mem-default-qword
)
495 (sb!disassem
:define-arg-type xmmreg
496 :prefilter
#'prefilter-reg-r
497 :printer
#'print-xmmreg
)
499 (sb!disassem
:define-arg-type xmmreg-b
500 :prefilter
#'prefilter-reg-b
501 :printer
#'print-xmmreg
)
503 (sb!disassem
:define-arg-type xmmreg
/mem
504 :prefilter
#'prefilter-reg
/mem
505 :printer
#'print-xmmreg
/mem
)
508 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
509 (defparameter *conditions
*
512 (:b .
2) (:nae .
2) (:c .
2)
513 (:nb .
3) (:ae .
3) (:nc .
3)
514 (:eq .
4) (:e .
4) (:z .
4)
521 (:np .
11) (:po .
11)
522 (:l .
12) (:nge .
12)
523 (:nl .
13) (:ge .
13)
524 (:le .
14) (:ng .
14)
525 (:nle .
15) (:g .
15)))
526 (defparameter *condition-name-vec
*
527 (let ((vec (make-array 16 :initial-element nil
)))
528 (dolist (cond *conditions
*)
529 (when (null (aref vec
(cdr cond
)))
530 (setf (aref vec
(cdr cond
)) (car cond
))))
534 ;;; SSE shuffle patterns. The names end in the number of bits of the
535 ;;; immediate byte that are used to encode the pattern and the radix
536 ;;; in which to print the value.
537 (macrolet ((define-sse-shuffle-arg-type (name format-string
)
538 `(sb!disassem
:define-arg-type
,name
540 :printer
(lambda (value stream dstate
)
541 (declare (type (unsigned-byte 8) value
)
544 (format stream
,format-string value
)))))
545 (define-sse-shuffle-arg-type sse-shuffle-pattern-2-2
"#b~2,'0B")
546 (define-sse-shuffle-arg-type sse-shuffle-pattern-8-4
"#4r~4,4,'0R"))
548 ;;; Set assembler parameters. (In CMU CL, this was done with
549 ;;; a call to a macro DEF-ASSEMBLER-PARAMS.)
550 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
551 (setf sb
!assem
:*assem-scheduler-p
* nil
))
553 (sb!disassem
:define-arg-type condition-code
554 :printer
*condition-name-vec
*)
556 (defun conditional-opcode (condition)
557 (cdr (assoc condition
*conditions
* :test
#'eq
)))
559 ;;;; disassembler instruction formats
561 (eval-when (:compile-toplevel
:execute
)
562 (defun swap-if (direction field1 separator field2
)
563 `(:if
(,direction
:constant
0)
564 (,field1
,separator
,field2
)
565 (,field2
,separator
,field1
))))
567 (sb!disassem
:define-instruction-format
(byte 8 :default-printer
'(:name
))
568 (op :field
(byte 8 0))
573 (sb!disassem
:define-instruction-format
(two-bytes 16
574 :default-printer
'(:name
))
575 (op :fields
(list (byte 8 0) (byte 8 8))))
577 (sb!disassem
:define-instruction-format
(three-bytes 24
578 :default-printer
'(:name
))
579 (op :fields
(list (byte 8 0) (byte 8 8) (byte 8 16))))
581 ;;; Prefix instructions
583 (sb!disassem
:define-instruction-format
(rex 8)
584 (rex :field
(byte 4 4) :value
#b0100
)
585 (wrxb :field
(byte 4 0) :type
'wrxb
))
587 (sb!disassem
:define-instruction-format
(x66 8)
588 (x66 :field
(byte 8 0) :type
'x66
:value
#x66
))
590 ;;; A one-byte instruction with a #x66 prefix, used to indicate an
591 ;;; operand size of :word.
592 (sb!disassem
:define-instruction-format
(x66-byte 16
593 :default-printer
'(:name
))
594 (x66 :field
(byte 8 0) :value
#x66
)
595 (op :field
(byte 8 8)))
597 ;;; A one-byte instruction with a REX prefix, used to indicate an
598 ;;; operand size of :qword. REX.W must be 1, the other three bits are
600 (sb!disassem
:define-instruction-format
(rex-byte 16
601 :default-printer
'(:name
))
602 (rex :field
(byte 5 3) :value
#b01001
)
603 (op :field
(byte 8 8)))
605 (sb!disassem
:define-instruction-format
(simple 8)
606 (op :field
(byte 7 1))
607 (width :field
(byte 1 0) :type
'width
)
612 ;;; Same as simple, but with direction bit
613 (sb!disassem
:define-instruction-format
(simple-dir 8 :include simple
)
614 (op :field
(byte 6 2))
615 (dir :field
(byte 1 1)))
617 ;;; Same as simple, but with the immediate value occurring by default,
618 ;;; and with an appropiate printer.
619 (sb!disassem
:define-instruction-format
(accum-imm 8
621 :default-printer
'(:name
622 :tab accum
", " imm
))
623 (imm :type
'signed-imm-data
))
625 (sb!disassem
:define-instruction-format
(reg-no-width 8
626 :default-printer
'(:name
:tab reg
))
627 (op :field
(byte 5 3))
628 (reg :field
(byte 3 0) :type
'reg-b
)
633 ;;; This is reg-no-width with a mandatory REX prefix and accum field,
634 ;;; with the ability to match against REX.W and REX.B individually.
635 ;;; REX.R and REX.X are ignored.
636 (sb!disassem
:define-instruction-format
(rex-accum-reg 16
638 '(:name
:tab accum
", " reg
))
639 (rex :field
(byte 4 4) :value
#b0100
)
640 (rex-w :field
(byte 1 3) :type
'rex-w
)
641 (rex-b :field
(byte 1 0) :type
'rex-b
)
642 (op :field
(byte 5 11))
643 (reg :field
(byte 3 8) :type
'reg-b
)
644 (accum :type
'accum
))
646 ;;; Same as reg-no-width, but with a default operand size of :qword.
647 (sb!disassem
:define-instruction-format
(reg-no-width-default-qword 8
648 :include reg-no-width
649 :default-printer
'(:name
:tab reg
))
650 (reg :type
'reg-b-default-qword
))
652 ;;; Adds a width field to reg-no-width. Note that we can't use
653 ;;; :INCLUDE REG-NO-WIDTH here to save typing because that would put
654 ;;; the WIDTH field last, but the prefilter for WIDTH must run before
655 ;;; the one for IMM to be able to determine the correct size of IMM.
656 (sb!disassem
:define-instruction-format
(reg 8
657 :default-printer
'(:name
:tab reg
))
658 (op :field
(byte 4 4))
659 (width :field
(byte 1 3) :type
'width
)
660 (reg :field
(byte 3 0) :type
'reg-b
)
665 (sb!disassem
:define-instruction-format
(rex-reg 16
666 :default-printer
'(:name
:tab reg
))
667 (rex :field
(byte 4 4) :value
#b0100
)
668 (wrxb :field
(byte 4 0) :type
'wrxb
)
669 (width :field
(byte 1 11) :type
'width
)
670 (op :field
(byte 4 12))
671 (reg :field
(byte 3 8) :type
'reg-b
)
676 (sb!disassem
:define-instruction-format
(reg-reg/mem
16
678 `(:name
:tab reg
", " reg
/mem
))
679 (op :field
(byte 7 1))
680 (width :field
(byte 1 0) :type
'width
)
681 (reg/mem
:fields
(list (byte 2 14) (byte 3 8))
682 :type
'reg
/mem
:reader reg-r
/m-inst-r
/m-arg
)
683 (reg :field
(byte 3 11) :type
'reg
)
687 ;;; same as reg-reg/mem, but with direction bit
688 (sb!disassem
:define-instruction-format
(reg-reg/mem-dir
16
693 ,(swap-if 'dir
'reg
/mem
", " 'reg
)))
694 (op :field
(byte 6 2))
695 (dir :field
(byte 1 1)))
697 ;;; Same as reg-reg/mem, but uses the reg field as a second op code.
698 (sb!disassem
:define-instruction-format
(reg/mem
16
699 :default-printer
'(:name
:tab reg
/mem
))
700 (op :fields
(list (byte 7 1) (byte 3 11)))
701 (width :field
(byte 1 0) :type
'width
)
702 (reg/mem
:fields
(list (byte 2 14) (byte 3 8))
703 :type
'sized-reg
/mem
)
707 ;;; Same as reg/mem, but without a width field and with a default
708 ;;; operand size of :qword.
709 (sb!disassem
:define-instruction-format
(reg/mem-default-qword
16
710 :default-printer
'(:name
:tab reg
/mem
))
711 (op :fields
(list (byte 8 0) (byte 3 11)))
712 (reg/mem
:fields
(list (byte 2 14) (byte 3 8))
713 :type
'sized-reg
/mem-default-qword
))
715 ;;; Same as reg/mem, but with the immediate value occurring by default,
716 ;;; and with an appropiate printer.
717 (sb!disassem
:define-instruction-format
(reg/mem-imm
16
720 '(:name
:tab reg
/mem
", " imm
))
721 (reg/mem
:type
'sized-reg
/mem
)
722 (imm :type
'signed-imm-data
))
724 (sb!disassem
:define-instruction-format
(reg/mem-imm
/asm-routine
16
727 '(:name
:tab reg
/mem
", " imm
))
728 (reg/mem
:type
'sized-reg
/mem
)
729 (imm :type
'signed-imm-data
/asm-routine
))
731 ;;; Same as reg/mem, but with using the accumulator in the default printer
732 (sb!disassem
:define-instruction-format
734 :include reg
/mem
:default-printer
'(:name
:tab accum
", " reg
/mem
))
735 (reg/mem
:type
'reg
/mem
) ; don't need a size
736 (accum :type
'accum
))
738 ;;; Same as reg-reg/mem, but with a prefix of #b00001111
739 (sb!disassem
:define-instruction-format
(ext-reg-reg/mem
24
741 `(:name
:tab reg
", " reg
/mem
))
742 (prefix :field
(byte 8 0) :value
#b00001111
)
743 (op :field
(byte 7 9))
744 (width :field
(byte 1 8) :type
'width
)
745 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
747 (reg :field
(byte 3 19) :type
'reg
)
751 (sb!disassem
:define-instruction-format
(ext-reg-reg/mem-no-width
24
753 `(:name
:tab reg
", " reg
/mem
))
754 (prefix :field
(byte 8 0) :value
#b00001111
)
755 (op :field
(byte 8 8))
756 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
758 (reg :field
(byte 3 19) :type
'reg
)
762 (sb!disassem
:define-instruction-format
(ext-reg/mem-no-width
24
764 `(:name
:tab reg
/mem
))
765 (prefix :field
(byte 8 0) :value
#b00001111
)
766 (op :fields
(list (byte 8 8) (byte 3 19)))
767 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
770 ;;; reg-no-width with #x0f prefix
771 (sb!disassem
:define-instruction-format
(ext-reg-no-width 16
772 :default-printer
'(:name
:tab reg
))
773 (prefix :field
(byte 8 0) :value
#b00001111
)
774 (op :field
(byte 5 11))
775 (reg :field
(byte 3 8) :type
'reg-b
))
777 ;;; Same as reg/mem, but with a prefix of #b00001111
778 (sb!disassem
:define-instruction-format
(ext-reg/mem
24
779 :default-printer
'(:name
:tab reg
/mem
))
780 (prefix :field
(byte 8 0) :value
#b00001111
)
781 (op :fields
(list (byte 7 9) (byte 3 19)))
782 (width :field
(byte 1 8) :type
'width
)
783 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
784 :type
'sized-reg
/mem
)
788 (sb!disassem
:define-instruction-format
(ext-reg/mem-imm
24
791 '(:name
:tab reg
/mem
", " imm
))
792 (imm :type
'signed-imm-data
))
794 (sb!disassem
:define-instruction-format
(ext-reg/mem-no-width
+imm8
24
795 :include ext-reg
/mem-no-width
797 '(:name
:tab reg
/mem
", " imm
))
798 (imm :type
'imm-byte
))
800 ;;;; XMM instructions
802 ;;; All XMM instructions use an extended opcode (#x0F as the first
803 ;;; opcode byte). Therefore in the following "EXT" in the name of the
804 ;;; instruction formats refers to the formats that have an additional
805 ;;; prefix (#x66, #xF2 or #xF3).
807 ;;; Instructions having an XMM register as the destination operand
808 ;;; and an XMM register or a memory location as the source operand.
809 ;;; The size of the operands is implicitly given by the instruction.
810 (sb!disassem
:define-instruction-format
(xmm-xmm/mem
24
812 '(:name
:tab reg
", " reg
/mem
))
813 (x0f :field
(byte 8 0) :value
#x0f
)
814 (op :field
(byte 8 8))
815 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
817 (reg :field
(byte 3 19) :type
'xmmreg
)
821 (sb!disassem
:define-instruction-format
(ext-xmm-xmm/mem
32
823 '(:name
:tab reg
", " reg
/mem
))
824 (prefix :field
(byte 8 0))
825 (x0f :field
(byte 8 8) :value
#x0f
)
826 (op :field
(byte 8 16))
827 (reg/mem
:fields
(list (byte 2 30) (byte 3 24))
829 (reg :field
(byte 3 27) :type
'xmmreg
)
832 (sb!disassem
:define-instruction-format
(ext-rex-xmm-xmm/mem
40
834 '(:name
:tab reg
", " reg
/mem
))
835 (prefix :field
(byte 8 0))
836 (rex :field
(byte 4 12) :value
#b0100
)
837 (wrxb :field
(byte 4 8) :type
'wrxb
)
838 (x0f :field
(byte 8 16) :value
#x0f
)
839 (op :field
(byte 8 24))
840 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
842 (reg :field
(byte 3 35) :type
'xmmreg
)
845 (sb!disassem
:define-instruction-format
(ext-2byte-xmm-xmm/mem
40
847 '(:name
:tab reg
", " reg
/mem
))
848 (prefix :field
(byte 8 0))
849 (x0f :field
(byte 8 8) :value
#x0f
)
850 (op1 :field
(byte 8 16)) ; #x38 or #x3a
851 (op2 :field
(byte 8 24))
852 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
854 (reg :field
(byte 3 35) :type
'xmmreg
))
856 (sb!disassem
:define-instruction-format
(ext-rex-2byte-xmm-xmm/mem
48
858 '(:name
:tab reg
", " reg
/mem
))
859 (prefix :field
(byte 8 0))
860 (rex :field
(byte 4 12) :value
#b0100
)
861 (wrxb :field
(byte 4 8) :type
'wrxb
)
862 (x0f :field
(byte 8 16) :value
#x0f
)
863 (op1 :field
(byte 8 24)) ; #x38 or #x3a
864 (op2 :field
(byte 8 32))
865 (reg/mem
:fields
(list (byte 2 46) (byte 3 40))
867 (reg :field
(byte 3 43) :type
'xmmreg
))
869 ;;; Same as xmm-xmm/mem etc., but with direction bit.
871 (sb!disassem
:define-instruction-format
(ext-xmm-xmm/mem-dir
32
872 :include ext-xmm-xmm
/mem
876 ,(swap-if 'dir
'reg
", " 'reg
/mem
)))
877 (op :field
(byte 7 17))
878 (dir :field
(byte 1 16)))
880 (sb!disassem
:define-instruction-format
(ext-rex-xmm-xmm/mem-dir
40
881 :include ext-rex-xmm-xmm
/mem
885 ,(swap-if 'dir
'reg
", " 'reg
/mem
)))
886 (op :field
(byte 7 25))
887 (dir :field
(byte 1 24)))
889 ;;; Instructions having an XMM register as one operand
890 ;;; and a constant (unsigned) byte as the other.
892 (sb!disassem
:define-instruction-format
(ext-xmm-imm 32
894 '(:name
:tab reg
/mem
", " imm
))
895 (prefix :field
(byte 8 0))
896 (x0f :field
(byte 8 8) :value
#x0f
)
897 (op :field
(byte 8 16))
898 (/i
:field
(byte 3 27))
899 (b11 :field
(byte 2 30) :value
#b11
)
900 (reg/mem
:field
(byte 3 24)
902 (imm :type
'imm-byte
))
904 (sb!disassem
:define-instruction-format
(ext-rex-xmm-imm 40
906 '(:name
:tab reg
/mem
", " imm
))
907 (prefix :field
(byte 8 0))
908 (rex :field
(byte 4 12) :value
#b0100
)
909 (wrxb :field
(byte 4 8) :type
'wrxb
)
910 (x0f :field
(byte 8 16) :value
#x0f
)
911 (op :field
(byte 8 24))
912 (/i
:field
(byte 3 35))
913 (b11 :field
(byte 2 38) :value
#b11
)
914 (reg/mem
:field
(byte 3 32)
916 (imm :type
'imm-byte
))
918 ;;; Instructions having an XMM register as one operand and a general-
919 ;;; -purpose register or a memory location as the other operand.
921 (sb!disassem
:define-instruction-format
(xmm-reg/mem
24
923 '(:name
:tab reg
", " reg
/mem
))
924 (x0f :field
(byte 8 0) :value
#x0f
)
925 (op :field
(byte 8 8))
926 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
927 :type
'sized-reg
/mem
)
928 (reg :field
(byte 3 19) :type
'xmmreg
)
931 (sb!disassem
:define-instruction-format
(ext-xmm-reg/mem
32
933 '(:name
:tab reg
", " reg
/mem
))
934 (prefix :field
(byte 8 0))
935 (x0f :field
(byte 8 8) :value
#x0f
)
936 (op :field
(byte 8 16))
937 (reg/mem
:fields
(list (byte 2 30) (byte 3 24))
938 :type
'sized-reg
/mem
)
939 (reg :field
(byte 3 27) :type
'xmmreg
)
942 (sb!disassem
:define-instruction-format
(ext-rex-xmm-reg/mem
40
944 '(:name
:tab reg
", " reg
/mem
))
945 (prefix :field
(byte 8 0))
946 (rex :field
(byte 4 12) :value
#b0100
)
947 (wrxb :field
(byte 4 8) :type
'wrxb
)
948 (x0f :field
(byte 8 16) :value
#x0f
)
949 (op :field
(byte 8 24))
950 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
951 :type
'sized-reg
/mem
)
952 (reg :field
(byte 3 35) :type
'xmmreg
)
955 (sb!disassem
:define-instruction-format
(ext-2byte-xmm-reg/mem
40
957 '(:name
:tab reg
", " reg
/mem
))
958 (prefix :field
(byte 8 0))
959 (x0f :field
(byte 8 8) :value
#x0f
)
960 (op1 :field
(byte 8 16))
961 (op2 :field
(byte 8 24))
962 (reg/mem
:fields
(list (byte 2 38) (byte 3 32)) :type
'sized-reg
/mem
)
963 (reg :field
(byte 3 35) :type
'xmmreg
)
966 ;;; Instructions having a general-purpose register as one operand and an
967 ;;; XMM register or a memory location as the other operand.
969 (sb!disassem
:define-instruction-format
(reg-xmm/mem
24
971 '(:name
:tab reg
", " reg
/mem
))
972 (x0f :field
(byte 8 0) :value
#x0f
)
973 (op :field
(byte 8 8))
974 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
976 (reg :field
(byte 3 19) :type
'reg
))
978 (sb!disassem
:define-instruction-format
(ext-reg-xmm/mem
32
980 '(:name
:tab reg
", " reg
/mem
))
981 (prefix :field
(byte 8 0))
982 (x0f :field
(byte 8 8) :value
#x0f
)
983 (op :field
(byte 8 16))
984 (reg/mem
:fields
(list (byte 2 30) (byte 3 24))
986 (reg :field
(byte 3 27) :type
'reg
))
988 (sb!disassem
:define-instruction-format
(ext-rex-reg-xmm/mem
40
990 '(:name
:tab reg
", " reg
/mem
))
991 (prefix :field
(byte 8 0))
992 (rex :field
(byte 4 12) :value
#b0100
)
993 (wrxb :field
(byte 4 8) :type
'wrxb
)
994 (x0f :field
(byte 8 16) :value
#x0f
)
995 (op :field
(byte 8 24))
996 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
998 (reg :field
(byte 3 35) :type
'reg
))
1000 ;;; Instructions having a general-purpose register or a memory location
1001 ;;; as one operand and an a XMM register as the other operand.
1003 (sb!disassem
:define-instruction-format
(ext-reg/mem-xmm
32
1005 '(:name
:tab reg
/mem
", " reg
))
1006 (prefix :field
(byte 8 0))
1007 (x0f :field
(byte 8 8) :value
#x0f
)
1008 (op :field
(byte 8 16))
1009 (reg/mem
:fields
(list (byte 2 30) (byte 3 24))
1011 (reg :field
(byte 3 27) :type
'xmmreg
)
1014 (sb!disassem
:define-instruction-format
(ext-rex-reg/mem-xmm
40
1016 '(:name
:tab reg
/mem
", " reg
))
1017 (prefix :field
(byte 8 0))
1018 (rex :field
(byte 4 12) :value
#b0100
)
1019 (wrxb :field
(byte 4 8) :type
'wrxb
)
1020 (x0f :field
(byte 8 16) :value
#x0f
)
1021 (op :field
(byte 8 24))
1022 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
1024 (reg :field
(byte 3 35) :type
'xmmreg
)
1027 (sb!disassem
:define-instruction-format
(ext-2byte-reg/mem-xmm
40
1029 '(:name
:tab reg
/mem
", " reg
))
1030 (prefix :field
(byte 8 0))
1031 (x0f :field
(byte 8 8) :value
#x0f
)
1032 (op1 :field
(byte 8 16))
1033 (op2 :field
(byte 8 24))
1034 (reg/mem
:fields
(list (byte 2 38) (byte 3 32)) :type
'reg
/mem
)
1035 (reg :field
(byte 3 35) :type
'xmmreg
)
1038 (sb!disassem
:define-instruction-format
(ext-rex-2byte-reg/mem-xmm
48
1040 '(:name
:tab reg
/mem
", " reg
))
1041 (prefix :field
(byte 8 0))
1042 (rex :field
(byte 4 12) :value
#b0100
)
1043 (wrxb :field
(byte 4 8) :type
'wrxb
)
1044 (x0f :field
(byte 8 16) :value
#x0f
)
1045 (op1 :field
(byte 8 24))
1046 (op2 :field
(byte 8 32))
1047 (reg/mem
:fields
(list (byte 2 46) (byte 3 40)) :type
'reg
/mem
)
1048 (reg :field
(byte 3 43) :type
'xmmreg
)
1051 ;;; Instructions having a general-purpose register as one operand and an a
1052 ;;; general-purpose register or a memory location as the other operand,
1053 ;;; and using a prefix byte.
1055 (sb!disassem
:define-instruction-format
(ext-prefix-reg-reg/mem
32
1057 '(:name
:tab reg
", " reg
/mem
))
1058 (prefix :field
(byte 8 0))
1059 (x0f :field
(byte 8 8) :value
#x0f
)
1060 (op :field
(byte 8 16))
1061 (reg/mem
:fields
(list (byte 2 30) (byte 3 24))
1062 :type
'sized-reg
/mem
)
1063 (reg :field
(byte 3 27) :type
'reg
))
1065 (sb!disassem
:define-instruction-format
(ext-rex-prefix-reg-reg/mem
40
1067 '(:name
:tab reg
", " reg
/mem
))
1068 (prefix :field
(byte 8 0))
1069 (rex :field
(byte 4 12) :value
#b0100
)
1070 (wrxb :field
(byte 4 8) :type
'wrxb
)
1071 (x0f :field
(byte 8 16) :value
#x0f
)
1072 (op :field
(byte 8 24))
1073 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
1074 :type
'sized-reg
/mem
)
1075 (reg :field
(byte 3 35) :type
'reg
))
1077 (sb!disassem
:define-instruction-format
(ext-2byte-prefix-reg-reg/mem
40
1079 '(:name
:tab reg
", " reg
/mem
))
1080 (prefix :field
(byte 8 0))
1081 (x0f :field
(byte 8 8) :value
#x0f
)
1082 (op1 :field
(byte 8 16)) ; #x38 or #x3a
1083 (op2 :field
(byte 8 24))
1084 (reg/mem
:fields
(list (byte 2 38) (byte 3 32))
1085 :type
'sized-reg
/mem
)
1086 (reg :field
(byte 3 35) :type
'reg
))
1088 (sb!disassem
:define-instruction-format
(ext-rex-2byte-prefix-reg-reg/mem
48
1090 '(:name
:tab reg
", " reg
/mem
))
1091 (prefix :field
(byte 8 0))
1092 (rex :field
(byte 4 12) :value
#b0100
)
1093 (wrxb :field
(byte 4 8) :type
'wrxb
)
1094 (x0f :field
(byte 8 16) :value
#x0f
)
1095 (op1 :field
(byte 8 24)) ; #x38 or #x3a
1096 (op2 :field
(byte 8 32))
1097 (reg/mem
:fields
(list (byte 2 46) (byte 3 40))
1098 :type
'sized-reg
/mem
)
1099 (reg :field
(byte 3 43) :type
'reg
))
1101 ;; XMM comparison instruction
1103 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
1104 (defparameter *sse-conditions
* #(:eq
:lt
:le
:unord
:neq
:nlt
:nle
:ord
)))
1106 (sb!disassem
:define-arg-type sse-condition-code
1107 ;; Inherit the prefilter from IMM-BYTE to READ-SUFFIX the byte.
1109 :printer
*sse-conditions
*)
1111 (sb!disassem
:define-instruction-format
(string-op 8
1113 :default-printer
'(:name width
)))
1115 (sb!disassem
:define-instruction-format
(short-cond-jump 16)
1116 (op :field
(byte 4 4))
1117 (cc :field
(byte 4 0) :type
'condition-code
)
1118 (label :field
(byte 8 8) :type
'displacement
))
1120 (sb!disassem
:define-instruction-format
(short-jump 16
1121 :default-printer
'(:name
:tab label
))
1122 (const :field
(byte 4 4) :value
#b1110
)
1123 (op :field
(byte 4 0))
1124 (label :field
(byte 8 8) :type
'displacement
))
1126 (sb!disassem
:define-instruction-format
(near-cond-jump 16)
1127 (op :fields
(list (byte 8 0) (byte 4 12)) :value
'(#b00001111
#b1000
))
1128 (cc :field
(byte 4 8) :type
'condition-code
)
1129 ;; The disassembler currently doesn't let you have an instruction > 32 bits
1130 ;; long, so we fake it by using a prefilter to read the offset.
1131 (label :type
'displacement
1132 :prefilter
(lambda (value dstate
)
1133 (declare (ignore value
)) ; always nil anyway
1134 (sb!disassem
:read-signed-suffix
32 dstate
))))
1136 (sb!disassem
:define-instruction-format
(near-jump 8
1137 :default-printer
'(:name
:tab label
))
1138 (op :field
(byte 8 0))
1139 ;; The disassembler currently doesn't let you have an instruction > 32 bits
1140 ;; long, so we fake it by using a prefilter to read the address.
1141 (label :type
'displacement
1142 :prefilter
(lambda (value dstate
)
1143 (declare (ignore value
)) ; always nil anyway
1144 (sb!disassem
:read-signed-suffix
32 dstate
))))
1147 (sb!disassem
:define-instruction-format
(cond-set 24
1148 :default-printer
'('set cc
:tab reg
/mem
))
1149 (prefix :field
(byte 8 0) :value
#b00001111
)
1150 (op :field
(byte 4 12) :value
#b1001
)
1151 (cc :field
(byte 4 8) :type
'condition-code
)
1152 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
1153 :type
'sized-byte-reg
/mem
)
1154 (reg :field
(byte 3 19) :value
#b000
))
1156 (sb!disassem
:define-instruction-format
(cond-move 24
1158 '('cmov cc
:tab reg
", " reg
/mem
))
1159 (prefix :field
(byte 8 0) :value
#b00001111
)
1160 (op :field
(byte 4 12) :value
#b0100
)
1161 (cc :field
(byte 4 8) :type
'condition-code
)
1162 (reg/mem
:fields
(list (byte 2 22) (byte 3 16))
1164 (reg :field
(byte 3 19) :type
'reg
))
1166 (sb!disassem
:define-instruction-format
(enter-format 32
1167 :default-printer
'(:name
1169 (:unless
(:constant
0)
1171 (op :field
(byte 8 0))
1172 (disp :field
(byte 16 8))
1173 (level :field
(byte 8 24)))
1175 ;;; Single byte instruction with an immediate byte argument.
1176 (sb!disassem
:define-instruction-format
(byte-imm 16
1177 :default-printer
'(:name
:tab code
))
1178 (op :field
(byte 8 0))
1179 (code :field
(byte 8 8) :reader byte-imm-code
))
1181 ;;; Two byte instruction with an immediate byte argument.
1183 (sb!disassem
:define-instruction-format
(word-imm 24
1184 :default-printer
'(:name
:tab code
))
1185 (op :field
(byte 16 0))
1186 (code :field
(byte 8 16) :reader word-imm-code
))
1188 ;;; F3 escape map - Needs a ton more work.
1190 (sb!disassem
:define-instruction-format
(F3-escape 24)
1191 (prefix1 :field
(byte 8 0) :value
#xF3
)
1192 (prefix2 :field
(byte 8 8) :value
#x0F
)
1193 (op :field
(byte 8 16)))
1195 (sb!disassem
:define-instruction-format
(rex-F3-escape 32)
1196 ;; F3 is a legacy prefix which was generalized to select an alternate opcode
1197 ;; map. Legacy prefixes are encoded in the instruction before a REX prefix.
1198 (prefix1 :field
(byte 8 0) :value
#xF3
)
1199 (rex :field
(byte 4 12) :value
4) ; "prefix2"
1200 (wrxb :field
(byte 4 8) :type
'wrxb
)
1201 (prefix3 :field
(byte 8 16) :value
#x0F
)
1202 (op :field
(byte 8 24)))
1204 (sb!disassem
:define-instruction-format
(F3-escape-reg-reg/mem
32
1207 '(:name
:tab reg
", " reg
/mem
))
1208 (reg/mem
:fields
(list (byte 2 30) (byte 3 24)) :type
'sized-reg
/mem
)
1209 (reg :field
(byte 3 27) :type
'reg
))
1211 (sb!disassem
:define-instruction-format
(rex-F3-escape-reg-reg/mem
40
1212 :include rex-F3-escape
1214 '(:name
:tab reg
", " reg
/mem
))
1215 (reg/mem
:fields
(list (byte 2 38) (byte 3 32)) :type
'sized-reg
/mem
)
1216 (reg :field
(byte 3 35) :type
'reg
))
1219 ;;;; primitive emitters
1221 (define-bitfield-emitter emit-word
16
1224 (define-bitfield-emitter emit-dword
32
1227 ;;; Most uses of dwords are as displacements or as immediate values in
1228 ;;; 64-bit operations. In these cases they are sign-extended to 64 bits.
1229 ;;; EMIT-DWORD is unsuitable there because it accepts values of type
1230 ;;; (OR (SIGNED-BYTE 32) (UNSIGNED-BYTE 32)), so we provide a more
1231 ;;; restricted emitter here.
1232 (defun emit-signed-dword (segment value
)
1233 (declare (type segment segment
)
1234 (type (signed-byte 32) value
))
1235 (declare (inline emit-dword
))
1236 (emit-dword segment value
))
1238 (define-bitfield-emitter emit-qword
64
1241 (define-bitfield-emitter emit-byte-with-reg
8
1242 (byte 5 3) (byte 3 0))
1244 (define-bitfield-emitter emit-mod-reg-r
/m-byte
8
1245 (byte 2 6) (byte 3 3) (byte 3 0))
1247 (define-bitfield-emitter emit-sib-byte
8
1248 (byte 2 6) (byte 3 3) (byte 3 0))
1250 (define-bitfield-emitter emit-rex-byte
8
1251 (byte 4 4) (byte 1 3) (byte 1 2) (byte 1 1) (byte 1 0))
1257 (defun emit-absolute-fixup (segment fixup
&optional quad-p
)
1258 (note-fixup segment
(if quad-p
:absolute64
:absolute
) fixup
)
1259 (let ((offset (fixup-offset fixup
)))
1260 (if (label-p offset
)
1261 (emit-back-patch segment
1263 (lambda (segment posn
)
1264 (declare (ignore posn
))
1265 (let ((val (- (+ (component-header-length)
1266 (or (label-position offset
)
1268 other-pointer-lowtag
)))
1270 (emit-qword segment val
)
1271 (emit-signed-dword segment val
)))))
1273 (emit-qword segment
(or offset
0))
1274 (emit-signed-dword segment
(or offset
0))))))
1276 (defun emit-relative-fixup (segment fixup
)
1277 (note-fixup segment
:relative fixup
)
1278 (emit-signed-dword segment
(or (fixup-offset fixup
) 0)))
1281 ;;;; the effective-address (ea) structure
1283 (defun reg-tn-encoding (tn)
1284 (declare (type tn tn
))
1285 ;; ea only has space for three bits of register number: regs r8
1286 ;; and up are selected by a REX prefix byte which caller is responsible
1287 ;; for having emitted where necessary already
1288 (ecase (sb-name (sc-sb (tn-sc tn
)))
1290 (let ((offset (mod (tn-offset tn
) 16)))
1291 (logior (ash (logand offset
1) 2)
1294 (mod (tn-offset tn
) 8))))
1296 (defstruct (ea (:constructor make-ea
(size &key base index scale disp
))
1298 ;; note that we can represent an EA with a QWORD size, but EMIT-EA
1299 ;; can't actually emit it on its own: caller also needs to emit REX
1301 (size nil
:type
(member :byte
:word
:dword
:qword
))
1302 (base nil
:type
(or tn null
))
1303 (index nil
:type
(or tn null
))
1304 (scale 1 :type
(member 1 2 4 8))
1305 (disp 0 :type
(or (unsigned-byte 32) (signed-byte 32) fixup
)))
1306 (def!method print-object
((ea ea
) stream
)
1307 (cond ((or *print-escape
* *print-readably
*)
1308 (print-unreadable-object (ea stream
:type t
)
1310 "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]"
1314 (let ((scale (ea-scale ea
)))
1315 (if (= scale
1) nil scale
))
1318 (format stream
"~A PTR [" (symbol-name (ea-size ea
)))
1320 (write-string (sb!c
::location-print-name
(ea-base ea
)) stream
)
1322 (write-string "+" stream
)))
1324 (write-string (sb!c
::location-print-name
(ea-index ea
)) stream
))
1325 (unless (= (ea-scale ea
) 1)
1326 (format stream
"*~A" (ea-scale ea
)))
1327 (typecase (ea-disp ea
)
1330 (format stream
"~@D" (ea-disp ea
)))
1332 (format stream
"+~A" (ea-disp ea
))))
1333 (write-char #\
] stream
))))
1335 (defun emit-constant-tn-rip (segment constant-tn reg remaining-bytes
)
1336 ;; AMD64 doesn't currently have a code object register to use as a
1337 ;; base register for constant access. Instead we use RIP-relative
1338 ;; addressing. The offset from the SIMPLE-FUN-HEADER to the instruction
1339 ;; is passed to the backpatch callback. In addition we need the offset
1340 ;; from the start of the function header to the slot in the CODE-HEADER
1341 ;; that stores the constant. Since we don't know where the code header
1342 ;; starts, instead count backwards from the function header.
1343 (let* ((2comp (component-info *component-being-compiled
*))
1344 (constants (ir2-component-constants 2comp
))
1345 (len (length constants
))
1346 ;; Both CODE-HEADER and SIMPLE-FUN-HEADER are 16-byte aligned.
1347 ;; If there are an even amount of constants, there will be
1348 ;; an extra qword of padding before the function header, which
1349 ;; needs to be adjusted for. XXX: This will break if new slots
1350 ;; are added to the code header.
1351 (offset (* (- (+ len
(if (evenp len
)
1354 (tn-offset constant-tn
))
1356 ;; RIP-relative addressing
1357 (emit-mod-reg-r/m-byte segment
#b00 reg
#b101
)
1358 (emit-back-patch segment
1360 (lambda (segment posn
)
1361 ;; The addressing is relative to end of instruction,
1362 ;; i.e. the end of this dword. Hence the + 4.
1363 (emit-signed-dword segment
1364 (+ 4 remaining-bytes
1365 (- (+ offset posn
)))))))
1368 (defun emit-label-rip (segment fixup reg remaining-bytes
)
1369 (let ((label (fixup-offset fixup
)))
1370 ;; RIP-relative addressing
1371 (emit-mod-reg-r/m-byte segment
#b00 reg
#b101
)
1372 (emit-back-patch segment
1374 (lambda (segment posn
)
1375 (emit-signed-dword segment
1376 (- (label-position label
)
1377 (+ posn
4 remaining-bytes
))))))
1380 (defun emit-ea (segment thing reg
&key allow-constants
(remaining-bytes 0))
1383 ;; this would be eleganter if we had a function that would create
1385 (ecase (sb-name (sc-sb (tn-sc thing
)))
1386 ((registers float-registers
)
1387 (emit-mod-reg-r/m-byte segment
#b11 reg
(reg-tn-encoding thing
)))
1389 ;; Convert stack tns into an index off RBP.
1390 (let ((disp (frame-byte-offset (tn-offset thing
))))
1391 (cond ((<= -
128 disp
127)
1392 (emit-mod-reg-r/m-byte segment
#b01 reg
#b101
)
1393 (emit-byte segment disp
))
1395 (emit-mod-reg-r/m-byte segment
#b10 reg
#b101
)
1396 (emit-signed-dword segment disp
)))))
1398 (unless allow-constants
1401 "Constant TNs can only be directly used in MOV, PUSH, and CMP."))
1402 (emit-constant-tn-rip segment thing reg remaining-bytes
))))
1404 (let* ((base (ea-base thing
))
1405 (index (ea-index thing
))
1406 (scale (ea-scale thing
))
1407 (disp (ea-disp thing
))
1408 (mod (cond ((or (null base
)
1410 (not (= (reg-tn-encoding base
) #b101
))))
1412 ((and (fixnump disp
) (<= -
128 disp
127))
1416 (r/m
(cond (index #b100
)
1418 (t (reg-tn-encoding base
)))))
1419 (when (and (fixup-p disp
)
1420 (label-p (fixup-offset disp
)))
1423 (return-from emit-ea
(emit-ea segment disp reg
1424 :allow-constants allow-constants
1425 :remaining-bytes remaining-bytes
)))
1426 (when (and (= mod
0) (= r
/m
#b101
))
1427 ;; this is rip-relative in amd64, so we'll use a sib instead
1428 (setf r
/m
#b100 scale
1))
1429 (emit-mod-reg-r/m-byte segment mod reg r
/m
)
1431 (let ((ss (1- (integer-length scale
)))
1432 (index (if (null index
)
1434 (if (location= index rsp-tn
)
1435 (error "can't index off of RSP")
1436 (reg-tn-encoding index
))))
1437 (base (if (null base
)
1439 (reg-tn-encoding base
))))
1440 (emit-sib-byte segment ss index base
)))
1442 (emit-byte segment disp
))
1443 ((or (= mod
#b10
) (null base
))
1445 (emit-absolute-fixup segment disp
)
1446 (emit-signed-dword segment disp
))))))
1448 (typecase (fixup-offset thing
)
1450 (emit-label-rip segment thing reg remaining-bytes
))
1452 (emit-mod-reg-r/m-byte segment
#b00 reg
#b100
)
1453 (emit-sib-byte segment
0 #b100
#b101
)
1454 (emit-absolute-fixup segment thing
))))))
1456 (defun byte-reg-p (thing)
1458 (eq (sb-name (sc-sb (tn-sc thing
))) 'registers
)
1459 (member (sc-name (tn-sc thing
)) *byte-sc-names
*)
1462 (defun byte-ea-p (thing)
1464 (ea (eq (ea-size thing
) :byte
))
1466 (and (member (sc-name (tn-sc thing
)) *byte-sc-names
*) t
))
1469 (defun word-reg-p (thing)
1471 (eq (sb-name (sc-sb (tn-sc thing
))) 'registers
)
1472 (member (sc-name (tn-sc thing
)) *word-sc-names
*)
1475 (defun word-ea-p (thing)
1477 (ea (eq (ea-size thing
) :word
))
1478 (tn (and (member (sc-name (tn-sc thing
)) *word-sc-names
*) t
))
1481 (defun dword-reg-p (thing)
1483 (eq (sb-name (sc-sb (tn-sc thing
))) 'registers
)
1484 (member (sc-name (tn-sc thing
)) *dword-sc-names
*)
1487 (defun dword-ea-p (thing)
1489 (ea (eq (ea-size thing
) :dword
))
1491 (and (member (sc-name (tn-sc thing
)) *dword-sc-names
*) t
))
1494 (defun qword-reg-p (thing)
1496 (eq (sb-name (sc-sb (tn-sc thing
))) 'registers
)
1497 (member (sc-name (tn-sc thing
)) *qword-sc-names
*)
1500 (defun qword-ea-p (thing)
1502 (ea (eq (ea-size thing
) :qword
))
1504 (and (member (sc-name (tn-sc thing
)) *qword-sc-names
*) t
))
1507 ;;; Return true if THING is a general-purpose register TN.
1508 (defun register-p (thing)
1510 (eq (sb-name (sc-sb (tn-sc thing
))) 'registers
)))
1512 (defun accumulator-p (thing)
1513 (and (register-p thing
)
1514 (= (tn-offset thing
) 0)))
1516 ;;; Return true if THING is an XMM register TN.
1517 (defun xmm-register-p (thing)
1519 (eq (sb-name (sc-sb (tn-sc thing
))) 'float-registers
)))
1524 (def!constant
+operand-size-prefix-byte
+ #b01100110
)
1526 (defun maybe-emit-operand-size-prefix (segment size
)
1527 (unless (or (eq size
:byte
)
1528 (eq size
:qword
) ; REX prefix handles this
1529 (eq size
+default-operand-size
+))
1530 (emit-byte segment
+operand-size-prefix-byte
+)))
1532 ;;; A REX prefix must be emitted if at least one of the following
1533 ;;; conditions is true:
1534 ;; 1. The operand size is :QWORD and the default operand size of the
1535 ;; instruction is not :QWORD.
1536 ;;; 2. The instruction references an extended register.
1537 ;;; 3. The instruction references one of the byte registers SIL, DIL,
1540 ;;; Emit a REX prefix if necessary. OPERAND-SIZE is used to determine
1541 ;;; whether to set REX.W. Callers pass it explicitly as :DO-NOT-SET if
1542 ;;; this should not happen, for example because the instruction's
1543 ;;; default operand size is qword. R, X and B are NIL or TNs specifying
1544 ;;; registers the encodings of which are extended with the REX.R, REX.X
1545 ;;; and REX.B bit, respectively. To determine whether one of the byte
1546 ;;; registers is used that can only be accessed using a REX prefix, we
1547 ;;; need only to test R and B, because X is only used for the index
1548 ;;; register of an effective address and therefore never byte-sized.
1549 ;;; For R we can avoid to calculate the size of the TN because it is
1550 ;;; always OPERAND-SIZE. The size of B must be calculated here because
1551 ;;; B can be address-sized (if it is the base register of an effective
1552 ;;; address), of OPERAND-SIZE (if the instruction operates on two
1553 ;;; registers) or of some different size (in the instructions that
1554 ;;; combine arguments of different sizes: MOVZX, MOVSX, MOVSXD and
1555 ;;; several SSE instructions, e.g. CVTSD2SI). We don't distinguish
1556 ;;; between general-purpose and floating point registers for this cause
1557 ;;; because only general-purpose registers can be byte-sized at all.
1558 (defun maybe-emit-rex-prefix (segment operand-size r x b
)
1559 (declare (type (member nil
:byte
:word
:dword
:qword
:do-not-set
)
1561 (type (or null tn
) r x b
))
1563 (if (and r
(> (tn-offset r
)
1564 ;; offset of r8 is 16, offset of xmm8 is 8
1565 (if (eq (sb-name (sc-sb (tn-sc r
)))
1572 ;; Assuming R is a TN describing a general-purpose
1573 ;; register, return true if it references register
1575 (<= 8 (tn-offset r
) 15)))
1576 (let ((rex-w (if (eq operand-size
:qword
) 1 0))
1580 (when (or (not (zerop (logior rex-w rex-r rex-x rex-b
)))
1582 (eq operand-size
:byte
)
1585 (eq (operand-size b
) :byte
)
1587 (emit-rex-byte segment
#b0100 rex-w rex-r rex-x rex-b
)))))
1589 ;;; Emit a REX prefix if necessary. The operand size is determined from
1590 ;;; THING or can be overwritten by OPERAND-SIZE. This and REG are always
1591 ;;; passed to MAYBE-EMIT-REX-PREFIX. Additionally, if THING is an EA we
1592 ;;; pass its index and base registers, if it is a register TN, we pass
1594 ;;; In contrast to EMIT-EA above, neither stack TNs nor fixups need to
1595 ;;; be treated specially here: If THING is a stack TN, neither it nor
1596 ;;; any of its components are passed to MAYBE-EMIT-REX-PREFIX which
1597 ;;; works correctly because stack references always use RBP as the base
1598 ;;; register and never use an index register so no extended registers
1599 ;;; need to be accessed. Fixups are assembled using an addressing mode
1600 ;;; of displacement-only or RIP-plus-displacement (see EMIT-EA), so may
1601 ;;; not reference an extended register. The displacement-only addressing
1602 ;;; mode requires that REX.X is 0, which is ensured here.
1603 (defun maybe-emit-rex-for-ea (segment thing reg
&key operand-size
)
1604 (declare (type (or ea tn fixup
) thing
)
1605 (type (or null tn
) reg
)
1606 (type (member nil
:byte
:word
:dword
:qword
:do-not-set
)
1608 (let ((ea-p (ea-p thing
)))
1609 (maybe-emit-rex-prefix segment
1610 (or operand-size
(operand-size thing
))
1612 (and ea-p
(ea-index thing
))
1613 (cond (ea-p (ea-base thing
))
1615 (member (sb-name (sc-sb (tn-sc thing
)))
1616 '(float-registers registers
)))
1620 (defun operand-size (thing)
1623 ;; FIXME: might as well be COND instead of having to use #. readmacro
1624 ;; to hack up the code
1625 (case (sc-name (tn-sc thing
))
1637 ;; added by jrd: float-registers is a separate size (?)
1638 ;; The only place in the code where we are called with THING
1639 ;; being a float-register is in MAYBE-EMIT-REX-PREFIX when it
1640 ;; checks whether THING is a byte register. Thus our result in
1641 ;; these cases could as well be :dword and :qword. I leave it as
1642 ;; :float and :double which is more likely to trigger an aver
1643 ;; instead of silently doing the wrong thing in case this
1644 ;; situation should change. Lutz Euler, 2005-10-23.
1647 (#.
*double-sc-names
*
1649 (#.
*complex-sc-names
*
1652 (error "can't tell the size of ~S ~S" thing
(sc-name (tn-sc thing
))))))
1656 ;; GNA. Guess who spelt "flavor" correctly first time round?
1657 ;; There's a strong argument in my mind to change all uses of
1658 ;; "flavor" to "kind": and similarly with some misguided uses of
1659 ;; "type" here and there. -- CSR, 2005-01-06.
1660 (case (fixup-flavor thing
)
1661 ((:foreign-dataref
) :qword
)))
1665 (defun matching-operand-size (dst src
)
1666 (let ((dst-size (operand-size dst
))
1667 (src-size (operand-size src
)))
1670 (if (eq dst-size src-size
)
1672 (error "size mismatch: ~S is a ~S and ~S is a ~S."
1673 dst dst-size src src-size
))
1677 (error "can't tell the size of either ~S or ~S" dst src
)))))
1679 ;;; Except in a very few cases (MOV instructions A1, A3 and B8 - BF)
1680 ;;; we expect dword data bytes even when 64 bit work is being done.
1681 ;;; But A1 and A3 are currently unused and B8 - BF use EMIT-QWORD
1682 ;;; directly, so we emit all quad constants as dwords, additionally
1683 ;;; making sure that they survive the sign-extension to 64 bits
1685 (defun emit-sized-immediate (segment size value
)
1688 (emit-byte segment value
))
1690 (emit-word segment value
))
1692 (emit-dword segment value
))
1694 (emit-signed-dword segment value
))))
1698 (define-instruction rex
(segment)
1699 (:printer rex
() nil
:print-name nil
)
1701 (bug "REX prefix used as a standalone instruction")))
1703 (define-instruction x66
(segment)
1704 (:printer x66
() nil
:print-name nil
)
1706 (bug "#X66 prefix used as a standalone instruction")))
1708 (defun emit-prefix (segment name
)
1709 (declare (ignorable segment
))
1714 (emit-byte segment
#xf0
))))
1716 (define-instruction lock
(segment)
1717 (:printer byte
((op #b11110000
)) nil
)
1719 (bug "LOCK prefix used as a standalone instruction")))
1721 (define-instruction rep
(segment)
1723 (emit-byte segment
#b11110011
)))
1725 (define-instruction repe
(segment)
1726 (:printer byte
((op #b11110011
)) nil
)
1728 (emit-byte segment
#b11110011
)))
1730 (define-instruction repne
(segment)
1731 (:printer byte
((op #b11110010
)) nil
)
1733 (emit-byte segment
#b11110010
)))
1735 ;;;; general data transfer
1737 ;;; This is the part of the MOV instruction emitter that does moving
1738 ;;; of an immediate value into a qword register. We go to some length
1739 ;;; to achieve the shortest possible encoding.
1740 (defun emit-immediate-move-to-qword-register (segment dst src
)
1741 (declare (type integer src
))
1742 (cond ((typep src
'(unsigned-byte 32))
1743 ;; We use the B8 - BF encoding with an operand size of 32 bits
1744 ;; here and let the implicit zero-extension fill the upper half
1745 ;; of the 64-bit destination register. Instruction size: five
1746 ;; or six bytes. (A REX prefix will be emitted only if the
1747 ;; destination is an extended register.)
1748 (maybe-emit-rex-prefix segment
:dword nil nil dst
)
1749 (emit-byte-with-reg segment
#b10111
(reg-tn-encoding dst
))
1750 (emit-dword segment src
))
1752 (maybe-emit-rex-prefix segment
:qword nil nil dst
)
1753 (cond ((typep src
'(signed-byte 32))
1754 ;; Use the C7 encoding that takes a 32-bit immediate and
1755 ;; sign-extends it to 64 bits. Instruction size: seven
1757 (emit-byte segment
#b11000111
)
1758 (emit-mod-reg-r/m-byte segment
#b11
#b000
1759 (reg-tn-encoding dst
))
1760 (emit-signed-dword segment src
))
1761 ((<= (- (expt 2 64) (expt 2 31))
1764 ;; This triggers on positive integers of 64 bits length
1765 ;; with the most significant 33 bits being 1. We use the
1766 ;; same encoding as in the previous clause.
1767 (emit-byte segment
#b11000111
)
1768 (emit-mod-reg-r/m-byte segment
#b11
#b000
1769 (reg-tn-encoding dst
))
1770 (emit-signed-dword segment
(- src
(expt 2 64))))
1772 ;; We need a full 64-bit immediate. Instruction size:
1774 (emit-byte-with-reg segment
#b10111
(reg-tn-encoding dst
))
1775 (emit-qword segment src
))))))
1777 (define-instruction mov
(segment dst src
)
1778 ;; immediate to register
1779 (:printer reg
((op #b1011
) (imm nil
:type
'signed-imm-data
/asm-routine
))
1780 '(:name
:tab reg
", " imm
))
1781 (:printer rex-reg
((op #b1011
)
1782 (imm nil
:type
'signed-imm-data-upto-qword
/asm-routine
))
1783 '(:name
:tab reg
", " imm
))
1784 ;; absolute mem to/from accumulator
1785 (:printer simple-dir
((op #b101000
) (imm nil
:type
'imm-addr
))
1786 `(:name
:tab
,(swap-if 'dir
'accum
", " '("[" imm
"]"))))
1787 ;; register to/from register/memory
1788 (:printer reg-reg
/mem-dir
((op #b100010
)))
1789 ;; immediate to register/memory
1790 (:printer reg
/mem-imm
/asm-routine
((op '(#b1100011
#b000
))))
1793 (let ((size (matching-operand-size dst src
)))
1794 (maybe-emit-operand-size-prefix segment size
)
1795 (cond ((register-p dst
)
1796 (cond ((integerp src
)
1797 (cond ((eq size
:qword
)
1798 (emit-immediate-move-to-qword-register segment
1801 (maybe-emit-rex-prefix segment size nil nil dst
)
1802 (emit-byte-with-reg segment
1806 (reg-tn-encoding dst
))
1807 (emit-sized-immediate segment size src
))))
1809 (or (eq (fixup-flavor src
) :foreign
)
1810 (eq (fixup-flavor src
) :assembly-routine
)))
1811 (maybe-emit-rex-prefix segment
:dword nil nil dst
)
1812 (emit-byte-with-reg segment
#b10111
(reg-tn-encoding dst
))
1813 (emit-absolute-fixup segment src
))
1815 (maybe-emit-rex-for-ea segment src dst
)
1820 (emit-ea segment src
(reg-tn-encoding dst
)
1821 :allow-constants t
))))
1823 ;; C7 only deals with 32 bit immediates even if the
1824 ;; destination is a 64-bit location. The value is
1825 ;; sign-extended in this case.
1826 (maybe-emit-rex-for-ea segment dst nil
)
1827 (emit-byte segment
(if (eq size
:byte
) #b11000110
#b11000111
))
1828 (emit-ea segment dst
#b000
)
1829 (emit-sized-immediate segment size src
))
1831 (maybe-emit-rex-for-ea segment dst src
)
1832 (emit-byte segment
(if (eq size
:byte
) #b10001000
#b10001001
))
1833 (emit-ea segment dst
(reg-tn-encoding src
)))
1835 ;; Generally we can't MOV a fixupped value into an EA, since
1836 ;; MOV on non-registers can only take a 32-bit immediate arg.
1837 ;; Make an exception for :FOREIGN fixups (pretty much just
1838 ;; the runtime asm, since other foreign calls go through the
1839 ;; the linkage table) and for linkage table references, since
1840 ;; these should always end up in low memory.
1841 (aver (or (member (fixup-flavor src
)
1842 '(:foreign
:foreign-dataref
:symbol-tls-index
))
1843 (eq (ea-size dst
) :dword
)))
1844 (maybe-emit-rex-for-ea segment dst nil
)
1845 (emit-byte segment
#b11000111
)
1846 (emit-ea segment dst
#b000
)
1847 (emit-absolute-fixup segment src
))
1849 (error "bogus arguments to MOV: ~S ~S" dst src
))))))
1851 ;;; Emit a sign-extending (if SIGNED-P is true) or zero-extending move.
1852 ;;; To achieve the shortest possible encoding zero extensions into a
1853 ;;; 64-bit destination are assembled as a straight 32-bit MOV (if the
1854 ;;; source size is 32 bits) or as MOVZX with a 32-bit destination (if
1855 ;;; the source size is 8 or 16 bits). Due to the implicit zero extension
1856 ;;; to 64 bits this has the same effect as a MOVZX with 64-bit
1857 ;;; destination but often needs no REX prefix.
1858 (defun emit-move-with-extension (segment dst src signed-p
)
1859 (aver (register-p dst
))
1860 (let ((dst-size (operand-size dst
))
1861 (src-size (operand-size src
))
1862 (opcode (if signed-p
#b10111110
#b10110110
)))
1863 (macrolet ((emitter (operand-size &rest bytes
)
1865 (maybe-emit-rex-for-ea segment src dst
1866 :operand-size
,operand-size
)
1867 ,@(mapcar (lambda (byte)
1868 `(emit-byte segment
,byte
))
1870 (emit-ea segment src
(reg-tn-encoding dst
)))))
1873 (aver (eq src-size
:byte
))
1874 (maybe-emit-operand-size-prefix segment
:word
)
1875 (emitter :word
#b00001111 opcode
))
1878 (setf dst-size
:dword
))
1881 (emitter dst-size
#b00001111 opcode
))
1883 (emitter dst-size
#b00001111
(logior opcode
1)))
1885 (aver (or (not signed-p
) (eq dst-size
:qword
)))
1887 (if signed-p
#x63
#x8b
))))))))) ; movsxd or straight mov
1889 ;; MOV[SZ]X - #x66 or REX selects the destination REG size, wherein :byte isn't
1890 ;; a possibility. The 'width' bit selects a source r/m size of :byte or :word.
1891 (sb!disassem
:define-instruction-format
1892 (move-with-extension 24 :include ext-reg-reg
/mem
1894 '(:name
:tab reg
", "
1895 (:cond
((width :constant
0) (:using
#'print-sized-byte-reg
/mem reg
/mem
))
1896 (t (:using
#'print-sized-word-reg
/mem reg
/mem
)))))
1897 (width :prefilter nil
)) ; doesn't affect DSTATE
1899 (define-instruction movsx
(segment dst src
)
1900 (:printer move-with-extension
((op #b1011111
)))
1901 (:emitter
(emit-move-with-extension segment dst src
:signed
)))
1903 (define-instruction movzx
(segment dst src
)
1904 (:printer move-with-extension
((op #b1011011
)))
1905 (:emitter
(emit-move-with-extension segment dst src nil
)))
1907 ;;; The regular use of MOVSXD is with an operand size of :qword. This
1908 ;;; sign-extends the dword source into the qword destination register.
1909 ;;; If the operand size is :dword the instruction zero-extends the dword
1910 ;;; source into the qword destination register, i.e. it does the same as
1911 ;;; a dword MOV into a register.
1912 (define-instruction movsxd
(segment dst src
)
1913 (:printer reg-reg
/mem
((op #b0110001
) (width 1)
1914 (reg/mem nil
:type
'sized-dword-reg
/mem
)))
1915 (:emitter
(emit-move-with-extension segment dst src
:signed
)))
1917 ;;; this is not a real amd64 instruction, of course
1918 (define-instruction movzxd
(segment dst src
)
1919 ; (:printer reg-reg/mem ((op #x63) (reg nil :type 'reg)))
1920 (:emitter
(emit-move-with-extension segment dst src nil
)))
1922 (define-instruction push
(segment src
)
1924 (:printer reg-no-width-default-qword
((op #b01010
)))
1926 (:printer reg
/mem-default-qword
((op '(#b11111111
#b110
))))
1928 (:printer byte
((op #b01101010
) (imm nil
:type
'signed-imm-byte
))
1930 (:printer byte
((op #b01101000
)
1931 (imm nil
:type
'signed-imm-data-default-qword
))
1933 ;; ### segment registers?
1936 (cond ((integerp src
)
1937 (cond ((<= -
128 src
127)
1938 (emit-byte segment
#b01101010
)
1939 (emit-byte segment src
))
1941 ;; A REX-prefix is not needed because the operand size
1942 ;; defaults to 64 bits. The size of the immediate is 32
1943 ;; bits and it is sign-extended.
1944 (emit-byte segment
#b01101000
)
1945 (emit-signed-dword segment src
))))
1947 (let ((size (operand-size src
)))
1948 (aver (or (eq size
:qword
) (eq size
:word
)))
1949 (maybe-emit-operand-size-prefix segment size
)
1950 (maybe-emit-rex-for-ea segment src nil
:operand-size
:do-not-set
)
1951 (cond ((register-p src
)
1952 (emit-byte-with-reg segment
#b01010
(reg-tn-encoding src
)))
1954 (emit-byte segment
#b11111111
)
1955 (emit-ea segment src
#b110
:allow-constants t
))))))))
1957 (define-instruction pop
(segment dst
)
1958 (:printer reg-no-width-default-qword
((op #b01011
)))
1959 (:printer reg
/mem-default-qword
((op '(#b10001111
#b000
))))
1961 (let ((size (operand-size dst
)))
1962 (aver (or (eq size
:qword
) (eq size
:word
)))
1963 (maybe-emit-operand-size-prefix segment size
)
1964 (maybe-emit-rex-for-ea segment dst nil
:operand-size
:do-not-set
)
1965 (cond ((register-p dst
)
1966 (emit-byte-with-reg segment
#b01011
(reg-tn-encoding dst
)))
1968 (emit-byte segment
#b10001111
)
1969 (emit-ea segment dst
#b000
))))))
1971 ;;; Compared to x86 we need to take two particularities into account
1973 ;;; * XCHG EAX, EAX can't be encoded as #x90 as the processor interprets
1974 ;;; that opcode as NOP while XCHG EAX, EAX is specified to clear the
1975 ;;; upper half of RAX. We need to use the long form #x87 #xC0 instead.
1976 ;;; * The opcode #x90 is not only used for NOP and XCHG RAX, RAX and
1977 ;;; XCHG AX, AX, but also for XCHG RAX, R8 (and the corresponding 32-
1978 ;;; and 16-bit versions). The printer for the NOP instruction (further
1979 ;;; below) matches all these encodings so needs to be overridden here
1980 ;;; for the cases that need to print as XCHG.
1981 ;;; Assembler and disassembler chained then map these special cases as
1983 ;;; (INST NOP) -> 90 -> NOP
1984 ;;; (INST XCHG RAX-TN RAX-TN) -> 4890 -> NOP
1985 ;;; (INST XCHG EAX-TN EAX-TN) -> 87C0 -> XCHG EAX, EAX
1986 ;;; (INST XCHG AX-TN AX-TN) -> 6690 -> NOP
1987 ;;; (INST XCHG RAX-TN R8-TN) -> 4990 -> XCHG RAX, R8
1988 ;;; (INST XCHG EAX-TN R8D-TN) -> 4190 -> XCHG EAX, R8D
1989 ;;; (INST XCHG AX-TN R8W-TN) -> 664190 -> XCHG AX, R8W
1990 ;;; The disassembler additionally correctly matches encoding variants
1991 ;;; that the assembler doesn't generate, for example 4E90 prints as NOP
1992 ;;; and 4F90 as XCHG RAX, R8 (both because REX.R and REX.X are ignored).
1993 (define-instruction xchg
(segment operand1 operand2
)
1994 ;; This printer matches all patterns that encode exchanging RAX with
1995 ;; R8, EAX with R8D, or AX with R8W. These consist of the opcode #x90
1996 ;; with a REX prefix with REX.B = 1, and possibly the #x66 prefix.
1997 ;; We rely on the prefix automatism for the #x66 prefix, but
1998 ;; explicitly match the REX prefix as we need to provide a value for
1999 ;; REX.B, and to override the NOP printer by virtue of a longer match.
2000 (:printer rex-accum-reg
((rex-b 1) (op #b10010
) (reg #b000
)))
2001 ;; Register with accumulator.
2002 (:printer reg-no-width
((op #b10010
)) '(:name
:tab accum
", " reg
))
2003 ;; Register/Memory with Register.
2004 (:printer reg-reg
/mem
((op #b1000011
)))
2006 (let ((size (matching-operand-size operand1 operand2
)))
2007 (maybe-emit-operand-size-prefix segment size
)
2008 (labels ((xchg-acc-with-something (acc something
)
2009 (if (and (not (eq size
:byte
))
2010 (register-p something
)
2011 ;; Don't use the short encoding for XCHG EAX, EAX:
2012 (not (and (= (tn-offset something
) eax-offset
)
2015 (maybe-emit-rex-for-ea segment something acc
)
2016 (emit-byte-with-reg segment
2018 (reg-tn-encoding something
)))
2019 (xchg-reg-with-something acc something
)))
2020 (xchg-reg-with-something (reg something
)
2021 (maybe-emit-rex-for-ea segment something reg
)
2022 (emit-byte segment
(if (eq size
:byte
) #b10000110
#b10000111
))
2023 (emit-ea segment something
(reg-tn-encoding reg
))))
2024 (cond ((accumulator-p operand1
)
2025 (xchg-acc-with-something operand1 operand2
))
2026 ((accumulator-p operand2
)
2027 (xchg-acc-with-something operand2 operand1
))
2028 ((register-p operand1
)
2029 (xchg-reg-with-something operand1 operand2
))
2030 ((register-p operand2
)
2031 (xchg-reg-with-something operand2 operand1
))
2033 (error "bogus args to XCHG: ~S ~S" operand1 operand2
)))))))
2035 ;; It's an error to compile instructions without their labeler and printer defined
2036 ;; in the compiler, even though they aren't called.
2037 ;; This stems from compile-time use of (MAKE-VALSRC #'f '#'f)
2038 (eval-when (#-sb-xc
:compile-toplevel
:load-toplevel
:execute
)
2040 ;; If the filtered VALUE (R/M field of LEA) should be treated as a label,
2041 ;; return the virtual address, otherwise the value unchanged.
2042 (defun lea-compute-label (value dstate
)
2043 (if (and (listp value
) (eq (first value
) 'rip
))
2044 (+ (sb!disassem
:dstate-next-addr dstate
) (second value
))
2047 ;; Figure out whether LEA should print its EA with just the stuff in brackets,
2048 ;; or additionally show the EA as either a label or a hex literal.
2049 (defun lea-print-ea (value stream dstate
)
2050 (let ((width (inst-operand-size dstate
)))
2053 ;; Indicate to PRINT-MEM-REF that this is not a memory access.
2054 (print-mem-ref :compute value width stream dstate
)
2055 (when (eq (first value
) 'rip
)
2056 (let ((addr (+ (sb!disassem
:dstate-next-addr dstate
) (second value
))))
2057 (sb!disassem
:note
(lambda (s) (format s
"= #x~x" addr
))
2060 ;; We're robust in allowing VALUE to be an integer (a register),
2061 ;; though LEA Rx,Ry is an illegal instruction.
2062 ;; A label should never have memory address of 0 to 15 so this case is
2063 ;; unambiguous for the most part, except maybe in a compiler trace file
2064 ;; which starts disassembling as if the origin were zero.
2065 (full-reg (print-reg-with-width value width stream dstate
))
2067 ;; Unfortunately the "label" case sees either an integer or string,
2068 ;; because MAP-SEGMENT-INSTRUCTIONS happens twice (really thrice).
2069 ;; - DETERMINE-OPCODE-BOUNDS in target-insts. Label = integer from prefilter.
2070 ;; - ADD-SEGMENT-LABELS. Never calls instruction printers.
2071 ;; - DISASSEMBLE-SEGMENT. Label = string
2072 ;; and we need a different 'arg-form-kind' than the one in VALUE,
2073 ;; because :USE-LABEL forces the printing pass to see only a label string.
2074 ;; Unlike for JMP and CALL, this isn't reasonable, as no one instruction
2075 ;; corresponds to, say, "LEA RAX,L1". We want [RIP+disp] or [mem_absolute]
2076 ;; so extract the filtered not-labelized value for PRINT-MEM-REF.
2077 ((or string integer
)
2078 (print-mem-ref :compute
2079 (reg-r/m-inst-r
/m-arg sb
!disassem
::dchunk-zero dstate
)
2080 width stream dstate
)
2081 (when (stringp value
) ; Don't note anything during -OPCODE-BOUNDS pass
2082 (sb!disassem
:note
(lambda (s) (format s
"= ~A" value
)) dstate
))))))
2086 (define-instruction lea
(segment dst src
)
2089 ((op #b1000110
) (width 1)
2090 (reg/mem nil
:use-label
#'lea-compute-label
:printer
#'lea-print-ea
)))
2092 (aver (or (dword-reg-p dst
) (qword-reg-p dst
)))
2093 (maybe-emit-rex-for-ea segment src dst
2094 :operand-size
(if (dword-reg-p dst
) :dword
:qword
))
2095 (emit-byte segment
#b10001101
)
2096 (emit-ea segment src
(reg-tn-encoding dst
))))
2098 (define-instruction cmpxchg
(segment dst src
&optional prefix
)
2099 ;; Register/Memory with Register.
2100 (:printer ext-reg-reg
/mem
((op #b1011000
)) '(:name
:tab reg
/mem
", " reg
))
2102 (aver (register-p src
))
2103 (emit-prefix segment prefix
)
2104 (let ((size (matching-operand-size src dst
)))
2105 (maybe-emit-operand-size-prefix segment size
)
2106 (maybe-emit-rex-for-ea segment dst src
)
2107 (emit-byte segment
#b00001111
)
2108 (emit-byte segment
(if (eq size
:byte
) #b10110000
#b10110001
))
2109 (emit-ea segment dst
(reg-tn-encoding src
)))))
2111 (define-instruction cmpxchg16b
(segment mem
&optional prefix
)
2112 (:printer ext-reg-reg
/mem-no-width
((op #xC7
)) '(:name
:tab reg
/mem
))
2114 (aver (not (register-p mem
)))
2115 (emit-prefix segment prefix
)
2116 (maybe-emit-rex-for-ea segment mem nil
:operand-size
:qword
)
2117 (emit-byte segment
#x0F
)
2118 (emit-byte segment
#xC7
)
2119 (emit-ea segment mem
1))) ; operand extension
2122 ;;;; flag control instructions
2124 ;;; CLC -- Clear Carry Flag.
2125 (define-instruction clc
(segment)
2126 (:printer byte
((op #b11111000
)))
2128 (emit-byte segment
#b11111000
)))
2130 ;;; CLD -- Clear Direction Flag.
2131 (define-instruction cld
(segment)
2132 (:printer byte
((op #b11111100
)))
2134 (emit-byte segment
#b11111100
)))
2136 ;;; CLI -- Clear Iterrupt Enable Flag.
2137 (define-instruction cli
(segment)
2138 (:printer byte
((op #b11111010
)))
2140 (emit-byte segment
#b11111010
)))
2142 ;;; CMC -- Complement Carry Flag.
2143 (define-instruction cmc
(segment)
2144 (:printer byte
((op #b11110101
)))
2146 (emit-byte segment
#b11110101
)))
2148 ;;; LAHF -- Load AH into flags.
2149 (define-instruction lahf
(segment)
2150 (:printer byte
((op #b10011111
)))
2152 (emit-byte segment
#b10011111
)))
2154 ;;; POPF -- Pop flags.
2155 (define-instruction popf
(segment)
2156 (:printer byte
((op #b10011101
)))
2158 (emit-byte segment
#b10011101
)))
2160 ;;; PUSHF -- push flags.
2161 (define-instruction pushf
(segment)
2162 (:printer byte
((op #b10011100
)))
2164 (emit-byte segment
#b10011100
)))
2166 ;;; SAHF -- Store AH into flags.
2167 (define-instruction sahf
(segment)
2168 (:printer byte
((op #b10011110
)))
2170 (emit-byte segment
#b10011110
)))
2172 ;;; STC -- Set Carry Flag.
2173 (define-instruction stc
(segment)
2174 (:printer byte
((op #b11111001
)))
2176 (emit-byte segment
#b11111001
)))
2178 ;;; STD -- Set Direction Flag.
2179 (define-instruction std
(segment)
2180 (:printer byte
((op #b11111101
)))
2182 (emit-byte segment
#b11111101
)))
2184 ;;; STI -- Set Interrupt Enable Flag.
2185 (define-instruction sti
(segment)
2186 (:printer byte
((op #b11111011
)))
2188 (emit-byte segment
#b11111011
)))
2192 (defun emit-random-arith-inst (name segment dst src opcode
2193 &optional allow-constants
)
2194 (let ((size (matching-operand-size dst src
)))
2195 (maybe-emit-operand-size-prefix segment size
)
2198 (cond ((and (not (eq size
:byte
)) (<= -
128 src
127))
2199 (maybe-emit-rex-for-ea segment dst nil
)
2200 (emit-byte segment
#b10000011
)
2201 (emit-ea segment dst opcode
:allow-constants allow-constants
)
2202 (emit-byte segment src
))
2203 ((accumulator-p dst
)
2204 (maybe-emit-rex-for-ea segment dst nil
)
2211 (emit-sized-immediate segment size src
))
2213 (maybe-emit-rex-for-ea segment dst nil
)
2214 (emit-byte segment
(if (eq size
:byte
) #b10000000
#b10000001
))
2215 (emit-ea segment dst opcode
:allow-constants allow-constants
)
2216 (emit-sized-immediate segment size src
))))
2218 (maybe-emit-rex-for-ea segment dst src
)
2222 (if (eq size
:byte
) #b00000000
#b00000001
)))
2223 (emit-ea segment dst
(reg-tn-encoding src
)
2224 :allow-constants allow-constants
))
2226 (maybe-emit-rex-for-ea segment src dst
)
2230 (if (eq size
:byte
) #b00000010
#b00000011
)))
2231 (emit-ea segment src
(reg-tn-encoding dst
)
2232 :allow-constants allow-constants
))
2234 (error "bogus operands to ~A" name
)))))
2236 (eval-when (:compile-toplevel
:execute
)
2237 (defun arith-inst-printer-list (subop)
2238 `((accum-imm ((op ,(dpb subop
(byte 3 2) #b0000010
))))
2239 (reg/mem-imm
((op (#b1000000
,subop
))))
2240 ;; The redundant encoding #x82 is invalid in 64-bit mode,
2241 ;; therefore we force WIDTH to 1.
2242 (reg/mem-imm
((op (#b1000001
,subop
)) (width 1)
2243 (imm nil
:type signed-imm-byte
)))
2244 (reg-reg/mem-dir
((op ,(dpb subop
(byte 3 1) #b000000
)))))))
2246 (define-instruction add
(segment dst src
&optional prefix
)
2247 (:printer-list
(arith-inst-printer-list #b000
))
2249 (emit-prefix segment prefix
)
2250 (emit-random-arith-inst "ADD" segment dst src
#b000
)))
2252 (define-instruction adc
(segment dst src
)
2253 (:printer-list
(arith-inst-printer-list #b010
))
2254 (:emitter
(emit-random-arith-inst "ADC" segment dst src
#b010
)))
2256 (define-instruction sub
(segment dst src
)
2257 (:printer-list
(arith-inst-printer-list #b101
))
2258 (:emitter
(emit-random-arith-inst "SUB" segment dst src
#b101
)))
2260 (define-instruction sbb
(segment dst src
)
2261 (:printer-list
(arith-inst-printer-list #b011
))
2262 (:emitter
(emit-random-arith-inst "SBB" segment dst src
#b011
)))
2264 (define-instruction cmp
(segment dst src
)
2265 (:printer-list
(arith-inst-printer-list #b111
))
2266 (:emitter
(emit-random-arith-inst "CMP" segment dst src
#b111 t
)))
2268 ;;; The one-byte encodings for INC and DEC are used as REX prefixes
2269 ;;; in 64-bit mode so we always use the two-byte form.
2270 (define-instruction inc
(segment dst
)
2271 (:printer reg
/mem
((op '(#b1111111
#b000
))))
2273 (let ((size (operand-size dst
)))
2274 (maybe-emit-operand-size-prefix segment size
)
2275 (maybe-emit-rex-for-ea segment dst nil
)
2276 (emit-byte segment
(if (eq size
:byte
) #b11111110
#b11111111
))
2277 (emit-ea segment dst
#b000
))))
2279 (define-instruction dec
(segment dst
)
2280 (:printer reg
/mem
((op '(#b1111111
#b001
))))
2282 (let ((size (operand-size dst
)))
2283 (maybe-emit-operand-size-prefix segment size
)
2284 (maybe-emit-rex-for-ea segment dst nil
)
2285 (emit-byte segment
(if (eq size
:byte
) #b11111110
#b11111111
))
2286 (emit-ea segment dst
#b001
))))
2288 (define-instruction neg
(segment dst
)
2289 (:printer reg
/mem
((op '(#b1111011
#b011
))))
2291 (let ((size (operand-size dst
)))
2292 (maybe-emit-operand-size-prefix segment size
)
2293 (maybe-emit-rex-for-ea segment dst nil
)
2294 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2295 (emit-ea segment dst
#b011
))))
2297 (define-instruction mul
(segment dst src
)
2298 (:printer accum-reg
/mem
((op '(#b1111011
#b100
))))
2300 (let ((size (matching-operand-size dst src
)))
2301 (aver (accumulator-p dst
))
2302 (maybe-emit-operand-size-prefix segment size
)
2303 (maybe-emit-rex-for-ea segment src nil
)
2304 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2305 (emit-ea segment src
#b100
))))
2307 (define-instruction imul
(segment dst
&optional src1 src2
)
2308 (:printer accum-reg
/mem
((op '(#b1111011
#b101
))))
2309 (:printer ext-reg-reg
/mem-no-width
((op #b10101111
)))
2310 (:printer reg-reg
/mem
((op #b0110100
) (width 1)
2311 (imm nil
:type
'signed-imm-data
))
2312 '(:name
:tab reg
", " reg
/mem
", " imm
))
2313 (:printer reg-reg
/mem
((op #b0110101
) (width 1)
2314 (imm nil
:type
'signed-imm-byte
))
2315 '(:name
:tab reg
", " reg
/mem
", " imm
))
2317 (flet ((r/m-with-immed-to-reg
(reg r
/m immed
)
2318 (let* ((size (matching-operand-size reg r
/m
))
2319 (sx (and (not (eq size
:byte
)) (<= -
128 immed
127))))
2320 (maybe-emit-operand-size-prefix segment size
)
2321 (maybe-emit-rex-for-ea segment r
/m reg
)
2322 (emit-byte segment
(if sx
#b01101011
#b01101001
))
2323 (emit-ea segment r
/m
(reg-tn-encoding reg
))
2325 (emit-byte segment immed
)
2326 (emit-sized-immediate segment size immed
)))))
2328 (r/m-with-immed-to-reg dst src1 src2
))
2331 (r/m-with-immed-to-reg dst dst src1
)
2332 (let ((size (matching-operand-size dst src1
)))
2333 (maybe-emit-operand-size-prefix segment size
)
2334 (maybe-emit-rex-for-ea segment src1 dst
)
2335 (emit-byte segment
#b00001111
)
2336 (emit-byte segment
#b10101111
)
2337 (emit-ea segment src1
(reg-tn-encoding dst
)))))
2339 (let ((size (operand-size dst
)))
2340 (maybe-emit-operand-size-prefix segment size
)
2341 (maybe-emit-rex-for-ea segment dst nil
)
2342 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2343 (emit-ea segment dst
#b101
)))))))
2345 (define-instruction div
(segment dst src
)
2346 (:printer accum-reg
/mem
((op '(#b1111011
#b110
))))
2348 (let ((size (matching-operand-size dst src
)))
2349 (aver (accumulator-p dst
))
2350 (maybe-emit-operand-size-prefix segment size
)
2351 (maybe-emit-rex-for-ea segment src nil
)
2352 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2353 (emit-ea segment src
#b110
))))
2355 (define-instruction idiv
(segment dst src
)
2356 (:printer accum-reg
/mem
((op '(#b1111011
#b111
))))
2358 (let ((size (matching-operand-size dst src
)))
2359 (aver (accumulator-p dst
))
2360 (maybe-emit-operand-size-prefix segment size
)
2361 (maybe-emit-rex-for-ea segment src nil
)
2362 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2363 (emit-ea segment src
#b111
))))
2365 (define-instruction bswap
(segment dst
)
2366 (:printer ext-reg-no-width
((op #b11001
)))
2368 (let ((size (operand-size dst
)))
2369 (maybe-emit-rex-prefix segment size nil nil dst
)
2370 (emit-byte segment
#x0f
)
2371 (emit-byte-with-reg segment
#b11001
(reg-tn-encoding dst
)))))
2373 ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL)
2374 (define-instruction cbw
(segment)
2375 (:printer x66-byte
((op #b10011000
)))
2377 (maybe-emit-operand-size-prefix segment
:word
)
2378 (emit-byte segment
#b10011000
)))
2380 ;;; CWDE -- Convert Word To Double Word Extended. EAX <- sign_xtnd(AX)
2381 (define-instruction cwde
(segment)
2382 (:printer byte
((op #b10011000
)))
2384 (maybe-emit-operand-size-prefix segment
:dword
)
2385 (emit-byte segment
#b10011000
)))
2387 ;;; CDQE -- Convert Double Word To Quad Word Extended. RAX <- sign_xtnd(EAX)
2388 (define-instruction cdqe
(segment)
2389 (:printer rex-byte
((op #b10011000
)))
2391 (maybe-emit-rex-prefix segment
:qword nil nil nil
)
2392 (emit-byte segment
#b10011000
)))
2394 ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX)
2395 (define-instruction cwd
(segment)
2396 (:printer x66-byte
((op #b10011001
)))
2398 (maybe-emit-operand-size-prefix segment
:word
)
2399 (emit-byte segment
#b10011001
)))
2401 ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX)
2402 (define-instruction cdq
(segment)
2403 (:printer byte
((op #b10011001
)))
2405 (maybe-emit-operand-size-prefix segment
:dword
)
2406 (emit-byte segment
#b10011001
)))
2408 ;;; CQO -- Convert Quad Word to Octaword. RDX:RAX <- sign_xtnd(RAX)
2409 (define-instruction cqo
(segment)
2410 (:printer rex-byte
((op #b10011001
)))
2412 (maybe-emit-rex-prefix segment
:qword nil nil nil
)
2413 (emit-byte segment
#b10011001
)))
2415 (define-instruction xadd
(segment dst src
&optional prefix
)
2416 ;; Register/Memory with Register.
2417 (:printer ext-reg-reg
/mem
((op #b1100000
)) '(:name
:tab reg
/mem
", " reg
))
2419 (aver (register-p src
))
2420 (emit-prefix segment prefix
)
2421 (let ((size (matching-operand-size src dst
)))
2422 (maybe-emit-operand-size-prefix segment size
)
2423 (maybe-emit-rex-for-ea segment dst src
)
2424 (emit-byte segment
#b00001111
)
2425 (emit-byte segment
(if (eq size
:byte
) #b11000000
#b11000001
))
2426 (emit-ea segment dst
(reg-tn-encoding src
)))))
2431 (defun emit-shift-inst (segment dst amount opcode
)
2432 (let ((size (operand-size dst
)))
2433 (maybe-emit-operand-size-prefix segment size
)
2434 (multiple-value-bind (major-opcode immed
)
2436 (:cl
(values #b11010010 nil
))
2437 (1 (values #b11010000 nil
))
2438 (t (values #b11000000 t
)))
2439 (maybe-emit-rex-for-ea segment dst nil
)
2441 (if (eq size
:byte
) major-opcode
(logior major-opcode
1)))
2442 (emit-ea segment dst opcode
)
2444 (emit-byte segment amount
)))))
2446 (sb!disassem
:define-instruction-format
2447 (shift-inst 16 :include reg
/mem
2448 :default-printer
'(:name
:tab reg
/mem
", " (:if
(varying :positive
) 'cl
1)))
2449 (op :fields
(list (byte 6 2) (byte 3 11)))
2450 (varying :field
(byte 1 1)))
2452 (macrolet ((define (name subop
)
2453 `(define-instruction ,name
(segment dst amount
)
2454 (:printer shift-inst
((op '(#b110100
,subop
)))) ; shift by CL or 1
2455 (:printer reg
/mem-imm
((op '(#b1100000
,subop
))
2456 (imm nil
:type
'imm-byte
)))
2457 (:emitter
(emit-shift-inst segment dst amount
,subop
)))))
2466 (defun emit-double-shift (segment opcode dst src amt
)
2467 (let ((size (matching-operand-size dst src
)))
2468 (when (eq size
:byte
)
2469 (error "Double shifts can only be used with words."))
2470 (maybe-emit-operand-size-prefix segment size
)
2471 (maybe-emit-rex-for-ea segment dst src
)
2472 (emit-byte segment
#b00001111
)
2473 (emit-byte segment
(dpb opcode
(byte 1 3)
2474 (if (eq amt
:cl
) #b10100101
#b10100100
)))
2475 (emit-ea segment dst
(reg-tn-encoding src
))
2476 (unless (eq amt
:cl
)
2477 (emit-byte segment amt
))))
2479 (eval-when (:compile-toplevel
:execute
)
2480 (defun double-shift-inst-printer-list (op)
2481 `((ext-reg-reg/mem-no-width
((op ,(logior op
#b100
))
2482 (imm nil
:type imm-byte
))
2483 (:name
:tab reg
/mem
", " reg
", " imm
))
2484 (ext-reg-reg/mem-no-width
((op ,(logior op
#b101
)))
2485 (:name
:tab reg
/mem
", " reg
", " 'cl
)))))
2487 (define-instruction shld
(segment dst src amt
)
2488 (:declare
(type (or (member :cl
) (mod 64)) amt
))
2489 (:printer-list
(double-shift-inst-printer-list #b10100000
))
2491 (emit-double-shift segment
#b0 dst src amt
)))
2493 (define-instruction shrd
(segment dst src amt
)
2494 (:declare
(type (or (member :cl
) (mod 64)) amt
))
2495 (:printer-list
(double-shift-inst-printer-list #b10101000
))
2497 (emit-double-shift segment
#b1 dst src amt
)))
2499 (define-instruction and
(segment dst src
)
2501 (arith-inst-printer-list #b100
))
2503 (emit-random-arith-inst "AND" segment dst src
#b100
)))
2505 (define-instruction test
(segment this that
)
2506 (:printer accum-imm
((op #b1010100
)))
2507 (:printer reg
/mem-imm
((op '(#b1111011
#b000
))))
2508 (:printer reg-reg
/mem
((op #b1000010
)))
2510 (let ((size (matching-operand-size this that
)))
2511 (maybe-emit-operand-size-prefix segment size
)
2512 (flet ((test-immed-and-something (immed something
)
2513 (cond ((accumulator-p something
)
2514 (maybe-emit-rex-for-ea segment something nil
)
2516 (if (eq size
:byte
) #b10101000
#b10101001
))
2517 (emit-sized-immediate segment size immed
))
2519 (maybe-emit-rex-for-ea segment something nil
)
2521 (if (eq size
:byte
) #b11110110
#b11110111
))
2522 (emit-ea segment something
#b000
)
2523 (emit-sized-immediate segment size immed
))))
2524 (test-reg-and-something (reg something
)
2525 (maybe-emit-rex-for-ea segment something reg
)
2526 (emit-byte segment
(if (eq size
:byte
) #b10000100
#b10000101
))
2527 (emit-ea segment something
(reg-tn-encoding reg
))))
2528 (cond ((integerp that
)
2529 (test-immed-and-something that this
))
2531 (test-immed-and-something this that
))
2533 (test-reg-and-something this that
))
2535 (test-reg-and-something that this
))
2537 (error "bogus operands for TEST: ~S and ~S" this that
)))))))
2539 ;;; Emit the most compact form of the test immediate instruction,
2540 ;;; using an 8 bit test when the immediate is only 8 bits and the
2541 ;;; value is one of the four low registers (rax, rbx, rcx, rdx) or the
2543 (defun emit-optimized-test-inst (x y
)
2546 (let ((offset (tn-offset x
)))
2547 (cond ((and (sc-is x any-reg descriptor-reg
)
2548 (or (= offset rax-offset
) (= offset rbx-offset
)
2549 (= offset rcx-offset
) (= offset rdx-offset
)))
2550 (inst test
(reg-in-size x
:byte
) y
))
2551 ((sc-is x control-stack
)
2552 (inst test
(make-ea :byte
:base rbp-tn
2553 :disp
(frame-byte-offset offset
))
2560 (define-instruction or
(segment dst src
)
2562 (arith-inst-printer-list #b001
))
2564 (emit-random-arith-inst "OR" segment dst src
#b001
)))
2566 (define-instruction xor
(segment dst src
)
2568 (arith-inst-printer-list #b110
))
2570 (emit-random-arith-inst "XOR" segment dst src
#b110
)))
2572 (define-instruction not
(segment dst
)
2573 (:printer reg
/mem
((op '(#b1111011
#b010
))))
2575 (let ((size (operand-size dst
)))
2576 (maybe-emit-operand-size-prefix segment size
)
2577 (maybe-emit-rex-for-ea segment dst nil
)
2578 (emit-byte segment
(if (eq size
:byte
) #b11110110
#b11110111
))
2579 (emit-ea segment dst
#b010
))))
2581 ;;;; string manipulation
2583 (define-instruction cmps
(segment size
)
2584 (:printer string-op
((op #b1010011
)))
2586 (maybe-emit-operand-size-prefix segment size
)
2587 (maybe-emit-rex-prefix segment size nil nil nil
)
2588 (emit-byte segment
(if (eq size
:byte
) #b10100110
#b10100111
))))
2590 (define-instruction ins
(segment acc
)
2591 (:printer string-op
((op #b0110110
)))
2593 (let ((size (operand-size acc
)))
2594 (aver (accumulator-p acc
))
2595 (maybe-emit-operand-size-prefix segment size
)
2596 (maybe-emit-rex-prefix segment size nil nil nil
)
2597 (emit-byte segment
(if (eq size
:byte
) #b01101100
#b01101101
)))))
2599 (define-instruction lods
(segment acc
)
2600 (:printer string-op
((op #b1010110
)))
2602 (let ((size (operand-size acc
)))
2603 (aver (accumulator-p acc
))
2604 (maybe-emit-operand-size-prefix segment size
)
2605 (maybe-emit-rex-prefix segment size nil nil nil
)
2606 (emit-byte segment
(if (eq size
:byte
) #b10101100
#b10101101
)))))
2608 (define-instruction movs
(segment size
)
2609 (:printer string-op
((op #b1010010
)))
2611 (maybe-emit-operand-size-prefix segment size
)
2612 (maybe-emit-rex-prefix segment size nil nil nil
)
2613 (emit-byte segment
(if (eq size
:byte
) #b10100100
#b10100101
))))
2615 (define-instruction outs
(segment acc
)
2616 (:printer string-op
((op #b0110111
)))
2618 (let ((size (operand-size acc
)))
2619 (aver (accumulator-p acc
))
2620 (maybe-emit-operand-size-prefix segment size
)
2621 (maybe-emit-rex-prefix segment size nil nil nil
)
2622 (emit-byte segment
(if (eq size
:byte
) #b01101110
#b01101111
)))))
2624 (define-instruction scas
(segment acc
)
2625 (:printer string-op
((op #b1010111
)))
2627 (let ((size (operand-size acc
)))
2628 (aver (accumulator-p acc
))
2629 (maybe-emit-operand-size-prefix segment size
)
2630 (maybe-emit-rex-prefix segment size nil nil nil
)
2631 (emit-byte segment
(if (eq size
:byte
) #b10101110
#b10101111
)))))
2633 (define-instruction stos
(segment acc
)
2634 (:printer string-op
((op #b1010101
)))
2636 (let ((size (operand-size acc
)))
2637 (aver (accumulator-p acc
))
2638 (maybe-emit-operand-size-prefix segment size
)
2639 (maybe-emit-rex-prefix segment size nil nil nil
)
2640 (emit-byte segment
(if (eq size
:byte
) #b10101010
#b10101011
)))))
2642 (define-instruction xlat
(segment)
2643 (:printer byte
((op #b11010111
)))
2645 (emit-byte segment
#b11010111
)))
2648 ;;;; bit manipulation
2650 (define-instruction bsf
(segment dst src
)
2651 (:printer ext-reg-reg
/mem-no-width
((op #b10111100
)))
2653 (let ((size (matching-operand-size dst src
)))
2654 (when (eq size
:byte
)
2655 (error "can't scan bytes: ~S" src
))
2656 (maybe-emit-operand-size-prefix segment size
)
2657 (maybe-emit-rex-for-ea segment src dst
)
2658 (emit-byte segment
#b00001111
)
2659 (emit-byte segment
#b10111100
)
2660 (emit-ea segment src
(reg-tn-encoding dst
)))))
2662 (define-instruction bsr
(segment dst src
)
2663 (:printer ext-reg-reg
/mem-no-width
((op #b10111101
)))
2665 (let ((size (matching-operand-size dst src
)))
2666 (when (eq size
:byte
)
2667 (error "can't scan bytes: ~S" src
))
2668 (maybe-emit-operand-size-prefix segment size
)
2669 (maybe-emit-rex-for-ea segment src dst
)
2670 (emit-byte segment
#b00001111
)
2671 (emit-byte segment
#b10111101
)
2672 (emit-ea segment src
(reg-tn-encoding dst
)))))
2674 (defun emit-bit-test-and-mumble (segment src index opcode
)
2675 (let ((size (operand-size src
)))
2676 (when (eq size
:byte
)
2677 (error "can't scan bytes: ~S" src
))
2678 (maybe-emit-operand-size-prefix segment size
)
2679 (cond ((integerp index
)
2680 (maybe-emit-rex-for-ea segment src nil
)
2681 (emit-byte segment
#b00001111
)
2682 (emit-byte segment
#b10111010
)
2683 (emit-ea segment src opcode
)
2684 (emit-byte segment index
))
2686 (maybe-emit-rex-for-ea segment src index
)
2687 (emit-byte segment
#b00001111
)
2688 (emit-byte segment
(dpb opcode
(byte 3 3) #b10000011
))
2689 (emit-ea segment src
(reg-tn-encoding index
))))))
2691 (eval-when (:compile-toplevel
:execute
)
2692 (defun bit-test-inst-printer-list (subop)
2693 `((ext-reg/mem-no-width
+imm8
((op (#xBA
,subop
))))
2694 (ext-reg-reg/mem-no-width
((op ,(dpb subop
(byte 3 3) #b10000011
))
2695 (reg/mem nil
:type sized-reg
/mem
))
2696 (:name
:tab reg
/mem
", " reg
)))))
2698 (macrolet ((define (inst opcode-extension
)
2699 `(define-instruction ,inst
(segment src index
)
2700 (:printer-list
(bit-test-inst-printer-list ,opcode-extension
))
2701 (:emitter
(emit-bit-test-and-mumble segment src index
2702 ,opcode-extension
)))))
2709 ;;;; control transfer
2711 (define-instruction call
(segment where
)
2712 (:printer near-jump
((op #b11101000
)))
2713 (:printer reg
/mem-default-qword
((op '(#b11111111
#b010
))))
2717 (emit-byte segment
#b11101000
) ; 32 bit relative
2718 (emit-back-patch segment
2720 (lambda (segment posn
)
2721 (emit-signed-dword segment
2722 (- (label-position where
)
2725 ;; There is no CALL rel64...
2726 (error "Cannot CALL a fixup: ~S" where
))
2728 (maybe-emit-rex-for-ea segment where nil
:operand-size
:do-not-set
)
2729 (emit-byte segment
#b11111111
)
2730 (emit-ea segment where
#b010
)))))
2732 (defun emit-byte-displacement-backpatch (segment target
)
2733 (emit-back-patch segment
2735 (lambda (segment posn
)
2736 (let ((disp (- (label-position target
) (1+ posn
))))
2737 (aver (<= -
128 disp
127))
2738 (emit-byte segment disp
)))))
2740 (define-instruction jmp
(segment cond
&optional where
)
2741 ;; conditional jumps
2742 (:printer short-cond-jump
((op #b0111
)) '('j cc
:tab label
))
2743 (:printer near-cond-jump
() '('j cc
:tab label
))
2744 ;; unconditional jumps
2745 (:printer short-jump
((op #b1011
)))
2746 (:printer near-jump
((op #b11101001
)))
2747 (:printer reg
/mem-default-qword
((op '(#b11111111
#b100
))))
2752 (lambda (segment posn delta-if-after
)
2753 (let ((disp (- (label-position where posn delta-if-after
)
2755 (when (<= -
128 disp
127)
2757 (dpb (conditional-opcode cond
)
2760 (emit-byte-displacement-backpatch segment where
)
2762 (lambda (segment posn
)
2763 (let ((disp (- (label-position where
) (+ posn
6))))
2764 (emit-byte segment
#b00001111
)
2766 (dpb (conditional-opcode cond
)
2769 (emit-signed-dword segment disp
)))))
2770 ((label-p (setq where cond
))
2773 (lambda (segment posn delta-if-after
)
2774 (let ((disp (- (label-position where posn delta-if-after
)
2776 (when (<= -
128 disp
127)
2777 (emit-byte segment
#b11101011
)
2778 (emit-byte-displacement-backpatch segment where
)
2780 (lambda (segment posn
)
2781 (let ((disp (- (label-position where
) (+ posn
5))))
2782 (emit-byte segment
#b11101001
)
2783 (emit-signed-dword segment disp
)))))
2785 (emit-byte segment
#b11101001
)
2786 (emit-relative-fixup segment where
))
2788 (unless (or (ea-p where
) (tn-p where
))
2789 (error "don't know what to do with ~A" where
))
2790 ;; near jump defaults to 64 bit
2791 ;; w-bit in rex prefix is unnecessary
2792 (maybe-emit-rex-for-ea segment where nil
:operand-size
:do-not-set
)
2793 (emit-byte segment
#b11111111
)
2794 (emit-ea segment where
#b100
)))))
2796 (define-instruction ret
(segment &optional stack-delta
)
2797 (:printer byte
((op #b11000011
)))
2798 (:printer byte
((op #b11000010
) (imm nil
:type
'imm-word-16
))
2801 (cond ((and stack-delta
(not (zerop stack-delta
)))
2802 (emit-byte segment
#b11000010
)
2803 (emit-word segment stack-delta
))
2805 (emit-byte segment
#b11000011
)))))
2807 (define-instruction jrcxz
(segment target
)
2808 (:printer short-jump
((op #b0011
)))
2810 (emit-byte segment
#b11100011
)
2811 (emit-byte-displacement-backpatch segment target
)))
2813 (define-instruction loop
(segment target
)
2814 (:printer short-jump
((op #b0010
)))
2816 (emit-byte segment
#b11100010
) ; pfw this was 11100011, or jecxz!!!!
2817 (emit-byte-displacement-backpatch segment target
)))
2819 (define-instruction loopz
(segment target
)
2820 (:printer short-jump
((op #b0001
)))
2822 (emit-byte segment
#b11100001
)
2823 (emit-byte-displacement-backpatch segment target
)))
2825 (define-instruction loopnz
(segment target
)
2826 (:printer short-jump
((op #b0000
)))
2828 (emit-byte segment
#b11100000
)
2829 (emit-byte-displacement-backpatch segment target
)))
2831 ;;;; conditional move
2832 (define-instruction cmov
(segment cond dst src
)
2833 (:printer cond-move
())
2835 (aver (register-p dst
))
2836 (let ((size (matching-operand-size dst src
)))
2837 (aver (or (eq size
:word
) (eq size
:dword
) (eq size
:qword
)))
2838 (maybe-emit-operand-size-prefix segment size
))
2839 (maybe-emit-rex-for-ea segment src dst
)
2840 (emit-byte segment
#b00001111
)
2841 (emit-byte segment
(dpb (conditional-opcode cond
) (byte 4 0) #b01000000
))
2842 (emit-ea segment src
(reg-tn-encoding dst
) :allow-constants t
)))
2844 ;;;; conditional byte set
2846 (define-instruction set
(segment dst cond
)
2847 (:printer cond-set
())
2849 (maybe-emit-rex-for-ea segment dst nil
:operand-size
:byte
)
2850 (emit-byte segment
#b00001111
)
2851 (emit-byte segment
(dpb (conditional-opcode cond
) (byte 4 0) #b10010000
))
2852 (emit-ea segment dst
#b000
)))
2856 (define-instruction enter
(segment disp
&optional
(level 0))
2857 (:declare
(type (unsigned-byte 16) disp
)
2858 (type (unsigned-byte 8) level
))
2859 (:printer enter-format
((op #b11001000
)))
2861 (emit-byte segment
#b11001000
)
2862 (emit-word segment disp
)
2863 (emit-byte segment level
)))
2865 (define-instruction leave
(segment)
2866 (:printer byte
((op #b11001001
)))
2868 (emit-byte segment
#b11001001
)))
2870 ;;;; interrupt instructions
2872 (defun snarf-error-junk (sap offset
&optional length-only
)
2873 (let* ((length (sap-ref-8 sap offset
))
2874 (vector (make-array length
:element-type
'(unsigned-byte 8))))
2875 (declare (type system-area-pointer sap
)
2876 (type (unsigned-byte 8) length
)
2877 (type (simple-array (unsigned-byte 8) (*)) vector
))
2879 (values 0 (1+ length
) nil nil
))
2881 (copy-ub8-from-system-area sap
(1+ offset
) vector
0 length
)
2882 (collect ((sc-offsets)
2884 (lengths 1) ; the length byte
2886 (error-number (read-var-integer vector index
)))
2889 (when (>= index length
)
2891 (let ((old-index index
))
2892 (sc-offsets (read-var-integer vector index
))
2893 (lengths (- index old-index
))))
2894 (values error-number
2900 (defmacro break-cases
(breaknum &body cases
)
2901 (let ((bn-temp (gensym)))
2902 (collect ((clauses))
2903 (dolist (case cases
)
2904 (clauses `((= ,bn-temp
,(car case
)) ,@(cdr case
))))
2905 `(let ((,bn-temp
,breaknum
))
2906 (cond ,@(clauses))))))
2909 (defun break-control (chunk inst stream dstate
)
2910 (declare (ignore inst
))
2911 (flet ((nt (x) (if stream
(sb!disassem
:note x dstate
))))
2912 (case #!-ud2-breakpoints
(byte-imm-code chunk dstate
)
2913 #!+ud2-breakpoints
(word-imm-code chunk dstate
)
2916 (sb!disassem
:handle-break-args
#'snarf-error-junk stream dstate
))
2919 (sb!disassem
:handle-break-args
#'snarf-error-junk stream dstate
))
2921 (nt "breakpoint trap"))
2922 (#.pending-interrupt-trap
2923 (nt "pending interrupt trap"))
2926 (#.fun-end-breakpoint-trap
2927 (nt "function end breakpoint trap"))
2928 (#.single-step-around-trap
2929 (nt "single-step trap (around)"))
2930 (#.single-step-before-trap
2931 (nt "single-step trap (before)"))
2932 (#.invalid-arg-count-trap
2933 (nt "Invalid argument count trap")))))
2935 (define-instruction break
(segment code
)
2936 (:declare
(type (unsigned-byte 8) code
))
2937 #!-ud2-breakpoints
(:printer byte-imm
((op #b11001100
))
2938 '(:name
:tab code
) :control
#'break-control
)
2939 #!+ud2-breakpoints
(:printer word-imm
((op #b0000101100001111
))
2940 '(:name
:tab code
) :control
#'break-control
)
2942 #!-ud2-breakpoints
(emit-byte segment
#b11001100
)
2943 ;; On darwin, trap handling via SIGTRAP is unreliable, therefore we
2944 ;; throw a sigill with 0x0b0f instead and check for this in the
2945 ;; SIGILL handler and pass it on to the sigtrap handler if
2947 #!+ud2-breakpoints
(emit-word segment
#b0000101100001111
)
2948 (emit-byte segment code
)))
2950 (define-instruction int
(segment number
)
2951 (:declare
(type (unsigned-byte 8) number
))
2952 (:printer byte-imm
((op #b11001101
)))
2956 (emit-byte segment
#b11001100
))
2958 (emit-byte segment
#b11001101
)
2959 (emit-byte segment number
)))))
2961 (define-instruction iret
(segment)
2962 (:printer byte
((op #b11001111
)))
2964 (emit-byte segment
#b11001111
)))
2966 ;;;; processor control
2968 (define-instruction hlt
(segment)
2969 (:printer byte
((op #b11110100
)))
2971 (emit-byte segment
#b11110100
)))
2973 (define-instruction nop
(segment)
2974 (:printer byte
((op #b10010000
)))
2976 (:printer ext-reg
/mem-no-width
((op '(#x1f
0))) '(:name
))
2978 (emit-byte segment
#b10010000
)))
2980 ;;; Emit a sequence of single- or multi-byte NOPs to fill AMOUNT many
2981 ;;; bytes with the smallest possible number of such instructions.
2982 (defun emit-long-nop (segment amount
)
2983 (declare (type segment segment
)
2984 (type index amount
))
2985 ;; Pack all instructions into one byte vector to save space.
2986 (let* ((bytes #.
(!coerce-to-specialized
2991 #x0f
#x1f
#x44
#x00
#x00
2992 #x66
#x0f
#x1f
#x44
#x00
#x00
2993 #x0f
#x1f
#x80
#x00
#x00
#x00
#x00
2994 #x0f
#x1f
#x84
#x00
#x00
#x00
#x00
#x00
2995 #x66
#x0f
#x1f
#x84
#x00
#x00
#x00
#x00
#x00
)
2996 '(unsigned-byte 8)))
2997 (max-length (isqrt (* 2 (length bytes
)))))
2999 (let* ((count (min amount max-length
))
3000 (start (ash (* count
(1- count
)) -
1)))
3002 (emit-byte segment
(aref bytes
(+ start i
)))))
3003 (if (> amount max-length
)
3004 (decf amount max-length
)
3007 (define-instruction wait
(segment)
3008 (:printer byte
((op #b10011011
)))
3010 (emit-byte segment
#b10011011
)))
3013 ;;;; miscellaneous hackery
3015 (define-instruction byte
(segment byte
)
3017 (emit-byte segment byte
)))
3019 (define-instruction word
(segment word
)
3021 (emit-word segment word
)))
3023 (define-instruction dword
(segment dword
)
3025 (emit-dword segment dword
)))
3027 (defun emit-header-data (segment type
)
3028 (emit-back-patch segment
3030 (lambda (segment posn
)
3034 (component-header-length))
3038 (define-instruction simple-fun-header-word
(segment)
3040 (emit-header-data segment simple-fun-header-widetag
)))
3042 (define-instruction lra-header-word
(segment)
3044 (emit-header-data segment return-pc-header-widetag
)))
3046 ;;;; Instructions required to do floating point operations using SSE
3048 ;; Return a one- or two-element list of printers for SSE instructions.
3049 ;; The one-element list is used in the cases where the REX prefix is
3050 ;; really a prefix and thus automatically supported, the two-element
3051 ;; list is used when the REX prefix is used in an infix position.
3052 (eval-when (:compile-toplevel
:execute
)
3053 (defun sse-inst-printer-list (inst-format-stem prefix opcode
3054 &key more-fields printer
)
3055 (let ((fields `(,@(when prefix
3056 `((prefix ,prefix
)))
3059 (inst-formats (if prefix
3060 (list (symbolicate "EXT-" inst-format-stem
)
3061 (symbolicate "EXT-REX-" inst-format-stem
))
3062 (list inst-format-stem
))))
3063 (mapcar (lambda (inst-format)
3064 `(,inst-format
,fields
,@(when printer
3067 (defun 2byte-sse-inst-printer-list (inst-format-stem prefix op1 op2
3068 &key more-fields printer
)
3069 (let ((fields `(,@(when prefix
3070 `((prefix, prefix
)))
3074 (inst-formats (if prefix
3075 (list (symbolicate "EXT-" inst-format-stem
)
3076 (symbolicate "EXT-REX-" inst-format-stem
))
3077 (list inst-format-stem
))))
3078 (mapcar (lambda (inst-format)
3079 `(,inst-format
,fields
,@(when printer
3083 (defun emit-sse-inst (segment dst src prefix opcode
3084 &key operand-size
(remaining-bytes 0))
3086 (emit-byte segment prefix
))
3088 (maybe-emit-rex-for-ea segment src dst
:operand-size operand-size
)
3089 (maybe-emit-rex-for-ea segment src dst
))
3090 (emit-byte segment
#x0f
)
3091 (emit-byte segment opcode
)
3092 (emit-ea segment src
(reg-tn-encoding dst
) :remaining-bytes remaining-bytes
))
3094 ;; 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg:imm8
3096 (defun emit-sse-inst-with-imm (segment dst
/src imm
3101 (emit-byte segment prefix
))
3102 ;; dst/src is encoded in the r/m field, not r; REX.B must be
3103 ;; set to use extended XMM registers
3104 (maybe-emit-rex-prefix segment operand-size nil nil dst
/src
)
3105 (emit-byte segment
#x0F
)
3106 (emit-byte segment opcode
)
3107 (emit-byte segment
(logior (ash (logior #b11000
/i
) 3)
3108 (reg-tn-encoding dst
/src
)))
3109 (emit-byte segment imm
))
3111 (defun emit-sse-inst-2byte (segment dst src prefix op1 op2
3112 &key operand-size
(remaining-bytes 0))
3114 (emit-byte segment prefix
))
3116 (maybe-emit-rex-for-ea segment src dst
:operand-size operand-size
)
3117 (maybe-emit-rex-for-ea segment src dst
))
3118 (emit-byte segment
#x0f
)
3119 (emit-byte segment op1
)
3120 (emit-byte segment op2
)
3121 (emit-ea segment src
(reg-tn-encoding dst
) :remaining-bytes remaining-bytes
))
3124 ((define-imm-sse-instruction (name opcode
/i
)
3125 `(define-instruction ,name
(segment dst
/src imm
)
3127 ',(sse-inst-printer-list 'xmm-imm
#x66 opcode
3128 :more-fields
`((/i
,/i
))))
3130 (emit-sse-inst-with-imm segment dst
/src imm
3132 :operand-size
:do-not-set
)))))
3133 (define-imm-sse-instruction pslldq
#x73
7)
3134 (define-imm-sse-instruction psllw-imm
#x71
6)
3135 (define-imm-sse-instruction pslld-imm
#x72
6)
3136 (define-imm-sse-instruction psllq-imm
#x73
6)
3138 (define-imm-sse-instruction psraw-imm
#x71
4)
3139 (define-imm-sse-instruction psrad-imm
#x72
4)
3141 (define-imm-sse-instruction psrldq
#x73
3)
3142 (define-imm-sse-instruction psrlw-imm
#x71
2)
3143 (define-imm-sse-instruction psrld-imm
#x72
2)
3144 (define-imm-sse-instruction psrlq-imm
#x73
2))
3146 ;;; Emit an SSE instruction that has an XMM register as the destination
3147 ;;; operand and for which the size of the operands is implicitly given
3148 ;;; by the instruction.
3149 (defun emit-regular-sse-inst (segment dst src prefix opcode
3150 &key
(remaining-bytes 0))
3151 (aver (xmm-register-p dst
))
3152 (emit-sse-inst segment dst src prefix opcode
3153 :operand-size
:do-not-set
3154 :remaining-bytes remaining-bytes
))
3156 (defun emit-regular-2byte-sse-inst (segment dst src prefix op1 op2
3157 &key
(remaining-bytes 0))
3158 (aver (xmm-register-p dst
))
3159 (emit-sse-inst-2byte segment dst src prefix op1 op2
3160 :operand-size
:do-not-set
3161 :remaining-bytes remaining-bytes
))
3163 ;;; Instructions having an XMM register as the destination operand
3164 ;;; and an XMM register or a memory location as the source operand.
3165 ;;; The operand size is implicitly given by the instruction.
3167 (macrolet ((define-regular-sse-inst (name prefix opcode
)
3168 `(define-instruction ,name
(segment dst src
)
3170 ',(sse-inst-printer-list 'xmm-xmm
/mem prefix opcode
))
3172 (emit-regular-sse-inst segment dst src
,prefix
,opcode
)))))
3174 (define-regular-sse-inst movshdup
#xf3
#x16
)
3175 (define-regular-sse-inst movsldup
#xf3
#x12
)
3176 (define-regular-sse-inst movddup
#xf2
#x12
)
3178 (define-regular-sse-inst andpd
#x66
#x54
)
3179 (define-regular-sse-inst andps nil
#x54
)
3180 (define-regular-sse-inst andnpd
#x66
#x55
)
3181 (define-regular-sse-inst andnps nil
#x55
)
3182 (define-regular-sse-inst orpd
#x66
#x56
)
3183 (define-regular-sse-inst orps nil
#x56
)
3184 (define-regular-sse-inst pand
#x66
#xdb
)
3185 (define-regular-sse-inst pandn
#x66
#xdf
)
3186 (define-regular-sse-inst por
#x66
#xeb
)
3187 (define-regular-sse-inst pxor
#x66
#xef
)
3188 (define-regular-sse-inst xorpd
#x66
#x57
)
3189 (define-regular-sse-inst xorps nil
#x57
)
3191 (define-regular-sse-inst comisd
#x66
#x2f
)
3192 (define-regular-sse-inst comiss nil
#x2f
)
3193 (define-regular-sse-inst ucomisd
#x66
#x2e
)
3194 (define-regular-sse-inst ucomiss nil
#x2e
)
3195 ;; integer comparison
3196 (define-regular-sse-inst pcmpeqb
#x66
#x74
)
3197 (define-regular-sse-inst pcmpeqw
#x66
#x75
)
3198 (define-regular-sse-inst pcmpeqd
#x66
#x76
)
3199 (define-regular-sse-inst pcmpgtb
#x66
#x64
)
3200 (define-regular-sse-inst pcmpgtw
#x66
#x65
)
3201 (define-regular-sse-inst pcmpgtd
#x66
#x66
)
3203 (define-regular-sse-inst maxpd
#x66
#x5f
)
3204 (define-regular-sse-inst maxps nil
#x5f
)
3205 (define-regular-sse-inst maxsd
#xf2
#x5f
)
3206 (define-regular-sse-inst maxss
#xf3
#x5f
)
3207 (define-regular-sse-inst minpd
#x66
#x5d
)
3208 (define-regular-sse-inst minps nil
#x5d
)
3209 (define-regular-sse-inst minsd
#xf2
#x5d
)
3210 (define-regular-sse-inst minss
#xf3
#x5d
)
3212 (define-regular-sse-inst pmaxsw
#x66
#xee
)
3213 (define-regular-sse-inst pmaxub
#x66
#xde
)
3214 (define-regular-sse-inst pminsw
#x66
#xea
)
3215 (define-regular-sse-inst pminub
#x66
#xda
)
3217 (define-regular-sse-inst addpd
#x66
#x58
)
3218 (define-regular-sse-inst addps nil
#x58
)
3219 (define-regular-sse-inst addsd
#xf2
#x58
)
3220 (define-regular-sse-inst addss
#xf3
#x58
)
3221 (define-regular-sse-inst addsubpd
#x66
#xd0
)
3222 (define-regular-sse-inst addsubps
#xf2
#xd0
)
3223 (define-regular-sse-inst divpd
#x66
#x5e
)
3224 (define-regular-sse-inst divps nil
#x5e
)
3225 (define-regular-sse-inst divsd
#xf2
#x5e
)
3226 (define-regular-sse-inst divss
#xf3
#x5e
)
3227 (define-regular-sse-inst haddpd
#x66
#x7c
)
3228 (define-regular-sse-inst haddps
#xf2
#x7c
)
3229 (define-regular-sse-inst hsubpd
#x66
#x7d
)
3230 (define-regular-sse-inst hsubps
#xf2
#x7d
)
3231 (define-regular-sse-inst mulpd
#x66
#x59
)
3232 (define-regular-sse-inst mulps nil
#x59
)
3233 (define-regular-sse-inst mulsd
#xf2
#x59
)
3234 (define-regular-sse-inst mulss
#xf3
#x59
)
3235 (define-regular-sse-inst rcpps nil
#x53
)
3236 (define-regular-sse-inst rcpss
#xf3
#x53
)
3237 (define-regular-sse-inst rsqrtps nil
#x52
)
3238 (define-regular-sse-inst rsqrtss
#xf3
#x52
)
3239 (define-regular-sse-inst sqrtpd
#x66
#x51
)
3240 (define-regular-sse-inst sqrtps nil
#x51
)
3241 (define-regular-sse-inst sqrtsd
#xf2
#x51
)
3242 (define-regular-sse-inst sqrtss
#xf3
#x51
)
3243 (define-regular-sse-inst subpd
#x66
#x5c
)
3244 (define-regular-sse-inst subps nil
#x5c
)
3245 (define-regular-sse-inst subsd
#xf2
#x5c
)
3246 (define-regular-sse-inst subss
#xf3
#x5c
)
3247 (define-regular-sse-inst unpckhpd
#x66
#x15
)
3248 (define-regular-sse-inst unpckhps nil
#x15
)
3249 (define-regular-sse-inst unpcklpd
#x66
#x14
)
3250 (define-regular-sse-inst unpcklps nil
#x14
)
3251 ;; integer arithmetic
3252 (define-regular-sse-inst paddb
#x66
#xfc
)
3253 (define-regular-sse-inst paddw
#x66
#xfd
)
3254 (define-regular-sse-inst paddd
#x66
#xfe
)
3255 (define-regular-sse-inst paddq
#x66
#xd4
)
3256 (define-regular-sse-inst paddsb
#x66
#xec
)
3257 (define-regular-sse-inst paddsw
#x66
#xed
)
3258 (define-regular-sse-inst paddusb
#x66
#xdc
)
3259 (define-regular-sse-inst paddusw
#x66
#xdd
)
3260 (define-regular-sse-inst pavgb
#x66
#xe0
)
3261 (define-regular-sse-inst pavgw
#x66
#xe3
)
3262 (define-regular-sse-inst pmaddwd
#x66
#xf5
)
3263 (define-regular-sse-inst pmulhuw
#x66
#xe4
)
3264 (define-regular-sse-inst pmulhw
#x66
#xe5
)
3265 (define-regular-sse-inst pmullw
#x66
#xd5
)
3266 (define-regular-sse-inst pmuludq
#x66
#xf4
)
3267 (define-regular-sse-inst psadbw
#x66
#xf6
)
3268 (define-regular-sse-inst psllw
#x66
#xf1
)
3269 (define-regular-sse-inst pslld
#x66
#xf2
)
3270 (define-regular-sse-inst psllq
#x66
#xf3
)
3271 (define-regular-sse-inst psraw
#x66
#xe1
)
3272 (define-regular-sse-inst psrad
#x66
#xe2
)
3273 (define-regular-sse-inst psrlw
#x66
#xd1
)
3274 (define-regular-sse-inst psrld
#x66
#xd2
)
3275 (define-regular-sse-inst psrlq
#x66
#xd3
)
3276 (define-regular-sse-inst psubb
#x66
#xf8
)
3277 (define-regular-sse-inst psubw
#x66
#xf9
)
3278 (define-regular-sse-inst psubd
#x66
#xfa
)
3279 (define-regular-sse-inst psubq
#x66
#xfb
)
3280 (define-regular-sse-inst psubsb
#x66
#xe8
)
3281 (define-regular-sse-inst psubsw
#x66
#xe9
)
3282 (define-regular-sse-inst psubusb
#x66
#xd8
)
3283 (define-regular-sse-inst psubusw
#x66
#xd9
)
3285 (define-regular-sse-inst cvtdq2pd
#xf3
#xe6
)
3286 (define-regular-sse-inst cvtdq2ps nil
#x5b
)
3287 (define-regular-sse-inst cvtpd2dq
#xf2
#xe6
)
3288 (define-regular-sse-inst cvtpd2ps
#x66
#x5a
)
3289 (define-regular-sse-inst cvtps2dq
#x66
#x5b
)
3290 (define-regular-sse-inst cvtps2pd nil
#x5a
)
3291 (define-regular-sse-inst cvtsd2ss
#xf2
#x5a
)
3292 (define-regular-sse-inst cvtss2sd
#xf3
#x5a
)
3293 (define-regular-sse-inst cvttpd2dq
#x66
#xe6
)
3294 (define-regular-sse-inst cvttps2dq
#xf3
#x5b
)
3296 (define-regular-sse-inst packsswb
#x66
#x63
)
3297 (define-regular-sse-inst packssdw
#x66
#x6b
)
3298 (define-regular-sse-inst packuswb
#x66
#x67
)
3299 (define-regular-sse-inst punpckhbw
#x66
#x68
)
3300 (define-regular-sse-inst punpckhwd
#x66
#x69
)
3301 (define-regular-sse-inst punpckhdq
#x66
#x6a
)
3302 (define-regular-sse-inst punpckhqdq
#x66
#x6d
)
3303 (define-regular-sse-inst punpcklbw
#x66
#x60
)
3304 (define-regular-sse-inst punpcklwd
#x66
#x61
)
3305 (define-regular-sse-inst punpckldq
#x66
#x62
)
3306 (define-regular-sse-inst punpcklqdq
#x66
#x6c
))
3308 (macrolet ((define-xmm-shuffle-sse-inst (name prefix opcode n-bits radix
)
3309 (let ((shuffle-pattern
3310 (intern (format nil
"SSE-SHUFFLE-PATTERN-~D-~D"
3312 `(define-instruction ,name
(segment dst src pattern
)
3314 ',(sse-inst-printer-list
3315 'xmm-xmm
/mem prefix opcode
3316 :more-fields
`((imm nil
:type
,shuffle-pattern
))
3317 :printer
'(:name
:tab reg
", " reg
/mem
", " imm
)))
3320 (aver (typep pattern
'(unsigned-byte ,n-bits
)))
3321 (emit-regular-sse-inst segment dst src
,prefix
,opcode
3323 (emit-byte segment pattern
))))))
3324 (define-xmm-shuffle-sse-inst pshufd
#x66
#x70
8 4)
3325 (define-xmm-shuffle-sse-inst pshufhw
#xf3
#x70
8 4)
3326 (define-xmm-shuffle-sse-inst pshuflw
#xf2
#x70
8 4)
3327 (define-xmm-shuffle-sse-inst shufpd
#x66
#xc6
2 2)
3328 (define-xmm-shuffle-sse-inst shufps nil
#xc6
8 4))
3330 ;; MASKMOVDQU (dst is DS:RDI)
3331 (define-instruction maskmovdqu
(segment src mask
)
3333 (sse-inst-printer-list 'xmm-xmm
/mem
#x66
#xf7
))
3335 (aver (xmm-register-p src
))
3336 (aver (xmm-register-p mask
))
3337 (emit-regular-sse-inst segment src mask
#x66
#xf7
)))
3339 (macrolet ((define-comparison-sse-inst (name prefix opcode
3340 name-prefix name-suffix
)
3341 `(define-instruction ,name
(segment op x y
)
3343 ',(sse-inst-printer-list
3344 'xmm-xmm
/mem prefix opcode
3345 :more-fields
'((imm nil
:type sse-condition-code
))
3346 :printer
`(,name-prefix imm
,name-suffix
3347 :tab reg
", " reg
/mem
)))
3349 (let ((code (position op
*sse-conditions
*)))
3351 (emit-regular-sse-inst segment x y
,prefix
,opcode
3353 (emit-byte segment code
))))))
3354 (define-comparison-sse-inst cmppd
#x66
#xc2
"CMP" "PD")
3355 (define-comparison-sse-inst cmpps nil
#xc2
"CMP" "PS")
3356 (define-comparison-sse-inst cmpsd
#xf2
#xc2
"CMP" "SD")
3357 (define-comparison-sse-inst cmpss
#xf3
#xc2
"CMP" "SS"))
3360 (macrolet ((define-movsd/ss-sse-inst
(name prefix
)
3361 `(define-instruction ,name
(segment dst src
)
3363 ',(sse-inst-printer-list 'xmm-xmm
/mem-dir
3366 (cond ((xmm-register-p dst
)
3367 (emit-sse-inst segment dst src
,prefix
#x10
3368 :operand-size
:do-not-set
))
3370 (aver (xmm-register-p src
))
3371 (emit-sse-inst segment src dst
,prefix
#x11
3372 :operand-size
:do-not-set
)))))))
3373 (define-movsd/ss-sse-inst movsd
#xf2
)
3374 (define-movsd/ss-sse-inst movss
#xf3
))
3377 (macrolet ((define-mov-sse-inst (name prefix opcode-from opcode-to
3378 &key force-to-mem reg-reg-name
)
3381 `(define-instruction ,reg-reg-name
(segment dst src
)
3383 (aver (xmm-register-p dst
))
3384 (aver (xmm-register-p src
))
3385 (emit-regular-sse-inst segment dst src
3386 ,prefix
,opcode-from
))))
3387 (define-instruction ,name
(segment dst src
)
3389 '(,@(when opcode-from
3390 (sse-inst-printer-list
3391 'xmm-xmm
/mem prefix opcode-from
))
3392 ,@(sse-inst-printer-list
3393 'xmm-xmm
/mem prefix opcode-to
3394 :printer
'(:name
:tab reg
/mem
", " reg
))))
3396 (cond ,@(when opcode-from
3397 `(((xmm-register-p dst
)
3399 `(aver (not (or (register-p src
)
3400 (xmm-register-p src
)))))
3401 (emit-regular-sse-inst
3402 segment dst src
,prefix
,opcode-from
))))
3404 (aver (xmm-register-p src
))
3406 `(aver (not (or (register-p dst
)
3407 (xmm-register-p dst
)))))
3408 (emit-regular-sse-inst segment src dst
3409 ,prefix
,opcode-to
))))))))
3411 (define-mov-sse-inst movapd
#x66
#x28
#x29
)
3412 (define-mov-sse-inst movaps nil
#x28
#x29
)
3413 (define-mov-sse-inst movdqa
#x66
#x6f
#x7f
)
3414 (define-mov-sse-inst movdqu
#xf3
#x6f
#x7f
)
3417 (define-mov-sse-inst movntdq
#x66 nil
#xe7
:force-to-mem t
)
3418 (define-mov-sse-inst movntpd
#x66 nil
#x2b
:force-to-mem t
)
3419 (define-mov-sse-inst movntps nil nil
#x2b
:force-to-mem t
)
3421 ;; use movhps for movlhps and movlps for movhlps
3422 (define-mov-sse-inst movhpd
#x66
#x16
#x17
:force-to-mem t
)
3423 (define-mov-sse-inst movhps nil
#x16
#x17
:reg-reg-name movlhps
)
3424 (define-mov-sse-inst movlpd
#x66
#x12
#x13
:force-to-mem t
)
3425 (define-mov-sse-inst movlps nil
#x12
#x13
:reg-reg-name movhlps
)
3426 (define-mov-sse-inst movupd
#x66
#x10
#x11
)
3427 (define-mov-sse-inst movups nil
#x10
#x11
))
3430 (define-instruction movntdqa
(segment dst src
)
3432 (2byte-sse-inst-printer-list '2byte-xmm-xmm
/mem
#x66
#x38
#x2a
))
3434 (aver (and (xmm-register-p dst
)
3435 (not (xmm-register-p src
))))
3436 (emit-regular-2byte-sse-inst segment dst src
#x66
#x38
#x2a
)))
3439 (define-instruction movq
(segment dst src
)
3442 (sse-inst-printer-list 'xmm-xmm
/mem
#xf3
#x7e
)
3443 (sse-inst-printer-list 'xmm-xmm
/mem
#x66
#xd6
3444 :printer
'(:name
:tab reg
/mem
", " reg
))))
3446 (cond ((xmm-register-p dst
)
3447 (emit-sse-inst segment dst src
#xf3
#x7e
3448 :operand-size
:do-not-set
))
3450 (aver (xmm-register-p src
))
3451 (emit-sse-inst segment src dst
#x66
#xd6
3452 :operand-size
:do-not-set
)))))
3454 ;;; Instructions having an XMM register as the destination operand
3455 ;;; and a general-purpose register or a memory location as the source
3456 ;;; operand. The operand size is calculated from the source operand.
3458 ;;; MOVD - Move a 32- or 64-bit value from a general-purpose register or
3459 ;;; a memory location to the low order 32 or 64 bits of an XMM register
3460 ;;; with zero extension or vice versa.
3461 ;;; We do not support the MMX version of this instruction.
3462 (define-instruction movd
(segment dst src
)
3465 (sse-inst-printer-list 'xmm-reg
/mem
#x66
#x6e
)
3466 (sse-inst-printer-list 'xmm-reg
/mem
#x66
#x7e
3467 :printer
'(:name
:tab reg
/mem
", " reg
))))
3469 (cond ((xmm-register-p dst
)
3470 (emit-sse-inst segment dst src
#x66
#x6e
))
3472 (aver (xmm-register-p src
))
3473 (emit-sse-inst segment src dst
#x66
#x7e
)))))
3475 (macrolet ((define-extract-sse-instruction (name prefix op1 op2
3476 &key explicit-qword
)
3477 `(define-instruction ,name
(segment dst src imm
)
3479 ,(if op2
(if explicit-qword
3480 'ext-rex-2byte-reg
/mem-xmm
3481 'ext-2byte-reg
/mem-xmm
)
3483 ((prefix '(,prefix
))
3485 `((op1 '(,op1
)) (op2 '(,op2
)))
3487 (imm nil
:type
'imm-byte
))
3488 '(:name
:tab reg
/mem
", " reg
", " imm
))
3490 (aver (and (xmm-register-p src
) (not (xmm-register-p dst
))))
3492 `(emit-sse-inst-2byte segment dst src
,prefix
,op1
,op2
3493 :operand-size
,(if explicit-qword
3497 `(emit-sse-inst segment dst src
,prefix
,op1
3498 :operand-size
,(if explicit-qword
3501 :remaining-bytes
1))
3502 (emit-byte segment imm
))))
3504 (define-insert-sse-instruction (name prefix op1 op2
)
3505 `(define-instruction ,name
(segment dst src imm
)
3507 ,(if op2
'ext-2byte-xmm-reg
/mem
'ext-xmm-reg
/mem
)
3508 ((prefix '(,prefix
))
3510 `((op1 '(,op1
)) (op2 '(,op2
)))
3512 (imm nil
:type
'imm-byte
))
3513 '(:name
:tab reg
", " reg
/mem
", " imm
))
3515 (aver (and (xmm-register-p dst
) (not (xmm-register-p src
))))
3517 `(emit-sse-inst-2byte segment dst src
,prefix
,op1
,op2
3518 :operand-size
:do-not-set
3520 `(emit-sse-inst segment dst src
,prefix
,op1
3521 :operand-size
:do-not-set
3522 :remaining-bytes
1))
3523 (emit-byte segment imm
)))))
3526 ;; pinsrq not encodable in 64-bit mode
3527 (define-insert-sse-instruction pinsrb
#x66
#x3a
#x20
)
3528 (define-insert-sse-instruction pinsrw
#x66
#xc4 nil
)
3529 (define-insert-sse-instruction pinsrd
#x66
#x3a
#x22
)
3530 (define-insert-sse-instruction insertps
#x66
#x3a
#x21
)
3532 (define-extract-sse-instruction pextrb
#x66
#x3a
#x14
)
3533 (define-extract-sse-instruction pextrd
#x66
#x3a
#x16
)
3534 (define-extract-sse-instruction pextrq
#x66
#x3a
#x16
:explicit-qword t
)
3535 (define-extract-sse-instruction extractps
#x66
#x3a
#x17
))
3537 ;; PEXTRW has a new 2-byte encoding in SSE4.1 to allow dst to be
3538 ;; a memory address.
3539 (define-instruction pextrw
(segment dst src imm
)
3542 (2byte-sse-inst-printer-list '2byte-reg
/mem-xmm
#x66
#x3a
#x15
3543 :more-fields
'((imm nil
:type imm-byte
))
3545 '(:name
:tab reg
/mem
", " reg
", " imm
))
3546 (sse-inst-printer-list 'reg
/mem-xmm
#x66
#xc5
3547 :more-fields
'((imm nil
:type imm-byte
))
3549 '(:name
:tab reg
/mem
", " reg
", " imm
))))
3551 (aver (xmm-register-p src
))
3552 (if (not (register-p dst
))
3553 (emit-sse-inst-2byte segment dst src
#x66
#x3a
#x15
3554 :operand-size
:do-not-set
:remaining-bytes
1)
3555 (emit-sse-inst segment dst src
#x66
#xc5
3556 :operand-size
:do-not-set
:remaining-bytes
1))
3557 (emit-byte segment imm
)))
3559 (macrolet ((define-integer-source-sse-inst (name prefix opcode
&key mem-only
)
3560 `(define-instruction ,name
(segment dst src
)
3562 ',(sse-inst-printer-list 'xmm-reg
/mem prefix opcode
))
3564 (aver (xmm-register-p dst
))
3566 `(aver (not (or (register-p src
)
3567 (xmm-register-p src
)))))
3568 (let ((src-size (operand-size src
)))
3569 (aver (or (eq src-size
:qword
) (eq src-size
:dword
))))
3570 (emit-sse-inst segment dst src
,prefix
,opcode
)))))
3571 (define-integer-source-sse-inst cvtsi2sd
#xf2
#x2a
)
3572 (define-integer-source-sse-inst cvtsi2ss
#xf3
#x2a
)
3573 ;; FIXME: memory operand is always a QWORD
3574 (define-integer-source-sse-inst cvtpi2pd
#x66
#x2a
:mem-only t
)
3575 (define-integer-source-sse-inst cvtpi2ps nil
#x2a
:mem-only t
))
3577 ;;; Instructions having a general-purpose register as the destination
3578 ;;; operand and an XMM register or a memory location as the source
3579 ;;; operand. The operand size is calculated from the destination
3582 (macrolet ((define-gpr-destination-sse-inst (name prefix opcode
&key reg-only
)
3583 `(define-instruction ,name
(segment dst src
)
3585 ',(sse-inst-printer-list 'reg-xmm
/mem prefix opcode
))
3587 (aver (register-p dst
))
3589 `(aver (xmm-register-p src
)))
3590 (let ((dst-size (operand-size dst
)))
3591 (aver (or (eq dst-size
:qword
) (eq dst-size
:dword
)))
3592 (emit-sse-inst segment dst src
,prefix
,opcode
3593 :operand-size dst-size
))))))
3594 (define-gpr-destination-sse-inst cvtsd2si
#xf2
#x2d
)
3595 (define-gpr-destination-sse-inst cvtss2si
#xf3
#x2d
)
3596 (define-gpr-destination-sse-inst cvttsd2si
#xf2
#x2c
)
3597 (define-gpr-destination-sse-inst cvttss2si
#xf3
#x2c
)
3598 (define-gpr-destination-sse-inst movmskpd
#x66
#x50
:reg-only t
)
3599 (define-gpr-destination-sse-inst movmskps nil
#x50
:reg-only t
)
3600 (define-gpr-destination-sse-inst pmovmskb
#x66
#xd7
:reg-only t
))
3602 ;;;; We call these "2byte" instructions due to their two opcode bytes.
3603 ;;;; Intel and AMD call them three-byte instructions, as they count the
3604 ;;;; 0x0f byte for determining the number of opcode bytes.
3606 ;;; Instructions that take XMM-XMM/MEM and XMM-XMM/MEM-IMM arguments.
3608 (macrolet ((regular-2byte-sse-inst (name prefix op1 op2
)
3609 `(define-instruction ,name
(segment dst src
)
3611 ',(2byte-sse-inst-printer-list '2byte-xmm-xmm
/mem prefix
3614 (emit-regular-2byte-sse-inst segment dst src
,prefix
3616 (regular-2byte-sse-inst-imm (name prefix op1 op2
)
3617 `(define-instruction ,name
(segment dst src imm
)
3619 ',(2byte-sse-inst-printer-list
3620 '2byte-xmm-xmm
/mem prefix op1 op2
3621 :more-fields
'((imm nil
:type imm-byte
))
3622 :printer
`(:name
:tab reg
", " reg
/mem
", " imm
)))
3624 (aver (typep imm
'(unsigned-byte 8)))
3625 (emit-regular-2byte-sse-inst segment dst src
,prefix
,op1
,op2
3627 (emit-byte segment imm
)))))
3628 (regular-2byte-sse-inst pshufb
#x66
#x38
#x00
)
3629 (regular-2byte-sse-inst phaddw
#x66
#x38
#x01
)
3630 (regular-2byte-sse-inst phaddd
#x66
#x38
#x02
)
3631 (regular-2byte-sse-inst phaddsw
#x66
#x38
#x03
)
3632 (regular-2byte-sse-inst pmaddubsw
#x66
#x38
#x04
)
3633 (regular-2byte-sse-inst phsubw
#x66
#x38
#x05
)
3634 (regular-2byte-sse-inst phsubd
#x66
#x38
#x06
)
3635 (regular-2byte-sse-inst phsubsw
#x66
#x38
#x07
)
3636 (regular-2byte-sse-inst psignb
#x66
#x38
#x08
)
3637 (regular-2byte-sse-inst psignw
#x66
#x38
#x09
)
3638 (regular-2byte-sse-inst psignd
#x66
#x38
#x0a
)
3639 (regular-2byte-sse-inst pmulhrsw
#x66
#x38
#x0b
)
3641 (regular-2byte-sse-inst ptest
#x66
#x38
#x17
)
3642 (regular-2byte-sse-inst pabsb
#x66
#x38
#x1c
)
3643 (regular-2byte-sse-inst pabsw
#x66
#x38
#x1d
)
3644 (regular-2byte-sse-inst pabsd
#x66
#x38
#x1e
)
3646 (regular-2byte-sse-inst pmuldq
#x66
#x38
#x28
)
3647 (regular-2byte-sse-inst pcmpeqq
#x66
#x38
#x29
)
3648 (regular-2byte-sse-inst packusdw
#x66
#x38
#x2b
)
3650 (regular-2byte-sse-inst pcmpgtq
#x66
#x38
#x37
)
3651 (regular-2byte-sse-inst pminsb
#x66
#x38
#x38
)
3652 (regular-2byte-sse-inst pminsd
#x66
#x38
#x39
)
3653 (regular-2byte-sse-inst pminuw
#x66
#x38
#x3a
)
3654 (regular-2byte-sse-inst pminud
#x66
#x38
#x3b
)
3655 (regular-2byte-sse-inst pmaxsb
#x66
#x38
#x3c
)
3656 (regular-2byte-sse-inst pmaxsd
#x66
#x38
#x3d
)
3657 (regular-2byte-sse-inst pmaxuw
#x66
#x38
#x3e
)
3658 (regular-2byte-sse-inst pmaxud
#x66
#x38
#x3f
)
3660 (regular-2byte-sse-inst pmulld
#x66
#x38
#x40
)
3661 (regular-2byte-sse-inst phminposuw
#x66
#x38
#x41
)
3663 (regular-2byte-sse-inst aesimc
#x66
#x38
#xdb
)
3664 (regular-2byte-sse-inst aesenc
#x66
#x38
#xdc
)
3665 (regular-2byte-sse-inst aesenclast
#x66
#x38
#xdd
)
3666 (regular-2byte-sse-inst aesdec
#x66
#x38
#xde
)
3667 (regular-2byte-sse-inst aesdeclast
#x66
#x38
#xdf
)
3669 (regular-2byte-sse-inst pmovsxbw
#x66
#x38
#x20
)
3670 (regular-2byte-sse-inst pmovsxbd
#x66
#x38
#x21
)
3671 (regular-2byte-sse-inst pmovsxbq
#x66
#x38
#x22
)
3672 (regular-2byte-sse-inst pmovsxwd
#x66
#x38
#x23
)
3673 (regular-2byte-sse-inst pmovsxwq
#x66
#x38
#x24
)
3674 (regular-2byte-sse-inst pmovsxdq
#x66
#x38
#x25
)
3676 (regular-2byte-sse-inst pmovzxbw
#x66
#x38
#x30
)
3677 (regular-2byte-sse-inst pmovzxbd
#x66
#x38
#x31
)
3678 (regular-2byte-sse-inst pmovzxbq
#x66
#x38
#x32
)
3679 (regular-2byte-sse-inst pmovzxwd
#x66
#x38
#x33
)
3680 (regular-2byte-sse-inst pmovzxwq
#x66
#x38
#x34
)
3681 (regular-2byte-sse-inst pmovzxdq
#x66
#x38
#x35
)
3683 (regular-2byte-sse-inst-imm roundps
#x66
#x3a
#x08
)
3684 (regular-2byte-sse-inst-imm roundpd
#x66
#x3a
#x09
)
3685 (regular-2byte-sse-inst-imm roundss
#x66
#x3a
#x0a
)
3686 (regular-2byte-sse-inst-imm roundsd
#x66
#x3a
#x0b
)
3687 (regular-2byte-sse-inst-imm blendps
#x66
#x3a
#x0c
)
3688 (regular-2byte-sse-inst-imm blendpd
#x66
#x3a
#x0d
)
3689 (regular-2byte-sse-inst-imm pblendw
#x66
#x3a
#x0e
)
3690 (regular-2byte-sse-inst-imm palignr
#x66
#x3a
#x0f
)
3691 (regular-2byte-sse-inst-imm dpps
#x66
#x3a
#x40
)
3692 (regular-2byte-sse-inst-imm dppd
#x66
#x3a
#x41
)
3694 (regular-2byte-sse-inst-imm mpsadbw
#x66
#x3a
#x42
)
3695 (regular-2byte-sse-inst-imm pclmulqdq
#x66
#x3a
#x44
)
3697 (regular-2byte-sse-inst-imm pcmpestrm
#x66
#x3a
#x60
)
3698 (regular-2byte-sse-inst-imm pcmpestri
#x66
#x3a
#x61
)
3699 (regular-2byte-sse-inst-imm pcmpistrm
#x66
#x3a
#x62
)
3700 (regular-2byte-sse-inst-imm pcmpistri
#x66
#x3a
#x63
)
3702 (regular-2byte-sse-inst-imm aeskeygenassist
#x66
#x3a
#xdf
))
3704 ;;; Other SSE instructions
3706 ;; Instructions implicitly using XMM0 as a mask
3707 (macrolet ((define-sse-inst-implicit-mask (name prefix op1 op2
)
3708 `(define-instruction ,name
(segment dst src mask
)
3710 ',(2byte-sse-inst-printer-list
3711 '2byte-xmm-xmm
/mem prefix op1 op2
3712 :printer
'(:name
:tab reg
", " reg
/mem
", XMM0")))
3714 (aver (xmm-register-p dst
))
3715 (aver (and (xmm-register-p mask
) (= (tn-offset mask
) 0)))
3716 (emit-regular-2byte-sse-inst segment dst src
,prefix
3719 (define-sse-inst-implicit-mask pblendvb
#x66
#x38
#x10
)
3720 (define-sse-inst-implicit-mask blendvps
#x66
#x38
#x14
)
3721 (define-sse-inst-implicit-mask blendvpd
#x66
#x38
#x15
))
3723 ;; FIXME: is that right!?
3724 (define-instruction movnti
(segment dst src
)
3725 (:printer ext-reg-reg
/mem-no-width
((op #xc3
)))
3727 (aver (not (or (register-p dst
)
3728 (xmm-register-p dst
))))
3729 (aver (register-p src
))
3730 (maybe-emit-rex-for-ea segment src dst
)
3731 (emit-byte segment
#x0f
)
3732 (emit-byte segment
#xc3
)
3733 (emit-ea segment dst
(reg-tn-encoding src
))))
3735 (define-instruction prefetch
(segment type src
)
3736 (:printer ext-reg
/mem-no-width
((op '(#x18
0)))
3737 '("PREFETCHNTA" :tab reg
/mem
))
3738 (:printer ext-reg
/mem-no-width
((op '(#x18
1)))
3739 '("PREFETCHT0" :tab reg
/mem
))
3740 (:printer ext-reg
/mem-no-width
((op '(#x18
2)))
3741 '("PREFETCHT1" :tab reg
/mem
))
3742 (:printer ext-reg
/mem-no-width
((op '(#x18
3)))
3743 '("PREFETCHT2" :tab reg
/mem
))
3745 (aver (not (or (register-p src
)
3746 (xmm-register-p src
))))
3747 (aver (eq (operand-size src
) :byte
))
3748 (let ((type (position type
#(:nta
:t0
:t1
:t2
))))
3750 (maybe-emit-rex-for-ea segment src nil
)
3751 (emit-byte segment
#x0f
)
3752 (emit-byte segment
#x18
)
3753 (emit-ea segment src type
))))
3755 (define-instruction clflush
(segment src
)
3756 (:printer ext-reg
/mem-no-width
((op '(#xae
7))))
3758 (aver (not (or (register-p src
)
3759 (xmm-register-p src
))))
3760 (aver (eq (operand-size src
) :byte
))
3761 (maybe-emit-rex-for-ea segment src nil
)
3762 (emit-byte segment
#x0f
)
3763 (emit-byte segment
#xae
)
3764 (emit-ea segment src
7)))
3766 (macrolet ((define-fence-instruction (name last-byte
)
3767 `(define-instruction ,name
(segment)
3768 (:printer three-bytes
((op '(#x0f
#xae
,last-byte
))))
3770 (emit-byte segment
#x0f
)
3771 (emit-byte segment
#xae
)
3772 (emit-byte segment
,last-byte
)))))
3773 (define-fence-instruction lfence
#b11101000
)
3774 (define-fence-instruction mfence
#b11110000
)
3775 (define-fence-instruction sfence
#b11111000
))
3777 (define-instruction pause
(segment)
3778 (:printer two-bytes
((op '(#xf3
#x90
))))
3780 (emit-byte segment
#xf3
)
3781 (emit-byte segment
#x90
)))
3783 (define-instruction ldmxcsr
(segment src
)
3784 (:printer ext-reg
/mem-no-width
((op '(#xae
2))))
3786 (aver (not (or (register-p src
)
3787 (xmm-register-p src
))))
3788 (aver (eq (operand-size src
) :dword
))
3789 (maybe-emit-rex-for-ea segment src nil
)
3790 (emit-byte segment
#x0f
)
3791 (emit-byte segment
#xae
)
3792 (emit-ea segment src
2)))
3794 (define-instruction stmxcsr
(segment dst
)
3795 (:printer ext-reg
/mem-no-width
((op '(#xae
3))))
3797 (aver (not (or (register-p dst
)
3798 (xmm-register-p dst
))))
3799 (aver (eq (operand-size dst
) :dword
))
3800 (maybe-emit-rex-for-ea segment dst nil
)
3801 (emit-byte segment
#x0f
)
3802 (emit-byte segment
#xae
)
3803 (emit-ea segment dst
3)))
3805 (define-instruction popcnt
(segment dst src
)
3806 (:printer-list
`((f3-escape-reg-reg/mem
((op #xB8
)))
3807 (rex-f3-escape-reg-reg/mem
((op #xB8
)))))
3809 (aver (register-p dst
))
3810 (aver (and (register-p dst
) (not (eq (operand-size dst
) :byte
))))
3811 (aver (not (eq (operand-size src
) :byte
)))
3812 (emit-sse-inst segment dst src
#xf3
#xb8
)))
3814 (define-instruction crc32
(segment dst src
)
3816 `(,@(mapcan (lambda (op2)
3817 (mapcar (lambda (instfmt)
3818 `(,instfmt
((prefix (#xf2
)) (op1 (#x38
))
3820 '(ext-rex-2byte-prefix-reg-reg/mem
3821 ext-2byte-prefix-reg-reg
/mem
)))
3824 (let ((dst-size (operand-size dst
)))
3825 (aver (and (register-p dst
) (not (or (eq dst-size
:word
)
3826 (eq dst-size
:byte
)))))
3827 (if (eq (operand-size src
) :byte
)
3828 (emit-sse-inst-2byte segment dst src
#xf2
#x38
#xf0
)
3829 (emit-sse-inst-2byte segment dst src
#xf2
#x38
#xf1
)))))
3833 (define-instruction cpuid
(segment)
3834 (:printer two-bytes
((op '(#b00001111
#b10100010
))))
3836 (emit-byte segment
#b00001111
)
3837 (emit-byte segment
#b10100010
)))
3839 (define-instruction rdtsc
(segment)
3840 (:printer two-bytes
((op '(#b00001111
#b00110001
))))
3842 (emit-byte segment
#b00001111
)
3843 (emit-byte segment
#b00110001
)))
3845 ;;;; Late VM definitions
3847 (defun canonicalize-inline-constant (constant &aux
(alignedp nil
))
3848 (let ((first (car constant
)))
3849 (when (eql first
:aligned
)
3852 (setf first
(car constant
)))
3854 (single-float (setf constant
(list :single-float first
)))
3855 (double-float (setf constant
(list :double-float first
)))
3859 ;; It's an error (perhaps) on the host to use simd-pack type.
3860 ;; [and btw it's disconcerting that this isn't an ETYPECASE.]
3861 (error "xc-host can't reference complex float")))
3863 (((complex single-float
)
3864 (setf constant
(list :complex-single-float first
)))
3865 ((complex double-float
)
3866 (setf constant
(list :complex-double-float first
)))
3870 (list :sse
(logior (%simd-pack-low first
)
3871 (ash (%simd-pack-high first
) 64))))))))
3872 (destructuring-bind (type value
) constant
3874 ((:byte
:word
:dword
:qword
)
3875 (aver (integerp value
))
3878 #!+sb-unicode
(aver (base-char-p value
))
3879 (cons :byte
(char-code value
)))
3881 (aver (characterp value
))
3882 (cons :dword
(char-code value
)))
3884 (aver (typep value
'single-float
))
3885 (cons (if alignedp
:oword
:dword
)
3886 (ldb (byte 32 0) (single-float-bits value
))))
3888 (aver (typep value
'double-float
))
3889 (cons (if alignedp
:oword
:qword
)
3890 (ldb (byte 64 0) (logior (ash (double-float-high-bits value
) 32)
3891 (double-float-low-bits value
)))))
3892 ((:complex-single-float
)
3893 (aver (typep value
'(complex single-float
)))
3894 (cons (if alignedp
:oword
:qword
)
3896 (logior (ash (single-float-bits (imagpart value
)) 32)
3898 (single-float-bits (realpart value
)))))))
3900 (aver (integerp value
))
3901 (cons :oword value
))
3902 ((:complex-double-float
)
3903 (aver (typep value
'(complex double-float
)))
3905 (logior (ash (double-float-high-bits (imagpart value
)) 96)
3906 (ash (double-float-low-bits (imagpart value
)) 64)
3907 (ash (ldb (byte 32 0)
3908 (double-float-high-bits (realpart value
)))
3910 (double-float-low-bits (realpart value
))))))))
3912 (defun inline-constant-value (constant)
3913 (let ((label (gen-label))
3914 (size (ecase (car constant
)
3915 ((:byte
:word
:dword
:qword
) (car constant
))
3916 ((:oword
) :qword
))))
3917 (values label
(make-ea size
3918 :disp
(make-fixup nil
:code-object label
)))))
3920 (defun emit-constant-segment-header (segment constants optimize
)
3921 (declare (ignore constants
))
3922 (emit-long-nop segment
(if optimize
64 16)))
3924 (defun size-nbyte (size)
3932 (defun sort-inline-constants (constants)
3933 (stable-sort constants
#'> :key
(lambda (constant)
3934 (size-nbyte (caar constant
)))))
3936 (defun emit-inline-constant (constant label
)
3937 (let ((size (size-nbyte (car constant
))))
3938 (emit-alignment (integer-length (1- size
)))
3940 (let ((val (cdr constant
)))
3942 do
(inst byte
(ldb (byte 8 0) val
))
3943 (setf val
(ash val -
8))))))