NYD: acmava.c
[s-mailx.git] / md5.c
blob25ecbb853ce9ea84111a69709c834c5283e111e9
1 /*@ S-nail - a mail user agent derived from Berkeley Mail.
2 *@ MD5 / HMAC-MD5 algorithm implementation.
4 * Copyright (c) 2000-2004 Gunnar Ritter, Freiburg i. Br., Germany.
5 * Copyright (c) 2012 - 2014 Steffen "Daode" Nurpmeso <sdaoden@users.sf.net>.
6 */
7 /*
8 * The MD5_CTX algorithm is derived from RFC 1321:
9 */
10 /* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
12 /* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
13 rights reserved.
15 License to copy and use this software is granted provided that it
16 is identified as the "RSA Data Security, Inc. MD5 Message-Digest
17 Algorithm" in all material mentioning or referencing this software
18 or this function.
20 License is also granted to make and use derivative works provided
21 that such works are identified as "derived from the RSA Data
22 Security, Inc. MD5 Message-Digest Algorithm" in all material
23 mentioning or referencing the derived work.
25 RSA Data Security, Inc. makes no representations concerning either
26 the merchantability of this software or the suitability of this
27 software for any particular purpose. It is provided "as is"
28 without express or implied warranty of any kind.
30 These notices must be retained in any copies of any part of this
31 documentation and/or software.
34 /* hmac_md5() is derived from:
36 Network Working Group H. Krawczyk
37 Request for Comments: 2104 IBM
38 Category: Informational M. Bellare
39 UCSD
40 R. Canetti
41 IBM
42 February 1997
45 HMAC: Keyed-Hashing for Message Authentication
47 Status of This Memo
49 This memo provides information for the Internet community. This memo
50 does not specify an Internet standard of any kind. Distribution of
51 this memo is unlimited.
53 Appendix -- Sample Code
55 For the sake of illustration we provide the following sample code for
56 the implementation of HMAC-MD5 as well as some corresponding test
57 vectors (the code is based on MD5 code as described in [MD5]).
60 #ifndef HAVE_AMALGAMATION
61 # include "nail.h"
62 #endif
64 EMPTY_FILE(md5)
65 #ifdef HAVE_MD5
66 #include <string.h>
68 #include "md5.h"
70 # ifndef HAVE_OPENSSL_MD5
71 #define UINT4B_MAX 0xFFFFFFFFul
74 * Constants for MD5Transform routine.
76 #define S11 7
77 #define S12 12
78 #define S13 17
79 #define S14 22
80 #define S21 5
81 #define S22 9
82 #define S23 14
83 #define S24 20
84 #define S31 4
85 #define S32 11
86 #define S33 16
87 #define S34 23
88 #define S41 6
89 #define S42 10
90 #define S43 15
91 #define S44 21
93 static unsigned char PADDING[64] = {
94 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
95 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
96 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
100 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
101 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z))))
104 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
105 * simplified to the code below. Wei attributes these optimizations
106 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
108 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
109 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c))
110 #define H(b,c,d) ((b) ^ (c) ^ (d))
111 #define I(b,c,d) (((~(d) & UINT4B_MAX) | (b)) ^ (c))
114 * ROTATE_LEFT rotates x left n bits.
116 #define ROTATE_LEFT(x, n) ((((x) << (n)) & UINT4B_MAX) | ((x) >> (32 - (n))))
119 * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
120 * Rotation is separate from addition to prevent recomputation.
122 #define FF(a, b, c, d, x, s, ac) { \
123 (a) = ((a) + F(b, c, d) + (x) + ((ac) & UINT4B_MAX)) & UINT4B_MAX; \
124 (a) = ROTATE_LEFT((a), (s)); \
125 (a) = ((a) + (b)) & UINT4B_MAX; \
128 #define GG(a, b, c, d, x, s, ac) { \
129 (a) = ((a) + G(b, c, d) + (x) + ((ac) & UINT4B_MAX)) & UINT4B_MAX; \
130 (a) = ROTATE_LEFT((a), (s)); \
131 (a) = ((a) + (b)) & UINT4B_MAX; \
134 #define HH(a, b, c, d, x, s, ac) { \
135 (a) = ((a) + H(b, c, d) + (x) + ((ac) & UINT4B_MAX)) & UINT4B_MAX; \
136 (a) = ROTATE_LEFT((a), (s)); \
137 (a) = ((a) + (b)) & UINT4B_MAX; \
140 #define II(a, b, c, d, x, s, ac) { \
141 (a) = ((a) + I(b, c, d) + (x) + ((ac) & UINT4B_MAX)) & UINT4B_MAX; \
142 (a) = ROTATE_LEFT((a), (s)); \
143 (a) = ((a) + (b)) & UINT4B_MAX; \
146 static void * ( *volatile _volatile_memset)(void*, int, size_t) = &(memset);
148 static void Encode(unsigned char *outp, md5_type *inp, unsigned int len);
149 static void Decode(md5_type *outp, unsigned char *inp, unsigned int len);
150 static void MD5Transform(md5_type state[], unsigned char block[]);
153 * Encodes input (md5_type) into output (unsigned char). Assumes len is
154 * a multiple of 4.
156 static void
157 Encode(unsigned char *outp, md5_type *inp, unsigned int len)
159 unsigned int i, j;
161 for (i = 0, j = 0; j < len; i++, j += 4) {
162 outp[j] = inp[i] & 0xff;
163 outp[j+1] = (inp[i] >> 8) & 0xff;
164 outp[j+2] = (inp[i] >> 16) & 0xff;
165 outp[j+3] = (inp[i] >> 24) & 0xff;
170 * Decodes input (unsigned char) into output (md5_type). Assumes len is
171 * a multiple of 4.
173 static void
174 Decode(md5_type *outp, unsigned char *inp, unsigned int len)
176 unsigned int i, j;
178 for (i = 0, j = 0; j < len; i++, j += 4)
179 outp[i] = ((md5_type)inp[j] |
180 (md5_type)inp[j+1] << 8 |
181 (md5_type)inp[j+2] << 16 |
182 (md5_type)inp[j+3] << 24) & UINT4B_MAX;
185 /* MD5 basic transformation. Transforms state based on block. */
186 static void
187 MD5Transform(md5_type state[4], unsigned char block[64])
189 md5_type a = state[0], b = state[1], c = state[2], d = state[3],
190 x[16];
192 Decode(x, block, 64);
194 /* Round 1 */
195 FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
196 FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
197 FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
198 FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
199 FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
200 FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
201 FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
202 FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
203 FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
204 FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
205 FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
206 FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
207 FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
208 FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
209 FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
210 FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
212 /* Round 2 */
213 GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
214 GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
215 GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
216 GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
217 GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
218 GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
219 GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
220 GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
221 GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
222 GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
223 GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
224 GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
225 GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
226 GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
227 GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
228 GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
230 /* Round 3 */
231 HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
232 HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
233 HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
234 HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
235 HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
236 HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
237 HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
238 HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
239 HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
240 HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
241 HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
242 HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
243 HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
244 HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
245 HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
246 HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
248 /* Round 4 */
249 II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
250 II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
251 II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
252 II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
253 II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
254 II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
255 II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
256 II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
257 II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
258 II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
259 II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
260 II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
261 II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
262 II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
263 II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
264 II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
266 state[0] = (state[0] + a) & UINT4B_MAX;
267 state[1] = (state[1] + b) & UINT4B_MAX;
268 state[2] = (state[2] + c) & UINT4B_MAX;
269 state[3] = (state[3] + d) & UINT4B_MAX;
272 * Zeroize sensitive information.
274 (*_volatile_memset)(x, 0, sizeof x);
278 * MD5 initialization. Begins an MD5 operation, writing a new context.
280 FL void
281 md5_init(
282 md5_ctx *context /* context */
285 context->count[0] = context->count[1] = 0;
287 * Load magic initialization constants.
289 context->state[0] = 0x67452301;
290 context->state[1] = 0xefcdab89;
291 context->state[2] = 0x98badcfe;
292 context->state[3] = 0x10325476;
296 * MD5 block update operation. Continues an MD5 message-digest
297 * operation, processing another message block, and updating the
298 * context.
300 FL void
301 md5_update(
302 md5_ctx *context, /* context */
303 unsigned char *input, /* input block */
304 unsigned int inputLen /* length of input block */
307 unsigned int i, idx, partLen;
309 /* Compute number of bytes mod 64 */
310 idx = context->count[0]>>3 & 0x3F;
312 /* Update number of bits */
313 if ((context->count[0] = (context->count[0] + (inputLen<<3)) &
314 UINT4B_MAX)
315 < ((inputLen << 3) & UINT4B_MAX))
316 context->count[1] = (context->count[1] + 1) & UINT4B_MAX;
317 context->count[1] = (context->count[1] + (inputLen >> 29)) & UINT4B_MAX;
319 partLen = 64 - idx;
322 * Transform as many times as possible.
324 if (inputLen >= partLen) {
325 memcpy(&context->buffer[idx], input, partLen);
326 MD5Transform(context->state, context->buffer);
328 for (i = partLen; i + 63 < inputLen; i += 64)
329 MD5Transform(context->state, &input[i]);
331 idx = 0;
332 } else
333 i = 0;
335 /* Buffer remaining input */
336 memcpy(&context->buffer[idx], &input[i], inputLen-i);
340 * MD5 finalization. Ends an MD5 message-digest operation, writing the
341 * the message digest and zeroizing the context.
343 FL void
344 md5_final(
345 unsigned char digest[16], /* message digest */
346 md5_ctx *context /* context */
349 unsigned char bits[8];
350 unsigned int idx, padLen;
352 /* Save number of bits */
353 Encode(bits, context->count, 8);
356 * Pad out to 56 mod 64.
358 idx = context->count[0]>>3 & 0x3f;
359 padLen = idx < 56 ? 56 - idx : 120 - idx;
360 md5_update(context, PADDING, padLen);
362 /* Append length (before padding) */
363 md5_update(context, bits, 8);
364 /* Store state in digest */
365 Encode(digest, context->state, 16);
368 * Zeroize sensitive information.
370 (*_volatile_memset)(context, 0, sizeof *context);
372 # endif /* !HAVE_OPENSSL_MD5 */
374 FL void
375 hmac_md5 (
376 unsigned char *text, /* pointer to data stream */
377 int text_len, /* length of data stream */
378 unsigned char *key, /* pointer to authentication key */
379 int key_len, /* length of authentication key */
380 void *digest /* caller digest to be filled in */
383 md5_ctx context;
384 unsigned char k_ipad[65]; /* inner padding -
385 * key XORd with ipad
387 unsigned char k_opad[65]; /* outer padding -
388 * key XORd with opad
390 unsigned char tk[16];
391 int i;
392 /* if key is longer than 64 bytes reset it to key=MD5(key) */
393 if (key_len > 64) {
395 md5_ctx tctx;
397 md5_init(&tctx);
398 md5_update(&tctx, key, key_len);
399 md5_final(tk, &tctx);
401 key = tk;
402 key_len = 16;
406 * the HMAC_MD5 transform looks like:
408 * MD5(K XOR opad, MD5(K XOR ipad, text))
410 * where K is an n byte key
411 * ipad is the byte 0x36 repeated 64 times
412 * opad is the byte 0x5c repeated 64 times
413 * and text is the data being protected
416 /* start out by storing key in pads */
417 memset(k_ipad, 0, sizeof k_ipad);
418 memset(k_opad, 0, sizeof k_opad);
419 memcpy(k_ipad, key, key_len);
420 memcpy(k_opad, key, key_len);
422 /* XOR key with ipad and opad values */
423 for (i=0; i<64; i++) {
424 k_ipad[i] ^= 0x36;
425 k_opad[i] ^= 0x5c;
428 * perform inner MD5
430 md5_init(&context); /* init context for 1st pass */
431 md5_update(&context, k_ipad, 64); /* start with inner pad */
432 md5_update(&context, text, text_len); /* then text of datagram */
433 md5_final(digest, &context); /* finish up 1st pass */
435 * perform outer MD5
437 md5_init(&context); /* init context for 2nd pass */
438 md5_update(&context, k_opad, 64); /* start with outer pad */
439 md5_update(&context, digest, 16); /* then results of 1st hash */
440 md5_final(digest, &context); /* finish up 2nd pass */
442 #endif /* HAVE_MD5 */