[ruby/irb] Use correct binding in debug mode
[ruby.git] / random.c
blob3619ad6e6e6249a267cd65e748ea9304ea475356
1 /**********************************************************************
3 random.c -
5 $Author$
6 created at: Fri Dec 24 16:39:21 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "ruby/internal/config.h"
14 #include <errno.h>
15 #include <limits.h>
16 #include <math.h>
17 #include <float.h>
18 #include <time.h>
20 #ifdef HAVE_UNISTD_H
21 # include <unistd.h>
22 #endif
24 #include <sys/types.h>
25 #include <sys/stat.h>
27 #ifdef HAVE_FCNTL_H
28 # include <fcntl.h>
29 #endif
31 #if defined(HAVE_SYS_TIME_H)
32 # include <sys/time.h>
33 #endif
35 #ifdef HAVE_SYSCALL_H
36 # include <syscall.h>
37 #elif defined HAVE_SYS_SYSCALL_H
38 # include <sys/syscall.h>
39 #endif
41 #ifdef _WIN32
42 # include <winsock2.h>
43 # include <windows.h>
44 # include <wincrypt.h>
45 # include <bcrypt.h>
46 #endif
48 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__)
49 /* to define OpenBSD and FreeBSD for version check */
50 # include <sys/param.h>
51 #endif
53 #if defined HAVE_GETRANDOM || defined HAVE_GETENTROPY
54 # if defined(HAVE_SYS_RANDOM_H)
55 # include <sys/random.h>
56 # endif
57 #elif defined __linux__ && defined __NR_getrandom
58 # include <linux/random.h>
59 #endif
61 #if defined __APPLE__
62 # include <AvailabilityMacros.h>
63 #endif
65 #include "internal.h"
66 #include "internal/array.h"
67 #include "internal/compilers.h"
68 #include "internal/numeric.h"
69 #include "internal/random.h"
70 #include "internal/sanitizers.h"
71 #include "internal/variable.h"
72 #include "ruby_atomic.h"
73 #include "ruby/random.h"
74 #include "ruby/ractor.h"
76 STATIC_ASSERT(int_must_be_32bit_at_least, sizeof(int) * CHAR_BIT >= 32);
78 #include "missing/mt19937.c"
80 /* generates a random number on [0,1) with 53-bit resolution*/
81 static double int_pair_to_real_exclusive(uint32_t a, uint32_t b);
82 static double
83 genrand_real(struct MT *mt)
85 /* mt must be initialized */
86 unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
87 return int_pair_to_real_exclusive(a, b);
90 static const double dbl_reduce_scale = /* 2**(-DBL_MANT_DIG) */
91 (1.0
92 / (double)(DBL_MANT_DIG > 2*31 ? (1ul<<31) : 1.0)
93 / (double)(DBL_MANT_DIG > 1*31 ? (1ul<<31) : 1.0)
94 / (double)(1ul<<(DBL_MANT_DIG%31)));
96 static double
97 int_pair_to_real_exclusive(uint32_t a, uint32_t b)
99 static const int a_shift = DBL_MANT_DIG < 64 ?
100 (64-DBL_MANT_DIG)/2 : 0;
101 static const int b_shift = DBL_MANT_DIG < 64 ?
102 (65-DBL_MANT_DIG)/2 : 0;
103 a >>= a_shift;
104 b >>= b_shift;
105 return (a*(double)(1ul<<(32-b_shift))+b)*dbl_reduce_scale;
108 /* generates a random number on [0,1] with 53-bit resolution*/
109 static double int_pair_to_real_inclusive(uint32_t a, uint32_t b);
110 #if 0
111 static double
112 genrand_real2(struct MT *mt)
114 /* mt must be initialized */
115 uint32_t a = genrand_int32(mt), b = genrand_int32(mt);
116 return int_pair_to_real_inclusive(a, b);
118 #endif
120 /* These real versions are due to Isaku Wada, 2002/01/09 added */
122 #undef N
123 #undef M
125 typedef struct {
126 rb_random_t base;
127 struct MT mt;
128 } rb_random_mt_t;
130 #define DEFAULT_SEED_CNT 4
132 static VALUE rand_init(const rb_random_interface_t *, rb_random_t *, VALUE);
133 static VALUE random_seed(VALUE);
134 static void fill_random_seed(uint32_t *seed, size_t cnt, bool try_bytes);
135 static VALUE make_seed_value(uint32_t *ptr, size_t len);
136 #define fill_random_bytes ruby_fill_random_bytes
138 RB_RANDOM_INTERFACE_DECLARE(rand_mt);
139 static const rb_random_interface_t random_mt_if = {
140 DEFAULT_SEED_CNT * 32,
141 RB_RANDOM_INTERFACE_DEFINE(rand_mt)
144 static rb_random_mt_t *
145 rand_mt_start(rb_random_mt_t *r)
147 if (!genrand_initialized(&r->mt)) {
148 r->base.seed = rand_init(&random_mt_if, &r->base, random_seed(Qundef));
150 return r;
153 static rb_random_t *
154 rand_start(rb_random_mt_t *r)
156 return &rand_mt_start(r)->base;
159 static rb_ractor_local_key_t default_rand_key;
161 void
162 rb_free_default_rand_key(void)
164 xfree(default_rand_key);
167 static void
168 default_rand_mark(void *ptr)
170 rb_random_mt_t *rnd = (rb_random_mt_t *)ptr;
171 rb_gc_mark(rnd->base.seed);
174 static const struct rb_ractor_local_storage_type default_rand_key_storage_type = {
175 default_rand_mark,
176 ruby_xfree,
179 static rb_random_mt_t *
180 default_rand(void)
182 rb_random_mt_t *rnd;
184 if ((rnd = rb_ractor_local_storage_ptr(default_rand_key)) == NULL) {
185 rnd = ZALLOC(rb_random_mt_t);
186 rb_ractor_local_storage_ptr_set(default_rand_key, rnd);
189 return rnd;
192 static rb_random_mt_t *
193 default_mt(void)
195 return rand_mt_start(default_rand());
198 unsigned int
199 rb_genrand_int32(void)
201 struct MT *mt = &default_mt()->mt;
202 return genrand_int32(mt);
205 double
206 rb_genrand_real(void)
208 struct MT *mt = &default_mt()->mt;
209 return genrand_real(mt);
212 #define SIZEOF_INT32 (31/CHAR_BIT + 1)
214 static double
215 int_pair_to_real_inclusive(uint32_t a, uint32_t b)
217 double r;
218 enum {dig = DBL_MANT_DIG};
219 enum {dig_u = dig-32, dig_r64 = 64-dig, bmask = ~(~0u<<(dig_r64))};
220 #if defined HAVE_UINT128_T
221 const uint128_t m = ((uint128_t)1 << dig) | 1;
222 uint128_t x = ((uint128_t)a << 32) | b;
223 r = (double)(uint64_t)((x * m) >> 64);
224 #elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300)
225 uint64_t x = ((uint64_t)a << dig_u) +
226 (((uint64_t)b + (a >> dig_u)) >> dig_r64);
227 r = (double)x;
228 #else
229 /* shift then add to get rid of overflow */
230 b = (b >> dig_r64) + (((a >> dig_u) + (b & bmask)) >> dig_r64);
231 r = (double)a * (1 << dig_u) + b;
232 #endif
233 return r * dbl_reduce_scale;
236 VALUE rb_cRandom;
237 #define id_minus '-'
238 #define id_plus '+'
239 static ID id_rand, id_bytes;
240 NORETURN(static void domain_error(void));
242 /* :nodoc: */
243 #define random_mark rb_random_mark
245 void
246 random_mark(void *ptr)
248 rb_gc_mark(((rb_random_t *)ptr)->seed);
251 #define random_free RUBY_TYPED_DEFAULT_FREE
253 static size_t
254 random_memsize(const void *ptr)
256 return sizeof(rb_random_t);
259 const rb_data_type_t rb_random_data_type = {
260 "random",
262 random_mark,
263 random_free,
264 random_memsize,
266 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
269 #define random_mt_mark rb_random_mark
270 #define random_mt_free RUBY_TYPED_DEFAULT_FREE
272 static size_t
273 random_mt_memsize(const void *ptr)
275 return sizeof(rb_random_mt_t);
278 static const rb_data_type_t random_mt_type = {
279 "random/MT",
281 random_mt_mark,
282 random_mt_free,
283 random_mt_memsize,
285 &rb_random_data_type,
286 (void *)&random_mt_if,
287 RUBY_TYPED_FREE_IMMEDIATELY
290 static rb_random_t *
291 get_rnd(VALUE obj)
293 rb_random_t *ptr;
294 TypedData_Get_Struct(obj, rb_random_t, &rb_random_data_type, ptr);
295 if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
296 return rand_start((rb_random_mt_t *)ptr);
297 return ptr;
300 static rb_random_mt_t *
301 get_rnd_mt(VALUE obj)
303 rb_random_mt_t *ptr;
304 TypedData_Get_Struct(obj, rb_random_mt_t, &random_mt_type, ptr);
305 return ptr;
308 static rb_random_t *
309 try_get_rnd(VALUE obj)
311 if (obj == rb_cRandom) {
312 return rand_start(default_rand());
314 if (!rb_typeddata_is_kind_of(obj, &rb_random_data_type)) return NULL;
315 if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
316 return rand_start(DATA_PTR(obj));
317 rb_random_t *rnd = DATA_PTR(obj);
318 if (!rnd) {
319 rb_raise(rb_eArgError, "uninitialized random: %s",
320 RTYPEDDATA_TYPE(obj)->wrap_struct_name);
322 return rnd;
325 static const rb_random_interface_t *
326 try_rand_if(VALUE obj, rb_random_t *rnd)
328 if (rnd == &default_rand()->base) {
329 return &random_mt_if;
331 return rb_rand_if(obj);
334 /* :nodoc: */
335 void
336 rb_random_base_init(rb_random_t *rnd)
338 rnd->seed = INT2FIX(0);
341 /* :nodoc: */
342 static VALUE
343 random_alloc(VALUE klass)
345 rb_random_mt_t *rnd;
346 VALUE obj = TypedData_Make_Struct(klass, rb_random_mt_t, &random_mt_type, rnd);
347 rb_random_base_init(&rnd->base);
348 return obj;
351 static VALUE
352 rand_init_default(const rb_random_interface_t *rng, rb_random_t *rnd)
354 VALUE seed, buf0 = 0;
355 size_t len = roomof(rng->default_seed_bits, 32);
356 uint32_t *buf = ALLOCV_N(uint32_t, buf0, len+1);
358 fill_random_seed(buf, len, true);
359 rng->init(rnd, buf, len);
360 seed = make_seed_value(buf, len);
361 explicit_bzero(buf, len * sizeof(*buf));
362 ALLOCV_END(buf0);
363 return seed;
366 static VALUE
367 rand_init(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE seed)
369 uint32_t *buf;
370 VALUE buf0 = 0;
371 size_t len;
372 int sign;
374 len = rb_absint_numwords(seed, 32, NULL);
375 if (len == 0) len = 1;
376 buf = ALLOCV_N(uint32_t, buf0, len);
377 sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0,
378 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
379 if (sign < 0)
380 sign = -sign;
381 if (len <= 1) {
382 rng->init_int32(rnd, len ? buf[0] : 0);
384 else {
385 if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */
386 len--;
387 rng->init(rnd, buf, len);
389 explicit_bzero(buf, len * sizeof(*buf));
390 ALLOCV_END(buf0);
391 return seed;
395 * call-seq:
396 * Random.new(seed = Random.new_seed) -> prng
398 * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
399 * omitted, the generator is initialized with Random.new_seed.
401 * See Random.srand for more information on the use of seed values.
403 static VALUE
404 random_init(int argc, VALUE *argv, VALUE obj)
406 rb_random_t *rnd = try_get_rnd(obj);
407 const rb_random_interface_t *rng = rb_rand_if(obj);
409 if (!rng) {
410 rb_raise(rb_eTypeError, "undefined random interface: %s",
411 RTYPEDDATA_TYPE(obj)->wrap_struct_name);
414 unsigned int major = rng->version.major;
415 unsigned int minor = rng->version.minor;
416 if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) {
417 rb_raise(rb_eTypeError, "Random interface version "
418 STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "."
419 STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " "
420 "expected: %d.%d", major, minor);
422 argc = rb_check_arity(argc, 0, 1);
423 rb_check_frozen(obj);
424 if (argc == 0) {
425 rnd->seed = rand_init_default(rng, rnd);
427 else {
428 rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0]));
430 return obj;
433 #define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
435 #if defined(S_ISCHR) && !defined(DOSISH)
436 # define USE_DEV_URANDOM 1
437 #else
438 # define USE_DEV_URANDOM 0
439 #endif
441 #ifdef HAVE_GETENTROPY
442 # define MAX_SEED_LEN_PER_READ 256
443 static int
444 fill_random_bytes_urandom(void *seed, size_t size)
446 unsigned char *p = (unsigned char *)seed;
447 while (size) {
448 size_t len = size < MAX_SEED_LEN_PER_READ ? size : MAX_SEED_LEN_PER_READ;
449 if (getentropy(p, len) != 0) {
450 return -1;
452 p += len;
453 size -= len;
455 return 0;
457 #elif USE_DEV_URANDOM
458 static int
459 fill_random_bytes_urandom(void *seed, size_t size)
462 O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points
463 to a urandom device. But it protects from several strange hazard if
464 /dev/urandom is not a urandom device.
466 int fd = rb_cloexec_open("/dev/urandom",
467 # ifdef O_NONBLOCK
468 O_NONBLOCK|
469 # endif
470 # ifdef O_NOCTTY
471 O_NOCTTY|
472 # endif
473 O_RDONLY, 0);
474 struct stat statbuf;
475 ssize_t ret = 0;
476 size_t offset = 0;
478 if (fd < 0) return -1;
479 rb_update_max_fd(fd);
480 if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
481 do {
482 ret = read(fd, ((char*)seed) + offset, size - offset);
483 if (ret < 0) {
484 close(fd);
485 return -1;
487 offset += (size_t)ret;
488 } while (offset < size);
490 close(fd);
491 return 0;
493 #else
494 # define fill_random_bytes_urandom(seed, size) -1
495 #endif
497 #if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom
498 # ifndef GRND_NONBLOCK
499 # define GRND_NONBLOCK 0x0001 /* not defined in musl libc */
500 # endif
501 # define getrandom(ptr, size, flags) \
502 (ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags))
503 # define HAVE_GETRANDOM 1
504 #endif
506 #if 0
507 #elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
509 # if defined(USE_COMMON_RANDOM)
510 # elif defined MAC_OS_X_VERSION_10_10 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
511 # define USE_COMMON_RANDOM 1
512 # else
513 # define USE_COMMON_RANDOM 0
514 # endif
515 # if USE_COMMON_RANDOM
516 # include <CommonCrypto/CommonCryptoError.h> /* for old Xcode */
517 # include <CommonCrypto/CommonRandom.h>
518 # else
519 # include <Security/SecRandom.h>
520 # endif
522 static int
523 fill_random_bytes_syscall(void *seed, size_t size, int unused)
525 #if USE_COMMON_RANDOM
526 CCRNGStatus status = CCRandomGenerateBytes(seed, size);
527 int failed = status != kCCSuccess;
528 #else
529 int status = SecRandomCopyBytes(kSecRandomDefault, size, seed);
530 int failed = status != errSecSuccess;
531 #endif
533 if (failed) {
534 # if 0
535 # if USE_COMMON_RANDOM
536 /* How to get the error message? */
537 fprintf(stderr, "CCRandomGenerateBytes failed: %d\n", status);
538 # else
539 CFStringRef s = SecCopyErrorMessageString(status, NULL);
540 const char *m = s ? CFStringGetCStringPtr(s, kCFStringEncodingUTF8) : NULL;
541 fprintf(stderr, "SecRandomCopyBytes failed: %d: %s\n", status,
542 m ? m : "unknown");
543 if (s) CFRelease(s);
544 # endif
545 # endif
546 return -1;
548 return 0;
550 #elif defined(HAVE_ARC4RANDOM_BUF)
551 static int
552 fill_random_bytes_syscall(void *buf, size_t size, int unused)
554 #if (defined(__OpenBSD__) && OpenBSD >= 201411) || \
555 (defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \
556 (defined(__FreeBSD__) && __FreeBSD_version >= 1200079)
557 arc4random_buf(buf, size);
558 return 0;
559 #else
560 return -1;
561 #endif
563 #elif defined(_WIN32)
565 #ifndef DWORD_MAX
566 # define DWORD_MAX (~(DWORD)0UL)
567 #endif
569 # if defined(CRYPT_VERIFYCONTEXT)
570 /* Although HCRYPTPROV is not a HANDLE, it looks like
571 * INVALID_HANDLE_VALUE is not a valid value */
572 static const HCRYPTPROV INVALID_HCRYPTPROV = (HCRYPTPROV)INVALID_HANDLE_VALUE;
574 static void
575 release_crypt(void *p)
577 HCRYPTPROV *ptr = p;
578 HCRYPTPROV prov = (HCRYPTPROV)ATOMIC_PTR_EXCHANGE(*ptr, INVALID_HCRYPTPROV);
579 if (prov && prov != INVALID_HCRYPTPROV) {
580 CryptReleaseContext(prov, 0);
584 static const rb_data_type_t crypt_prov_type = {
585 "HCRYPTPROV",
586 {0, release_crypt,},
587 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_EMBEDDABLE
590 static int
591 fill_random_bytes_crypt(void *seed, size_t size)
593 static HCRYPTPROV perm_prov;
594 HCRYPTPROV prov = perm_prov, old_prov;
595 if (!prov) {
596 VALUE wrapper = TypedData_Wrap_Struct(0, &crypt_prov_type, 0);
597 if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
598 prov = INVALID_HCRYPTPROV;
600 old_prov = (HCRYPTPROV)ATOMIC_PTR_CAS(perm_prov, 0, prov);
601 if (LIKELY(!old_prov)) { /* no other threads acquired */
602 if (prov != INVALID_HCRYPTPROV) {
603 DATA_PTR(wrapper) = (void *)prov;
604 rb_vm_register_global_object(wrapper);
607 else { /* another thread acquired */
608 if (prov != INVALID_HCRYPTPROV) {
609 CryptReleaseContext(prov, 0);
611 prov = old_prov;
614 if (prov == INVALID_HCRYPTPROV) return -1;
615 while (size > 0) {
616 DWORD n = (size > (size_t)DWORD_MAX) ? DWORD_MAX : (DWORD)size;
617 if (!CryptGenRandom(prov, n, seed)) return -1;
618 seed = (char *)seed + n;
619 size -= n;
621 return 0;
623 # else
624 # define fill_random_bytes_crypt(seed, size) -1
625 # endif
627 static int
628 fill_random_bytes_bcrypt(void *seed, size_t size)
630 while (size > 0) {
631 ULONG n = (size > (size_t)ULONG_MAX) ? LONG_MAX : (ULONG)size;
632 if (BCryptGenRandom(NULL, seed, n, BCRYPT_USE_SYSTEM_PREFERRED_RNG))
633 return -1;
634 seed = (char *)seed + n;
635 size -= n;
637 return 0;
640 static int
641 fill_random_bytes_syscall(void *seed, size_t size, int unused)
643 if (fill_random_bytes_bcrypt(seed, size) == 0) return 0;
644 return fill_random_bytes_crypt(seed, size);
646 #elif defined HAVE_GETRANDOM
647 static int
648 fill_random_bytes_syscall(void *seed, size_t size, int need_secure)
650 static rb_atomic_t try_syscall = 1;
651 if (try_syscall) {
652 size_t offset = 0;
653 int flags = 0;
654 if (!need_secure)
655 flags = GRND_NONBLOCK;
656 do {
657 errno = 0;
658 ssize_t ret = getrandom(((char*)seed) + offset, size - offset, flags);
659 if (ret == -1) {
660 ATOMIC_SET(try_syscall, 0);
661 return -1;
663 offset += (size_t)ret;
664 } while (offset < size);
665 return 0;
667 return -1;
669 #else
670 # define fill_random_bytes_syscall(seed, size, need_secure) -1
671 #endif
674 ruby_fill_random_bytes(void *seed, size_t size, int need_secure)
676 int ret = fill_random_bytes_syscall(seed, size, need_secure);
677 if (ret == 0) return ret;
678 return fill_random_bytes_urandom(seed, size);
681 /* cnt must be 4 or more */
682 static void
683 fill_random_seed(uint32_t *seed, size_t cnt, bool try_bytes)
685 static rb_atomic_t n = 0;
686 #if defined HAVE_CLOCK_GETTIME
687 struct timespec tv;
688 #elif defined HAVE_GETTIMEOFDAY
689 struct timeval tv;
690 #endif
691 size_t len = cnt * sizeof(*seed);
693 if (try_bytes) {
694 fill_random_bytes(seed, len, FALSE);
695 return;
698 memset(seed, 0, len);
699 #if defined HAVE_CLOCK_GETTIME
700 clock_gettime(CLOCK_REALTIME, &tv);
701 seed[0] ^= tv.tv_nsec;
702 #elif defined HAVE_GETTIMEOFDAY
703 gettimeofday(&tv, 0);
704 seed[0] ^= tv.tv_usec;
705 #endif
706 seed[1] ^= (uint32_t)tv.tv_sec;
707 #if SIZEOF_TIME_T > SIZEOF_INT
708 seed[0] ^= (uint32_t)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
709 #endif
710 seed[2] ^= getpid() ^ (ATOMIC_FETCH_ADD(n, 1) << 16);
711 seed[3] ^= (uint32_t)(VALUE)&seed;
712 #if SIZEOF_VOIDP > SIZEOF_INT
713 seed[2] ^= (uint32_t)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
714 #endif
717 static VALUE
718 make_seed_value(uint32_t *ptr, size_t len)
720 VALUE seed;
722 if (ptr[len-1] <= 1) {
723 /* set leading-zero-guard */
724 ptr[len++] = 1;
727 seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0,
728 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
730 return seed;
733 #define with_random_seed(size, add, try_bytes) \
734 for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size), try_bytes), 1); \
735 loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0)
738 * call-seq: Random.new_seed -> integer
740 * Returns an arbitrary seed value. This is used by Random.new
741 * when no seed value is specified as an argument.
743 * Random.new_seed #=> 115032730400174366788466674494640623225
745 static VALUE
746 random_seed(VALUE _)
748 VALUE v;
749 with_random_seed(DEFAULT_SEED_CNT, 1, true) {
750 v = make_seed_value(seedbuf, DEFAULT_SEED_CNT);
752 return v;
756 * call-seq: Random.urandom(size) -> string
758 * Returns a string, using platform providing features.
759 * Returned value is expected to be a cryptographically secure
760 * pseudo-random number in binary form.
761 * This method raises a RuntimeError if the feature provided by platform
762 * failed to prepare the result.
764 * In 2017, Linux manpage random(7) writes that "no cryptographic
765 * primitive available today can hope to promise more than 256 bits of
766 * security". So it might be questionable to pass size > 32 to this
767 * method.
769 * Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
771 static VALUE
772 random_raw_seed(VALUE self, VALUE size)
774 long n = NUM2ULONG(size);
775 VALUE buf = rb_str_new(0, n);
776 if (n == 0) return buf;
777 if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE))
778 rb_raise(rb_eRuntimeError, "failed to get urandom");
779 return buf;
783 * call-seq: prng.seed -> integer
785 * Returns the seed value used to initialize the generator. This may be used to
786 * initialize another generator with the same state at a later time, causing it
787 * to produce the same sequence of numbers.
789 * prng1 = Random.new(1234)
790 * prng1.seed #=> 1234
791 * prng1.rand(100) #=> 47
793 * prng2 = Random.new(prng1.seed)
794 * prng2.rand(100) #=> 47
796 static VALUE
797 random_get_seed(VALUE obj)
799 return get_rnd(obj)->seed;
802 /* :nodoc: */
803 static VALUE
804 rand_mt_copy(VALUE obj, VALUE orig)
806 rb_random_mt_t *rnd1, *rnd2;
807 struct MT *mt;
809 if (!OBJ_INIT_COPY(obj, orig)) return obj;
811 rnd1 = get_rnd_mt(obj);
812 rnd2 = get_rnd_mt(orig);
813 mt = &rnd1->mt;
815 *rnd1 = *rnd2;
816 mt->next = mt->state + numberof(mt->state) - mt->left + 1;
817 return obj;
820 static VALUE
821 mt_state(const struct MT *mt)
823 return rb_integer_unpack(mt->state, numberof(mt->state),
824 sizeof(*mt->state), 0,
825 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
828 /* :nodoc: */
829 static VALUE
830 rand_mt_state(VALUE obj)
832 rb_random_mt_t *rnd = get_rnd_mt(obj);
833 return mt_state(&rnd->mt);
836 /* :nodoc: */
837 static VALUE
838 random_s_state(VALUE klass)
840 return mt_state(&default_rand()->mt);
843 /* :nodoc: */
844 static VALUE
845 rand_mt_left(VALUE obj)
847 rb_random_mt_t *rnd = get_rnd_mt(obj);
848 return INT2FIX(rnd->mt.left);
851 /* :nodoc: */
852 static VALUE
853 random_s_left(VALUE klass)
855 return INT2FIX(default_rand()->mt.left);
858 /* :nodoc: */
859 static VALUE
860 rand_mt_dump(VALUE obj)
862 rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
863 VALUE dump = rb_ary_new2(3);
865 rb_ary_push(dump, mt_state(&rnd->mt));
866 rb_ary_push(dump, INT2FIX(rnd->mt.left));
867 rb_ary_push(dump, rnd->base.seed);
869 return dump;
872 /* :nodoc: */
873 static VALUE
874 rand_mt_load(VALUE obj, VALUE dump)
876 rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
877 struct MT *mt = &rnd->mt;
878 VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
879 unsigned long x;
881 rb_check_copyable(obj, dump);
882 Check_Type(dump, T_ARRAY);
883 switch (RARRAY_LEN(dump)) {
884 case 3:
885 seed = RARRAY_AREF(dump, 2);
886 case 2:
887 left = RARRAY_AREF(dump, 1);
888 case 1:
889 state = RARRAY_AREF(dump, 0);
890 break;
891 default:
892 rb_raise(rb_eArgError, "wrong dump data");
894 rb_integer_pack(state, mt->state, numberof(mt->state),
895 sizeof(*mt->state), 0,
896 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
897 x = NUM2ULONG(left);
898 if (x > numberof(mt->state)) {
899 rb_raise(rb_eArgError, "wrong value");
901 mt->left = (unsigned int)x;
902 mt->next = mt->state + numberof(mt->state) - x + 1;
903 rnd->base.seed = rb_to_int(seed);
905 return obj;
908 static void
909 rand_mt_init_int32(rb_random_t *rnd, uint32_t data)
911 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
912 init_genrand(mt, data);
915 static void
916 rand_mt_init(rb_random_t *rnd, const uint32_t *buf, size_t len)
918 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
919 init_by_array(mt, buf, (int)len);
922 static unsigned int
923 rand_mt_get_int32(rb_random_t *rnd)
925 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
926 return genrand_int32(mt);
929 static void
930 rand_mt_get_bytes(rb_random_t *rnd, void *ptr, size_t n)
932 rb_rand_bytes_int32(rand_mt_get_int32, rnd, ptr, n);
936 * call-seq:
937 * srand(number = Random.new_seed) -> old_seed
939 * Seeds the system pseudo-random number generator, with +number+.
940 * The previous seed value is returned.
942 * If +number+ is omitted, seeds the generator using a source of entropy
943 * provided by the operating system, if available (/dev/urandom on Unix systems
944 * or the RSA cryptographic provider on Windows), which is then combined with
945 * the time, the process id, and a sequence number.
947 * srand may be used to ensure repeatable sequences of pseudo-random numbers
948 * between different runs of the program. By setting the seed to a known value,
949 * programs can be made deterministic during testing.
951 * srand 1234 # => 268519324636777531569100071560086917274
952 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
953 * [ rand(10), rand(1000) ] # => [4, 664]
954 * srand 1234 # => 1234
955 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
958 static VALUE
959 rb_f_srand(int argc, VALUE *argv, VALUE obj)
961 VALUE seed, old;
962 rb_random_mt_t *r = rand_mt_start(default_rand());
964 if (rb_check_arity(argc, 0, 1) == 0) {
965 seed = random_seed(obj);
967 else {
968 seed = rb_to_int(argv[0]);
970 old = r->base.seed;
971 rand_init(&random_mt_if, &r->base, seed);
972 r->base.seed = seed;
974 return old;
977 static unsigned long
978 make_mask(unsigned long x)
980 x = x | x >> 1;
981 x = x | x >> 2;
982 x = x | x >> 4;
983 x = x | x >> 8;
984 x = x | x >> 16;
985 #if 4 < SIZEOF_LONG
986 x = x | x >> 32;
987 #endif
988 return x;
991 static unsigned long
992 limited_rand(const rb_random_interface_t *rng, rb_random_t *rnd, unsigned long limit)
994 /* mt must be initialized */
995 unsigned long val, mask;
997 if (!limit) return 0;
998 mask = make_mask(limit);
1000 #if 4 < SIZEOF_LONG
1001 if (0xffffffff < limit) {
1002 int i;
1003 retry:
1004 val = 0;
1005 for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
1006 if ((mask >> (i * 32)) & 0xffffffff) {
1007 val |= (unsigned long)rng->get_int32(rnd) << (i * 32);
1008 val &= mask;
1009 if (limit < val)
1010 goto retry;
1013 return val;
1015 #endif
1017 do {
1018 val = rng->get_int32(rnd) & mask;
1019 } while (limit < val);
1020 return val;
1023 static VALUE
1024 limited_big_rand(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE limit)
1026 /* mt must be initialized */
1028 uint32_t mask;
1029 long i;
1030 int boundary;
1032 size_t len;
1033 uint32_t *tmp, *lim_array, *rnd_array;
1034 VALUE vtmp;
1035 VALUE val;
1037 len = rb_absint_numwords(limit, 32, NULL);
1038 tmp = ALLOCV_N(uint32_t, vtmp, len*2);
1039 lim_array = tmp;
1040 rnd_array = tmp + len;
1041 rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0,
1042 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
1044 retry:
1045 mask = 0;
1046 boundary = 1;
1047 for (i = len-1; 0 <= i; i--) {
1048 uint32_t r = 0;
1049 uint32_t lim = lim_array[i];
1050 mask = mask ? 0xffffffff : (uint32_t)make_mask(lim);
1051 if (mask) {
1052 r = rng->get_int32(rnd) & mask;
1053 if (boundary) {
1054 if (lim < r)
1055 goto retry;
1056 if (r < lim)
1057 boundary = 0;
1060 rnd_array[i] = r;
1062 val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0,
1063 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
1064 ALLOCV_END(vtmp);
1066 return val;
1070 * Returns random unsigned long value in [0, +limit+].
1072 * Note that +limit+ is included, and the range of the argument and the
1073 * return value depends on environments.
1075 unsigned long
1076 rb_genrand_ulong_limited(unsigned long limit)
1078 rb_random_mt_t *mt = default_mt();
1079 return limited_rand(&random_mt_if, &mt->base, limit);
1082 static VALUE
1083 obj_random_bytes(VALUE obj, void *p, long n)
1085 VALUE len = LONG2NUM(n);
1086 VALUE v = rb_funcallv_public(obj, id_bytes, 1, &len);
1087 long l;
1088 Check_Type(v, T_STRING);
1089 l = RSTRING_LEN(v);
1090 if (l < n)
1091 rb_raise(rb_eRangeError, "random data too short %ld", l);
1092 else if (l > n)
1093 rb_raise(rb_eRangeError, "random data too long %ld", l);
1094 if (p) memcpy(p, RSTRING_PTR(v), n);
1095 return v;
1098 static unsigned int
1099 random_int32(const rb_random_interface_t *rng, rb_random_t *rnd)
1101 return rng->get_int32(rnd);
1104 unsigned int
1105 rb_random_int32(VALUE obj)
1107 rb_random_t *rnd = try_get_rnd(obj);
1108 if (!rnd) {
1109 uint32_t x;
1110 obj_random_bytes(obj, &x, sizeof(x));
1111 return (unsigned int)x;
1113 return random_int32(try_rand_if(obj, rnd), rnd);
1116 static double
1117 random_real(VALUE obj, rb_random_t *rnd, int excl)
1119 uint32_t a, b;
1121 if (!rnd) {
1122 uint32_t x[2] = {0, 0};
1123 obj_random_bytes(obj, x, sizeof(x));
1124 a = x[0];
1125 b = x[1];
1127 else {
1128 const rb_random_interface_t *rng = try_rand_if(obj, rnd);
1129 if (rng->get_real) return rng->get_real(rnd, excl);
1130 a = random_int32(rng, rnd);
1131 b = random_int32(rng, rnd);
1133 return rb_int_pair_to_real(a, b, excl);
1136 double
1137 rb_int_pair_to_real(uint32_t a, uint32_t b, int excl)
1139 if (excl) {
1140 return int_pair_to_real_exclusive(a, b);
1142 else {
1143 return int_pair_to_real_inclusive(a, b);
1147 double
1148 rb_random_real(VALUE obj)
1150 rb_random_t *rnd = try_get_rnd(obj);
1151 if (!rnd) {
1152 VALUE v = rb_funcallv(obj, id_rand, 0, 0);
1153 double d = NUM2DBL(v);
1154 if (d < 0.0) {
1155 rb_raise(rb_eRangeError, "random number too small %g", d);
1157 else if (d >= 1.0) {
1158 rb_raise(rb_eRangeError, "random number too big %g", d);
1160 return d;
1162 return random_real(obj, rnd, TRUE);
1165 static inline VALUE
1166 ulong_to_num_plus_1(unsigned long n)
1168 #if HAVE_LONG_LONG
1169 return ULL2NUM((LONG_LONG)n+1);
1170 #else
1171 if (n >= ULONG_MAX) {
1172 return rb_big_plus(ULONG2NUM(n), INT2FIX(1));
1174 return ULONG2NUM(n+1);
1175 #endif
1178 static unsigned long
1179 random_ulong_limited(VALUE obj, rb_random_t *rnd, unsigned long limit)
1181 if (!limit) return 0;
1182 if (!rnd) {
1183 const int w = sizeof(limit) * CHAR_BIT - nlz_long(limit);
1184 const int n = w > 32 ? sizeof(unsigned long) : sizeof(uint32_t);
1185 const unsigned long mask = ~(~0UL << w);
1186 const unsigned long full =
1187 (size_t)n >= sizeof(unsigned long) ? ~0UL :
1188 ~(~0UL << n * CHAR_BIT);
1189 unsigned long val, bits = 0, rest = 0;
1190 do {
1191 if (mask & ~rest) {
1192 union {uint32_t u32; unsigned long ul;} buf;
1193 obj_random_bytes(obj, &buf, n);
1194 rest = full;
1195 bits = (n == sizeof(uint32_t)) ? buf.u32 : buf.ul;
1197 val = bits;
1198 bits >>= w;
1199 rest >>= w;
1200 val &= mask;
1201 } while (limit < val);
1202 return val;
1204 return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1207 unsigned long
1208 rb_random_ulong_limited(VALUE obj, unsigned long limit)
1210 rb_random_t *rnd = try_get_rnd(obj);
1211 if (!rnd) {
1212 VALUE lim = ulong_to_num_plus_1(limit);
1213 VALUE v = rb_to_int(rb_funcallv_public(obj, id_rand, 1, &lim));
1214 unsigned long r = NUM2ULONG(v);
1215 if (rb_num_negative_p(v)) {
1216 rb_raise(rb_eRangeError, "random number too small %ld", r);
1218 if (r > limit) {
1219 rb_raise(rb_eRangeError, "random number too big %ld", r);
1221 return r;
1223 return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1226 static VALUE
1227 random_ulong_limited_big(VALUE obj, rb_random_t *rnd, VALUE vmax)
1229 if (!rnd) {
1230 VALUE v, vtmp;
1231 size_t i, nlz, len = rb_absint_numwords(vmax, 32, &nlz);
1232 uint32_t *tmp = ALLOCV_N(uint32_t, vtmp, len * 2);
1233 uint32_t mask = (uint32_t)~0 >> nlz;
1234 uint32_t *lim_array = tmp;
1235 uint32_t *rnd_array = tmp + len;
1236 int flag = INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER;
1237 rb_integer_pack(vmax, lim_array, len, sizeof(uint32_t), 0, flag);
1239 retry:
1240 obj_random_bytes(obj, rnd_array, len * sizeof(uint32_t));
1241 rnd_array[0] &= mask;
1242 for (i = 0; i < len; ++i) {
1243 if (lim_array[i] < rnd_array[i])
1244 goto retry;
1245 if (rnd_array[i] < lim_array[i])
1246 break;
1248 v = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, flag);
1249 ALLOCV_END(vtmp);
1250 return v;
1252 return limited_big_rand(try_rand_if(obj, rnd), rnd, vmax);
1255 static VALUE
1256 rand_bytes(const rb_random_interface_t *rng, rb_random_t *rnd, long n)
1258 VALUE bytes;
1259 char *ptr;
1261 bytes = rb_str_new(0, n);
1262 ptr = RSTRING_PTR(bytes);
1263 rng->get_bytes(rnd, ptr, n);
1264 return bytes;
1268 * call-seq: prng.bytes(size) -> string
1270 * Returns a random binary string containing +size+ bytes.
1272 * random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
1273 * random_string.size # => 10
1275 static VALUE
1276 random_bytes(VALUE obj, VALUE len)
1278 rb_random_t *rnd = try_get_rnd(obj);
1279 return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len)));
1282 void
1283 rb_rand_bytes_int32(rb_random_get_int32_func *get_int32,
1284 rb_random_t *rnd, void *p, size_t n)
1286 char *ptr = p;
1287 unsigned int r, i;
1288 for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
1289 r = get_int32(rnd);
1290 i = SIZEOF_INT32;
1291 do {
1292 *ptr++ = (char)r;
1293 r >>= CHAR_BIT;
1294 } while (--i);
1296 if (n > 0) {
1297 r = get_int32(rnd);
1298 do {
1299 *ptr++ = (char)r;
1300 r >>= CHAR_BIT;
1301 } while (--n);
1305 VALUE
1306 rb_random_bytes(VALUE obj, long n)
1308 rb_random_t *rnd = try_get_rnd(obj);
1309 if (!rnd) {
1310 return obj_random_bytes(obj, NULL, n);
1312 return rand_bytes(try_rand_if(obj, rnd), rnd, n);
1316 * call-seq: Random.bytes(size) -> string
1318 * Returns a random binary string.
1319 * The argument +size+ specifies the length of the returned string.
1321 static VALUE
1322 random_s_bytes(VALUE obj, VALUE len)
1324 rb_random_t *rnd = rand_start(default_rand());
1325 return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len)));
1329 * call-seq: Random.seed -> integer
1331 * Returns the seed value used to initialize the Ruby system PRNG.
1332 * This may be used to initialize another generator with the same
1333 * state at a later time, causing it to produce the same sequence of
1334 * numbers.
1336 * Random.seed #=> 1234
1337 * prng1 = Random.new(Random.seed)
1338 * prng1.seed #=> 1234
1339 * prng1.rand(100) #=> 47
1340 * Random.seed #=> 1234
1341 * Random.rand(100) #=> 47
1343 static VALUE
1344 random_s_seed(VALUE obj)
1346 rb_random_mt_t *rnd = rand_mt_start(default_rand());
1347 return rnd->base.seed;
1350 static VALUE
1351 range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
1353 VALUE beg, end;
1355 if (!rb_range_values(vmax, &beg, &end, exclp)) return Qfalse;
1356 if (begp) *begp = beg;
1357 if (NIL_P(beg)) return Qnil;
1358 if (endp) *endp = end;
1359 if (NIL_P(end)) return Qnil;
1360 return rb_check_funcall_default(end, id_minus, 1, begp, Qfalse);
1363 static VALUE
1364 rand_int(VALUE obj, rb_random_t *rnd, VALUE vmax, int restrictive)
1366 /* mt must be initialized */
1367 unsigned long r;
1369 if (FIXNUM_P(vmax)) {
1370 long max = FIX2LONG(vmax);
1371 if (!max) return Qnil;
1372 if (max < 0) {
1373 if (restrictive) return Qnil;
1374 max = -max;
1376 r = random_ulong_limited(obj, rnd, (unsigned long)max - 1);
1377 return ULONG2NUM(r);
1379 else {
1380 VALUE ret;
1381 if (rb_bigzero_p(vmax)) return Qnil;
1382 if (!BIGNUM_SIGN(vmax)) {
1383 if (restrictive) return Qnil;
1384 vmax = rb_big_uminus(vmax);
1386 vmax = rb_big_minus(vmax, INT2FIX(1));
1387 if (FIXNUM_P(vmax)) {
1388 long max = FIX2LONG(vmax);
1389 if (max == -1) return Qnil;
1390 r = random_ulong_limited(obj, rnd, max);
1391 return LONG2NUM(r);
1393 ret = random_ulong_limited_big(obj, rnd, vmax);
1394 RB_GC_GUARD(vmax);
1395 return ret;
1399 static void
1400 domain_error(void)
1402 VALUE error = INT2FIX(EDOM);
1403 rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
1406 NORETURN(static void invalid_argument(VALUE));
1407 static void
1408 invalid_argument(VALUE arg0)
1410 rb_raise(rb_eArgError, "invalid argument - %"PRIsVALUE, arg0);
1413 static VALUE
1414 check_random_number(VALUE v, const VALUE *argv)
1416 switch (v) {
1417 case Qfalse:
1418 (void)NUM2LONG(argv[0]);
1419 break;
1420 case Qnil:
1421 invalid_argument(argv[0]);
1423 return v;
1426 static inline double
1427 float_value(VALUE v)
1429 double x = RFLOAT_VALUE(v);
1430 if (!isfinite(x)) {
1431 domain_error();
1433 return x;
1436 static inline VALUE
1437 rand_range(VALUE obj, rb_random_t* rnd, VALUE range)
1439 VALUE beg = Qundef, end = Qundef, vmax, v;
1440 int excl = 0;
1442 if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
1443 return Qfalse;
1444 if (NIL_P(v)) domain_error();
1445 if (!RB_FLOAT_TYPE_P(vmax) && (v = rb_check_to_int(vmax), !NIL_P(v))) {
1446 long max;
1447 vmax = v;
1448 v = Qnil;
1449 fixnum:
1450 if (FIXNUM_P(vmax)) {
1451 if ((max = FIX2LONG(vmax) - excl) >= 0) {
1452 unsigned long r = random_ulong_limited(obj, rnd, (unsigned long)max);
1453 v = ULONG2NUM(r);
1456 else if (BUILTIN_TYPE(vmax) == T_BIGNUM && BIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
1457 vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
1458 if (FIXNUM_P(vmax)) {
1459 excl = 0;
1460 goto fixnum;
1462 v = random_ulong_limited_big(obj, rnd, vmax);
1465 else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
1466 int scale = 1;
1467 double max = RFLOAT_VALUE(v), mid = 0.5, r;
1468 if (isinf(max)) {
1469 double min = float_value(rb_to_float(beg)) / 2.0;
1470 max = float_value(rb_to_float(end)) / 2.0;
1471 scale = 2;
1472 mid = max + min;
1473 max -= min;
1475 else if (isnan(max)) {
1476 domain_error();
1478 v = Qnil;
1479 if (max > 0.0) {
1480 r = random_real(obj, rnd, excl);
1481 if (scale > 1) {
1482 return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
1484 v = rb_float_new(r * max);
1486 else if (max == 0.0 && !excl) {
1487 v = rb_float_new(0.0);
1491 if (FIXNUM_P(beg) && FIXNUM_P(v)) {
1492 long x = FIX2LONG(beg) + FIX2LONG(v);
1493 return LONG2NUM(x);
1495 switch (TYPE(v)) {
1496 case T_NIL:
1497 break;
1498 case T_BIGNUM:
1499 return rb_big_plus(v, beg);
1500 case T_FLOAT: {
1501 VALUE f = rb_check_to_float(beg);
1502 if (!NIL_P(f)) {
1503 return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f));
1506 default:
1507 return rb_funcallv(beg, id_plus, 1, &v);
1510 return v;
1513 static VALUE rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd);
1516 * call-seq:
1517 * prng.rand -> float
1518 * prng.rand(max) -> number
1519 * prng.rand(range) -> number
1521 * When +max+ is an Integer, +rand+ returns a random integer greater than
1522 * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
1523 * is a negative integer or zero, +rand+ raises an ArgumentError.
1525 * prng = Random.new
1526 * prng.rand(100) # => 42
1528 * When +max+ is a Float, +rand+ returns a random floating point number
1529 * between 0.0 and +max+, including 0.0 and excluding +max+.
1531 * prng.rand(1.5) # => 1.4600282860034115
1533 * When +range+ is a Range, +rand+ returns a random number where
1534 * <code>range.member?(number) == true</code>.
1536 * prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
1537 * prng.rand(5...9) # => one of [5, 6, 7, 8]
1538 * prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
1539 * prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
1541 * Both the beginning and ending values of the range must respond to subtract
1542 * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
1543 * ArgumentError.
1545 static VALUE
1546 random_rand(int argc, VALUE *argv, VALUE obj)
1548 VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj));
1549 check_random_number(v, argv);
1550 return v;
1553 static VALUE
1554 rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd)
1556 VALUE vmax, v;
1558 if (rb_check_arity(argc, 0, 1) == 0) {
1559 return rb_float_new(random_real(obj, rnd, TRUE));
1561 vmax = argv[0];
1562 if (NIL_P(vmax)) return Qnil;
1563 if (!RB_FLOAT_TYPE_P(vmax)) {
1564 v = rb_check_to_int(vmax);
1565 if (!NIL_P(v)) return rand_int(obj, rnd, v, 1);
1567 v = rb_check_to_float(vmax);
1568 if (!NIL_P(v)) {
1569 const double max = float_value(v);
1570 if (max < 0.0) {
1571 return Qnil;
1573 else {
1574 double r = random_real(obj, rnd, TRUE);
1575 if (max > 0.0) r *= max;
1576 return rb_float_new(r);
1579 return rand_range(obj, rnd, vmax);
1583 * call-seq:
1584 * prng.random_number -> float
1585 * prng.random_number(max) -> number
1586 * prng.random_number(range) -> number
1587 * prng.rand -> float
1588 * prng.rand(max) -> number
1589 * prng.rand(range) -> number
1591 * Generates formatted random number from raw random bytes.
1592 * See Random#rand.
1594 static VALUE
1595 rand_random_number(int argc, VALUE *argv, VALUE obj)
1597 rb_random_t *rnd = try_get_rnd(obj);
1598 VALUE v = rand_random(argc, argv, obj, rnd);
1599 if (NIL_P(v)) v = rand_random(0, 0, obj, rnd);
1600 else if (!v) invalid_argument(argv[0]);
1601 return v;
1605 * call-seq:
1606 * prng1 == prng2 -> true or false
1608 * Returns true if the two generators have the same internal state, otherwise
1609 * false. Equivalent generators will return the same sequence of
1610 * pseudo-random numbers. Two generators will generally have the same state
1611 * only if they were initialized with the same seed
1613 * Random.new == Random.new # => false
1614 * Random.new(1234) == Random.new(1234) # => true
1616 * and have the same invocation history.
1618 * prng1 = Random.new(1234)
1619 * prng2 = Random.new(1234)
1620 * prng1 == prng2 # => true
1622 * prng1.rand # => 0.1915194503788923
1623 * prng1 == prng2 # => false
1625 * prng2.rand # => 0.1915194503788923
1626 * prng1 == prng2 # => true
1628 static VALUE
1629 rand_mt_equal(VALUE self, VALUE other)
1631 rb_random_mt_t *r1, *r2;
1632 if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
1633 r1 = get_rnd_mt(self);
1634 r2 = get_rnd_mt(other);
1635 if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
1636 if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
1637 if (r1->mt.left != r2->mt.left) return Qfalse;
1638 return rb_equal(r1->base.seed, r2->base.seed);
1642 * call-seq:
1643 * rand(max=0) -> number
1645 * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
1646 * returns a pseudo-random floating point number between 0.0 and 1.0,
1647 * including 0.0 and excluding 1.0.
1649 * rand #=> 0.2725926052826416
1651 * When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
1652 * integer greater than or equal to 0 and less than +max.to_i.abs+.
1654 * rand(100) #=> 12
1656 * When +max+ is a Range, +rand+ returns a random number where
1657 * <code>range.member?(number) == true</code>.
1659 * Negative or floating point values for +max+ are allowed, but may give
1660 * surprising results.
1662 * rand(-100) # => 87
1663 * rand(-0.5) # => 0.8130921818028143
1664 * rand(1.9) # equivalent to rand(1), which is always 0
1666 * Kernel.srand may be used to ensure that sequences of random numbers are
1667 * reproducible between different runs of a program.
1669 * See also Random.rand.
1672 static VALUE
1673 rb_f_rand(int argc, VALUE *argv, VALUE obj)
1675 VALUE vmax;
1676 rb_random_t *rnd = rand_start(default_rand());
1678 if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) {
1679 VALUE v = rand_range(obj, rnd, vmax);
1680 if (v != Qfalse) return v;
1681 vmax = rb_to_int(vmax);
1682 if (vmax != INT2FIX(0)) {
1683 v = rand_int(obj, rnd, vmax, 0);
1684 if (!NIL_P(v)) return v;
1687 return DBL2NUM(random_real(obj, rnd, TRUE));
1691 * call-seq:
1692 * Random.rand -> float
1693 * Random.rand(max) -> number
1694 * Random.rand(range) -> number
1696 * Returns a random number using the Ruby system PRNG.
1698 * See also Random#rand.
1700 static VALUE
1701 random_s_rand(int argc, VALUE *argv, VALUE obj)
1703 VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand()));
1704 check_random_number(v, argv);
1705 return v;
1708 #define SIP_HASH_STREAMING 0
1709 #define sip_hash13 ruby_sip_hash13
1710 #if !defined _WIN32 && !defined BYTE_ORDER
1711 # ifdef WORDS_BIGENDIAN
1712 # define BYTE_ORDER BIG_ENDIAN
1713 # else
1714 # define BYTE_ORDER LITTLE_ENDIAN
1715 # endif
1716 # ifndef LITTLE_ENDIAN
1717 # define LITTLE_ENDIAN 1234
1718 # endif
1719 # ifndef BIG_ENDIAN
1720 # define BIG_ENDIAN 4321
1721 # endif
1722 #endif
1723 #include "siphash.c"
1725 typedef struct {
1726 st_index_t hash;
1727 uint8_t sip[16];
1728 } hash_salt_t;
1730 static union {
1731 hash_salt_t key;
1732 uint32_t u32[type_roomof(hash_salt_t, uint32_t)];
1733 } hash_salt;
1735 static void
1736 init_hash_salt(struct MT *mt)
1738 int i;
1740 for (i = 0; i < numberof(hash_salt.u32); ++i)
1741 hash_salt.u32[i] = genrand_int32(mt);
1744 NO_SANITIZE("unsigned-integer-overflow", extern st_index_t rb_hash_start(st_index_t h));
1745 st_index_t
1746 rb_hash_start(st_index_t h)
1748 return st_hash_start(hash_salt.key.hash + h);
1751 st_index_t
1752 rb_memhash(const void *ptr, long len)
1754 sip_uint64_t h = sip_hash13(hash_salt.key.sip, ptr, len);
1755 #ifdef HAVE_UINT64_T
1756 return (st_index_t)h;
1757 #else
1758 return (st_index_t)(h.u32[0] ^ h.u32[1]);
1759 #endif
1762 /* Initialize Ruby internal seeds. This function is called at very early stage
1763 * of Ruby startup. Thus, you can't use Ruby's object. */
1764 void
1765 Init_RandomSeedCore(void)
1767 if (!fill_random_bytes(&hash_salt, sizeof(hash_salt), FALSE)) return;
1770 If failed to fill siphash's salt with random data, expand less random
1771 data with MT.
1773 Don't reuse this MT for default_rand(). default_rand()::seed shouldn't
1774 provide a hint that an attacker guess siphash's seed.
1776 struct MT mt;
1778 with_random_seed(DEFAULT_SEED_CNT, 0, false) {
1779 init_by_array(&mt, seedbuf, DEFAULT_SEED_CNT);
1782 init_hash_salt(&mt);
1783 explicit_bzero(&mt, sizeof(mt));
1786 void
1787 rb_reset_random_seed(void)
1789 rb_random_mt_t *r = default_rand();
1790 uninit_genrand(&r->mt);
1791 r->base.seed = INT2FIX(0);
1795 * Document-class: Random
1797 * Random provides an interface to Ruby's pseudo-random number generator, or
1798 * PRNG. The PRNG produces a deterministic sequence of bits which approximate
1799 * true randomness. The sequence may be represented by integers, floats, or
1800 * binary strings.
1802 * The generator may be initialized with either a system-generated or
1803 * user-supplied seed value by using Random.srand.
1805 * The class method Random.rand provides the base functionality of Kernel.rand
1806 * along with better handling of floating point values. These are both
1807 * interfaces to the Ruby system PRNG.
1809 * Random.new will create a new PRNG with a state independent of the Ruby
1810 * system PRNG, allowing multiple generators with different seed values or
1811 * sequence positions to exist simultaneously. Random objects can be
1812 * marshaled, allowing sequences to be saved and resumed.
1814 * PRNGs are currently implemented as a modified Mersenne Twister with a period
1815 * of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must
1816 * use SecureRandom for security purpose, instead of this PRNG.
1818 * See also Random::Formatter module that adds convenience methods to generate
1819 * various forms of random data.
1822 void
1823 InitVM_Random(void)
1825 VALUE base;
1826 ID id_base = rb_intern_const("Base");
1828 rb_define_global_function("srand", rb_f_srand, -1);
1829 rb_define_global_function("rand", rb_f_rand, -1);
1831 base = rb_define_class_id(id_base, rb_cObject);
1832 rb_undef_alloc_func(base);
1833 rb_cRandom = rb_define_class("Random", base);
1834 rb_const_set(rb_cRandom, id_base, base);
1835 rb_define_alloc_func(rb_cRandom, random_alloc);
1836 rb_define_method(base, "initialize", random_init, -1);
1837 rb_define_method(base, "rand", random_rand, -1);
1838 rb_define_method(base, "bytes", random_bytes, 1);
1839 rb_define_method(base, "seed", random_get_seed, 0);
1840 rb_define_method(rb_cRandom, "initialize_copy", rand_mt_copy, 1);
1841 rb_define_private_method(rb_cRandom, "marshal_dump", rand_mt_dump, 0);
1842 rb_define_private_method(rb_cRandom, "marshal_load", rand_mt_load, 1);
1843 rb_define_private_method(rb_cRandom, "state", rand_mt_state, 0);
1844 rb_define_private_method(rb_cRandom, "left", rand_mt_left, 0);
1845 rb_define_method(rb_cRandom, "==", rand_mt_equal, 1);
1847 #if 0 /* for RDoc: it can't handle unnamed base class */
1848 rb_define_method(rb_cRandom, "initialize", random_init, -1);
1849 rb_define_method(rb_cRandom, "rand", random_rand, -1);
1850 rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
1851 rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
1852 #endif
1854 rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
1855 rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
1856 rb_define_singleton_method(rb_cRandom, "bytes", random_s_bytes, 1);
1857 rb_define_singleton_method(rb_cRandom, "seed", random_s_seed, 0);
1858 rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
1859 rb_define_singleton_method(rb_cRandom, "urandom", random_raw_seed, 1);
1860 rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
1861 rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
1865 * Generate a random number in the given range as Random does
1867 * prng.random_number #=> 0.5816771641321361
1868 * prng.random_number(1000) #=> 485
1869 * prng.random_number(1..6) #=> 3
1870 * prng.rand #=> 0.5816771641321361
1871 * prng.rand(1000) #=> 485
1872 * prng.rand(1..6) #=> 3
1874 VALUE m = rb_define_module_under(rb_cRandom, "Formatter");
1875 rb_include_module(base, m);
1876 rb_extend_object(base, m);
1877 rb_define_method(m, "random_number", rand_random_number, -1);
1878 rb_define_method(m, "rand", rand_random_number, -1);
1881 default_rand_key = rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type);
1884 #undef rb_intern
1885 void
1886 Init_Random(void)
1888 id_rand = rb_intern("rand");
1889 id_bytes = rb_intern("bytes");
1891 InitVM(Random);