Document the reasoning behind the fix for [Bug #20641]
[ruby.git] / proc.c
blobfd1edb2bdc3d0a66eb189de4df1761cedba3542f
1 /**********************************************************************
3 proc.c - Proc, Binding, Env
5 $Author$
6 created at: Wed Jan 17 12:13:14 2007
8 Copyright (C) 2004-2007 Koichi Sasada
10 **********************************************************************/
12 #include "eval_intern.h"
13 #include "internal.h"
14 #include "internal/class.h"
15 #include "internal/error.h"
16 #include "internal/eval.h"
17 #include "internal/gc.h"
18 #include "internal/object.h"
19 #include "internal/proc.h"
20 #include "internal/symbol.h"
21 #include "method.h"
22 #include "iseq.h"
23 #include "vm_core.h"
24 #include "yjit.h"
26 const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
28 struct METHOD {
29 const VALUE recv;
30 const VALUE klass;
31 /* needed for #super_method */
32 const VALUE iclass;
33 /* Different than me->owner only for ZSUPER methods.
34 This is error-prone but unavoidable unless ZSUPER methods are removed. */
35 const VALUE owner;
36 const rb_method_entry_t * const me;
37 /* for bound methods, `me' should be rb_callable_method_entry_t * */
40 VALUE rb_cUnboundMethod;
41 VALUE rb_cMethod;
42 VALUE rb_cBinding;
43 VALUE rb_cProc;
45 static rb_block_call_func bmcall;
46 static int method_arity(VALUE);
47 static int method_min_max_arity(VALUE, int *max);
48 static VALUE proc_binding(VALUE self);
50 /* Proc */
52 #define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
54 static void
55 block_mark_and_move(struct rb_block *block)
57 switch (block->type) {
58 case block_type_iseq:
59 case block_type_ifunc:
61 struct rb_captured_block *captured = &block->as.captured;
62 rb_gc_mark_and_move(&captured->self);
63 rb_gc_mark_and_move(&captured->code.val);
64 if (captured->ep) {
65 rb_gc_mark_and_move((VALUE *)&captured->ep[VM_ENV_DATA_INDEX_ENV]);
68 break;
69 case block_type_symbol:
70 rb_gc_mark_and_move(&block->as.symbol);
71 break;
72 case block_type_proc:
73 rb_gc_mark_and_move(&block->as.proc);
74 break;
78 static void
79 proc_mark_and_move(void *ptr)
81 rb_proc_t *proc = ptr;
82 block_mark_and_move((struct rb_block *)&proc->block);
85 typedef struct {
86 rb_proc_t basic;
87 VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
88 } cfunc_proc_t;
90 static size_t
91 proc_memsize(const void *ptr)
93 const rb_proc_t *proc = ptr;
94 if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
95 return sizeof(cfunc_proc_t);
96 return sizeof(rb_proc_t);
99 static const rb_data_type_t proc_data_type = {
100 "proc",
102 proc_mark_and_move,
103 RUBY_TYPED_DEFAULT_FREE,
104 proc_memsize,
105 proc_mark_and_move,
107 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
110 VALUE
111 rb_proc_alloc(VALUE klass)
113 rb_proc_t *proc;
114 return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
117 VALUE
118 rb_obj_is_proc(VALUE proc)
120 return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type));
123 /* :nodoc: */
124 static VALUE
125 proc_clone(VALUE self)
127 VALUE procval = rb_proc_dup(self);
128 return rb_obj_clone_setup(self, procval, Qnil);
131 /* :nodoc: */
132 static VALUE
133 proc_dup(VALUE self)
135 VALUE procval = rb_proc_dup(self);
136 return rb_obj_dup_setup(self, procval);
140 * call-seq:
141 * prc.lambda? -> true or false
143 * Returns +true+ if a Proc object is lambda.
144 * +false+ if non-lambda.
146 * The lambda-ness affects argument handling and the behavior of +return+ and +break+.
148 * A Proc object generated by +proc+ ignores extra arguments.
150 * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
152 * It provides +nil+ for missing arguments.
154 * proc {|a,b| [a,b] }.call(1) #=> [1,nil]
156 * It expands a single array argument.
158 * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
160 * A Proc object generated by +lambda+ doesn't have such tricks.
162 * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
163 * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
164 * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
166 * Proc#lambda? is a predicate for the tricks.
167 * It returns +true+ if no tricks apply.
169 * lambda {}.lambda? #=> true
170 * proc {}.lambda? #=> false
172 * Proc.new is the same as +proc+.
174 * Proc.new {}.lambda? #=> false
176 * +lambda+, +proc+ and Proc.new preserve the tricks of
177 * a Proc object given by <code>&</code> argument.
179 * lambda(&lambda {}).lambda? #=> true
180 * proc(&lambda {}).lambda? #=> true
181 * Proc.new(&lambda {}).lambda? #=> true
183 * lambda(&proc {}).lambda? #=> false
184 * proc(&proc {}).lambda? #=> false
185 * Proc.new(&proc {}).lambda? #=> false
187 * A Proc object generated by <code>&</code> argument has the tricks
189 * def n(&b) b.lambda? end
190 * n {} #=> false
192 * The <code>&</code> argument preserves the tricks if a Proc object
193 * is given by <code>&</code> argument.
195 * n(&lambda {}) #=> true
196 * n(&proc {}) #=> false
197 * n(&Proc.new {}) #=> false
199 * A Proc object converted from a method has no tricks.
201 * def m() end
202 * method(:m).to_proc.lambda? #=> true
204 * n(&method(:m)) #=> true
205 * n(&method(:m).to_proc) #=> true
207 * +define_method+ is treated the same as method definition.
208 * The defined method has no tricks.
210 * class C
211 * define_method(:d) {}
212 * end
213 * C.new.d(1,2) #=> ArgumentError
214 * C.new.method(:d).to_proc.lambda? #=> true
216 * +define_method+ always defines a method without the tricks,
217 * even if a non-lambda Proc object is given.
218 * This is the only exception for which the tricks are not preserved.
220 * class C
221 * define_method(:e, &proc {})
222 * end
223 * C.new.e(1,2) #=> ArgumentError
224 * C.new.method(:e).to_proc.lambda? #=> true
226 * This exception ensures that methods never have tricks
227 * and makes it easy to have wrappers to define methods that behave as usual.
229 * class C
230 * def self.def2(name, &body)
231 * define_method(name, &body)
232 * end
234 * def2(:f) {}
235 * end
236 * C.new.f(1,2) #=> ArgumentError
238 * The wrapper <i>def2</i> defines a method which has no tricks.
242 VALUE
243 rb_proc_lambda_p(VALUE procval)
245 rb_proc_t *proc;
246 GetProcPtr(procval, proc);
248 return RBOOL(proc->is_lambda);
251 /* Binding */
253 static void
254 binding_free(void *ptr)
256 RUBY_FREE_ENTER("binding");
257 ruby_xfree(ptr);
258 RUBY_FREE_LEAVE("binding");
261 static void
262 binding_mark_and_move(void *ptr)
264 rb_binding_t *bind = ptr;
266 block_mark_and_move((struct rb_block *)&bind->block);
267 rb_gc_mark_and_move((VALUE *)&bind->pathobj);
270 static size_t
271 binding_memsize(const void *ptr)
273 return sizeof(rb_binding_t);
276 const rb_data_type_t ruby_binding_data_type = {
277 "binding",
279 binding_mark_and_move,
280 binding_free,
281 binding_memsize,
282 binding_mark_and_move,
284 0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
287 VALUE
288 rb_binding_alloc(VALUE klass)
290 VALUE obj;
291 rb_binding_t *bind;
292 obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
293 #if YJIT_STATS
294 rb_yjit_collect_binding_alloc();
295 #endif
296 return obj;
300 /* :nodoc: */
301 static VALUE
302 binding_dup(VALUE self)
304 VALUE bindval = rb_binding_alloc(rb_cBinding);
305 rb_binding_t *src, *dst;
306 GetBindingPtr(self, src);
307 GetBindingPtr(bindval, dst);
308 rb_vm_block_copy(bindval, &dst->block, &src->block);
309 RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
310 dst->first_lineno = src->first_lineno;
311 return rb_obj_dup_setup(self, bindval);
314 /* :nodoc: */
315 static VALUE
316 binding_clone(VALUE self)
318 VALUE bindval = binding_dup(self);
319 return rb_obj_clone_setup(self, bindval, Qnil);
322 VALUE
323 rb_binding_new(void)
325 rb_execution_context_t *ec = GET_EC();
326 return rb_vm_make_binding(ec, ec->cfp);
330 * call-seq:
331 * binding -> a_binding
333 * Returns a Binding object, describing the variable and
334 * method bindings at the point of call. This object can be used when
335 * calling Binding#eval to execute the evaluated command in this
336 * environment, or extracting its local variables.
338 * class User
339 * def initialize(name, position)
340 * @name = name
341 * @position = position
342 * end
344 * def get_binding
345 * binding
346 * end
347 * end
349 * user = User.new('Joan', 'manager')
350 * template = '{name: @name, position: @position}'
352 * # evaluate template in context of the object
353 * eval(template, user.get_binding)
354 * #=> {:name=>"Joan", :position=>"manager"}
356 * Binding#local_variable_get can be used to access the variables
357 * whose names are reserved Ruby keywords:
359 * # This is valid parameter declaration, but `if` parameter can't
360 * # be accessed by name, because it is a reserved word.
361 * def validate(field, validation, if: nil)
362 * condition = binding.local_variable_get('if')
363 * return unless condition
365 * # ...Some implementation ...
366 * end
368 * validate(:name, :empty?, if: false) # skips validation
369 * validate(:name, :empty?, if: true) # performs validation
373 static VALUE
374 rb_f_binding(VALUE self)
376 return rb_binding_new();
380 * call-seq:
381 * binding.eval(string [, filename [,lineno]]) -> obj
383 * Evaluates the Ruby expression(s) in <em>string</em>, in the
384 * <em>binding</em>'s context. If the optional <em>filename</em> and
385 * <em>lineno</em> parameters are present, they will be used when
386 * reporting syntax errors.
388 * def get_binding(param)
389 * binding
390 * end
391 * b = get_binding("hello")
392 * b.eval("param") #=> "hello"
395 static VALUE
396 bind_eval(int argc, VALUE *argv, VALUE bindval)
398 VALUE args[4];
400 rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
401 args[1] = bindval;
402 return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
405 static const VALUE *
406 get_local_variable_ptr(const rb_env_t **envp, ID lid)
408 const rb_env_t *env = *envp;
409 do {
410 if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
411 if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) {
412 return NULL;
415 const rb_iseq_t *iseq = env->iseq;
416 unsigned int i;
418 VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
420 for (i=0; i<ISEQ_BODY(iseq)->local_table_size; i++) {
421 if (ISEQ_BODY(iseq)->local_table[i] == lid) {
422 if (ISEQ_BODY(iseq)->local_iseq == iseq &&
423 ISEQ_BODY(iseq)->param.flags.has_block &&
424 (unsigned int)ISEQ_BODY(iseq)->param.block_start == i) {
425 const VALUE *ep = env->ep;
426 if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
427 RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
428 VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
432 *envp = env;
433 return &env->env[i];
437 else {
438 *envp = NULL;
439 return NULL;
441 } while ((env = rb_vm_env_prev_env(env)) != NULL);
443 *envp = NULL;
444 return NULL;
448 * check local variable name.
449 * returns ID if it's an already interned symbol, or 0 with setting
450 * local name in String to *namep.
452 static ID
453 check_local_id(VALUE bindval, volatile VALUE *pname)
455 ID lid = rb_check_id(pname);
456 VALUE name = *pname;
458 if (lid) {
459 if (!rb_is_local_id(lid)) {
460 rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
461 bindval, ID2SYM(lid));
464 else {
465 if (!rb_is_local_name(name)) {
466 rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
467 bindval, name);
469 return 0;
471 return lid;
475 * call-seq:
476 * binding.local_variables -> Array
478 * Returns the names of the binding's local variables as symbols.
480 * def foo
481 * a = 1
482 * 2.times do |n|
483 * binding.local_variables #=> [:a, :n]
484 * end
485 * end
487 * This method is the short version of the following code:
489 * binding.eval("local_variables")
492 static VALUE
493 bind_local_variables(VALUE bindval)
495 const rb_binding_t *bind;
496 const rb_env_t *env;
498 GetBindingPtr(bindval, bind);
499 env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
500 return rb_vm_env_local_variables(env);
504 * call-seq:
505 * binding.local_variable_get(symbol) -> obj
507 * Returns the value of the local variable +symbol+.
509 * def foo
510 * a = 1
511 * binding.local_variable_get(:a) #=> 1
512 * binding.local_variable_get(:b) #=> NameError
513 * end
515 * This method is the short version of the following code:
517 * binding.eval("#{symbol}")
520 static VALUE
521 bind_local_variable_get(VALUE bindval, VALUE sym)
523 ID lid = check_local_id(bindval, &sym);
524 const rb_binding_t *bind;
525 const VALUE *ptr;
526 const rb_env_t *env;
528 if (!lid) goto undefined;
530 GetBindingPtr(bindval, bind);
532 env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
533 if ((ptr = get_local_variable_ptr(&env, lid)) != NULL) {
534 return *ptr;
537 sym = ID2SYM(lid);
538 undefined:
539 rb_name_err_raise("local variable '%1$s' is not defined for %2$s",
540 bindval, sym);
541 UNREACHABLE_RETURN(Qundef);
545 * call-seq:
546 * binding.local_variable_set(symbol, obj) -> obj
548 * Set local variable named +symbol+ as +obj+.
550 * def foo
551 * a = 1
552 * bind = binding
553 * bind.local_variable_set(:a, 2) # set existing local variable `a'
554 * bind.local_variable_set(:b, 3) # create new local variable `b'
555 * # `b' exists only in binding
557 * p bind.local_variable_get(:a) #=> 2
558 * p bind.local_variable_get(:b) #=> 3
559 * p a #=> 2
560 * p b #=> NameError
561 * end
563 * This method behaves similarly to the following code:
565 * binding.eval("#{symbol} = #{obj}")
567 * if +obj+ can be dumped in Ruby code.
569 static VALUE
570 bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
572 ID lid = check_local_id(bindval, &sym);
573 rb_binding_t *bind;
574 const VALUE *ptr;
575 const rb_env_t *env;
577 if (!lid) lid = rb_intern_str(sym);
579 GetBindingPtr(bindval, bind);
580 env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
581 if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
582 /* not found. create new env */
583 ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
584 env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
587 #if YJIT_STATS
588 rb_yjit_collect_binding_set();
589 #endif
591 RB_OBJ_WRITE(env, ptr, val);
593 return val;
597 * call-seq:
598 * binding.local_variable_defined?(symbol) -> obj
600 * Returns +true+ if a local variable +symbol+ exists.
602 * def foo
603 * a = 1
604 * binding.local_variable_defined?(:a) #=> true
605 * binding.local_variable_defined?(:b) #=> false
606 * end
608 * This method is the short version of the following code:
610 * binding.eval("defined?(#{symbol}) == 'local-variable'")
613 static VALUE
614 bind_local_variable_defined_p(VALUE bindval, VALUE sym)
616 ID lid = check_local_id(bindval, &sym);
617 const rb_binding_t *bind;
618 const rb_env_t *env;
620 if (!lid) return Qfalse;
622 GetBindingPtr(bindval, bind);
623 env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
624 return RBOOL(get_local_variable_ptr(&env, lid));
628 * call-seq:
629 * binding.receiver -> object
631 * Returns the bound receiver of the binding object.
633 static VALUE
634 bind_receiver(VALUE bindval)
636 const rb_binding_t *bind;
637 GetBindingPtr(bindval, bind);
638 return vm_block_self(&bind->block);
642 * call-seq:
643 * binding.source_location -> [String, Integer]
645 * Returns the Ruby source filename and line number of the binding object.
647 static VALUE
648 bind_location(VALUE bindval)
650 VALUE loc[2];
651 const rb_binding_t *bind;
652 GetBindingPtr(bindval, bind);
653 loc[0] = pathobj_path(bind->pathobj);
654 loc[1] = INT2FIX(bind->first_lineno);
656 return rb_ary_new4(2, loc);
659 static VALUE
660 cfunc_proc_new(VALUE klass, VALUE ifunc)
662 rb_proc_t *proc;
663 cfunc_proc_t *sproc;
664 VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
665 VALUE *ep;
667 proc = &sproc->basic;
668 vm_block_type_set(&proc->block, block_type_ifunc);
670 *(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
671 ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
672 ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
673 ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
674 ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
676 /* self? */
677 RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
678 proc->is_lambda = TRUE;
679 return procval;
682 static VALUE
683 sym_proc_new(VALUE klass, VALUE sym)
685 VALUE procval = rb_proc_alloc(klass);
686 rb_proc_t *proc;
687 GetProcPtr(procval, proc);
689 vm_block_type_set(&proc->block, block_type_symbol);
690 proc->is_lambda = TRUE;
691 RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
692 return procval;
695 struct vm_ifunc *
696 rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
698 union {
699 struct vm_ifunc_argc argc;
700 VALUE packed;
701 } arity;
703 if (min_argc < UNLIMITED_ARGUMENTS ||
704 #if SIZEOF_INT * 2 > SIZEOF_VALUE
705 min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
706 #endif
707 0) {
708 rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
709 min_argc);
711 if (max_argc < UNLIMITED_ARGUMENTS ||
712 #if SIZEOF_INT * 2 > SIZEOF_VALUE
713 max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
714 #endif
715 0) {
716 rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
717 max_argc);
719 arity.argc.min = min_argc;
720 arity.argc.max = max_argc;
721 rb_execution_context_t *ec = GET_EC();
723 struct vm_ifunc *ifunc = IMEMO_NEW(struct vm_ifunc, imemo_ifunc, (VALUE)rb_vm_svar_lep(ec, ec->cfp));
724 ifunc->func = func;
725 ifunc->data = data;
726 ifunc->argc = arity.argc;
728 return ifunc;
731 VALUE
732 rb_func_proc_new(rb_block_call_func_t func, VALUE val)
734 struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
735 return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
738 VALUE
739 rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
741 struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
742 return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
745 static const char proc_without_block[] = "tried to create Proc object without a block";
747 static VALUE
748 proc_new(VALUE klass, int8_t is_lambda)
750 VALUE procval;
751 const rb_execution_context_t *ec = GET_EC();
752 rb_control_frame_t *cfp = ec->cfp;
753 VALUE block_handler;
755 if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
756 rb_raise(rb_eArgError, proc_without_block);
759 /* block is in cf */
760 switch (vm_block_handler_type(block_handler)) {
761 case block_handler_type_proc:
762 procval = VM_BH_TO_PROC(block_handler);
764 if (RBASIC_CLASS(procval) == klass) {
765 return procval;
767 else {
768 VALUE newprocval = rb_proc_dup(procval);
769 RBASIC_SET_CLASS(newprocval, klass);
770 return newprocval;
772 break;
774 case block_handler_type_symbol:
775 return (klass != rb_cProc) ?
776 sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
777 rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
778 break;
780 case block_handler_type_ifunc:
781 case block_handler_type_iseq:
782 return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
784 VM_UNREACHABLE(proc_new);
785 return Qnil;
789 * call-seq:
790 * Proc.new {|...| block } -> a_proc
792 * Creates a new Proc object, bound to the current context.
794 * proc = Proc.new { "hello" }
795 * proc.call #=> "hello"
797 * Raises ArgumentError if called without a block.
799 * Proc.new #=> ArgumentError
802 static VALUE
803 rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
805 VALUE block = proc_new(klass, FALSE);
807 rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
808 return block;
811 VALUE
812 rb_block_proc(void)
814 return proc_new(rb_cProc, FALSE);
818 * call-seq:
819 * proc { |...| block } -> a_proc
821 * Equivalent to Proc.new.
824 static VALUE
825 f_proc(VALUE _)
827 return proc_new(rb_cProc, FALSE);
830 VALUE
831 rb_block_lambda(void)
833 return proc_new(rb_cProc, TRUE);
836 static void
837 f_lambda_filter_non_literal(void)
839 rb_control_frame_t *cfp = GET_EC()->cfp;
840 VALUE block_handler = rb_vm_frame_block_handler(cfp);
842 if (block_handler == VM_BLOCK_HANDLER_NONE) {
843 // no block erorr raised else where
844 return;
847 switch (vm_block_handler_type(block_handler)) {
848 case block_handler_type_iseq:
849 if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) {
850 return;
852 break;
853 case block_handler_type_symbol:
854 return;
855 case block_handler_type_proc:
856 if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) {
857 return;
859 break;
860 case block_handler_type_ifunc:
861 break;
864 rb_raise(rb_eArgError, "the lambda method requires a literal block");
868 * call-seq:
869 * lambda { |...| block } -> a_proc
871 * Equivalent to Proc.new, except the resulting Proc objects check the
872 * number of parameters passed when called.
875 static VALUE
876 f_lambda(VALUE _)
878 f_lambda_filter_non_literal();
879 return rb_block_lambda();
882 /* Document-method: Proc#===
884 * call-seq:
885 * proc === obj -> result_of_proc
887 * Invokes the block with +obj+ as the proc's parameter like Proc#call.
888 * This allows a proc object to be the target of a +when+ clause
889 * in a case statement.
892 /* CHECKME: are the argument checking semantics correct? */
895 * Document-method: Proc#[]
896 * Document-method: Proc#call
897 * Document-method: Proc#yield
899 * call-seq:
900 * prc.call(params,...) -> obj
901 * prc[params,...] -> obj
902 * prc.(params,...) -> obj
903 * prc.yield(params,...) -> obj
905 * Invokes the block, setting the block's parameters to the values in
906 * <i>params</i> using something close to method calling semantics.
907 * Returns the value of the last expression evaluated in the block.
909 * a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
910 * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
911 * a_proc[9, 1, 2, 3] #=> [9, 18, 27]
912 * a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
913 * a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
915 * Note that <code>prc.()</code> invokes <code>prc.call()</code> with
916 * the parameters given. It's syntactic sugar to hide "call".
918 * For procs created using #lambda or <code>->()</code> an error is
919 * generated if the wrong number of parameters are passed to the
920 * proc. For procs created using Proc.new or Kernel.proc, extra
921 * parameters are silently discarded and missing parameters are set
922 * to +nil+.
924 * a_proc = proc {|a,b| [a,b] }
925 * a_proc.call(1) #=> [1, nil]
927 * a_proc = lambda {|a,b| [a,b] }
928 * a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
930 * See also Proc#lambda?.
932 #if 0
933 static VALUE
934 proc_call(int argc, VALUE *argv, VALUE procval)
936 /* removed */
938 #endif
940 #if SIZEOF_LONG > SIZEOF_INT
941 static inline int
942 check_argc(long argc)
944 if (argc > INT_MAX || argc < 0) {
945 rb_raise(rb_eArgError, "too many arguments (%lu)",
946 (unsigned long)argc);
948 return (int)argc;
950 #else
951 #define check_argc(argc) (argc)
952 #endif
954 VALUE
955 rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
957 VALUE vret;
958 rb_proc_t *proc;
959 int argc = check_argc(RARRAY_LEN(args));
960 const VALUE *argv = RARRAY_CONST_PTR(args);
961 GetProcPtr(self, proc);
962 vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
963 kw_splat, VM_BLOCK_HANDLER_NONE);
964 RB_GC_GUARD(self);
965 RB_GC_GUARD(args);
966 return vret;
969 VALUE
970 rb_proc_call(VALUE self, VALUE args)
972 return rb_proc_call_kw(self, args, RB_NO_KEYWORDS);
975 static VALUE
976 proc_to_block_handler(VALUE procval)
978 return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
981 VALUE
982 rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
984 rb_execution_context_t *ec = GET_EC();
985 VALUE vret;
986 rb_proc_t *proc;
987 GetProcPtr(self, proc);
988 vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
989 RB_GC_GUARD(self);
990 return vret;
993 VALUE
994 rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
996 return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS);
1001 * call-seq:
1002 * prc.arity -> integer
1004 * Returns the number of mandatory arguments. If the block
1005 * is declared to take no arguments, returns 0. If the block is known
1006 * to take exactly n arguments, returns n.
1007 * If the block has optional arguments, returns -n-1, where n is the
1008 * number of mandatory arguments, with the exception for blocks that
1009 * are not lambdas and have only a finite number of optional arguments;
1010 * in this latter case, returns n.
1011 * Keyword arguments will be considered as a single additional argument,
1012 * that argument being mandatory if any keyword argument is mandatory.
1013 * A #proc with no argument declarations is the same as a block
1014 * declaring <code>||</code> as its arguments.
1016 * proc {}.arity #=> 0
1017 * proc { || }.arity #=> 0
1018 * proc { |a| }.arity #=> 1
1019 * proc { |a, b| }.arity #=> 2
1020 * proc { |a, b, c| }.arity #=> 3
1021 * proc { |*a| }.arity #=> -1
1022 * proc { |a, *b| }.arity #=> -2
1023 * proc { |a, *b, c| }.arity #=> -3
1024 * proc { |x:, y:, z:0| }.arity #=> 1
1025 * proc { |*a, x:, y:0| }.arity #=> -2
1027 * proc { |a=0| }.arity #=> 0
1028 * lambda { |a=0| }.arity #=> -1
1029 * proc { |a=0, b| }.arity #=> 1
1030 * lambda { |a=0, b| }.arity #=> -2
1031 * proc { |a=0, b=0| }.arity #=> 0
1032 * lambda { |a=0, b=0| }.arity #=> -1
1033 * proc { |a, b=0| }.arity #=> 1
1034 * lambda { |a, b=0| }.arity #=> -2
1035 * proc { |(a, b), c=0| }.arity #=> 1
1036 * lambda { |(a, b), c=0| }.arity #=> -2
1037 * proc { |a, x:0, y:0| }.arity #=> 1
1038 * lambda { |a, x:0, y:0| }.arity #=> -2
1041 static VALUE
1042 proc_arity(VALUE self)
1044 int arity = rb_proc_arity(self);
1045 return INT2FIX(arity);
1048 static inline int
1049 rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
1051 *max = ISEQ_BODY(iseq)->param.flags.has_rest == FALSE ?
1052 ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.opt_num + ISEQ_BODY(iseq)->param.post_num +
1053 (ISEQ_BODY(iseq)->param.flags.has_kw == TRUE || ISEQ_BODY(iseq)->param.flags.has_kwrest == TRUE || ISEQ_BODY(iseq)->param.flags.forwardable == TRUE)
1054 : UNLIMITED_ARGUMENTS;
1055 return ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.post_num + (ISEQ_BODY(iseq)->param.flags.has_kw && ISEQ_BODY(iseq)->param.keyword->required_num > 0);
1058 static int
1059 rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
1061 again:
1062 switch (vm_block_type(block)) {
1063 case block_type_iseq:
1064 return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
1065 case block_type_proc:
1066 block = vm_proc_block(block->as.proc);
1067 goto again;
1068 case block_type_ifunc:
1070 const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
1071 if (IS_METHOD_PROC_IFUNC(ifunc)) {
1072 /* e.g. method(:foo).to_proc.arity */
1073 return method_min_max_arity((VALUE)ifunc->data, max);
1075 *max = ifunc->argc.max;
1076 return ifunc->argc.min;
1078 case block_type_symbol:
1079 *max = UNLIMITED_ARGUMENTS;
1080 return 1;
1082 *max = UNLIMITED_ARGUMENTS;
1083 return 0;
1087 * Returns the number of required parameters and stores the maximum
1088 * number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
1089 * For non-lambda procs, the maximum is the number of non-ignored
1090 * parameters even though there is no actual limit to the number of parameters
1092 static int
1093 rb_proc_min_max_arity(VALUE self, int *max)
1095 rb_proc_t *proc;
1096 GetProcPtr(self, proc);
1097 return rb_vm_block_min_max_arity(&proc->block, max);
1101 rb_proc_arity(VALUE self)
1103 rb_proc_t *proc;
1104 int max, min;
1105 GetProcPtr(self, proc);
1106 min = rb_vm_block_min_max_arity(&proc->block, &max);
1107 return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
1110 static void
1111 block_setup(struct rb_block *block, VALUE block_handler)
1113 switch (vm_block_handler_type(block_handler)) {
1114 case block_handler_type_iseq:
1115 block->type = block_type_iseq;
1116 block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
1117 break;
1118 case block_handler_type_ifunc:
1119 block->type = block_type_ifunc;
1120 block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
1121 break;
1122 case block_handler_type_symbol:
1123 block->type = block_type_symbol;
1124 block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
1125 break;
1126 case block_handler_type_proc:
1127 block->type = block_type_proc;
1128 block->as.proc = VM_BH_TO_PROC(block_handler);
1133 rb_block_pair_yield_optimizable(void)
1135 int min, max;
1136 const rb_execution_context_t *ec = GET_EC();
1137 rb_control_frame_t *cfp = ec->cfp;
1138 VALUE block_handler = rb_vm_frame_block_handler(cfp);
1139 struct rb_block block;
1141 if (block_handler == VM_BLOCK_HANDLER_NONE) {
1142 rb_raise(rb_eArgError, "no block given");
1145 block_setup(&block, block_handler);
1146 min = rb_vm_block_min_max_arity(&block, &max);
1148 switch (vm_block_type(&block)) {
1149 case block_handler_type_symbol:
1150 return 0;
1152 case block_handler_type_proc:
1154 VALUE procval = block_handler;
1155 rb_proc_t *proc;
1156 GetProcPtr(procval, proc);
1157 if (proc->is_lambda) return 0;
1158 if (min != max) return 0;
1159 return min > 1;
1162 case block_handler_type_ifunc:
1164 const struct vm_ifunc *ifunc = block.as.captured.code.ifunc;
1165 if (ifunc->flags & IFUNC_YIELD_OPTIMIZABLE) return 1;
1168 default:
1169 return min > 1;
1174 rb_block_arity(void)
1176 int min, max;
1177 const rb_execution_context_t *ec = GET_EC();
1178 rb_control_frame_t *cfp = ec->cfp;
1179 VALUE block_handler = rb_vm_frame_block_handler(cfp);
1180 struct rb_block block;
1182 if (block_handler == VM_BLOCK_HANDLER_NONE) {
1183 rb_raise(rb_eArgError, "no block given");
1186 block_setup(&block, block_handler);
1188 switch (vm_block_type(&block)) {
1189 case block_handler_type_symbol:
1190 return -1;
1192 case block_handler_type_proc:
1193 return rb_proc_arity(block_handler);
1195 default:
1196 min = rb_vm_block_min_max_arity(&block, &max);
1197 return max != UNLIMITED_ARGUMENTS ? min : -min-1;
1202 rb_block_min_max_arity(int *max)
1204 const rb_execution_context_t *ec = GET_EC();
1205 rb_control_frame_t *cfp = ec->cfp;
1206 VALUE block_handler = rb_vm_frame_block_handler(cfp);
1207 struct rb_block block;
1209 if (block_handler == VM_BLOCK_HANDLER_NONE) {
1210 rb_raise(rb_eArgError, "no block given");
1213 block_setup(&block, block_handler);
1214 return rb_vm_block_min_max_arity(&block, max);
1217 const rb_iseq_t *
1218 rb_proc_get_iseq(VALUE self, int *is_proc)
1220 const rb_proc_t *proc;
1221 const struct rb_block *block;
1223 GetProcPtr(self, proc);
1224 block = &proc->block;
1225 if (is_proc) *is_proc = !proc->is_lambda;
1227 switch (vm_block_type(block)) {
1228 case block_type_iseq:
1229 return rb_iseq_check(block->as.captured.code.iseq);
1230 case block_type_proc:
1231 return rb_proc_get_iseq(block->as.proc, is_proc);
1232 case block_type_ifunc:
1234 const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
1235 if (IS_METHOD_PROC_IFUNC(ifunc)) {
1236 /* method(:foo).to_proc */
1237 if (is_proc) *is_proc = 0;
1238 return rb_method_iseq((VALUE)ifunc->data);
1240 else {
1241 return NULL;
1244 case block_type_symbol:
1245 return NULL;
1248 VM_UNREACHABLE(rb_proc_get_iseq);
1249 return NULL;
1252 /* call-seq:
1253 * prc == other -> true or false
1254 * prc.eql?(other) -> true or false
1256 * Two procs are the same if, and only if, they were created from the same code block.
1258 * def return_block(&block)
1259 * block
1260 * end
1262 * def pass_block_twice(&block)
1263 * [return_block(&block), return_block(&block)]
1264 * end
1266 * block1, block2 = pass_block_twice { puts 'test' }
1267 * # Blocks might be instantiated into Proc's lazily, so they may, or may not,
1268 * # be the same object.
1269 * # But they are produced from the same code block, so they are equal
1270 * block1 == block2
1271 * #=> true
1273 * # Another Proc will never be equal, even if the code is the "same"
1274 * block1 == proc { puts 'test' }
1275 * #=> false
1278 static VALUE
1279 proc_eq(VALUE self, VALUE other)
1281 const rb_proc_t *self_proc, *other_proc;
1282 const struct rb_block *self_block, *other_block;
1284 if (rb_obj_class(self) != rb_obj_class(other)) {
1285 return Qfalse;
1288 GetProcPtr(self, self_proc);
1289 GetProcPtr(other, other_proc);
1291 if (self_proc->is_from_method != other_proc->is_from_method ||
1292 self_proc->is_lambda != other_proc->is_lambda) {
1293 return Qfalse;
1296 self_block = &self_proc->block;
1297 other_block = &other_proc->block;
1299 if (vm_block_type(self_block) != vm_block_type(other_block)) {
1300 return Qfalse;
1303 switch (vm_block_type(self_block)) {
1304 case block_type_iseq:
1305 if (self_block->as.captured.ep != \
1306 other_block->as.captured.ep ||
1307 self_block->as.captured.code.iseq != \
1308 other_block->as.captured.code.iseq) {
1309 return Qfalse;
1311 break;
1312 case block_type_ifunc:
1313 if (self_block->as.captured.ep != \
1314 other_block->as.captured.ep ||
1315 self_block->as.captured.code.ifunc != \
1316 other_block->as.captured.code.ifunc) {
1317 return Qfalse;
1319 break;
1320 case block_type_proc:
1321 if (self_block->as.proc != other_block->as.proc) {
1322 return Qfalse;
1324 break;
1325 case block_type_symbol:
1326 if (self_block->as.symbol != other_block->as.symbol) {
1327 return Qfalse;
1329 break;
1332 return Qtrue;
1335 static VALUE
1336 iseq_location(const rb_iseq_t *iseq)
1338 VALUE loc[2];
1340 if (!iseq) return Qnil;
1341 rb_iseq_check(iseq);
1342 loc[0] = rb_iseq_path(iseq);
1343 loc[1] = RB_INT2NUM(ISEQ_BODY(iseq)->location.first_lineno);
1345 return rb_ary_new4(2, loc);
1348 VALUE
1349 rb_iseq_location(const rb_iseq_t *iseq)
1351 return iseq_location(iseq);
1355 * call-seq:
1356 * prc.source_location -> [String, Integer]
1358 * Returns the Ruby source filename and line number containing this proc
1359 * or +nil+ if this proc was not defined in Ruby (i.e. native).
1362 VALUE
1363 rb_proc_location(VALUE self)
1365 return iseq_location(rb_proc_get_iseq(self, 0));
1368 VALUE
1369 rb_unnamed_parameters(int arity)
1371 VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
1372 int n = (arity < 0) ? ~arity : arity;
1373 ID req, rest;
1374 CONST_ID(req, "req");
1375 a = rb_ary_new3(1, ID2SYM(req));
1376 OBJ_FREEZE(a);
1377 for (; n; --n) {
1378 rb_ary_push(param, a);
1380 if (arity < 0) {
1381 CONST_ID(rest, "rest");
1382 rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
1384 return param;
1388 * call-seq:
1389 * prc.parameters(lambda: nil) -> array
1391 * Returns the parameter information of this proc. If the lambda
1392 * keyword is provided and not nil, treats the proc as a lambda if
1393 * true and as a non-lambda if false.
1395 * prc = proc{|x, y=42, *other|}
1396 * prc.parameters #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
1397 * prc = lambda{|x, y=42, *other|}
1398 * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
1399 * prc = proc{|x, y=42, *other|}
1400 * prc.parameters(lambda: true) #=> [[:req, :x], [:opt, :y], [:rest, :other]]
1401 * prc = lambda{|x, y=42, *other|}
1402 * prc.parameters(lambda: false) #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
1405 static VALUE
1406 rb_proc_parameters(int argc, VALUE *argv, VALUE self)
1408 static ID keyword_ids[1];
1409 VALUE opt, lambda;
1410 VALUE kwargs[1];
1411 int is_proc ;
1412 const rb_iseq_t *iseq;
1414 iseq = rb_proc_get_iseq(self, &is_proc);
1416 if (!keyword_ids[0]) {
1417 CONST_ID(keyword_ids[0], "lambda");
1420 rb_scan_args(argc, argv, "0:", &opt);
1421 if (!NIL_P(opt)) {
1422 rb_get_kwargs(opt, keyword_ids, 0, 1, kwargs);
1423 lambda = kwargs[0];
1424 if (!NIL_P(lambda)) {
1425 is_proc = !RTEST(lambda);
1429 if (!iseq) {
1430 return rb_unnamed_parameters(rb_proc_arity(self));
1432 return rb_iseq_parameters(iseq, is_proc);
1435 st_index_t
1436 rb_hash_proc(st_index_t hash, VALUE prc)
1438 rb_proc_t *proc;
1439 GetProcPtr(prc, proc);
1440 hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val);
1441 hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self);
1442 return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep);
1447 * call-seq:
1448 * to_proc
1450 * Returns a Proc object which calls the method with name of +self+
1451 * on the first parameter and passes the remaining parameters to the method.
1453 * proc = :to_s.to_proc # => #<Proc:0x000001afe0e48680(&:to_s) (lambda)>
1454 * proc.call(1000) # => "1000"
1455 * proc.call(1000, 16) # => "3e8"
1456 * (1..3).collect(&:to_s) # => ["1", "2", "3"]
1460 VALUE
1461 rb_sym_to_proc(VALUE sym)
1463 static VALUE sym_proc_cache = Qfalse;
1464 enum {SYM_PROC_CACHE_SIZE = 67};
1465 VALUE proc;
1466 long index;
1467 ID id;
1469 if (!sym_proc_cache) {
1470 sym_proc_cache = rb_ary_hidden_new(SYM_PROC_CACHE_SIZE * 2);
1471 rb_vm_register_global_object(sym_proc_cache);
1472 rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
1475 id = SYM2ID(sym);
1476 index = (id % SYM_PROC_CACHE_SIZE) << 1;
1478 if (RARRAY_AREF(sym_proc_cache, index) == sym) {
1479 return RARRAY_AREF(sym_proc_cache, index + 1);
1481 else {
1482 proc = sym_proc_new(rb_cProc, ID2SYM(id));
1483 RARRAY_ASET(sym_proc_cache, index, sym);
1484 RARRAY_ASET(sym_proc_cache, index + 1, proc);
1485 return proc;
1490 * call-seq:
1491 * prc.hash -> integer
1493 * Returns a hash value corresponding to proc body.
1495 * See also Object#hash.
1498 static VALUE
1499 proc_hash(VALUE self)
1501 st_index_t hash;
1502 hash = rb_hash_start(0);
1503 hash = rb_hash_proc(hash, self);
1504 hash = rb_hash_end(hash);
1505 return ST2FIX(hash);
1508 VALUE
1509 rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
1511 VALUE cname = rb_obj_class(self);
1512 VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
1514 again:
1515 switch (vm_block_type(block)) {
1516 case block_type_proc:
1517 block = vm_proc_block(block->as.proc);
1518 goto again;
1519 case block_type_iseq:
1521 const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
1522 rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
1523 rb_iseq_path(iseq),
1524 ISEQ_BODY(iseq)->location.first_lineno);
1526 break;
1527 case block_type_symbol:
1528 rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
1529 break;
1530 case block_type_ifunc:
1531 rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
1532 break;
1535 if (additional_info) rb_str_cat_cstr(str, additional_info);
1536 rb_str_cat_cstr(str, ">");
1537 return str;
1541 * call-seq:
1542 * prc.to_s -> string
1544 * Returns the unique identifier for this proc, along with
1545 * an indication of where the proc was defined.
1548 static VALUE
1549 proc_to_s(VALUE self)
1551 const rb_proc_t *proc;
1552 GetProcPtr(self, proc);
1553 return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
1557 * call-seq:
1558 * prc.to_proc -> proc
1560 * Part of the protocol for converting objects to Proc objects.
1561 * Instances of class Proc simply return themselves.
1564 static VALUE
1565 proc_to_proc(VALUE self)
1567 return self;
1570 static void
1571 bm_mark_and_move(void *ptr)
1573 struct METHOD *data = ptr;
1574 rb_gc_mark_and_move((VALUE *)&data->recv);
1575 rb_gc_mark_and_move((VALUE *)&data->klass);
1576 rb_gc_mark_and_move((VALUE *)&data->iclass);
1577 rb_gc_mark_and_move((VALUE *)&data->owner);
1578 rb_gc_mark_and_move_ptr((rb_method_entry_t **)&data->me);
1581 static const rb_data_type_t method_data_type = {
1582 "method",
1584 bm_mark_and_move,
1585 RUBY_TYPED_DEFAULT_FREE,
1586 NULL, // No external memory to report,
1587 bm_mark_and_move,
1589 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
1592 VALUE
1593 rb_obj_is_method(VALUE m)
1595 return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type));
1598 static int
1599 respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
1601 /* TODO: merge with obj_respond_to() */
1602 ID rmiss = idRespond_to_missing;
1604 if (UNDEF_P(obj)) return 0;
1605 if (rb_method_basic_definition_p(klass, rmiss)) return 0;
1606 return RTEST(rb_funcall(obj, rmiss, 2, sym, RBOOL(!scope)));
1610 static VALUE
1611 mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
1613 struct METHOD *data;
1614 VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
1615 rb_method_entry_t *me;
1616 rb_method_definition_t *def;
1618 RB_OBJ_WRITE(method, &data->recv, obj);
1619 RB_OBJ_WRITE(method, &data->klass, klass);
1620 RB_OBJ_WRITE(method, &data->owner, klass);
1622 def = ZALLOC(rb_method_definition_t);
1623 def->type = VM_METHOD_TYPE_MISSING;
1624 def->original_id = id;
1626 me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
1628 RB_OBJ_WRITE(method, &data->me, me);
1630 return method;
1633 static VALUE
1634 mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
1636 VALUE vid = rb_str_intern(*name);
1637 *name = vid;
1638 if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
1639 return mnew_missing(klass, obj, SYM2ID(vid), mclass);
1642 static VALUE
1643 mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
1644 VALUE obj, ID id, VALUE mclass, int scope, int error)
1646 struct METHOD *data;
1647 VALUE method;
1648 const rb_method_entry_t *original_me = me;
1649 rb_method_visibility_t visi = METHOD_VISI_UNDEF;
1651 again:
1652 if (UNDEFINED_METHOD_ENTRY_P(me)) {
1653 if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
1654 return mnew_missing(klass, obj, id, mclass);
1656 if (!error) return Qnil;
1657 rb_print_undef(klass, id, METHOD_VISI_UNDEF);
1659 if (visi == METHOD_VISI_UNDEF) {
1660 visi = METHOD_ENTRY_VISI(me);
1661 RUBY_ASSERT(visi != METHOD_VISI_UNDEF); /* !UNDEFINED_METHOD_ENTRY_P(me) */
1662 if (scope && (visi != METHOD_VISI_PUBLIC)) {
1663 if (!error) return Qnil;
1664 rb_print_inaccessible(klass, id, visi);
1667 if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
1668 if (me->defined_class) {
1669 VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
1670 id = me->def->original_id;
1671 me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
1673 else {
1674 VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner));
1675 id = me->def->original_id;
1676 me = rb_method_entry_without_refinements(klass, id, &iclass);
1678 goto again;
1681 method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
1683 if (UNDEF_P(obj)) {
1684 RB_OBJ_WRITE(method, &data->recv, Qundef);
1685 RB_OBJ_WRITE(method, &data->klass, Qundef);
1687 else {
1688 RB_OBJ_WRITE(method, &data->recv, obj);
1689 RB_OBJ_WRITE(method, &data->klass, klass);
1691 RB_OBJ_WRITE(method, &data->iclass, iclass);
1692 RB_OBJ_WRITE(method, &data->owner, original_me->owner);
1693 RB_OBJ_WRITE(method, &data->me, me);
1695 return method;
1698 static VALUE
1699 mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
1700 VALUE obj, ID id, VALUE mclass, int scope)
1702 return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
1705 static VALUE
1706 mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
1708 const rb_method_entry_t *me;
1709 VALUE iclass = Qnil;
1711 ASSUME(!UNDEF_P(obj));
1712 me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
1713 return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
1716 static VALUE
1717 mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope)
1719 const rb_method_entry_t *me;
1720 VALUE iclass = Qnil;
1722 me = rb_method_entry_with_refinements(klass, id, &iclass);
1723 return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope);
1726 static inline VALUE
1727 method_entry_defined_class(const rb_method_entry_t *me)
1729 VALUE defined_class = me->defined_class;
1730 return defined_class ? defined_class : me->owner;
1733 /**********************************************************************
1735 * Document-class: Method
1737 * Method objects are created by Object#method, and are associated
1738 * with a particular object (not just with a class). They may be
1739 * used to invoke the method within the object, and as a block
1740 * associated with an iterator. They may also be unbound from one
1741 * object (creating an UnboundMethod) and bound to another.
1743 * class Thing
1744 * def square(n)
1745 * n*n
1746 * end
1747 * end
1748 * thing = Thing.new
1749 * meth = thing.method(:square)
1751 * meth.call(9) #=> 81
1752 * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
1754 * [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
1756 * require 'date'
1757 * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
1758 * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
1762 * call-seq:
1763 * meth.eql?(other_meth) -> true or false
1764 * meth == other_meth -> true or false
1766 * Two method objects are equal if they are bound to the same
1767 * object and refer to the same method definition and the classes
1768 * defining the methods are the same class or module.
1771 static VALUE
1772 method_eq(VALUE method, VALUE other)
1774 struct METHOD *m1, *m2;
1775 VALUE klass1, klass2;
1777 if (!rb_obj_is_method(other))
1778 return Qfalse;
1779 if (CLASS_OF(method) != CLASS_OF(other))
1780 return Qfalse;
1782 Check_TypedStruct(method, &method_data_type);
1783 m1 = (struct METHOD *)RTYPEDDATA_GET_DATA(method);
1784 m2 = (struct METHOD *)RTYPEDDATA_GET_DATA(other);
1786 klass1 = method_entry_defined_class(m1->me);
1787 klass2 = method_entry_defined_class(m2->me);
1789 if (!rb_method_entry_eq(m1->me, m2->me) ||
1790 klass1 != klass2 ||
1791 m1->klass != m2->klass ||
1792 m1->recv != m2->recv) {
1793 return Qfalse;
1796 return Qtrue;
1800 * call-seq:
1801 * meth.eql?(other_meth) -> true or false
1802 * meth == other_meth -> true or false
1804 * Two unbound method objects are equal if they refer to the same
1805 * method definition.
1807 * Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice)
1808 * #=> true
1810 * Array.instance_method(:sum) == Enumerable.instance_method(:sum)
1811 * #=> false, Array redefines the method for efficiency
1813 #define unbound_method_eq method_eq
1816 * call-seq:
1817 * meth.hash -> integer
1819 * Returns a hash value corresponding to the method object.
1821 * See also Object#hash.
1824 static VALUE
1825 method_hash(VALUE method)
1827 struct METHOD *m;
1828 st_index_t hash;
1830 TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
1831 hash = rb_hash_start((st_index_t)m->recv);
1832 hash = rb_hash_method_entry(hash, m->me);
1833 hash = rb_hash_end(hash);
1835 return ST2FIX(hash);
1839 * call-seq:
1840 * meth.unbind -> unbound_method
1842 * Dissociates <i>meth</i> from its current receiver. The resulting
1843 * UnboundMethod can subsequently be bound to a new object of the
1844 * same class (see UnboundMethod).
1847 static VALUE
1848 method_unbind(VALUE obj)
1850 VALUE method;
1851 struct METHOD *orig, *data;
1853 TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
1854 method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
1855 &method_data_type, data);
1856 RB_OBJ_WRITE(method, &data->recv, Qundef);
1857 RB_OBJ_WRITE(method, &data->klass, Qundef);
1858 RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
1859 RB_OBJ_WRITE(method, &data->owner, orig->me->owner);
1860 RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
1862 return method;
1866 * call-seq:
1867 * meth.receiver -> object
1869 * Returns the bound receiver of the method object.
1871 * (1..3).method(:map).receiver # => 1..3
1874 static VALUE
1875 method_receiver(VALUE obj)
1877 struct METHOD *data;
1879 TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
1880 return data->recv;
1884 * call-seq:
1885 * meth.name -> symbol
1887 * Returns the name of the method.
1890 static VALUE
1891 method_name(VALUE obj)
1893 struct METHOD *data;
1895 TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
1896 return ID2SYM(data->me->called_id);
1900 * call-seq:
1901 * meth.original_name -> symbol
1903 * Returns the original name of the method.
1905 * class C
1906 * def foo; end
1907 * alias bar foo
1908 * end
1909 * C.instance_method(:bar).original_name # => :foo
1912 static VALUE
1913 method_original_name(VALUE obj)
1915 struct METHOD *data;
1917 TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
1918 return ID2SYM(data->me->def->original_id);
1922 * call-seq:
1923 * meth.owner -> class_or_module
1925 * Returns the class or module on which this method is defined.
1926 * In other words,
1928 * meth.owner.instance_methods(false).include?(meth.name) # => true
1930 * holds as long as the method is not removed/undefined/replaced,
1931 * (with private_instance_methods instead of instance_methods if the method
1932 * is private).
1934 * See also Method#receiver.
1936 * (1..3).method(:map).owner #=> Enumerable
1939 static VALUE
1940 method_owner(VALUE obj)
1942 struct METHOD *data;
1943 TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
1944 return data->owner;
1947 void
1948 rb_method_name_error(VALUE klass, VALUE str)
1950 #define MSG(s) rb_fstring_lit("undefined method '%1$s' for"s" '%2$s'")
1951 VALUE c = klass;
1952 VALUE s = Qundef;
1954 if (RCLASS_SINGLETON_P(c)) {
1955 VALUE obj = RCLASS_ATTACHED_OBJECT(klass);
1957 switch (BUILTIN_TYPE(obj)) {
1958 case T_MODULE:
1959 case T_CLASS:
1960 c = obj;
1961 break;
1962 default:
1963 break;
1966 else if (RB_TYPE_P(c, T_MODULE)) {
1967 s = MSG(" module");
1969 if (UNDEF_P(s)) {
1970 s = MSG(" class");
1972 rb_name_err_raise_str(s, c, str);
1973 #undef MSG
1976 static VALUE
1977 obj_method(VALUE obj, VALUE vid, int scope)
1979 ID id = rb_check_id(&vid);
1980 const VALUE klass = CLASS_OF(obj);
1981 const VALUE mclass = rb_cMethod;
1983 if (!id) {
1984 VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
1985 if (m) return m;
1986 rb_method_name_error(klass, vid);
1988 return mnew_callable(klass, obj, id, mclass, scope);
1992 * call-seq:
1993 * obj.method(sym) -> method
1995 * Looks up the named method as a receiver in <i>obj</i>, returning a
1996 * Method object (or raising NameError). The Method object acts as a
1997 * closure in <i>obj</i>'s object instance, so instance variables and
1998 * the value of <code>self</code> remain available.
2000 * class Demo
2001 * def initialize(n)
2002 * @iv = n
2003 * end
2004 * def hello()
2005 * "Hello, @iv = #{@iv}"
2006 * end
2007 * end
2009 * k = Demo.new(99)
2010 * m = k.method(:hello)
2011 * m.call #=> "Hello, @iv = 99"
2013 * l = Demo.new('Fred')
2014 * m = l.method("hello")
2015 * m.call #=> "Hello, @iv = Fred"
2017 * Note that Method implements <code>to_proc</code> method, which
2018 * means it can be used with iterators.
2020 * [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
2022 * out = File.open('test.txt', 'w')
2023 * [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
2025 * require 'date'
2026 * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
2027 * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
2030 VALUE
2031 rb_obj_method(VALUE obj, VALUE vid)
2033 return obj_method(obj, vid, FALSE);
2037 * call-seq:
2038 * obj.public_method(sym) -> method
2040 * Similar to _method_, searches public method only.
2043 VALUE
2044 rb_obj_public_method(VALUE obj, VALUE vid)
2046 return obj_method(obj, vid, TRUE);
2050 * call-seq:
2051 * obj.singleton_method(sym) -> method
2053 * Similar to _method_, searches singleton method only.
2055 * class Demo
2056 * def initialize(n)
2057 * @iv = n
2058 * end
2059 * def hello()
2060 * "Hello, @iv = #{@iv}"
2061 * end
2062 * end
2064 * k = Demo.new(99)
2065 * def k.hi
2066 * "Hi, @iv = #{@iv}"
2067 * end
2068 * m = k.singleton_method(:hi)
2069 * m.call #=> "Hi, @iv = 99"
2070 * m = k.singleton_method(:hello) #=> NameError
2073 VALUE
2074 rb_obj_singleton_method(VALUE obj, VALUE vid)
2076 VALUE klass = rb_singleton_class_get(obj);
2077 ID id = rb_check_id(&vid);
2079 if (NIL_P(klass) ||
2080 NIL_P(klass = RCLASS_ORIGIN(klass)) ||
2081 !NIL_P(rb_special_singleton_class(obj))) {
2082 /* goto undef; */
2084 else if (! id) {
2085 VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
2086 if (m) return m;
2087 /* else goto undef; */
2089 else {
2090 const rb_method_entry_t *me = rb_method_entry_at(klass, id);
2091 vid = ID2SYM(id);
2093 if (UNDEFINED_METHOD_ENTRY_P(me)) {
2094 /* goto undef; */
2096 else if (UNDEFINED_REFINED_METHOD_P(me->def)) {
2097 /* goto undef; */
2099 else {
2100 return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
2104 /* undef: */
2105 rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'",
2106 obj, vid);
2107 UNREACHABLE_RETURN(Qundef);
2111 * call-seq:
2112 * mod.instance_method(symbol) -> unbound_method
2114 * Returns an +UnboundMethod+ representing the given
2115 * instance method in _mod_.
2117 * class Interpreter
2118 * def do_a() print "there, "; end
2119 * def do_d() print "Hello "; end
2120 * def do_e() print "!\n"; end
2121 * def do_v() print "Dave"; end
2122 * Dispatcher = {
2123 * "a" => instance_method(:do_a),
2124 * "d" => instance_method(:do_d),
2125 * "e" => instance_method(:do_e),
2126 * "v" => instance_method(:do_v)
2128 * def interpret(string)
2129 * string.each_char {|b| Dispatcher[b].bind(self).call }
2130 * end
2131 * end
2133 * interpreter = Interpreter.new
2134 * interpreter.interpret('dave')
2136 * <em>produces:</em>
2138 * Hello there, Dave!
2141 static VALUE
2142 rb_mod_instance_method(VALUE mod, VALUE vid)
2144 ID id = rb_check_id(&vid);
2145 if (!id) {
2146 rb_method_name_error(mod, vid);
2148 return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
2152 * call-seq:
2153 * mod.public_instance_method(symbol) -> unbound_method
2155 * Similar to _instance_method_, searches public method only.
2158 static VALUE
2159 rb_mod_public_instance_method(VALUE mod, VALUE vid)
2161 ID id = rb_check_id(&vid);
2162 if (!id) {
2163 rb_method_name_error(mod, vid);
2165 return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
2168 static VALUE
2169 rb_mod_define_method_with_visibility(int argc, VALUE *argv, VALUE mod, const struct rb_scope_visi_struct* scope_visi)
2171 ID id;
2172 VALUE body;
2173 VALUE name;
2174 int is_method = FALSE;
2176 rb_check_arity(argc, 1, 2);
2177 name = argv[0];
2178 id = rb_check_id(&name);
2179 if (argc == 1) {
2180 body = rb_block_lambda();
2182 else {
2183 body = argv[1];
2185 if (rb_obj_is_method(body)) {
2186 is_method = TRUE;
2188 else if (rb_obj_is_proc(body)) {
2189 is_method = FALSE;
2191 else {
2192 rb_raise(rb_eTypeError,
2193 "wrong argument type %s (expected Proc/Method/UnboundMethod)",
2194 rb_obj_classname(body));
2197 if (!id) id = rb_to_id(name);
2199 if (is_method) {
2200 struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(body);
2201 if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
2202 !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
2203 if (RCLASS_SINGLETON_P(method->me->owner)) {
2204 rb_raise(rb_eTypeError,
2205 "can't bind singleton method to a different class");
2207 else {
2208 rb_raise(rb_eTypeError,
2209 "bind argument must be a subclass of % "PRIsVALUE,
2210 method->me->owner);
2213 rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
2214 if (scope_visi->module_func) {
2215 rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
2217 RB_GC_GUARD(body);
2219 else {
2220 VALUE procval = rb_proc_dup(body);
2221 if (vm_proc_iseq(procval) != NULL) {
2222 rb_proc_t *proc;
2223 GetProcPtr(procval, proc);
2224 proc->is_lambda = TRUE;
2225 proc->is_from_method = TRUE;
2227 rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
2228 if (scope_visi->module_func) {
2229 rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
2233 return ID2SYM(id);
2237 * call-seq:
2238 * define_method(symbol, method) -> symbol
2239 * define_method(symbol) { block } -> symbol
2241 * Defines an instance method in the receiver. The _method_
2242 * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
2243 * If a block is specified, it is used as the method body.
2244 * If a block or the _method_ parameter has parameters,
2245 * they're used as method parameters.
2246 * This block is evaluated using #instance_eval.
2248 * class A
2249 * def fred
2250 * puts "In Fred"
2251 * end
2252 * def create_method(name, &block)
2253 * self.class.define_method(name, &block)
2254 * end
2255 * define_method(:wilma) { puts "Charge it!" }
2256 * define_method(:flint) {|name| puts "I'm #{name}!"}
2257 * end
2258 * class B < A
2259 * define_method(:barney, instance_method(:fred))
2260 * end
2261 * a = B.new
2262 * a.barney
2263 * a.wilma
2264 * a.flint('Dino')
2265 * a.create_method(:betty) { p self }
2266 * a.betty
2268 * <em>produces:</em>
2270 * In Fred
2271 * Charge it!
2272 * I'm Dino!
2273 * #<B:0x401b39e8>
2276 static VALUE
2277 rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
2279 const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
2280 const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
2281 const rb_scope_visibility_t *scope_visi = &default_scope_visi;
2283 if (cref) {
2284 scope_visi = CREF_SCOPE_VISI(cref);
2287 return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi);
2291 * call-seq:
2292 * define_singleton_method(symbol, method) -> symbol
2293 * define_singleton_method(symbol) { block } -> symbol
2295 * Defines a public singleton method in the receiver. The _method_
2296 * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
2297 * If a block is specified, it is used as the method body.
2298 * If a block or a method has parameters, they're used as method parameters.
2300 * class A
2301 * class << self
2302 * def class_name
2303 * to_s
2304 * end
2305 * end
2306 * end
2307 * A.define_singleton_method(:who_am_i) do
2308 * "I am: #{class_name}"
2309 * end
2310 * A.who_am_i # ==> "I am: A"
2312 * guy = "Bob"
2313 * guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
2314 * guy.hello #=> "Bob: Hello there!"
2316 * chris = "Chris"
2317 * chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
2318 * chris.greet("Hi") #=> "Hi, I'm Chris!"
2321 static VALUE
2322 rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
2324 VALUE klass = rb_singleton_class(obj);
2325 const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE};
2327 return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi);
2331 * define_method(symbol, method) -> symbol
2332 * define_method(symbol) { block } -> symbol
2334 * Defines a global function by _method_ or the block.
2337 static VALUE
2338 top_define_method(int argc, VALUE *argv, VALUE obj)
2340 return rb_mod_define_method(argc, argv, rb_top_main_class("define_method"));
2344 * call-seq:
2345 * method.clone -> new_method
2347 * Returns a clone of this method.
2349 * class A
2350 * def foo
2351 * return "bar"
2352 * end
2353 * end
2355 * m = A.new.method(:foo)
2356 * m.call # => "bar"
2357 * n = m.clone.call # => "bar"
2360 static VALUE
2361 method_clone(VALUE self)
2363 VALUE clone;
2364 struct METHOD *orig, *data;
2366 TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
2367 clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
2368 rb_obj_clone_setup(self, clone, Qnil);
2369 RB_OBJ_WRITE(clone, &data->recv, orig->recv);
2370 RB_OBJ_WRITE(clone, &data->klass, orig->klass);
2371 RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
2372 RB_OBJ_WRITE(clone, &data->owner, orig->owner);
2373 RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
2374 return clone;
2377 /* :nodoc: */
2378 static VALUE
2379 method_dup(VALUE self)
2381 VALUE clone;
2382 struct METHOD *orig, *data;
2384 TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
2385 clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
2386 rb_obj_dup_setup(self, clone);
2387 RB_OBJ_WRITE(clone, &data->recv, orig->recv);
2388 RB_OBJ_WRITE(clone, &data->klass, orig->klass);
2389 RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
2390 RB_OBJ_WRITE(clone, &data->owner, orig->owner);
2391 RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
2392 return clone;
2395 /* Document-method: Method#===
2397 * call-seq:
2398 * method === obj -> result_of_method
2400 * Invokes the method with +obj+ as the parameter like #call.
2401 * This allows a method object to be the target of a +when+ clause
2402 * in a case statement.
2404 * require 'prime'
2406 * case 1373
2407 * when Prime.method(:prime?)
2408 * # ...
2409 * end
2413 /* Document-method: Method#[]
2415 * call-seq:
2416 * meth[args, ...] -> obj
2418 * Invokes the <i>meth</i> with the specified arguments, returning the
2419 * method's return value, like #call.
2421 * m = 12.method("+")
2422 * m[3] #=> 15
2423 * m[20] #=> 32
2427 * call-seq:
2428 * meth.call(args, ...) -> obj
2430 * Invokes the <i>meth</i> with the specified arguments, returning the
2431 * method's return value.
2433 * m = 12.method("+")
2434 * m.call(3) #=> 15
2435 * m.call(20) #=> 32
2438 static VALUE
2439 rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
2441 return rb_method_call_kw(argc, argv, method, RB_PASS_CALLED_KEYWORDS);
2444 VALUE
2445 rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
2447 VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
2448 return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
2451 VALUE
2452 rb_method_call(int argc, const VALUE *argv, VALUE method)
2454 VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
2455 return rb_method_call_with_block(argc, argv, method, procval);
2458 static const rb_callable_method_entry_t *
2459 method_callable_method_entry(const struct METHOD *data)
2461 if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
2462 return (const rb_callable_method_entry_t *)data->me;
2465 static inline VALUE
2466 call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
2467 int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
2469 vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
2470 return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
2471 method_callable_method_entry(data), kw_splat);
2474 VALUE
2475 rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
2477 const struct METHOD *data;
2478 rb_execution_context_t *ec = GET_EC();
2480 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2481 if (UNDEF_P(data->recv)) {
2482 rb_raise(rb_eTypeError, "can't call unbound method; bind first");
2484 return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
2487 VALUE
2488 rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
2490 return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
2493 /**********************************************************************
2495 * Document-class: UnboundMethod
2497 * Ruby supports two forms of objectified methods. Class Method is
2498 * used to represent methods that are associated with a particular
2499 * object: these method objects are bound to that object. Bound
2500 * method objects for an object can be created using Object#method.
2502 * Ruby also supports unbound methods; methods objects that are not
2503 * associated with a particular object. These can be created either
2504 * by calling Module#instance_method or by calling #unbind on a bound
2505 * method object. The result of both of these is an UnboundMethod
2506 * object.
2508 * Unbound methods can only be called after they are bound to an
2509 * object. That object must be a kind_of? the method's original
2510 * class.
2512 * class Square
2513 * def area
2514 * @side * @side
2515 * end
2516 * def initialize(side)
2517 * @side = side
2518 * end
2519 * end
2521 * area_un = Square.instance_method(:area)
2523 * s = Square.new(12)
2524 * area = area_un.bind(s)
2525 * area.call #=> 144
2527 * Unbound methods are a reference to the method at the time it was
2528 * objectified: subsequent changes to the underlying class will not
2529 * affect the unbound method.
2531 * class Test
2532 * def test
2533 * :original
2534 * end
2535 * end
2536 * um = Test.instance_method(:test)
2537 * class Test
2538 * def test
2539 * :modified
2540 * end
2541 * end
2542 * t = Test.new
2543 * t.test #=> :modified
2544 * um.bind(t).call #=> :original
2548 static void
2549 convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out, const bool clone)
2551 VALUE methclass = data->owner;
2552 VALUE iclass = data->me->defined_class;
2553 VALUE klass = CLASS_OF(recv);
2555 if (RB_TYPE_P(methclass, T_MODULE)) {
2556 VALUE refined_class = rb_refinement_module_get_refined_class(methclass);
2557 if (!NIL_P(refined_class)) methclass = refined_class;
2559 if (!RB_TYPE_P(methclass, T_MODULE) && !RTEST(rb_obj_is_kind_of(recv, methclass))) {
2560 if (RCLASS_SINGLETON_P(methclass)) {
2561 rb_raise(rb_eTypeError,
2562 "singleton method called for a different object");
2564 else {
2565 rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
2566 methclass);
2570 const rb_method_entry_t *me;
2571 if (clone) {
2572 me = rb_method_entry_clone(data->me);
2574 else {
2575 me = data->me;
2578 if (RB_TYPE_P(me->owner, T_MODULE)) {
2579 if (!clone) {
2580 // if we didn't previously clone the method entry, then we need to clone it now
2581 // because this branch manipulates it in rb_method_entry_complement_defined_class
2582 me = rb_method_entry_clone(me);
2584 VALUE ic = rb_class_search_ancestor(klass, me->owner);
2585 if (ic) {
2586 klass = ic;
2587 iclass = ic;
2589 else {
2590 klass = rb_include_class_new(methclass, klass);
2592 me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
2595 *methclass_out = methclass;
2596 *klass_out = klass;
2597 *iclass_out = iclass;
2598 *me_out = me;
2602 * call-seq:
2603 * umeth.bind(obj) -> method
2605 * Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
2606 * <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
2607 * be true.
2609 * class A
2610 * def test
2611 * puts "In test, class = #{self.class}"
2612 * end
2613 * end
2614 * class B < A
2615 * end
2616 * class C < B
2617 * end
2620 * um = B.instance_method(:test)
2621 * bm = um.bind(C.new)
2622 * bm.call
2623 * bm = um.bind(B.new)
2624 * bm.call
2625 * bm = um.bind(A.new)
2626 * bm.call
2628 * <em>produces:</em>
2630 * In test, class = C
2631 * In test, class = B
2632 * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
2633 * from prog.rb:16
2636 static VALUE
2637 umethod_bind(VALUE method, VALUE recv)
2639 VALUE methclass, klass, iclass;
2640 const rb_method_entry_t *me;
2641 const struct METHOD *data;
2642 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2643 convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, true);
2645 struct METHOD *bound;
2646 method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
2647 RB_OBJ_WRITE(method, &bound->recv, recv);
2648 RB_OBJ_WRITE(method, &bound->klass, klass);
2649 RB_OBJ_WRITE(method, &bound->iclass, iclass);
2650 RB_OBJ_WRITE(method, &bound->owner, methclass);
2651 RB_OBJ_WRITE(method, &bound->me, me);
2653 return method;
2657 * call-seq:
2658 * umeth.bind_call(recv, args, ...) -> obj
2660 * Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
2661 * specified arguments.
2662 * This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
2664 static VALUE
2665 umethod_bind_call(int argc, VALUE *argv, VALUE method)
2667 rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
2668 VALUE recv = argv[0];
2669 argc--;
2670 argv++;
2672 VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
2673 rb_execution_context_t *ec = GET_EC();
2675 const struct METHOD *data;
2676 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2678 const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id);
2679 if (data->me == (const rb_method_entry_t *)cme) {
2680 vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
2681 return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS);
2683 else {
2684 VALUE methclass, klass, iclass;
2685 const rb_method_entry_t *me;
2686 convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, false);
2687 struct METHOD bound = { recv, klass, 0, methclass, me };
2689 return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
2694 * Returns the number of required parameters and stores the maximum
2695 * number of parameters in max, or UNLIMITED_ARGUMENTS
2696 * if there is no maximum.
2698 static int
2699 method_def_min_max_arity(const rb_method_definition_t *def, int *max)
2701 again:
2702 if (!def) return *max = 0;
2703 switch (def->type) {
2704 case VM_METHOD_TYPE_CFUNC:
2705 if (def->body.cfunc.argc < 0) {
2706 *max = UNLIMITED_ARGUMENTS;
2707 return 0;
2709 return *max = check_argc(def->body.cfunc.argc);
2710 case VM_METHOD_TYPE_ZSUPER:
2711 *max = UNLIMITED_ARGUMENTS;
2712 return 0;
2713 case VM_METHOD_TYPE_ATTRSET:
2714 return *max = 1;
2715 case VM_METHOD_TYPE_IVAR:
2716 return *max = 0;
2717 case VM_METHOD_TYPE_ALIAS:
2718 def = def->body.alias.original_me->def;
2719 goto again;
2720 case VM_METHOD_TYPE_BMETHOD:
2721 return rb_proc_min_max_arity(def->body.bmethod.proc, max);
2722 case VM_METHOD_TYPE_ISEQ:
2723 return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
2724 case VM_METHOD_TYPE_UNDEF:
2725 case VM_METHOD_TYPE_NOTIMPLEMENTED:
2726 return *max = 0;
2727 case VM_METHOD_TYPE_MISSING:
2728 *max = UNLIMITED_ARGUMENTS;
2729 return 0;
2730 case VM_METHOD_TYPE_OPTIMIZED: {
2731 switch (def->body.optimized.type) {
2732 case OPTIMIZED_METHOD_TYPE_SEND:
2733 *max = UNLIMITED_ARGUMENTS;
2734 return 0;
2735 case OPTIMIZED_METHOD_TYPE_CALL:
2736 *max = UNLIMITED_ARGUMENTS;
2737 return 0;
2738 case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
2739 *max = UNLIMITED_ARGUMENTS;
2740 return 0;
2741 case OPTIMIZED_METHOD_TYPE_STRUCT_AREF:
2742 *max = 0;
2743 return 0;
2744 case OPTIMIZED_METHOD_TYPE_STRUCT_ASET:
2745 *max = 1;
2746 return 1;
2747 default:
2748 break;
2750 break;
2752 case VM_METHOD_TYPE_REFINED:
2753 *max = UNLIMITED_ARGUMENTS;
2754 return 0;
2756 rb_bug("method_def_min_max_arity: invalid method entry type (%d)", def->type);
2757 UNREACHABLE_RETURN(Qnil);
2760 static int
2761 method_def_arity(const rb_method_definition_t *def)
2763 int max, min = method_def_min_max_arity(def, &max);
2764 return min == max ? min : -min-1;
2768 rb_method_entry_arity(const rb_method_entry_t *me)
2770 return method_def_arity(me->def);
2774 * call-seq:
2775 * meth.arity -> integer
2777 * Returns an indication of the number of arguments accepted by a
2778 * method. Returns a nonnegative integer for methods that take a fixed
2779 * number of arguments. For Ruby methods that take a variable number of
2780 * arguments, returns -n-1, where n is the number of required arguments.
2781 * Keyword arguments will be considered as a single additional argument,
2782 * that argument being mandatory if any keyword argument is mandatory.
2783 * For methods written in C, returns -1 if the call takes a
2784 * variable number of arguments.
2786 * class C
2787 * def one; end
2788 * def two(a); end
2789 * def three(*a); end
2790 * def four(a, b); end
2791 * def five(a, b, *c); end
2792 * def six(a, b, *c, &d); end
2793 * def seven(a, b, x:0); end
2794 * def eight(x:, y:); end
2795 * def nine(x:, y:, **z); end
2796 * def ten(*a, x:, y:); end
2797 * end
2798 * c = C.new
2799 * c.method(:one).arity #=> 0
2800 * c.method(:two).arity #=> 1
2801 * c.method(:three).arity #=> -1
2802 * c.method(:four).arity #=> 2
2803 * c.method(:five).arity #=> -3
2804 * c.method(:six).arity #=> -3
2805 * c.method(:seven).arity #=> -3
2806 * c.method(:eight).arity #=> 1
2807 * c.method(:nine).arity #=> 1
2808 * c.method(:ten).arity #=> -2
2810 * "cat".method(:size).arity #=> 0
2811 * "cat".method(:replace).arity #=> 1
2812 * "cat".method(:squeeze).arity #=> -1
2813 * "cat".method(:count).arity #=> -1
2816 static VALUE
2817 method_arity_m(VALUE method)
2819 int n = method_arity(method);
2820 return INT2FIX(n);
2823 static int
2824 method_arity(VALUE method)
2826 struct METHOD *data;
2828 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2829 return rb_method_entry_arity(data->me);
2832 static const rb_method_entry_t *
2833 original_method_entry(VALUE mod, ID id)
2835 const rb_method_entry_t *me;
2837 while ((me = rb_method_entry(mod, id)) != 0) {
2838 const rb_method_definition_t *def = me->def;
2839 if (def->type != VM_METHOD_TYPE_ZSUPER) break;
2840 mod = RCLASS_SUPER(me->owner);
2841 id = def->original_id;
2843 return me;
2846 static int
2847 method_min_max_arity(VALUE method, int *max)
2849 const struct METHOD *data;
2851 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2852 return method_def_min_max_arity(data->me->def, max);
2856 rb_mod_method_arity(VALUE mod, ID id)
2858 const rb_method_entry_t *me = original_method_entry(mod, id);
2859 if (!me) return 0; /* should raise? */
2860 return rb_method_entry_arity(me);
2864 rb_obj_method_arity(VALUE obj, ID id)
2866 return rb_mod_method_arity(CLASS_OF(obj), id);
2869 VALUE
2870 rb_callable_receiver(VALUE callable)
2872 if (rb_obj_is_proc(callable)) {
2873 VALUE binding = proc_binding(callable);
2874 return rb_funcall(binding, rb_intern("receiver"), 0);
2876 else if (rb_obj_is_method(callable)) {
2877 return method_receiver(callable);
2879 else {
2880 return Qundef;
2884 const rb_method_definition_t *
2885 rb_method_def(VALUE method)
2887 const struct METHOD *data;
2889 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2890 return data->me->def;
2893 static const rb_iseq_t *
2894 method_def_iseq(const rb_method_definition_t *def)
2896 switch (def->type) {
2897 case VM_METHOD_TYPE_ISEQ:
2898 return rb_iseq_check(def->body.iseq.iseqptr);
2899 case VM_METHOD_TYPE_BMETHOD:
2900 return rb_proc_get_iseq(def->body.bmethod.proc, 0);
2901 case VM_METHOD_TYPE_ALIAS:
2902 return method_def_iseq(def->body.alias.original_me->def);
2903 case VM_METHOD_TYPE_CFUNC:
2904 case VM_METHOD_TYPE_ATTRSET:
2905 case VM_METHOD_TYPE_IVAR:
2906 case VM_METHOD_TYPE_ZSUPER:
2907 case VM_METHOD_TYPE_UNDEF:
2908 case VM_METHOD_TYPE_NOTIMPLEMENTED:
2909 case VM_METHOD_TYPE_OPTIMIZED:
2910 case VM_METHOD_TYPE_MISSING:
2911 case VM_METHOD_TYPE_REFINED:
2912 break;
2914 return NULL;
2917 const rb_iseq_t *
2918 rb_method_iseq(VALUE method)
2920 return method_def_iseq(rb_method_def(method));
2923 static const rb_cref_t *
2924 method_cref(VALUE method)
2926 const rb_method_definition_t *def = rb_method_def(method);
2928 again:
2929 switch (def->type) {
2930 case VM_METHOD_TYPE_ISEQ:
2931 return def->body.iseq.cref;
2932 case VM_METHOD_TYPE_ALIAS:
2933 def = def->body.alias.original_me->def;
2934 goto again;
2935 default:
2936 return NULL;
2940 static VALUE
2941 method_def_location(const rb_method_definition_t *def)
2943 if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
2944 if (!def->body.attr.location)
2945 return Qnil;
2946 return rb_ary_dup(def->body.attr.location);
2948 return iseq_location(method_def_iseq(def));
2951 VALUE
2952 rb_method_entry_location(const rb_method_entry_t *me)
2954 if (!me) return Qnil;
2955 return method_def_location(me->def);
2959 * call-seq:
2960 * meth.source_location -> [String, Integer]
2962 * Returns the Ruby source filename and line number containing this method
2963 * or nil if this method was not defined in Ruby (i.e. native).
2966 VALUE
2967 rb_method_location(VALUE method)
2969 return method_def_location(rb_method_def(method));
2972 static const rb_method_definition_t *
2973 vm_proc_method_def(VALUE procval)
2975 const rb_proc_t *proc;
2976 const struct rb_block *block;
2977 const struct vm_ifunc *ifunc;
2979 GetProcPtr(procval, proc);
2980 block = &proc->block;
2982 if (vm_block_type(block) == block_type_ifunc &&
2983 IS_METHOD_PROC_IFUNC(ifunc = block->as.captured.code.ifunc)) {
2984 return rb_method_def((VALUE)ifunc->data);
2986 else {
2987 return NULL;
2991 static VALUE
2992 method_def_parameters(const rb_method_definition_t *def)
2994 const rb_iseq_t *iseq;
2995 const rb_method_definition_t *bmethod_def;
2997 switch (def->type) {
2998 case VM_METHOD_TYPE_ISEQ:
2999 iseq = method_def_iseq(def);
3000 return rb_iseq_parameters(iseq, 0);
3001 case VM_METHOD_TYPE_BMETHOD:
3002 if ((iseq = method_def_iseq(def)) != NULL) {
3003 return rb_iseq_parameters(iseq, 0);
3005 else if ((bmethod_def = vm_proc_method_def(def->body.bmethod.proc)) != NULL) {
3006 return method_def_parameters(bmethod_def);
3008 break;
3010 case VM_METHOD_TYPE_ALIAS:
3011 return method_def_parameters(def->body.alias.original_me->def);
3013 case VM_METHOD_TYPE_OPTIMIZED:
3014 if (def->body.optimized.type == OPTIMIZED_METHOD_TYPE_STRUCT_ASET) {
3015 VALUE param = rb_ary_new_from_args(2, ID2SYM(rb_intern("req")), ID2SYM(rb_intern("_")));
3016 return rb_ary_new_from_args(1, param);
3018 break;
3020 case VM_METHOD_TYPE_CFUNC:
3021 case VM_METHOD_TYPE_ATTRSET:
3022 case VM_METHOD_TYPE_IVAR:
3023 case VM_METHOD_TYPE_ZSUPER:
3024 case VM_METHOD_TYPE_UNDEF:
3025 case VM_METHOD_TYPE_NOTIMPLEMENTED:
3026 case VM_METHOD_TYPE_MISSING:
3027 case VM_METHOD_TYPE_REFINED:
3028 break;
3031 return rb_unnamed_parameters(method_def_arity(def));
3036 * call-seq:
3037 * meth.parameters -> array
3039 * Returns the parameter information of this method.
3041 * def foo(bar); end
3042 * method(:foo).parameters #=> [[:req, :bar]]
3044 * def foo(bar, baz, bat, &blk); end
3045 * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
3047 * def foo(bar, *args); end
3048 * method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
3050 * def foo(bar, baz, *args, &blk); end
3051 * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
3054 static VALUE
3055 rb_method_parameters(VALUE method)
3057 return method_def_parameters(rb_method_def(method));
3061 * call-seq:
3062 * meth.to_s -> string
3063 * meth.inspect -> string
3065 * Returns a human-readable description of the underlying method.
3067 * "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
3068 * (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
3070 * In the latter case, the method description includes the "owner" of the
3071 * original method (+Enumerable+ module, which is included into +Range+).
3073 * +inspect+ also provides, when possible, method argument names (call
3074 * sequence) and source location.
3076 * require 'net/http'
3077 * Net::HTTP.method(:get).inspect
3078 * #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
3080 * <code>...</code> in argument definition means argument is optional (has
3081 * some default value).
3083 * For methods defined in C (language core and extensions), location and
3084 * argument names can't be extracted, and only generic information is provided
3085 * in form of <code>*</code> (any number of arguments) or <code>_</code> (some
3086 * positional argument).
3088 * "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
3089 * "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
3093 static VALUE
3094 method_inspect(VALUE method)
3096 struct METHOD *data;
3097 VALUE str;
3098 const char *sharp = "#";
3099 VALUE mklass;
3100 VALUE defined_class;
3102 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
3103 str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
3105 mklass = data->iclass;
3106 if (!mklass) mklass = data->klass;
3108 if (RB_TYPE_P(mklass, T_ICLASS)) {
3109 /* TODO: I'm not sure why mklass is T_ICLASS.
3110 * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
3111 * but not sure it is needed.
3113 mklass = RBASIC_CLASS(mklass);
3116 if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
3117 defined_class = data->me->def->body.alias.original_me->owner;
3119 else {
3120 defined_class = method_entry_defined_class(data->me);
3123 if (RB_TYPE_P(defined_class, T_ICLASS)) {
3124 defined_class = RBASIC_CLASS(defined_class);
3127 if (UNDEF_P(data->recv)) {
3128 // UnboundMethod
3129 rb_str_buf_append(str, rb_inspect(defined_class));
3131 else if (RCLASS_SINGLETON_P(mklass)) {
3132 VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
3134 if (UNDEF_P(data->recv)) {
3135 rb_str_buf_append(str, rb_inspect(mklass));
3137 else if (data->recv == v) {
3138 rb_str_buf_append(str, rb_inspect(v));
3139 sharp = ".";
3141 else {
3142 rb_str_buf_append(str, rb_inspect(data->recv));
3143 rb_str_buf_cat2(str, "(");
3144 rb_str_buf_append(str, rb_inspect(v));
3145 rb_str_buf_cat2(str, ")");
3146 sharp = ".";
3149 else {
3150 mklass = data->klass;
3151 if (RCLASS_SINGLETON_P(mklass)) {
3152 VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
3153 if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
3154 do {
3155 mklass = RCLASS_SUPER(mklass);
3156 } while (RB_TYPE_P(mklass, T_ICLASS));
3159 rb_str_buf_append(str, rb_inspect(mklass));
3160 if (defined_class != mklass) {
3161 rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
3164 rb_str_buf_cat2(str, sharp);
3165 rb_str_append(str, rb_id2str(data->me->called_id));
3166 if (data->me->called_id != data->me->def->original_id) {
3167 rb_str_catf(str, "(%"PRIsVALUE")",
3168 rb_id2str(data->me->def->original_id));
3170 if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
3171 rb_str_buf_cat2(str, " (not-implemented)");
3174 // parameter information
3176 VALUE params = rb_method_parameters(method);
3177 VALUE pair, name, kind;
3178 const VALUE req = ID2SYM(rb_intern("req"));
3179 const VALUE opt = ID2SYM(rb_intern("opt"));
3180 const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
3181 const VALUE key = ID2SYM(rb_intern("key"));
3182 const VALUE rest = ID2SYM(rb_intern("rest"));
3183 const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
3184 const VALUE block = ID2SYM(rb_intern("block"));
3185 const VALUE nokey = ID2SYM(rb_intern("nokey"));
3186 int forwarding = 0;
3188 rb_str_buf_cat2(str, "(");
3190 if (RARRAY_LEN(params) == 3 &&
3191 RARRAY_AREF(RARRAY_AREF(params, 0), 0) == rest &&
3192 RARRAY_AREF(RARRAY_AREF(params, 0), 1) == ID2SYM('*') &&
3193 RARRAY_AREF(RARRAY_AREF(params, 1), 0) == keyrest &&
3194 RARRAY_AREF(RARRAY_AREF(params, 1), 1) == ID2SYM(idPow) &&
3195 RARRAY_AREF(RARRAY_AREF(params, 2), 0) == block &&
3196 RARRAY_AREF(RARRAY_AREF(params, 2), 1) == ID2SYM('&')) {
3197 forwarding = 1;
3200 for (int i = 0; i < RARRAY_LEN(params); i++) {
3201 pair = RARRAY_AREF(params, i);
3202 kind = RARRAY_AREF(pair, 0);
3203 name = RARRAY_AREF(pair, 1);
3204 // FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
3205 if (NIL_P(name) || name == Qfalse) {
3206 // FIXME: can it be reduced to switch/case?
3207 if (kind == req || kind == opt) {
3208 name = rb_str_new2("_");
3210 else if (kind == rest || kind == keyrest) {
3211 name = rb_str_new2("");
3213 else if (kind == block) {
3214 name = rb_str_new2("block");
3216 else if (kind == nokey) {
3217 name = rb_str_new2("nil");
3221 if (kind == req) {
3222 rb_str_catf(str, "%"PRIsVALUE, name);
3224 else if (kind == opt) {
3225 rb_str_catf(str, "%"PRIsVALUE"=...", name);
3227 else if (kind == keyreq) {
3228 rb_str_catf(str, "%"PRIsVALUE":", name);
3230 else if (kind == key) {
3231 rb_str_catf(str, "%"PRIsVALUE": ...", name);
3233 else if (kind == rest) {
3234 if (name == ID2SYM('*')) {
3235 rb_str_cat_cstr(str, forwarding ? "..." : "*");
3237 else {
3238 rb_str_catf(str, "*%"PRIsVALUE, name);
3241 else if (kind == keyrest) {
3242 if (name != ID2SYM(idPow)) {
3243 rb_str_catf(str, "**%"PRIsVALUE, name);
3245 else if (i > 0) {
3246 rb_str_set_len(str, RSTRING_LEN(str) - 2);
3248 else {
3249 rb_str_cat_cstr(str, "**");
3252 else if (kind == block) {
3253 if (name == ID2SYM('&')) {
3254 if (forwarding) {
3255 rb_str_set_len(str, RSTRING_LEN(str) - 2);
3257 else {
3258 rb_str_cat_cstr(str, "...");
3261 else {
3262 rb_str_catf(str, "&%"PRIsVALUE, name);
3265 else if (kind == nokey) {
3266 rb_str_buf_cat2(str, "**nil");
3269 if (i < RARRAY_LEN(params) - 1) {
3270 rb_str_buf_cat2(str, ", ");
3273 rb_str_buf_cat2(str, ")");
3276 { // source location
3277 VALUE loc = rb_method_location(method);
3278 if (!NIL_P(loc)) {
3279 rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
3280 RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
3284 rb_str_buf_cat2(str, ">");
3286 return str;
3289 static VALUE
3290 bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
3292 return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
3295 VALUE
3296 rb_proc_new(
3297 rb_block_call_func_t func,
3298 VALUE val)
3300 VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val);
3301 return procval;
3305 * call-seq:
3306 * meth.to_proc -> proc
3308 * Returns a Proc object corresponding to this method.
3311 static VALUE
3312 method_to_proc(VALUE method)
3314 VALUE procval;
3315 rb_proc_t *proc;
3318 * class Method
3319 * def to_proc
3320 * lambda{|*args|
3321 * self.call(*args)
3323 * end
3324 * end
3326 procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method);
3327 GetProcPtr(procval, proc);
3328 proc->is_from_method = 1;
3329 return procval;
3332 extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner);
3335 * call-seq:
3336 * meth.super_method -> method
3338 * Returns a Method of superclass which would be called when super is used
3339 * or nil if there is no method on superclass.
3342 static VALUE
3343 method_super_method(VALUE method)
3345 const struct METHOD *data;
3346 VALUE super_class, iclass;
3347 ID mid;
3348 const rb_method_entry_t *me;
3350 TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
3351 iclass = data->iclass;
3352 if (!iclass) return Qnil;
3353 if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
3354 super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
3355 data->me->def->body.alias.original_me->owner));
3356 mid = data->me->def->body.alias.original_me->def->original_id;
3358 else {
3359 super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
3360 mid = data->me->def->original_id;
3362 if (!super_class) return Qnil;
3363 me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
3364 if (!me) return Qnil;
3365 return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
3369 * call-seq:
3370 * local_jump_error.exit_value -> obj
3372 * Returns the exit value associated with this +LocalJumpError+.
3374 static VALUE
3375 localjump_xvalue(VALUE exc)
3377 return rb_iv_get(exc, "@exit_value");
3381 * call-seq:
3382 * local_jump_error.reason -> symbol
3384 * The reason this block was terminated:
3385 * :break, :redo, :retry, :next, :return, or :noreason.
3388 static VALUE
3389 localjump_reason(VALUE exc)
3391 return rb_iv_get(exc, "@reason");
3394 rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
3396 static const rb_env_t *
3397 env_clone(const rb_env_t *env, const rb_cref_t *cref)
3399 VALUE *new_ep;
3400 VALUE *new_body;
3401 const rb_env_t *new_env;
3403 VM_ASSERT(env->ep > env->env);
3404 VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
3406 if (cref == NULL) {
3407 cref = rb_vm_cref_new_toplevel();
3410 new_body = ALLOC_N(VALUE, env->env_size);
3411 new_ep = &new_body[env->ep - env->env];
3412 new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
3414 /* The memcpy has to happen after the vm_env_new because it can trigger a
3415 * GC compaction which can move the objects in the env. */
3416 MEMCPY(new_body, env->env, VALUE, env->env_size);
3417 /* VM_ENV_DATA_INDEX_ENV is set in vm_env_new but will get overwritten
3418 * by the memcpy above. */
3419 new_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)new_env;
3420 RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
3421 VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
3422 return new_env;
3426 * call-seq:
3427 * prc.binding -> binding
3429 * Returns the binding associated with <i>prc</i>.
3431 * def fred(param)
3432 * proc {}
3433 * end
3435 * b = fred(99)
3436 * eval("param", b.binding) #=> 99
3438 static VALUE
3439 proc_binding(VALUE self)
3441 VALUE bindval, binding_self = Qundef;
3442 rb_binding_t *bind;
3443 const rb_proc_t *proc;
3444 const rb_iseq_t *iseq = NULL;
3445 const struct rb_block *block;
3446 const rb_env_t *env = NULL;
3448 GetProcPtr(self, proc);
3449 block = &proc->block;
3451 if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc");
3453 again:
3454 switch (vm_block_type(block)) {
3455 case block_type_iseq:
3456 iseq = block->as.captured.code.iseq;
3457 binding_self = block->as.captured.self;
3458 env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
3459 break;
3460 case block_type_proc:
3461 GetProcPtr(block->as.proc, proc);
3462 block = &proc->block;
3463 goto again;
3464 case block_type_ifunc:
3466 const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
3467 if (IS_METHOD_PROC_IFUNC(ifunc)) {
3468 VALUE method = (VALUE)ifunc->data;
3469 VALUE name = rb_fstring_lit("<empty_iseq>");
3470 rb_iseq_t *empty;
3471 binding_self = method_receiver(method);
3472 iseq = rb_method_iseq(method);
3473 env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
3474 env = env_clone(env, method_cref(method));
3475 /* set empty iseq */
3476 empty = rb_iseq_new(Qnil, name, name, Qnil, 0, ISEQ_TYPE_TOP);
3477 RB_OBJ_WRITE(env, &env->iseq, empty);
3478 break;
3481 /* FALLTHROUGH */
3482 case block_type_symbol:
3483 rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
3484 UNREACHABLE_RETURN(Qnil);
3487 bindval = rb_binding_alloc(rb_cBinding);
3488 GetBindingPtr(bindval, bind);
3489 RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
3490 RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
3491 rb_vm_block_ep_update(bindval, &bind->block, env->ep);
3492 RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
3494 if (iseq) {
3495 rb_iseq_check(iseq);
3496 RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(iseq)->location.pathobj);
3497 bind->first_lineno = ISEQ_BODY(iseq)->location.first_lineno;
3499 else {
3500 RB_OBJ_WRITE(bindval, &bind->pathobj,
3501 rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
3502 bind->first_lineno = 1;
3505 return bindval;
3508 static rb_block_call_func curry;
3510 static VALUE
3511 make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
3513 VALUE args = rb_ary_new3(3, proc, passed, arity);
3514 rb_proc_t *procp;
3515 int is_lambda;
3517 GetProcPtr(proc, procp);
3518 is_lambda = procp->is_lambda;
3519 rb_ary_freeze(passed);
3520 rb_ary_freeze(args);
3521 proc = rb_proc_new(curry, args);
3522 GetProcPtr(proc, procp);
3523 procp->is_lambda = is_lambda;
3524 return proc;
3527 static VALUE
3528 curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
3530 VALUE proc, passed, arity;
3531 proc = RARRAY_AREF(args, 0);
3532 passed = RARRAY_AREF(args, 1);
3533 arity = RARRAY_AREF(args, 2);
3535 passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
3536 rb_ary_freeze(passed);
3538 if (RARRAY_LEN(passed) < FIX2INT(arity)) {
3539 if (!NIL_P(blockarg)) {
3540 rb_warn("given block not used");
3542 arity = make_curry_proc(proc, passed, arity);
3543 return arity;
3545 else {
3546 return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
3551 * call-seq:
3552 * prc.curry -> a_proc
3553 * prc.curry(arity) -> a_proc
3555 * Returns a curried proc. If the optional <i>arity</i> argument is given,
3556 * it determines the number of arguments.
3557 * A curried proc receives some arguments. If a sufficient number of
3558 * arguments are supplied, it passes the supplied arguments to the original
3559 * proc and returns the result. Otherwise, returns another curried proc that
3560 * takes the rest of arguments.
3562 * The optional <i>arity</i> argument should be supplied when currying procs with
3563 * variable arguments to determine how many arguments are needed before the proc is
3564 * called.
3566 * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
3567 * p b.curry[1][2][3] #=> 6
3568 * p b.curry[1, 2][3, 4] #=> 6
3569 * p b.curry(5)[1][2][3][4][5] #=> 6
3570 * p b.curry(5)[1, 2][3, 4][5] #=> 6
3571 * p b.curry(1)[1] #=> 1
3573 * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
3574 * p b.curry[1][2][3] #=> 6
3575 * p b.curry[1, 2][3, 4] #=> 10
3576 * p b.curry(5)[1][2][3][4][5] #=> 15
3577 * p b.curry(5)[1, 2][3, 4][5] #=> 15
3578 * p b.curry(1)[1] #=> 1
3580 * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
3581 * p b.curry[1][2][3] #=> 6
3582 * p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
3583 * p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
3584 * p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
3586 * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
3587 * p b.curry[1][2][3] #=> 6
3588 * p b.curry[1, 2][3, 4] #=> 10
3589 * p b.curry(5)[1][2][3][4][5] #=> 15
3590 * p b.curry(5)[1, 2][3, 4][5] #=> 15
3591 * p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
3593 * b = proc { :foo }
3594 * p b.curry[] #=> :foo
3596 static VALUE
3597 proc_curry(int argc, const VALUE *argv, VALUE self)
3599 int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
3600 VALUE arity;
3602 if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
3603 arity = INT2FIX(min_arity);
3605 else {
3606 sarity = FIX2INT(arity);
3607 if (rb_proc_lambda_p(self)) {
3608 rb_check_arity(sarity, min_arity, max_arity);
3612 return make_curry_proc(self, rb_ary_new(), arity);
3616 * call-seq:
3617 * meth.curry -> proc
3618 * meth.curry(arity) -> proc
3620 * Returns a curried proc based on the method. When the proc is called with a number of
3621 * arguments that is lower than the method's arity, then another curried proc is returned.
3622 * Only when enough arguments have been supplied to satisfy the method signature, will the
3623 * method actually be called.
3625 * The optional <i>arity</i> argument should be supplied when currying methods with
3626 * variable arguments to determine how many arguments are needed before the method is
3627 * called.
3629 * def foo(a,b,c)
3630 * [a, b, c]
3631 * end
3633 * proc = self.method(:foo).curry
3634 * proc2 = proc.call(1, 2) #=> #<Proc>
3635 * proc2.call(3) #=> [1,2,3]
3637 * def vararg(*args)
3638 * args
3639 * end
3641 * proc = self.method(:vararg).curry(4)
3642 * proc2 = proc.call(:x) #=> #<Proc>
3643 * proc3 = proc2.call(:y, :z) #=> #<Proc>
3644 * proc3.call(:a) #=> [:x, :y, :z, :a]
3647 static VALUE
3648 rb_method_curry(int argc, const VALUE *argv, VALUE self)
3650 VALUE proc = method_to_proc(self);
3651 return proc_curry(argc, argv, proc);
3654 static VALUE
3655 compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
3657 VALUE f, g, fargs;
3658 f = RARRAY_AREF(args, 0);
3659 g = RARRAY_AREF(args, 1);
3661 if (rb_obj_is_proc(g))
3662 fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
3663 else
3664 fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
3666 if (rb_obj_is_proc(f))
3667 return rb_proc_call(f, rb_ary_new3(1, fargs));
3668 else
3669 return rb_funcallv(f, idCall, 1, &fargs);
3672 static VALUE
3673 to_callable(VALUE f)
3675 VALUE mesg;
3677 if (rb_obj_is_proc(f)) return f;
3678 if (rb_obj_is_method(f)) return f;
3679 if (rb_obj_respond_to(f, idCall, TRUE)) return f;
3680 mesg = rb_fstring_lit("callable object is expected");
3681 rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
3684 static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
3685 static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
3688 * call-seq:
3689 * prc << g -> a_proc
3691 * Returns a proc that is the composition of this proc and the given <i>g</i>.
3692 * The returned proc takes a variable number of arguments, calls <i>g</i> with them
3693 * then calls this proc with the result.
3695 * f = proc {|x| x * x }
3696 * g = proc {|x| x + x }
3697 * p (f << g).call(2) #=> 16
3699 * See Proc#>> for detailed explanations.
3701 static VALUE
3702 proc_compose_to_left(VALUE self, VALUE g)
3704 return rb_proc_compose_to_left(self, to_callable(g));
3707 static VALUE
3708 rb_proc_compose_to_left(VALUE self, VALUE g)
3710 VALUE proc, args, procs[2];
3711 rb_proc_t *procp;
3712 int is_lambda;
3714 procs[0] = self;
3715 procs[1] = g;
3716 args = rb_ary_tmp_new_from_values(0, 2, procs);
3718 if (rb_obj_is_proc(g)) {
3719 GetProcPtr(g, procp);
3720 is_lambda = procp->is_lambda;
3722 else {
3723 VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE));
3724 is_lambda = 1;
3727 proc = rb_proc_new(compose, args);
3728 GetProcPtr(proc, procp);
3729 procp->is_lambda = is_lambda;
3731 return proc;
3735 * call-seq:
3736 * prc >> g -> a_proc
3738 * Returns a proc that is the composition of this proc and the given <i>g</i>.
3739 * The returned proc takes a variable number of arguments, calls this proc with them
3740 * then calls <i>g</i> with the result.
3742 * f = proc {|x| x * x }
3743 * g = proc {|x| x + x }
3744 * p (f >> g).call(2) #=> 8
3746 * <i>g</i> could be other Proc, or Method, or any other object responding to
3747 * +call+ method:
3749 * class Parser
3750 * def self.call(text)
3751 * # ...some complicated parsing logic...
3752 * end
3753 * end
3755 * pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
3756 * pipeline.call('data.json')
3758 * See also Method#>> and Method#<<.
3760 static VALUE
3761 proc_compose_to_right(VALUE self, VALUE g)
3763 return rb_proc_compose_to_right(self, to_callable(g));
3766 static VALUE
3767 rb_proc_compose_to_right(VALUE self, VALUE g)
3769 VALUE proc, args, procs[2];
3770 rb_proc_t *procp;
3771 int is_lambda;
3773 procs[0] = g;
3774 procs[1] = self;
3775 args = rb_ary_tmp_new_from_values(0, 2, procs);
3777 GetProcPtr(self, procp);
3778 is_lambda = procp->is_lambda;
3780 proc = rb_proc_new(compose, args);
3781 GetProcPtr(proc, procp);
3782 procp->is_lambda = is_lambda;
3784 return proc;
3788 * call-seq:
3789 * meth << g -> a_proc
3791 * Returns a proc that is the composition of this method and the given <i>g</i>.
3792 * The returned proc takes a variable number of arguments, calls <i>g</i> with them
3793 * then calls this method with the result.
3795 * def f(x)
3796 * x * x
3797 * end
3799 * f = self.method(:f)
3800 * g = proc {|x| x + x }
3801 * p (f << g).call(2) #=> 16
3803 static VALUE
3804 rb_method_compose_to_left(VALUE self, VALUE g)
3806 g = to_callable(g);
3807 self = method_to_proc(self);
3808 return proc_compose_to_left(self, g);
3812 * call-seq:
3813 * meth >> g -> a_proc
3815 * Returns a proc that is the composition of this method and the given <i>g</i>.
3816 * The returned proc takes a variable number of arguments, calls this method
3817 * with them then calls <i>g</i> with the result.
3819 * def f(x)
3820 * x * x
3821 * end
3823 * f = self.method(:f)
3824 * g = proc {|x| x + x }
3825 * p (f >> g).call(2) #=> 8
3827 static VALUE
3828 rb_method_compose_to_right(VALUE self, VALUE g)
3830 g = to_callable(g);
3831 self = method_to_proc(self);
3832 return proc_compose_to_right(self, g);
3836 * call-seq:
3837 * proc.ruby2_keywords -> proc
3839 * Marks the proc as passing keywords through a normal argument splat.
3840 * This should only be called on procs that accept an argument splat
3841 * (<tt>*args</tt>) but not explicit keywords or a keyword splat. It
3842 * marks the proc such that if the proc is called with keyword arguments,
3843 * the final hash argument is marked with a special flag such that if it
3844 * is the final element of a normal argument splat to another method call,
3845 * and that method call does not include explicit keywords or a keyword
3846 * splat, the final element is interpreted as keywords. In other words,
3847 * keywords will be passed through the proc to other methods.
3849 * This should only be used for procs that delegate keywords to another
3850 * method, and only for backwards compatibility with Ruby versions before
3851 * 2.7.
3853 * This method will probably be removed at some point, as it exists only
3854 * for backwards compatibility. As it does not exist in Ruby versions
3855 * before 2.7, check that the proc responds to this method before calling
3856 * it. Also, be aware that if this method is removed, the behavior of the
3857 * proc will change so that it does not pass through keywords.
3859 * module Mod
3860 * foo = ->(meth, *args, &block) do
3861 * send(:"do_#{meth}", *args, &block)
3862 * end
3863 * foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
3864 * end
3867 static VALUE
3868 proc_ruby2_keywords(VALUE procval)
3870 rb_proc_t *proc;
3871 GetProcPtr(procval, proc);
3873 rb_check_frozen(procval);
3875 if (proc->is_from_method) {
3876 rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
3877 return procval;
3880 switch (proc->block.type) {
3881 case block_type_iseq:
3882 if (ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_rest &&
3883 !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kw &&
3884 !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kwrest) {
3885 ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.ruby2_keywords = 1;
3887 else {
3888 rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)");
3890 break;
3891 default:
3892 rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
3893 break;
3896 return procval;
3900 * Document-class: LocalJumpError
3902 * Raised when Ruby can't yield as requested.
3904 * A typical scenario is attempting to yield when no block is given:
3906 * def call_block
3907 * yield 42
3908 * end
3909 * call_block
3911 * <em>raises the exception:</em>
3913 * LocalJumpError: no block given (yield)
3915 * A more subtle example:
3917 * def get_me_a_return
3918 * Proc.new { return 42 }
3919 * end
3920 * get_me_a_return.call
3922 * <em>raises the exception:</em>
3924 * LocalJumpError: unexpected return
3928 * Document-class: SystemStackError
3930 * Raised in case of a stack overflow.
3932 * def me_myself_and_i
3933 * me_myself_and_i
3934 * end
3935 * me_myself_and_i
3937 * <em>raises the exception:</em>
3939 * SystemStackError: stack level too deep
3943 * Document-class: Proc
3945 * A +Proc+ object is an encapsulation of a block of code, which can be stored
3946 * in a local variable, passed to a method or another Proc, and can be called.
3947 * Proc is an essential concept in Ruby and a core of its functional
3948 * programming features.
3950 * square = Proc.new {|x| x**2 }
3952 * square.call(3) #=> 9
3953 * # shorthands:
3954 * square.(3) #=> 9
3955 * square[3] #=> 9
3957 * Proc objects are _closures_, meaning they remember and can use the entire
3958 * context in which they were created.
3960 * def gen_times(factor)
3961 * Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
3962 * end
3964 * times3 = gen_times(3)
3965 * times5 = gen_times(5)
3967 * times3.call(12) #=> 36
3968 * times5.call(5) #=> 25
3969 * times3.call(times5.call(4)) #=> 60
3971 * == Creation
3973 * There are several methods to create a Proc
3975 * * Use the Proc class constructor:
3977 * proc1 = Proc.new {|x| x**2 }
3979 * * Use the Kernel#proc method as a shorthand of Proc.new:
3981 * proc2 = proc {|x| x**2 }
3983 * * Receiving a block of code into proc argument (note the <code>&</code>):
3985 * def make_proc(&block)
3986 * block
3987 * end
3989 * proc3 = make_proc {|x| x**2 }
3991 * * Construct a proc with lambda semantics using the Kernel#lambda method
3992 * (see below for explanations about lambdas):
3994 * lambda1 = lambda {|x| x**2 }
3996 * * Use the {Lambda proc literal}[rdoc-ref:syntax/literals.rdoc@Lambda+Proc+Literals] syntax
3997 * (also constructs a proc with lambda semantics):
3999 * lambda2 = ->(x) { x**2 }
4001 * == Lambda and non-lambda semantics
4003 * Procs are coming in two flavors: lambda and non-lambda (regular procs).
4004 * Differences are:
4006 * * In lambdas, +return+ and +break+ means exit from this lambda;
4007 * * In non-lambda procs, +return+ means exit from embracing method
4008 * (and will throw +LocalJumpError+ if invoked outside the method);
4009 * * In non-lambda procs, +break+ means exit from the method which the block given for.
4010 * (and will throw +LocalJumpError+ if invoked after the method returns);
4011 * * In lambdas, arguments are treated in the same way as in methods: strict,
4012 * with +ArgumentError+ for mismatching argument number,
4013 * and no additional argument processing;
4014 * * Regular procs accept arguments more generously: missing arguments
4015 * are filled with +nil+, single Array arguments are deconstructed if the
4016 * proc has multiple arguments, and there is no error raised on extra
4017 * arguments.
4019 * Examples:
4021 * # +return+ in non-lambda proc, +b+, exits +m2+.
4022 * # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
4023 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
4024 * #=> []
4026 * # +break+ in non-lambda proc, +b+, exits +m1+.
4027 * # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
4028 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
4029 * #=> [:m2]
4031 * # +next+ in non-lambda proc, +b+, exits the block.
4032 * # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
4033 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
4034 * #=> [:m1, :m2]
4036 * # Using +proc+ method changes the behavior as follows because
4037 * # The block is given for +proc+ method and embraced by +m2+.
4038 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
4039 * #=> []
4040 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
4041 * # break from proc-closure (LocalJumpError)
4042 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
4043 * #=> [:m1, :m2]
4045 * # +return+, +break+ and +next+ in the stubby lambda exits the block.
4046 * # (+lambda+ method behaves same.)
4047 * # (The block is given for stubby lambda syntax and embraced by +m2+.)
4048 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
4049 * #=> [:m1, :m2]
4050 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
4051 * #=> [:m1, :m2]
4052 * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
4053 * #=> [:m1, :m2]
4055 * p = proc {|x, y| "x=#{x}, y=#{y}" }
4056 * p.call(1, 2) #=> "x=1, y=2"
4057 * p.call([1, 2]) #=> "x=1, y=2", array deconstructed
4058 * p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded
4059 * p.call(1) #=> "x=1, y=", nil substituted instead of error
4061 * l = lambda {|x, y| "x=#{x}, y=#{y}" }
4062 * l.call(1, 2) #=> "x=1, y=2"
4063 * l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2)
4064 * l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2)
4065 * l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
4067 * def test_return
4068 * -> { return 3 }.call # just returns from lambda into method body
4069 * proc { return 4 }.call # returns from method
4070 * return 5
4071 * end
4073 * test_return # => 4, return from proc
4075 * Lambdas are useful as self-sufficient functions, in particular useful as
4076 * arguments to higher-order functions, behaving exactly like Ruby methods.
4078 * Procs are useful for implementing iterators:
4080 * def test
4081 * [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
4082 * # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4083 * end
4085 * Inside +map+, the block of code is treated as a regular (non-lambda) proc,
4086 * which means that the internal arrays will be deconstructed to pairs of
4087 * arguments, and +return+ will exit from the method +test+. That would
4088 * not be possible with a stricter lambda.
4090 * You can tell a lambda from a regular proc by using the #lambda? instance method.
4092 * Lambda semantics is typically preserved during the proc lifetime, including
4093 * <code>&</code>-deconstruction to a block of code:
4095 * p = proc {|x, y| x }
4096 * l = lambda {|x, y| x }
4097 * [[1, 2], [3, 4]].map(&p) #=> [1, 3]
4098 * [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
4100 * The only exception is dynamic method definition: even if defined by
4101 * passing a non-lambda proc, methods still have normal semantics of argument
4102 * checking.
4104 * class C
4105 * define_method(:e, &proc {})
4106 * end
4107 * C.new.e(1,2) #=> ArgumentError
4108 * C.new.method(:e).to_proc.lambda? #=> true
4110 * This exception ensures that methods never have unusual argument passing
4111 * conventions, and makes it easy to have wrappers defining methods that
4112 * behave as usual.
4114 * class C
4115 * def self.def2(name, &body)
4116 * define_method(name, &body)
4117 * end
4119 * def2(:f) {}
4120 * end
4121 * C.new.f(1,2) #=> ArgumentError
4123 * The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
4124 * yet defines a method which has normal semantics.
4126 * == Conversion of other objects to procs
4128 * Any object that implements the +to_proc+ method can be converted into
4129 * a proc by the <code>&</code> operator, and therefore can be
4130 * consumed by iterators.
4133 * class Greeter
4134 * def initialize(greeting)
4135 * @greeting = greeting
4136 * end
4138 * def to_proc
4139 * proc {|name| "#{@greeting}, #{name}!" }
4140 * end
4141 * end
4143 * hi = Greeter.new("Hi")
4144 * hey = Greeter.new("Hey")
4145 * ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"]
4146 * ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
4148 * Of the Ruby core classes, this method is implemented by Symbol,
4149 * Method, and Hash.
4151 * :to_s.to_proc.call(1) #=> "1"
4152 * [1, 2].map(&:to_s) #=> ["1", "2"]
4154 * method(:puts).to_proc.call(1) # prints 1
4155 * [1, 2].each(&method(:puts)) # prints 1, 2
4157 * {test: 1}.to_proc.call(:test) #=> 1
4158 * %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
4160 * == Orphaned Proc
4162 * +return+ and +break+ in a block exit a method.
4163 * If a Proc object is generated from the block and the Proc object
4164 * survives until the method is returned, +return+ and +break+ cannot work.
4165 * In such case, +return+ and +break+ raises LocalJumpError.
4166 * A Proc object in such situation is called as orphaned Proc object.
4168 * Note that the method to exit is different for +return+ and +break+.
4169 * There is a situation that orphaned for +break+ but not orphaned for +return+.
4171 * def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
4172 * def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
4174 * def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
4175 * def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
4177 * def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
4178 * def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
4180 * Since +return+ and +break+ exits the block itself in lambdas,
4181 * lambdas cannot be orphaned.
4183 * == Numbered parameters
4185 * Numbered parameters are implicitly defined block parameters intended to
4186 * simplify writing short blocks:
4188 * # Explicit parameter:
4189 * %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
4190 * (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
4192 * # Implicit parameter:
4193 * %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
4194 * (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
4196 * Parameter names from +_1+ to +_9+ are supported:
4198 * [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
4199 * # => [120, 150, 180]
4201 * Though, it is advised to resort to them wisely, probably limiting
4202 * yourself to +_1+ and +_2+, and to one-line blocks.
4204 * Numbered parameters can't be used together with explicitly named
4205 * ones:
4207 * [10, 20, 30].map { |x| _1**2 }
4208 * # SyntaxError (ordinary parameter is defined)
4210 * To avoid conflicts, naming local variables or method
4211 * arguments +_1+, +_2+ and so on, causes a warning.
4213 * _1 = 'test'
4214 * # warning: `_1' is reserved as numbered parameter
4216 * Using implicit numbered parameters affects block's arity:
4218 * p = proc { _1 + _2 }
4219 * l = lambda { _1 + _2 }
4220 * p.parameters # => [[:opt, :_1], [:opt, :_2]]
4221 * p.arity # => 2
4222 * l.parameters # => [[:req, :_1], [:req, :_2]]
4223 * l.arity # => 2
4225 * Blocks with numbered parameters can't be nested:
4227 * %w[test me].each { _1.each_char { p _1 } }
4228 * # SyntaxError (numbered parameter is already used in outer block here)
4229 * # %w[test me].each { _1.each_char { p _1 } }
4230 * # ^~
4232 * Numbered parameters were introduced in Ruby 2.7.
4236 void
4237 Init_Proc(void)
4239 #undef rb_intern
4240 /* Proc */
4241 rb_cProc = rb_define_class("Proc", rb_cObject);
4242 rb_undef_alloc_func(rb_cProc);
4243 rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
4245 rb_add_method_optimized(rb_cProc, idCall, OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
4246 rb_add_method_optimized(rb_cProc, rb_intern("[]"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
4247 rb_add_method_optimized(rb_cProc, rb_intern("==="), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
4248 rb_add_method_optimized(rb_cProc, rb_intern("yield"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
4250 #if 0 /* for RDoc */
4251 rb_define_method(rb_cProc, "call", proc_call, -1);
4252 rb_define_method(rb_cProc, "[]", proc_call, -1);
4253 rb_define_method(rb_cProc, "===", proc_call, -1);
4254 rb_define_method(rb_cProc, "yield", proc_call, -1);
4255 #endif
4257 rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
4258 rb_define_method(rb_cProc, "arity", proc_arity, 0);
4259 rb_define_method(rb_cProc, "clone", proc_clone, 0);
4260 rb_define_method(rb_cProc, "dup", proc_dup, 0);
4261 rb_define_method(rb_cProc, "hash", proc_hash, 0);
4262 rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
4263 rb_define_alias(rb_cProc, "inspect", "to_s");
4264 rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
4265 rb_define_method(rb_cProc, "binding", proc_binding, 0);
4266 rb_define_method(rb_cProc, "curry", proc_curry, -1);
4267 rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
4268 rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
4269 rb_define_method(rb_cProc, "==", proc_eq, 1);
4270 rb_define_method(rb_cProc, "eql?", proc_eq, 1);
4271 rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
4272 rb_define_method(rb_cProc, "parameters", rb_proc_parameters, -1);
4273 rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
4274 // rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted.
4276 /* Exceptions */
4277 rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
4278 rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
4279 rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
4281 rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
4282 rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
4284 /* utility functions */
4285 rb_define_global_function("proc", f_proc, 0);
4286 rb_define_global_function("lambda", f_lambda, 0);
4288 /* Method */
4289 rb_cMethod = rb_define_class("Method", rb_cObject);
4290 rb_undef_alloc_func(rb_cMethod);
4291 rb_undef_method(CLASS_OF(rb_cMethod), "new");
4292 rb_define_method(rb_cMethod, "==", method_eq, 1);
4293 rb_define_method(rb_cMethod, "eql?", method_eq, 1);
4294 rb_define_method(rb_cMethod, "hash", method_hash, 0);
4295 rb_define_method(rb_cMethod, "clone", method_clone, 0);
4296 rb_define_method(rb_cMethod, "dup", method_dup, 0);
4297 rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
4298 rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
4299 rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
4300 rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
4301 rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
4302 rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
4303 rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
4304 rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
4305 rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
4306 rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
4307 rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
4308 rb_define_method(rb_cMethod, "name", method_name, 0);
4309 rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
4310 rb_define_method(rb_cMethod, "owner", method_owner, 0);
4311 rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
4312 rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
4313 rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
4314 rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
4315 rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
4316 rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
4317 rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
4319 /* UnboundMethod */
4320 rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
4321 rb_undef_alloc_func(rb_cUnboundMethod);
4322 rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
4323 rb_define_method(rb_cUnboundMethod, "==", unbound_method_eq, 1);
4324 rb_define_method(rb_cUnboundMethod, "eql?", unbound_method_eq, 1);
4325 rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
4326 rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
4327 rb_define_method(rb_cUnboundMethod, "dup", method_dup, 0);
4328 rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
4329 rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
4330 rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
4331 rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
4332 rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
4333 rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
4334 rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
4335 rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
4336 rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
4337 rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
4338 rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
4340 /* Module#*_method */
4341 rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
4342 rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
4343 rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
4345 /* Kernel */
4346 rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
4348 rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
4349 "define_method", top_define_method, -1);
4353 * Objects of class Binding encapsulate the execution context at some
4354 * particular place in the code and retain this context for future
4355 * use. The variables, methods, value of <code>self</code>, and
4356 * possibly an iterator block that can be accessed in this context
4357 * are all retained. Binding objects can be created using
4358 * Kernel#binding, and are made available to the callback of
4359 * Kernel#set_trace_func and instances of TracePoint.
4361 * These binding objects can be passed as the second argument of the
4362 * Kernel#eval method, establishing an environment for the
4363 * evaluation.
4365 * class Demo
4366 * def initialize(n)
4367 * @secret = n
4368 * end
4369 * def get_binding
4370 * binding
4371 * end
4372 * end
4374 * k1 = Demo.new(99)
4375 * b1 = k1.get_binding
4376 * k2 = Demo.new(-3)
4377 * b2 = k2.get_binding
4379 * eval("@secret", b1) #=> 99
4380 * eval("@secret", b2) #=> -3
4381 * eval("@secret") #=> nil
4383 * Binding objects have no class-specific methods.
4387 void
4388 Init_Binding(void)
4390 rb_cBinding = rb_define_class("Binding", rb_cObject);
4391 rb_undef_alloc_func(rb_cBinding);
4392 rb_undef_method(CLASS_OF(rb_cBinding), "new");
4393 rb_define_method(rb_cBinding, "clone", binding_clone, 0);
4394 rb_define_method(rb_cBinding, "dup", binding_dup, 0);
4395 rb_define_method(rb_cBinding, "eval", bind_eval, -1);
4396 rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
4397 rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
4398 rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
4399 rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
4400 rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
4401 rb_define_method(rb_cBinding, "source_location", bind_location, 0);
4402 rb_define_global_function("binding", rb_f_binding, 0);