[ruby/uri] Also warn URI::RFC3986_PARSER.extract
[ruby.git] / cont.c
blobe08bff49d9026b206edce7497bad3f57004f4b28
1 /**********************************************************************
3 cont.c -
5 $Author$
6 created at: Thu May 23 09:03:43 2007
8 Copyright (C) 2007 Koichi Sasada
10 **********************************************************************/
12 #include "ruby/internal/config.h"
14 #ifndef _WIN32
15 #include <unistd.h>
16 #include <sys/mman.h>
17 #endif
19 // On Solaris, madvise() is NOT declared for SUS (XPG4v2) or later,
20 // but MADV_* macros are defined when __EXTENSIONS__ is defined.
21 #ifdef NEED_MADVICE_PROTOTYPE_USING_CADDR_T
22 #include <sys/types.h>
23 extern int madvise(caddr_t, size_t, int);
24 #endif
26 #include COROUTINE_H
28 #include "eval_intern.h"
29 #include "internal.h"
30 #include "internal/cont.h"
31 #include "internal/thread.h"
32 #include "internal/error.h"
33 #include "internal/gc.h"
34 #include "internal/proc.h"
35 #include "internal/sanitizers.h"
36 #include "internal/warnings.h"
37 #include "ruby/fiber/scheduler.h"
38 #include "rjit.h"
39 #include "yjit.h"
40 #include "vm_core.h"
41 #include "vm_sync.h"
42 #include "id_table.h"
43 #include "ractor_core.h"
45 static const int DEBUG = 0;
47 #define RB_PAGE_SIZE (pagesize)
48 #define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
49 static long pagesize;
51 static const rb_data_type_t cont_data_type, fiber_data_type;
52 static VALUE rb_cContinuation;
53 static VALUE rb_cFiber;
54 static VALUE rb_eFiberError;
55 #ifdef RB_EXPERIMENTAL_FIBER_POOL
56 static VALUE rb_cFiberPool;
57 #endif
59 #define CAPTURE_JUST_VALID_VM_STACK 1
61 // Defined in `coroutine/$arch/Context.h`:
62 #ifdef COROUTINE_LIMITED_ADDRESS_SPACE
63 #define FIBER_POOL_ALLOCATION_FREE
64 #define FIBER_POOL_INITIAL_SIZE 8
65 #define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32
66 #else
67 #define FIBER_POOL_INITIAL_SIZE 32
68 #define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024
69 #endif
70 #ifdef RB_EXPERIMENTAL_FIBER_POOL
71 #define FIBER_POOL_ALLOCATION_FREE
72 #endif
74 enum context_type {
75 CONTINUATION_CONTEXT = 0,
76 FIBER_CONTEXT = 1
79 struct cont_saved_vm_stack {
80 VALUE *ptr;
81 #ifdef CAPTURE_JUST_VALID_VM_STACK
82 size_t slen; /* length of stack (head of ec->vm_stack) */
83 size_t clen; /* length of control frames (tail of ec->vm_stack) */
84 #endif
87 struct fiber_pool;
89 // Represents a single stack.
90 struct fiber_pool_stack {
91 // A pointer to the memory allocation (lowest address) for the stack.
92 void * base;
94 // The current stack pointer, taking into account the direction of the stack.
95 void * current;
97 // The size of the stack excluding any guard pages.
98 size_t size;
100 // The available stack capacity w.r.t. the current stack offset.
101 size_t available;
103 // The pool this stack should be allocated from.
104 struct fiber_pool * pool;
106 // If the stack is allocated, the allocation it came from.
107 struct fiber_pool_allocation * allocation;
110 // A linked list of vacant (unused) stacks.
111 // This structure is stored in the first page of a stack if it is not in use.
112 // @sa fiber_pool_vacancy_pointer
113 struct fiber_pool_vacancy {
114 // Details about the vacant stack:
115 struct fiber_pool_stack stack;
117 // The vacancy linked list.
118 #ifdef FIBER_POOL_ALLOCATION_FREE
119 struct fiber_pool_vacancy * previous;
120 #endif
121 struct fiber_pool_vacancy * next;
124 // Manages singly linked list of mapped regions of memory which contains 1 more more stack:
126 // base = +-------------------------------+-----------------------+ +
127 // |VM Stack |VM Stack | | |
128 // | | | | |
129 // | | | | |
130 // +-------------------------------+ | |
131 // |Machine Stack |Machine Stack | | |
132 // | | | | |
133 // | | | | |
134 // | | | . . . . | | size
135 // | | | | |
136 // | | | | |
137 // | | | | |
138 // | | | | |
139 // | | | | |
140 // +-------------------------------+ | |
141 // |Guard Page |Guard Page | | |
142 // +-------------------------------+-----------------------+ v
144 // +------------------------------------------------------->
146 // count
148 struct fiber_pool_allocation {
149 // A pointer to the memory mapped region.
150 void * base;
152 // The size of the individual stacks.
153 size_t size;
155 // The stride of individual stacks (including any guard pages or other accounting details).
156 size_t stride;
158 // The number of stacks that were allocated.
159 size_t count;
161 #ifdef FIBER_POOL_ALLOCATION_FREE
162 // The number of stacks used in this allocation.
163 size_t used;
164 #endif
166 struct fiber_pool * pool;
168 // The allocation linked list.
169 #ifdef FIBER_POOL_ALLOCATION_FREE
170 struct fiber_pool_allocation * previous;
171 #endif
172 struct fiber_pool_allocation * next;
175 // A fiber pool manages vacant stacks to reduce the overhead of creating fibers.
176 struct fiber_pool {
177 // A singly-linked list of allocations which contain 1 or more stacks each.
178 struct fiber_pool_allocation * allocations;
180 // Free list that provides O(1) stack "allocation".
181 struct fiber_pool_vacancy * vacancies;
183 // The size of the stack allocations (excluding any guard page).
184 size_t size;
186 // The total number of stacks that have been allocated in this pool.
187 size_t count;
189 // The initial number of stacks to allocate.
190 size_t initial_count;
192 // Whether to madvise(free) the stack or not.
193 // If this value is set to 1, the stack will be madvise(free)ed
194 // (or equivalent), where possible, when it is returned to the pool.
195 int free_stacks;
197 // The number of stacks that have been used in this pool.
198 size_t used;
200 // The amount to allocate for the vm_stack.
201 size_t vm_stack_size;
204 // Continuation contexts used by JITs
205 struct rb_jit_cont {
206 rb_execution_context_t *ec; // continuation ec
207 struct rb_jit_cont *prev, *next; // used to form lists
210 // Doubly linked list for enumerating all on-stack ISEQs.
211 static struct rb_jit_cont *first_jit_cont;
213 typedef struct rb_context_struct {
214 enum context_type type;
215 int argc;
216 int kw_splat;
217 VALUE self;
218 VALUE value;
220 struct cont_saved_vm_stack saved_vm_stack;
222 struct {
223 VALUE *stack;
224 VALUE *stack_src;
225 size_t stack_size;
226 } machine;
227 rb_execution_context_t saved_ec;
228 rb_jmpbuf_t jmpbuf;
229 struct rb_jit_cont *jit_cont; // Continuation contexts for JITs
230 } rb_context_t;
233 * Fiber status:
234 * [Fiber.new] ------> FIBER_CREATED ----> [Fiber#kill] --> |
235 * | [Fiber#resume] |
236 * v |
237 * +--> FIBER_RESUMED ----> [return] ------> |
238 * [Fiber#resume] | | [Fiber.yield/transfer] |
239 * [Fiber#transfer] | v |
240 * +--- FIBER_SUSPENDED --> [Fiber#kill] --> |
243 * FIBER_TERMINATED <-------------------+
245 enum fiber_status {
246 FIBER_CREATED,
247 FIBER_RESUMED,
248 FIBER_SUSPENDED,
249 FIBER_TERMINATED
252 #define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
253 #define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
254 #define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
255 #define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
256 #define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
258 struct rb_fiber_struct {
259 rb_context_t cont;
260 VALUE first_proc;
261 struct rb_fiber_struct *prev;
262 struct rb_fiber_struct *resuming_fiber;
264 BITFIELD(enum fiber_status, status, 2);
265 /* Whether the fiber is allowed to implicitly yield. */
266 unsigned int yielding : 1;
267 unsigned int blocking : 1;
269 unsigned int killed : 1;
271 struct coroutine_context context;
272 struct fiber_pool_stack stack;
275 static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0};
277 void
278 rb_free_shared_fiber_pool(void)
280 xfree(shared_fiber_pool.allocations);
283 static ID fiber_initialize_keywords[3] = {0};
286 * FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
287 * if MAP_STACK is passed.
288 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=158755
290 #if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
291 #define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
292 #else
293 #define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
294 #endif
296 #define ERRNOMSG strerror(errno)
298 // Locates the stack vacancy details for the given stack.
299 inline static struct fiber_pool_vacancy *
300 fiber_pool_vacancy_pointer(void * base, size_t size)
302 STACK_GROW_DIR_DETECTION;
304 return (struct fiber_pool_vacancy *)(
305 (char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE)
309 #if defined(COROUTINE_SANITIZE_ADDRESS)
310 // Compute the base pointer for a vacant stack, for the area which can be poisoned.
311 inline static void *
312 fiber_pool_stack_poison_base(struct fiber_pool_stack * stack)
314 STACK_GROW_DIR_DETECTION;
316 return (char*)stack->base + STACK_DIR_UPPER(RB_PAGE_SIZE, 0);
319 // Compute the size of the vacant stack, for the area that can be poisoned.
320 inline static size_t
321 fiber_pool_stack_poison_size(struct fiber_pool_stack * stack)
323 return stack->size - RB_PAGE_SIZE;
325 #endif
327 // Reset the current stack pointer and available size of the given stack.
328 inline static void
329 fiber_pool_stack_reset(struct fiber_pool_stack * stack)
331 STACK_GROW_DIR_DETECTION;
333 stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size);
334 stack->available = stack->size;
337 // A pointer to the base of the current unused portion of the stack.
338 inline static void *
339 fiber_pool_stack_base(struct fiber_pool_stack * stack)
341 STACK_GROW_DIR_DETECTION;
343 VM_ASSERT(stack->current);
345 return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available);
348 // Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack.
349 // @sa fiber_initialize_coroutine
350 inline static void *
351 fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset)
353 STACK_GROW_DIR_DETECTION;
355 if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", (void*)stack, offset, stack->available);
356 VM_ASSERT(stack->available >= offset);
358 // The pointer to the memory being allocated:
359 void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset);
361 // Move the stack pointer:
362 stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset);
363 stack->available -= offset;
365 return pointer;
368 // Reset the current stack pointer and available size of the given stack.
369 inline static void
370 fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy)
372 fiber_pool_stack_reset(&vacancy->stack);
374 // Consume one page of the stack because it's used for the vacancy list:
375 fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE);
378 inline static struct fiber_pool_vacancy *
379 fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head)
381 vacancy->next = head;
383 #ifdef FIBER_POOL_ALLOCATION_FREE
384 if (head) {
385 head->previous = vacancy;
386 vacancy->previous = NULL;
388 #endif
390 return vacancy;
393 #ifdef FIBER_POOL_ALLOCATION_FREE
394 static void
395 fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy)
397 if (vacancy->next) {
398 vacancy->next->previous = vacancy->previous;
401 if (vacancy->previous) {
402 vacancy->previous->next = vacancy->next;
404 else {
405 // It's the head of the list:
406 vacancy->stack.pool->vacancies = vacancy->next;
410 inline static struct fiber_pool_vacancy *
411 fiber_pool_vacancy_pop(struct fiber_pool * pool)
413 struct fiber_pool_vacancy * vacancy = pool->vacancies;
415 if (vacancy) {
416 fiber_pool_vacancy_remove(vacancy);
419 return vacancy;
421 #else
422 inline static struct fiber_pool_vacancy *
423 fiber_pool_vacancy_pop(struct fiber_pool * pool)
425 struct fiber_pool_vacancy * vacancy = pool->vacancies;
427 if (vacancy) {
428 pool->vacancies = vacancy->next;
431 return vacancy;
433 #endif
435 // Initialize the vacant stack. The [base, size] allocation should not include the guard page.
436 // @param base The pointer to the lowest address of the allocated memory.
437 // @param size The size of the allocated memory.
438 inline static struct fiber_pool_vacancy *
439 fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size)
441 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size);
443 vacancy->stack.base = base;
444 vacancy->stack.size = size;
446 fiber_pool_vacancy_reset(vacancy);
448 vacancy->stack.pool = fiber_pool;
450 return fiber_pool_vacancy_push(vacancy, vacancies);
453 // Allocate a maximum of count stacks, size given by stride.
454 // @param count the number of stacks to allocate / were allocated.
455 // @param stride the size of the individual stacks.
456 // @return [void *] the allocated memory or NULL if allocation failed.
457 inline static void *
458 fiber_pool_allocate_memory(size_t * count, size_t stride)
460 // We use a divide-by-2 strategy to try and allocate memory. We are trying
461 // to allocate `count` stacks. In normal situation, this won't fail. But
462 // if we ran out of address space, or we are allocating more memory than
463 // the system would allow (e.g. overcommit * physical memory + swap), we
464 // divide count by two and try again. This condition should only be
465 // encountered in edge cases, but we handle it here gracefully.
466 while (*count > 1) {
467 #if defined(_WIN32)
468 void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE);
470 if (!base) {
471 *count = (*count) >> 1;
473 else {
474 return base;
476 #else
477 errno = 0;
478 void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
480 if (base == MAP_FAILED) {
481 // If the allocation fails, count = count / 2, and try again.
482 *count = (*count) >> 1;
484 else {
485 #if defined(MADV_FREE_REUSE)
486 // On Mac MADV_FREE_REUSE is necessary for the task_info api
487 // to keep the accounting accurate as possible when a page is marked as reusable
488 // it can possibly not occurring at first call thus re-iterating if necessary.
489 while (madvise(base, (*count)*stride, MADV_FREE_REUSE) == -1 && errno == EAGAIN);
490 #endif
491 return base;
493 #endif
496 return NULL;
499 // Given an existing fiber pool, expand it by the specified number of stacks.
500 // @param count the maximum number of stacks to allocate.
501 // @return the allocated fiber pool.
502 // @sa fiber_pool_allocation_free
503 static struct fiber_pool_allocation *
504 fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count)
506 STACK_GROW_DIR_DETECTION;
508 size_t size = fiber_pool->size;
509 size_t stride = size + RB_PAGE_SIZE;
511 // Allocate the memory required for the stacks:
512 void * base = fiber_pool_allocate_memory(&count, stride);
514 if (base == NULL) {
515 rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG);
518 struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies;
519 struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation);
521 // Initialize fiber pool allocation:
522 allocation->base = base;
523 allocation->size = size;
524 allocation->stride = stride;
525 allocation->count = count;
526 #ifdef FIBER_POOL_ALLOCATION_FREE
527 allocation->used = 0;
528 #endif
529 allocation->pool = fiber_pool;
531 if (DEBUG) {
532 fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n",
533 count, (void*)fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size);
536 // Iterate over all stacks, initializing the vacancy list:
537 for (size_t i = 0; i < count; i += 1) {
538 void * base = (char*)allocation->base + (stride * i);
539 void * page = (char*)base + STACK_DIR_UPPER(size, 0);
541 #if defined(_WIN32)
542 DWORD old_protect;
544 if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
545 VirtualFree(allocation->base, 0, MEM_RELEASE);
546 rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
548 #else
549 if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
550 munmap(allocation->base, count*stride);
551 rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
553 #endif
555 vacancies = fiber_pool_vacancy_initialize(
556 fiber_pool, vacancies,
557 (char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE),
558 size
561 #ifdef FIBER_POOL_ALLOCATION_FREE
562 vacancies->stack.allocation = allocation;
563 #endif
566 // Insert the allocation into the head of the pool:
567 allocation->next = fiber_pool->allocations;
569 #ifdef FIBER_POOL_ALLOCATION_FREE
570 if (allocation->next) {
571 allocation->next->previous = allocation;
574 allocation->previous = NULL;
575 #endif
577 fiber_pool->allocations = allocation;
578 fiber_pool->vacancies = vacancies;
579 fiber_pool->count += count;
581 return allocation;
584 // Initialize the specified fiber pool with the given number of stacks.
585 // @param vm_stack_size The size of the vm stack to allocate.
586 static void
587 fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size)
589 VM_ASSERT(vm_stack_size < size);
591 fiber_pool->allocations = NULL;
592 fiber_pool->vacancies = NULL;
593 fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE;
594 fiber_pool->count = 0;
595 fiber_pool->initial_count = count;
596 fiber_pool->free_stacks = 1;
597 fiber_pool->used = 0;
599 fiber_pool->vm_stack_size = vm_stack_size;
601 fiber_pool_expand(fiber_pool, count);
604 #ifdef FIBER_POOL_ALLOCATION_FREE
605 // Free the list of fiber pool allocations.
606 static void
607 fiber_pool_allocation_free(struct fiber_pool_allocation * allocation)
609 STACK_GROW_DIR_DETECTION;
611 VM_ASSERT(allocation->used == 0);
613 if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", (void*)allocation, allocation->base, allocation->count);
615 size_t i;
616 for (i = 0; i < allocation->count; i += 1) {
617 void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE);
619 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size);
621 // Pop the vacant stack off the free list:
622 fiber_pool_vacancy_remove(vacancy);
625 #ifdef _WIN32
626 VirtualFree(allocation->base, 0, MEM_RELEASE);
627 #else
628 munmap(allocation->base, allocation->stride * allocation->count);
629 #endif
631 if (allocation->previous) {
632 allocation->previous->next = allocation->next;
634 else {
635 // We are the head of the list, so update the pool:
636 allocation->pool->allocations = allocation->next;
639 if (allocation->next) {
640 allocation->next->previous = allocation->previous;
643 allocation->pool->count -= allocation->count;
645 ruby_xfree(allocation);
647 #endif
649 // Acquire a stack from the given fiber pool. If none are available, allocate more.
650 static struct fiber_pool_stack
651 fiber_pool_stack_acquire(struct fiber_pool * fiber_pool)
653 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool);
655 if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", (void*)fiber_pool->vacancies, fiber_pool->used);
657 if (!vacancy) {
658 const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE;
659 const size_t minimum = fiber_pool->initial_count;
661 size_t count = fiber_pool->count;
662 if (count > maximum) count = maximum;
663 if (count < minimum) count = minimum;
665 fiber_pool_expand(fiber_pool, count);
667 // The free list should now contain some stacks:
668 VM_ASSERT(fiber_pool->vacancies);
670 vacancy = fiber_pool_vacancy_pop(fiber_pool);
673 VM_ASSERT(vacancy);
674 VM_ASSERT(vacancy->stack.base);
676 #if defined(COROUTINE_SANITIZE_ADDRESS)
677 __asan_unpoison_memory_region(fiber_pool_stack_poison_base(&vacancy->stack), fiber_pool_stack_poison_size(&vacancy->stack));
678 #endif
680 // Take the top item from the free list:
681 fiber_pool->used += 1;
683 #ifdef FIBER_POOL_ALLOCATION_FREE
684 vacancy->stack.allocation->used += 1;
685 #endif
687 fiber_pool_stack_reset(&vacancy->stack);
689 return vacancy->stack;
692 // We advise the operating system that the stack memory pages are no longer being used.
693 // This introduce some performance overhead but allows system to relaim memory when there is pressure.
694 static inline void
695 fiber_pool_stack_free(struct fiber_pool_stack * stack)
697 void * base = fiber_pool_stack_base(stack);
698 size_t size = stack->available;
700 // If this is not true, the vacancy information will almost certainly be destroyed:
701 VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE));
703 int advice = stack->pool->free_stacks >> 1;
705 if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"] advice=%d\n", base, size, stack->base, stack->size, advice);
707 // The pages being used by the stack can be returned back to the system.
708 // That doesn't change the page mapping, but it does allow the system to
709 // reclaim the physical memory.
710 // Since we no longer care about the data itself, we don't need to page
711 // out to disk, since that is costly. Not all systems support that, so
712 // we try our best to select the most efficient implementation.
713 // In addition, it's actually slightly desirable to not do anything here,
714 // but that results in higher memory usage.
716 #ifdef __wasi__
717 // WebAssembly doesn't support madvise, so we just don't do anything.
718 #elif VM_CHECK_MODE > 0 && defined(MADV_DONTNEED)
719 if (!advice) advice = MADV_DONTNEED;
720 // This immediately discards the pages and the memory is reset to zero.
721 madvise(base, size, advice);
722 #elif defined(MADV_FREE_REUSABLE)
723 if (!advice) advice = MADV_FREE_REUSABLE;
724 // Darwin / macOS / iOS.
725 // Acknowledge the kernel down to the task info api we make this
726 // page reusable for future use.
727 // As for MADV_FREE_REUSABLE below we ensure in the rare occasions the task was not
728 // completed at the time of the call to re-iterate.
729 while (madvise(base, size, advice) == -1 && errno == EAGAIN);
730 #elif defined(MADV_FREE)
731 if (!advice) advice = MADV_FREE;
732 // Recent Linux.
733 madvise(base, size, advice);
734 #elif defined(MADV_DONTNEED)
735 if (!advice) advice = MADV_DONTNEED;
736 // Old Linux.
737 madvise(base, size, advice);
738 #elif defined(POSIX_MADV_DONTNEED)
739 if (!advice) advice = POSIX_MADV_DONTNEED;
740 // Solaris?
741 posix_madvise(base, size, advice);
742 #elif defined(_WIN32)
743 VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE);
744 // Not available in all versions of Windows.
745 //DiscardVirtualMemory(base, size);
746 #endif
748 #if defined(COROUTINE_SANITIZE_ADDRESS)
749 __asan_poison_memory_region(fiber_pool_stack_poison_base(stack), fiber_pool_stack_poison_size(stack));
750 #endif
753 // Release and return a stack to the vacancy list.
754 static void
755 fiber_pool_stack_release(struct fiber_pool_stack * stack)
757 struct fiber_pool * pool = stack->pool;
758 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size);
760 if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used);
762 // Copy the stack details into the vacancy area:
763 vacancy->stack = *stack;
764 // After this point, be careful about updating/using state in stack, since it's copied to the vacancy area.
766 // Reset the stack pointers and reserve space for the vacancy data:
767 fiber_pool_vacancy_reset(vacancy);
769 // Push the vacancy into the vancancies list:
770 pool->vacancies = fiber_pool_vacancy_push(vacancy, pool->vacancies);
771 pool->used -= 1;
773 #ifdef FIBER_POOL_ALLOCATION_FREE
774 struct fiber_pool_allocation * allocation = stack->allocation;
776 allocation->used -= 1;
778 // Release address space and/or dirty memory:
779 if (allocation->used == 0) {
780 fiber_pool_allocation_free(allocation);
782 else if (stack->pool->free_stacks) {
783 fiber_pool_stack_free(&vacancy->stack);
785 #else
786 // This is entirely optional, but clears the dirty flag from the stack
787 // memory, so it won't get swapped to disk when there is memory pressure:
788 if (stack->pool->free_stacks) {
789 fiber_pool_stack_free(&vacancy->stack);
791 #endif
794 static inline void
795 ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
797 rb_execution_context_t *ec = &fiber->cont.saved_ec;
798 #ifdef RUBY_ASAN_ENABLED
799 ec->machine.asan_fake_stack_handle = asan_get_thread_fake_stack_handle();
800 #endif
801 rb_ractor_set_current_ec(th->ractor, th->ec = ec);
802 // ruby_current_execution_context_ptr = th->ec = ec;
805 * timer-thread may set trap interrupt on previous th->ec at any time;
806 * ensure we do not delay (or lose) the trap interrupt handling.
808 if (th->vm->ractor.main_thread == th &&
809 rb_signal_buff_size() > 0) {
810 RUBY_VM_SET_TRAP_INTERRUPT(ec);
813 VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
816 static inline void
817 fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
819 ec_switch(th, fiber);
820 VM_ASSERT(th->ec->fiber_ptr == fiber);
823 static COROUTINE
824 fiber_entry(struct coroutine_context * from, struct coroutine_context * to)
826 rb_fiber_t *fiber = to->argument;
828 #if defined(COROUTINE_SANITIZE_ADDRESS)
829 // Address sanitizer will copy the previous stack base and stack size into
830 // the "from" fiber. `coroutine_initialize_main` doesn't generally know the
831 // stack bounds (base + size). Therefore, the main fiber `stack_base` and
832 // `stack_size` will be NULL/0. It's specifically important in that case to
833 // get the (base+size) of the previous fiber and save it, so that later when
834 // we return to the main coroutine, we don't supply (NULL, 0) to
835 // __sanitizer_start_switch_fiber which royally messes up the internal state
836 // of ASAN and causes (sometimes) the following message:
837 // "WARNING: ASan is ignoring requested __asan_handle_no_return"
838 __sanitizer_finish_switch_fiber(to->fake_stack, (const void**)&from->stack_base, &from->stack_size);
839 #endif
841 rb_thread_t *thread = fiber->cont.saved_ec.thread_ptr;
843 #ifdef COROUTINE_PTHREAD_CONTEXT
844 ruby_thread_set_native(thread);
845 #endif
847 fiber_restore_thread(thread, fiber);
849 rb_fiber_start(fiber);
851 #ifndef COROUTINE_PTHREAD_CONTEXT
852 VM_UNREACHABLE(fiber_entry);
853 #endif
856 // Initialize a fiber's coroutine's machine stack and vm stack.
857 static VALUE *
858 fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size)
860 struct fiber_pool * fiber_pool = fiber->stack.pool;
861 rb_execution_context_t *sec = &fiber->cont.saved_ec;
862 void * vm_stack = NULL;
864 VM_ASSERT(fiber_pool != NULL);
866 fiber->stack = fiber_pool_stack_acquire(fiber_pool);
867 vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size);
868 *vm_stack_size = fiber_pool->vm_stack_size;
870 coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available);
872 // The stack for this execution context is the one we allocated:
873 sec->machine.stack_start = fiber->stack.current;
874 sec->machine.stack_maxsize = fiber->stack.available;
876 fiber->context.argument = (void*)fiber;
878 return vm_stack;
881 // Release the stack from the fiber, it's execution context, and return it to
882 // the fiber pool.
883 static void
884 fiber_stack_release(rb_fiber_t * fiber)
886 rb_execution_context_t *ec = &fiber->cont.saved_ec;
888 if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", (void*)fiber, fiber->stack.base);
890 // Return the stack back to the fiber pool if it wasn't already:
891 if (fiber->stack.base) {
892 fiber_pool_stack_release(&fiber->stack);
893 fiber->stack.base = NULL;
896 // The stack is no longer associated with this execution context:
897 rb_ec_clear_vm_stack(ec);
900 static const char *
901 fiber_status_name(enum fiber_status s)
903 switch (s) {
904 case FIBER_CREATED: return "created";
905 case FIBER_RESUMED: return "resumed";
906 case FIBER_SUSPENDED: return "suspended";
907 case FIBER_TERMINATED: return "terminated";
909 VM_UNREACHABLE(fiber_status_name);
910 return NULL;
913 static void
914 fiber_verify(const rb_fiber_t *fiber)
916 #if VM_CHECK_MODE > 0
917 VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
919 switch (fiber->status) {
920 case FIBER_RESUMED:
921 VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
922 break;
923 case FIBER_SUSPENDED:
924 VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
925 break;
926 case FIBER_CREATED:
927 case FIBER_TERMINATED:
928 /* TODO */
929 break;
930 default:
931 VM_UNREACHABLE(fiber_verify);
933 #endif
936 inline static void
937 fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
939 // if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
940 VM_ASSERT(!FIBER_TERMINATED_P(fiber));
941 VM_ASSERT(fiber->status != s);
942 fiber_verify(fiber);
943 fiber->status = s;
946 static rb_context_t *
947 cont_ptr(VALUE obj)
949 rb_context_t *cont;
951 TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
953 return cont;
956 static rb_fiber_t *
957 fiber_ptr(VALUE obj)
959 rb_fiber_t *fiber;
961 TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
962 if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
964 return fiber;
967 NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
969 #define THREAD_MUST_BE_RUNNING(th) do { \
970 if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
971 } while (0)
973 rb_thread_t*
974 rb_fiber_threadptr(const rb_fiber_t *fiber)
976 return fiber->cont.saved_ec.thread_ptr;
979 static VALUE
980 cont_thread_value(const rb_context_t *cont)
982 return cont->saved_ec.thread_ptr->self;
985 static void
986 cont_compact(void *ptr)
988 rb_context_t *cont = ptr;
990 if (cont->self) {
991 cont->self = rb_gc_location(cont->self);
993 cont->value = rb_gc_location(cont->value);
994 rb_execution_context_update(&cont->saved_ec);
997 static void
998 cont_mark(void *ptr)
1000 rb_context_t *cont = ptr;
1002 RUBY_MARK_ENTER("cont");
1003 if (cont->self) {
1004 rb_gc_mark_movable(cont->self);
1006 rb_gc_mark_movable(cont->value);
1008 rb_execution_context_mark(&cont->saved_ec);
1009 rb_gc_mark(cont_thread_value(cont));
1011 if (cont->saved_vm_stack.ptr) {
1012 #ifdef CAPTURE_JUST_VALID_VM_STACK
1013 rb_gc_mark_locations(cont->saved_vm_stack.ptr,
1014 cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
1015 #else
1016 rb_gc_mark_locations(cont->saved_vm_stack.ptr,
1017 cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
1018 #endif
1021 if (cont->machine.stack) {
1022 if (cont->type == CONTINUATION_CONTEXT) {
1023 /* cont */
1024 rb_gc_mark_locations(cont->machine.stack,
1025 cont->machine.stack + cont->machine.stack_size);
1027 else {
1028 /* fiber machine context is marked as part of rb_execution_context_mark, no need to
1029 * do anything here. */
1033 RUBY_MARK_LEAVE("cont");
1036 #if 0
1037 static int
1038 fiber_is_root_p(const rb_fiber_t *fiber)
1040 return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber;
1042 #endif
1044 static void jit_cont_free(struct rb_jit_cont *cont);
1046 static void
1047 cont_free(void *ptr)
1049 rb_context_t *cont = ptr;
1051 RUBY_FREE_ENTER("cont");
1053 if (cont->type == CONTINUATION_CONTEXT) {
1054 ruby_xfree(cont->saved_ec.vm_stack);
1055 RUBY_FREE_UNLESS_NULL(cont->machine.stack);
1057 else {
1058 rb_fiber_t *fiber = (rb_fiber_t*)cont;
1059 coroutine_destroy(&fiber->context);
1060 fiber_stack_release(fiber);
1063 RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
1065 VM_ASSERT(cont->jit_cont != NULL);
1066 jit_cont_free(cont->jit_cont);
1067 /* free rb_cont_t or rb_fiber_t */
1068 ruby_xfree(ptr);
1069 RUBY_FREE_LEAVE("cont");
1072 static size_t
1073 cont_memsize(const void *ptr)
1075 const rb_context_t *cont = ptr;
1076 size_t size = 0;
1078 size = sizeof(*cont);
1079 if (cont->saved_vm_stack.ptr) {
1080 #ifdef CAPTURE_JUST_VALID_VM_STACK
1081 size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
1082 #else
1083 size_t n = cont->saved_ec.vm_stack_size;
1084 #endif
1085 size += n * sizeof(*cont->saved_vm_stack.ptr);
1088 if (cont->machine.stack) {
1089 size += cont->machine.stack_size * sizeof(*cont->machine.stack);
1092 return size;
1095 void
1096 rb_fiber_update_self(rb_fiber_t *fiber)
1098 if (fiber->cont.self) {
1099 fiber->cont.self = rb_gc_location(fiber->cont.self);
1101 else {
1102 rb_execution_context_update(&fiber->cont.saved_ec);
1106 void
1107 rb_fiber_mark_self(const rb_fiber_t *fiber)
1109 if (fiber->cont.self) {
1110 rb_gc_mark_movable(fiber->cont.self);
1112 else {
1113 rb_execution_context_mark(&fiber->cont.saved_ec);
1117 static void
1118 fiber_compact(void *ptr)
1120 rb_fiber_t *fiber = ptr;
1121 fiber->first_proc = rb_gc_location(fiber->first_proc);
1123 if (fiber->prev) rb_fiber_update_self(fiber->prev);
1125 cont_compact(&fiber->cont);
1126 fiber_verify(fiber);
1129 static void
1130 fiber_mark(void *ptr)
1132 rb_fiber_t *fiber = ptr;
1133 RUBY_MARK_ENTER("cont");
1134 fiber_verify(fiber);
1135 rb_gc_mark_movable(fiber->first_proc);
1136 if (fiber->prev) rb_fiber_mark_self(fiber->prev);
1137 cont_mark(&fiber->cont);
1138 RUBY_MARK_LEAVE("cont");
1141 static void
1142 fiber_free(void *ptr)
1144 rb_fiber_t *fiber = ptr;
1145 RUBY_FREE_ENTER("fiber");
1147 if (DEBUG) fprintf(stderr, "fiber_free: %p[%p]\n", (void *)fiber, fiber->stack.base);
1149 if (fiber->cont.saved_ec.local_storage) {
1150 rb_id_table_free(fiber->cont.saved_ec.local_storage);
1153 cont_free(&fiber->cont);
1154 RUBY_FREE_LEAVE("fiber");
1157 static size_t
1158 fiber_memsize(const void *ptr)
1160 const rb_fiber_t *fiber = ptr;
1161 size_t size = sizeof(*fiber);
1162 const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec;
1163 const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
1166 * vm.c::thread_memsize already counts th->ec->local_storage
1168 if (saved_ec->local_storage && fiber != th->root_fiber) {
1169 size += rb_id_table_memsize(saved_ec->local_storage);
1170 size += rb_obj_memsize_of(saved_ec->storage);
1173 size += cont_memsize(&fiber->cont);
1174 return size;
1177 VALUE
1178 rb_obj_is_fiber(VALUE obj)
1180 return RBOOL(rb_typeddata_is_kind_of(obj, &fiber_data_type));
1183 static void
1184 cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
1186 size_t size;
1188 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
1190 if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
1191 size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
1192 cont->machine.stack_src = th->ec->machine.stack_end;
1194 else {
1195 size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
1196 cont->machine.stack_src = th->ec->machine.stack_start;
1199 if (cont->machine.stack) {
1200 REALLOC_N(cont->machine.stack, VALUE, size);
1202 else {
1203 cont->machine.stack = ALLOC_N(VALUE, size);
1206 FLUSH_REGISTER_WINDOWS;
1207 asan_unpoison_memory_region(cont->machine.stack_src, size, false);
1208 MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
1211 static const rb_data_type_t cont_data_type = {
1212 "continuation",
1213 {cont_mark, cont_free, cont_memsize, cont_compact},
1214 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1217 static inline void
1218 cont_save_thread(rb_context_t *cont, rb_thread_t *th)
1220 rb_execution_context_t *sec = &cont->saved_ec;
1222 VM_ASSERT(th->status == THREAD_RUNNABLE);
1224 /* save thread context */
1225 *sec = *th->ec;
1227 /* saved_ec->machine.stack_end should be NULL */
1228 /* because it may happen GC afterward */
1229 sec->machine.stack_end = NULL;
1232 static rb_nativethread_lock_t jit_cont_lock;
1234 // Register a new continuation with execution context `ec`. Return JIT info about
1235 // the continuation.
1236 static struct rb_jit_cont *
1237 jit_cont_new(rb_execution_context_t *ec)
1239 struct rb_jit_cont *cont;
1241 // We need to use calloc instead of something like ZALLOC to avoid triggering GC here.
1242 // When this function is called from rb_thread_alloc through rb_threadptr_root_fiber_setup,
1243 // the thread is still being prepared and marking it causes SEGV.
1244 cont = calloc(1, sizeof(struct rb_jit_cont));
1245 if (cont == NULL)
1246 rb_memerror();
1247 cont->ec = ec;
1249 rb_native_mutex_lock(&jit_cont_lock);
1250 if (first_jit_cont == NULL) {
1251 cont->next = cont->prev = NULL;
1253 else {
1254 cont->prev = NULL;
1255 cont->next = first_jit_cont;
1256 first_jit_cont->prev = cont;
1258 first_jit_cont = cont;
1259 rb_native_mutex_unlock(&jit_cont_lock);
1261 return cont;
1264 // Unregister continuation `cont`.
1265 static void
1266 jit_cont_free(struct rb_jit_cont *cont)
1268 if (!cont) return;
1270 rb_native_mutex_lock(&jit_cont_lock);
1271 if (cont == first_jit_cont) {
1272 first_jit_cont = cont->next;
1273 if (first_jit_cont != NULL)
1274 first_jit_cont->prev = NULL;
1276 else {
1277 cont->prev->next = cont->next;
1278 if (cont->next != NULL)
1279 cont->next->prev = cont->prev;
1281 rb_native_mutex_unlock(&jit_cont_lock);
1283 free(cont);
1286 // Call a given callback against all on-stack ISEQs.
1287 void
1288 rb_jit_cont_each_iseq(rb_iseq_callback callback, void *data)
1290 struct rb_jit_cont *cont;
1291 for (cont = first_jit_cont; cont != NULL; cont = cont->next) {
1292 if (cont->ec->vm_stack == NULL)
1293 continue;
1295 const rb_control_frame_t *cfp = cont->ec->cfp;
1296 while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(cont->ec, cfp)) {
1297 if (cfp->pc && cfp->iseq && imemo_type((VALUE)cfp->iseq) == imemo_iseq) {
1298 callback(cfp->iseq, data);
1300 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1305 #if USE_YJIT
1306 // Update the jit_return of all CFPs to leave_exit unless it's leave_exception or not set.
1307 // This prevents jit_exec_exception from jumping to the caller after invalidation.
1308 void
1309 rb_yjit_cancel_jit_return(void *leave_exit, void *leave_exception)
1311 struct rb_jit_cont *cont;
1312 for (cont = first_jit_cont; cont != NULL; cont = cont->next) {
1313 if (cont->ec->vm_stack == NULL)
1314 continue;
1316 const rb_control_frame_t *cfp = cont->ec->cfp;
1317 while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(cont->ec, cfp)) {
1318 if (cfp->jit_return && cfp->jit_return != leave_exception) {
1319 ((rb_control_frame_t *)cfp)->jit_return = leave_exit;
1321 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1325 #endif
1327 // Finish working with jit_cont.
1328 void
1329 rb_jit_cont_finish(void)
1331 struct rb_jit_cont *cont, *next;
1332 for (cont = first_jit_cont; cont != NULL; cont = next) {
1333 next = cont->next;
1334 free(cont); // Don't use xfree because it's allocated by calloc.
1336 rb_native_mutex_destroy(&jit_cont_lock);
1339 static void
1340 cont_init_jit_cont(rb_context_t *cont)
1342 VM_ASSERT(cont->jit_cont == NULL);
1343 // We always allocate this since YJIT may be enabled later
1344 cont->jit_cont = jit_cont_new(&(cont->saved_ec));
1347 struct rb_execution_context_struct *
1348 rb_fiberptr_get_ec(struct rb_fiber_struct *fiber)
1350 return &fiber->cont.saved_ec;
1353 static void
1354 cont_init(rb_context_t *cont, rb_thread_t *th)
1356 /* save thread context */
1357 cont_save_thread(cont, th);
1358 cont->saved_ec.thread_ptr = th;
1359 cont->saved_ec.local_storage = NULL;
1360 cont->saved_ec.local_storage_recursive_hash = Qnil;
1361 cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
1362 cont_init_jit_cont(cont);
1365 static rb_context_t *
1366 cont_new(VALUE klass)
1368 rb_context_t *cont;
1369 volatile VALUE contval;
1370 rb_thread_t *th = GET_THREAD();
1372 THREAD_MUST_BE_RUNNING(th);
1373 contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
1374 cont->self = contval;
1375 cont_init(cont, th);
1376 return cont;
1379 VALUE
1380 rb_fiberptr_self(struct rb_fiber_struct *fiber)
1382 return fiber->cont.self;
1385 unsigned int
1386 rb_fiberptr_blocking(struct rb_fiber_struct *fiber)
1388 return fiber->blocking;
1391 // Initialize the jit_cont_lock
1392 void
1393 rb_jit_cont_init(void)
1395 rb_native_mutex_initialize(&jit_cont_lock);
1398 #if 0
1399 void
1400 show_vm_stack(const rb_execution_context_t *ec)
1402 VALUE *p = ec->vm_stack;
1403 while (p < ec->cfp->sp) {
1404 fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
1405 rb_obj_info_dump(*p);
1406 p++;
1410 void
1411 show_vm_pcs(const rb_control_frame_t *cfp,
1412 const rb_control_frame_t *end_of_cfp)
1414 int i=0;
1415 while (cfp != end_of_cfp) {
1416 int pc = 0;
1417 if (cfp->iseq) {
1418 pc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded;
1420 fprintf(stderr, "%2d pc: %d\n", i++, pc);
1421 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1424 #endif
1426 static VALUE
1427 cont_capture(volatile int *volatile stat)
1429 rb_context_t *volatile cont;
1430 rb_thread_t *th = GET_THREAD();
1431 volatile VALUE contval;
1432 const rb_execution_context_t *ec = th->ec;
1434 THREAD_MUST_BE_RUNNING(th);
1435 rb_vm_stack_to_heap(th->ec);
1436 cont = cont_new(rb_cContinuation);
1437 contval = cont->self;
1439 #ifdef CAPTURE_JUST_VALID_VM_STACK
1440 cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
1441 cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
1442 cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
1443 MEMCPY(cont->saved_vm_stack.ptr,
1444 ec->vm_stack,
1445 VALUE, cont->saved_vm_stack.slen);
1446 MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
1447 (VALUE*)ec->cfp,
1448 VALUE,
1449 cont->saved_vm_stack.clen);
1450 #else
1451 cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
1452 MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
1453 #endif
1454 // At this point, `cfp` is valid but `vm_stack` should be cleared:
1455 rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0);
1456 VM_ASSERT(cont->saved_ec.cfp != NULL);
1457 cont_save_machine_stack(th, cont);
1459 if (ruby_setjmp(cont->jmpbuf)) {
1460 VALUE value;
1462 VAR_INITIALIZED(cont);
1463 value = cont->value;
1464 if (cont->argc == -1) rb_exc_raise(value);
1465 cont->value = Qnil;
1466 *stat = 1;
1467 return value;
1469 else {
1470 *stat = 0;
1471 return contval;
1475 static inline void
1476 cont_restore_thread(rb_context_t *cont)
1478 rb_thread_t *th = GET_THREAD();
1480 /* restore thread context */
1481 if (cont->type == CONTINUATION_CONTEXT) {
1482 /* continuation */
1483 rb_execution_context_t *sec = &cont->saved_ec;
1484 rb_fiber_t *fiber = NULL;
1486 if (sec->fiber_ptr != NULL) {
1487 fiber = sec->fiber_ptr;
1489 else if (th->root_fiber) {
1490 fiber = th->root_fiber;
1493 if (fiber && th->ec != &fiber->cont.saved_ec) {
1494 ec_switch(th, fiber);
1497 if (th->ec->trace_arg != sec->trace_arg) {
1498 rb_raise(rb_eRuntimeError, "can't call across trace_func");
1501 /* copy vm stack */
1502 #ifdef CAPTURE_JUST_VALID_VM_STACK
1503 MEMCPY(th->ec->vm_stack,
1504 cont->saved_vm_stack.ptr,
1505 VALUE, cont->saved_vm_stack.slen);
1506 MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
1507 cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
1508 VALUE, cont->saved_vm_stack.clen);
1509 #else
1510 MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
1511 #endif
1512 /* other members of ec */
1514 th->ec->cfp = sec->cfp;
1515 th->ec->raised_flag = sec->raised_flag;
1516 th->ec->tag = sec->tag;
1517 th->ec->root_lep = sec->root_lep;
1518 th->ec->root_svar = sec->root_svar;
1519 th->ec->errinfo = sec->errinfo;
1521 VM_ASSERT(th->ec->vm_stack != NULL);
1523 else {
1524 /* fiber */
1525 fiber_restore_thread(th, (rb_fiber_t*)cont);
1529 NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber));
1531 static void
1532 fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)
1534 rb_thread_t *th = GET_THREAD();
1536 /* save old_fiber's machine stack - to ensure efficient garbage collection */
1537 if (!FIBER_TERMINATED_P(old_fiber)) {
1538 STACK_GROW_DIR_DETECTION;
1539 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
1540 if (STACK_DIR_UPPER(0, 1)) {
1541 old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
1542 old_fiber->cont.machine.stack = th->ec->machine.stack_end;
1544 else {
1545 old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
1546 old_fiber->cont.machine.stack = th->ec->machine.stack_start;
1550 /* these values are used in rb_gc_mark_machine_context to mark the fiber's stack. */
1551 old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
1552 old_fiber->cont.saved_ec.machine.stack_end = FIBER_TERMINATED_P(old_fiber) ? NULL : th->ec->machine.stack_end;
1555 // if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] -> %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
1557 #if defined(COROUTINE_SANITIZE_ADDRESS)
1558 __sanitizer_start_switch_fiber(FIBER_TERMINATED_P(old_fiber) ? NULL : &old_fiber->context.fake_stack, new_fiber->context.stack_base, new_fiber->context.stack_size);
1559 #endif
1561 /* swap machine context */
1562 struct coroutine_context * from = coroutine_transfer(&old_fiber->context, &new_fiber->context);
1564 #if defined(COROUTINE_SANITIZE_ADDRESS)
1565 __sanitizer_finish_switch_fiber(old_fiber->context.fake_stack, NULL, NULL);
1566 #endif
1568 if (from == NULL) {
1569 rb_syserr_fail(errno, "coroutine_transfer");
1572 /* restore thread context */
1573 fiber_restore_thread(th, old_fiber);
1575 // It's possible to get here, and new_fiber is already freed.
1576 // if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] <- %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
1579 NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
1581 static void
1582 cont_restore_1(rb_context_t *cont)
1584 cont_restore_thread(cont);
1586 /* restore machine stack */
1587 #if defined(_M_AMD64) && !defined(__MINGW64__)
1589 /* workaround for x64 SEH */
1590 jmp_buf buf;
1591 setjmp(buf);
1592 _JUMP_BUFFER *bp = (void*)&cont->jmpbuf;
1593 bp->Frame = ((_JUMP_BUFFER*)((void*)&buf))->Frame;
1595 #endif
1596 if (cont->machine.stack_src) {
1597 FLUSH_REGISTER_WINDOWS;
1598 MEMCPY(cont->machine.stack_src, cont->machine.stack,
1599 VALUE, cont->machine.stack_size);
1602 ruby_longjmp(cont->jmpbuf, 1);
1605 NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
1607 static void
1608 cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
1610 if (cont->machine.stack_src) {
1611 #ifdef HAVE_ALLOCA
1612 #define STACK_PAD_SIZE 1
1613 #else
1614 #define STACK_PAD_SIZE 1024
1615 #endif
1616 VALUE space[STACK_PAD_SIZE];
1618 #if !STACK_GROW_DIRECTION
1619 if (addr_in_prev_frame > &space[0]) {
1620 /* Stack grows downward */
1621 #endif
1622 #if STACK_GROW_DIRECTION <= 0
1623 volatile VALUE *const end = cont->machine.stack_src;
1624 if (&space[0] > end) {
1625 # ifdef HAVE_ALLOCA
1626 volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
1627 // We need to make sure that the stack pointer is moved,
1628 // but some compilers may remove the allocation by optimization.
1629 // We hope that the following read/write will prevent such an optimization.
1630 *sp = Qfalse;
1631 space[0] = *sp;
1632 # else
1633 cont_restore_0(cont, &space[0]);
1634 # endif
1636 #endif
1637 #if !STACK_GROW_DIRECTION
1639 else {
1640 /* Stack grows upward */
1641 #endif
1642 #if STACK_GROW_DIRECTION >= 0
1643 volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
1644 if (&space[STACK_PAD_SIZE] < end) {
1645 # ifdef HAVE_ALLOCA
1646 volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
1647 space[0] = *sp;
1648 # else
1649 cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
1650 # endif
1652 #endif
1653 #if !STACK_GROW_DIRECTION
1655 #endif
1657 cont_restore_1(cont);
1661 * Document-class: Continuation
1663 * Continuation objects are generated by Kernel#callcc,
1664 * after having +require+d <i>continuation</i>. They hold
1665 * a return address and execution context, allowing a nonlocal return
1666 * to the end of the #callcc block from anywhere within a
1667 * program. Continuations are somewhat analogous to a structured
1668 * version of C's <code>setjmp/longjmp</code> (although they contain
1669 * more state, so you might consider them closer to threads).
1671 * For instance:
1673 * require "continuation"
1674 * arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
1675 * callcc{|cc| $cc = cc}
1676 * puts(message = arr.shift)
1677 * $cc.call unless message =~ /Max/
1679 * <em>produces:</em>
1681 * Freddie
1682 * Herbie
1683 * Ron
1684 * Max
1686 * Also you can call callcc in other methods:
1688 * require "continuation"
1690 * def g
1691 * arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
1692 * cc = callcc { |cc| cc }
1693 * puts arr.shift
1694 * return cc, arr.size
1695 * end
1697 * def f
1698 * c, size = g
1699 * c.call(c) if size > 1
1700 * end
1704 * This (somewhat contrived) example allows the inner loop to abandon
1705 * processing early:
1707 * require "continuation"
1708 * callcc {|cont|
1709 * for i in 0..4
1710 * print "#{i}: "
1711 * for j in i*5...(i+1)*5
1712 * cont.call() if j == 17
1713 * printf "%3d", j
1714 * end
1715 * end
1717 * puts
1719 * <em>produces:</em>
1721 * 0: 0 1 2 3 4
1722 * 1: 5 6 7 8 9
1723 * 2: 10 11 12 13 14
1724 * 3: 15 16
1728 * call-seq:
1729 * callcc {|cont| block } -> obj
1731 * Generates a Continuation object, which it passes to
1732 * the associated block. You need to <code>require
1733 * 'continuation'</code> before using this method. Performing a
1734 * <em>cont</em><code>.call</code> will cause the #callcc
1735 * to return (as will falling through the end of the block). The
1736 * value returned by the #callcc is the value of the
1737 * block, or the value passed to <em>cont</em><code>.call</code>. See
1738 * class Continuation for more details. Also see
1739 * Kernel#throw for an alternative mechanism for
1740 * unwinding a call stack.
1743 static VALUE
1744 rb_callcc(VALUE self)
1746 volatile int called;
1747 volatile VALUE val = cont_capture(&called);
1749 if (called) {
1750 return val;
1752 else {
1753 return rb_yield(val);
1756 #ifdef RUBY_ASAN_ENABLED
1757 /* callcc can't possibly work with ASAN; see bug #20273. Also this function
1758 * definition below avoids a "defined and not used" warning. */
1759 MAYBE_UNUSED(static void notusing_callcc(void)) { rb_callcc(Qnil); }
1760 # define rb_callcc rb_f_notimplement
1761 #endif
1764 static VALUE
1765 make_passing_arg(int argc, const VALUE *argv)
1767 switch (argc) {
1768 case -1:
1769 return argv[0];
1770 case 0:
1771 return Qnil;
1772 case 1:
1773 return argv[0];
1774 default:
1775 return rb_ary_new4(argc, argv);
1779 typedef VALUE e_proc(VALUE);
1781 NORETURN(static VALUE rb_cont_call(int argc, VALUE *argv, VALUE contval));
1784 * call-seq:
1785 * cont.call(args, ...)
1786 * cont[args, ...]
1788 * Invokes the continuation. The program continues from the end of
1789 * the #callcc block. If no arguments are given, the original #callcc
1790 * returns +nil+. If one argument is given, #callcc returns
1791 * it. Otherwise, an array containing <i>args</i> is returned.
1793 * callcc {|cont| cont.call } #=> nil
1794 * callcc {|cont| cont.call 1 } #=> 1
1795 * callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
1798 static VALUE
1799 rb_cont_call(int argc, VALUE *argv, VALUE contval)
1801 rb_context_t *cont = cont_ptr(contval);
1802 rb_thread_t *th = GET_THREAD();
1804 if (cont_thread_value(cont) != th->self) {
1805 rb_raise(rb_eRuntimeError, "continuation called across threads");
1807 if (cont->saved_ec.fiber_ptr) {
1808 if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
1809 rb_raise(rb_eRuntimeError, "continuation called across fiber");
1813 cont->argc = argc;
1814 cont->value = make_passing_arg(argc, argv);
1816 cont_restore_0(cont, &contval);
1817 UNREACHABLE_RETURN(Qnil);
1820 /*********/
1821 /* fiber */
1822 /*********/
1825 * Document-class: Fiber
1827 * Fibers are primitives for implementing light weight cooperative
1828 * concurrency in Ruby. Basically they are a means of creating code blocks
1829 * that can be paused and resumed, much like threads. The main difference
1830 * is that they are never preempted and that the scheduling must be done by
1831 * the programmer and not the VM.
1833 * As opposed to other stackless light weight concurrency models, each fiber
1834 * comes with a stack. This enables the fiber to be paused from deeply
1835 * nested function calls within the fiber block. See the ruby(1)
1836 * manpage to configure the size of the fiber stack(s).
1838 * When a fiber is created it will not run automatically. Rather it must
1839 * be explicitly asked to run using the Fiber#resume method.
1840 * The code running inside the fiber can give up control by calling
1841 * Fiber.yield in which case it yields control back to caller (the
1842 * caller of the Fiber#resume).
1844 * Upon yielding or termination the Fiber returns the value of the last
1845 * executed expression
1847 * For instance:
1849 * fiber = Fiber.new do
1850 * Fiber.yield 1
1852 * end
1854 * puts fiber.resume
1855 * puts fiber.resume
1856 * puts fiber.resume
1858 * <em>produces</em>
1862 * FiberError: dead fiber called
1864 * The Fiber#resume method accepts an arbitrary number of parameters,
1865 * if it is the first call to #resume then they will be passed as
1866 * block arguments. Otherwise they will be the return value of the
1867 * call to Fiber.yield
1869 * Example:
1871 * fiber = Fiber.new do |first|
1872 * second = Fiber.yield first + 2
1873 * end
1875 * puts fiber.resume 10
1876 * puts fiber.resume 1_000_000
1877 * puts fiber.resume "The fiber will be dead before I can cause trouble"
1879 * <em>produces</em>
1881 * 12
1882 * 1000000
1883 * FiberError: dead fiber called
1885 * == Non-blocking Fibers
1887 * The concept of <em>non-blocking fiber</em> was introduced in Ruby 3.0.
1888 * A non-blocking fiber, when reaching a operation that would normally block
1889 * the fiber (like <code>sleep</code>, or wait for another process or I/O)
1890 * will yield control to other fibers and allow the <em>scheduler</em> to
1891 * handle blocking and waking up (resuming) this fiber when it can proceed.
1893 * For a Fiber to behave as non-blocking, it need to be created in Fiber.new with
1894 * <tt>blocking: false</tt> (which is the default), and Fiber.scheduler
1895 * should be set with Fiber.set_scheduler. If Fiber.scheduler is not set in
1896 * the current thread, blocking and non-blocking fibers' behavior is identical.
1898 * Ruby doesn't provide a scheduler class: it is expected to be implemented by
1899 * the user and correspond to Fiber::Scheduler.
1901 * There is also Fiber.schedule method, which is expected to immediately perform
1902 * the given block in a non-blocking manner. Its actual implementation is up to
1903 * the scheduler.
1907 static const rb_data_type_t fiber_data_type = {
1908 "fiber",
1909 {fiber_mark, fiber_free, fiber_memsize, fiber_compact,},
1910 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1913 static VALUE
1914 fiber_alloc(VALUE klass)
1916 return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
1919 static rb_fiber_t*
1920 fiber_t_alloc(VALUE fiber_value, unsigned int blocking)
1922 rb_fiber_t *fiber;
1923 rb_thread_t *th = GET_THREAD();
1925 if (DATA_PTR(fiber_value) != 0) {
1926 rb_raise(rb_eRuntimeError, "cannot initialize twice");
1929 THREAD_MUST_BE_RUNNING(th);
1930 fiber = ZALLOC(rb_fiber_t);
1931 fiber->cont.self = fiber_value;
1932 fiber->cont.type = FIBER_CONTEXT;
1933 fiber->blocking = blocking;
1934 fiber->killed = 0;
1935 cont_init(&fiber->cont, th);
1937 fiber->cont.saved_ec.fiber_ptr = fiber;
1938 rb_ec_clear_vm_stack(&fiber->cont.saved_ec);
1940 fiber->prev = NULL;
1942 /* fiber->status == 0 == CREATED
1943 * So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */
1944 VM_ASSERT(FIBER_CREATED_P(fiber));
1946 DATA_PTR(fiber_value) = fiber;
1948 return fiber;
1951 static rb_fiber_t *
1952 root_fiber_alloc(rb_thread_t *th)
1954 VALUE fiber_value = fiber_alloc(rb_cFiber);
1955 rb_fiber_t *fiber = th->ec->fiber_ptr;
1957 VM_ASSERT(DATA_PTR(fiber_value) == NULL);
1958 VM_ASSERT(fiber->cont.type == FIBER_CONTEXT);
1959 VM_ASSERT(FIBER_RESUMED_P(fiber));
1961 th->root_fiber = fiber;
1962 DATA_PTR(fiber_value) = fiber;
1963 fiber->cont.self = fiber_value;
1965 coroutine_initialize_main(&fiber->context);
1967 return fiber;
1970 static inline rb_fiber_t*
1971 fiber_current(void)
1973 rb_execution_context_t *ec = GET_EC();
1974 if (ec->fiber_ptr->cont.self == 0) {
1975 root_fiber_alloc(rb_ec_thread_ptr(ec));
1977 return ec->fiber_ptr;
1980 static inline VALUE
1981 current_fiber_storage(void)
1983 rb_execution_context_t *ec = GET_EC();
1984 return ec->storage;
1987 static inline VALUE
1988 inherit_fiber_storage(void)
1990 return rb_obj_dup(current_fiber_storage());
1993 static inline void
1994 fiber_storage_set(struct rb_fiber_struct *fiber, VALUE storage)
1996 fiber->cont.saved_ec.storage = storage;
1999 static inline VALUE
2000 fiber_storage_get(rb_fiber_t *fiber, int allocate)
2002 VALUE storage = fiber->cont.saved_ec.storage;
2003 if (storage == Qnil && allocate) {
2004 storage = rb_hash_new();
2005 fiber_storage_set(fiber, storage);
2007 return storage;
2010 static void
2011 storage_access_must_be_from_same_fiber(VALUE self)
2013 rb_fiber_t *fiber = fiber_ptr(self);
2014 rb_fiber_t *current = fiber_current();
2015 if (fiber != current) {
2016 rb_raise(rb_eArgError, "Fiber storage can only be accessed from the Fiber it belongs to");
2021 * call-seq: fiber.storage -> hash (dup)
2023 * Returns a copy of the storage hash for the fiber. The method can only be called on the
2024 * Fiber.current.
2026 static VALUE
2027 rb_fiber_storage_get(VALUE self)
2029 storage_access_must_be_from_same_fiber(self);
2031 VALUE storage = fiber_storage_get(fiber_ptr(self), FALSE);
2033 if (storage == Qnil) {
2034 return Qnil;
2036 else {
2037 return rb_obj_dup(storage);
2041 static int
2042 fiber_storage_validate_each(VALUE key, VALUE value, VALUE _argument)
2044 Check_Type(key, T_SYMBOL);
2046 return ST_CONTINUE;
2049 static void
2050 fiber_storage_validate(VALUE value)
2052 // nil is an allowed value and will be lazily initialized.
2053 if (value == Qnil) return;
2055 if (!RB_TYPE_P(value, T_HASH)) {
2056 rb_raise(rb_eTypeError, "storage must be a hash");
2059 if (RB_OBJ_FROZEN(value)) {
2060 rb_raise(rb_eFrozenError, "storage must not be frozen");
2063 rb_hash_foreach(value, fiber_storage_validate_each, Qundef);
2067 * call-seq: fiber.storage = hash
2069 * Sets the storage hash for the fiber. This feature is experimental
2070 * and may change in the future. The method can only be called on the
2071 * Fiber.current.
2073 * You should be careful about using this method as you may inadvertently clear
2074 * important fiber-storage state. You should mostly prefer to assign specific
2075 * keys in the storage using Fiber::[]=.
2077 * You can also use <tt>Fiber.new(storage: nil)</tt> to create a fiber with an empty
2078 * storage.
2080 * Example:
2082 * while request = request_queue.pop
2083 * # Reset the per-request state:
2084 * Fiber.current.storage = nil
2085 * handle_request(request)
2086 * end
2088 static VALUE
2089 rb_fiber_storage_set(VALUE self, VALUE value)
2091 if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_EXPERIMENTAL)) {
2092 rb_category_warn(RB_WARN_CATEGORY_EXPERIMENTAL,
2093 "Fiber#storage= is experimental and may be removed in the future!");
2096 storage_access_must_be_from_same_fiber(self);
2097 fiber_storage_validate(value);
2099 fiber_ptr(self)->cont.saved_ec.storage = rb_obj_dup(value);
2100 return value;
2104 * call-seq: Fiber[key] -> value
2106 * Returns the value of the fiber storage variable identified by +key+.
2108 * The +key+ must be a symbol, and the value is set by Fiber#[]= or
2109 * Fiber#store.
2111 * See also Fiber::[]=.
2113 static VALUE
2114 rb_fiber_storage_aref(VALUE class, VALUE key)
2116 Check_Type(key, T_SYMBOL);
2118 VALUE storage = fiber_storage_get(fiber_current(), FALSE);
2119 if (storage == Qnil) return Qnil;
2121 return rb_hash_aref(storage, key);
2125 * call-seq: Fiber[key] = value
2127 * Assign +value+ to the fiber storage variable identified by +key+.
2128 * The variable is created if it doesn't exist.
2130 * +key+ must be a Symbol, otherwise a TypeError is raised.
2132 * See also Fiber::[].
2134 static VALUE
2135 rb_fiber_storage_aset(VALUE class, VALUE key, VALUE value)
2137 Check_Type(key, T_SYMBOL);
2139 VALUE storage = fiber_storage_get(fiber_current(), value != Qnil);
2140 if (storage == Qnil) return Qnil;
2142 if (value == Qnil) {
2143 return rb_hash_delete(storage, key);
2145 else {
2146 return rb_hash_aset(storage, key, value);
2150 static VALUE
2151 fiber_initialize(VALUE self, VALUE proc, struct fiber_pool * fiber_pool, unsigned int blocking, VALUE storage)
2153 if (storage == Qundef || storage == Qtrue) {
2154 // The default, inherit storage (dup) from the current fiber:
2155 storage = inherit_fiber_storage();
2157 else /* nil, hash, etc. */ {
2158 fiber_storage_validate(storage);
2159 storage = rb_obj_dup(storage);
2162 rb_fiber_t *fiber = fiber_t_alloc(self, blocking);
2164 fiber->cont.saved_ec.storage = storage;
2165 fiber->first_proc = proc;
2166 fiber->stack.base = NULL;
2167 fiber->stack.pool = fiber_pool;
2169 return self;
2172 static void
2173 fiber_prepare_stack(rb_fiber_t *fiber)
2175 rb_context_t *cont = &fiber->cont;
2176 rb_execution_context_t *sec = &cont->saved_ec;
2178 size_t vm_stack_size = 0;
2179 VALUE *vm_stack = fiber_initialize_coroutine(fiber, &vm_stack_size);
2181 /* initialize cont */
2182 cont->saved_vm_stack.ptr = NULL;
2183 rb_ec_initialize_vm_stack(sec, vm_stack, vm_stack_size / sizeof(VALUE));
2185 sec->tag = NULL;
2186 sec->local_storage = NULL;
2187 sec->local_storage_recursive_hash = Qnil;
2188 sec->local_storage_recursive_hash_for_trace = Qnil;
2191 static struct fiber_pool *
2192 rb_fiber_pool_default(VALUE pool)
2194 return &shared_fiber_pool;
2197 VALUE rb_fiber_inherit_storage(struct rb_execution_context_struct *ec, struct rb_fiber_struct *fiber)
2199 VALUE storage = rb_obj_dup(ec->storage);
2200 fiber->cont.saved_ec.storage = storage;
2201 return storage;
2204 /* :nodoc: */
2205 static VALUE
2206 rb_fiber_initialize_kw(int argc, VALUE* argv, VALUE self, int kw_splat)
2208 VALUE pool = Qnil;
2209 VALUE blocking = Qfalse;
2210 VALUE storage = Qundef;
2212 if (kw_splat != RB_NO_KEYWORDS) {
2213 VALUE options = Qnil;
2214 VALUE arguments[3] = {Qundef};
2216 argc = rb_scan_args_kw(kw_splat, argc, argv, ":", &options);
2217 rb_get_kwargs(options, fiber_initialize_keywords, 0, 3, arguments);
2219 if (!UNDEF_P(arguments[0])) {
2220 blocking = arguments[0];
2223 if (!UNDEF_P(arguments[1])) {
2224 pool = arguments[1];
2227 storage = arguments[2];
2230 return fiber_initialize(self, rb_block_proc(), rb_fiber_pool_default(pool), RTEST(blocking), storage);
2234 * call-seq:
2235 * Fiber.new(blocking: false, storage: true) { |*args| ... } -> fiber
2237 * Creates new Fiber. Initially, the fiber is not running and can be resumed
2238 * with #resume. Arguments to the first #resume call will be passed to the
2239 * block:
2241 * f = Fiber.new do |initial|
2242 * current = initial
2243 * loop do
2244 * puts "current: #{current.inspect}"
2245 * current = Fiber.yield
2246 * end
2247 * end
2248 * f.resume(100) # prints: current: 100
2249 * f.resume(1, 2, 3) # prints: current: [1, 2, 3]
2250 * f.resume # prints: current: nil
2251 * # ... and so on ...
2253 * If <tt>blocking: false</tt> is passed to <tt>Fiber.new</tt>, _and_ current
2254 * thread has a Fiber.scheduler defined, the Fiber becomes non-blocking (see
2255 * "Non-blocking Fibers" section in class docs).
2257 * If the <tt>storage</tt> is unspecified, the default is to inherit a copy of
2258 * the storage from the current fiber. This is the same as specifying
2259 * <tt>storage: true</tt>.
2261 * Fiber[:x] = 1
2262 * Fiber.new do
2263 * Fiber[:x] # => 1
2264 * Fiber[:x] = 2
2265 * end.resume
2266 * Fiber[:x] # => 1
2268 * If the given <tt>storage</tt> is <tt>nil</tt>, this function will lazy
2269 * initialize the internal storage, which starts as an empty hash.
2271 * Fiber[:x] = "Hello World"
2272 * Fiber.new(storage: nil) do
2273 * Fiber[:x] # nil
2274 * end
2276 * Otherwise, the given <tt>storage</tt> is used as the new fiber's storage,
2277 * and it must be an instance of Hash.
2279 * Explicitly using <tt>storage: true</tt> is currently experimental and may
2280 * change in the future.
2282 static VALUE
2283 rb_fiber_initialize(int argc, VALUE* argv, VALUE self)
2285 return rb_fiber_initialize_kw(argc, argv, self, rb_keyword_given_p());
2288 VALUE
2289 rb_fiber_new_storage(rb_block_call_func_t func, VALUE obj, VALUE storage)
2291 return fiber_initialize(fiber_alloc(rb_cFiber), rb_proc_new(func, obj), rb_fiber_pool_default(Qnil), 0, storage);
2294 VALUE
2295 rb_fiber_new(rb_block_call_func_t func, VALUE obj)
2297 return rb_fiber_new_storage(func, obj, Qtrue);
2300 static VALUE
2301 rb_fiber_s_schedule_kw(int argc, VALUE* argv, int kw_splat)
2303 rb_thread_t * th = GET_THREAD();
2304 VALUE scheduler = th->scheduler;
2305 VALUE fiber = Qnil;
2307 if (scheduler != Qnil) {
2308 fiber = rb_fiber_scheduler_fiber(scheduler, argc, argv, kw_splat);
2310 else {
2311 rb_raise(rb_eRuntimeError, "No scheduler is available!");
2314 return fiber;
2318 * call-seq:
2319 * Fiber.schedule { |*args| ... } -> fiber
2321 * The method is <em>expected</em> to immediately run the provided block of code in a
2322 * separate non-blocking fiber.
2324 * puts "Go to sleep!"
2326 * Fiber.set_scheduler(MyScheduler.new)
2328 * Fiber.schedule do
2329 * puts "Going to sleep"
2330 * sleep(1)
2331 * puts "I slept well"
2332 * end
2334 * puts "Wakey-wakey, sleepyhead"
2336 * Assuming MyScheduler is properly implemented, this program will produce:
2338 * Go to sleep!
2339 * Going to sleep
2340 * Wakey-wakey, sleepyhead
2341 * ...1 sec pause here...
2342 * I slept well
2344 * ...e.g. on the first blocking operation inside the Fiber (<tt>sleep(1)</tt>),
2345 * the control is yielded to the outside code (main fiber), and <em>at the end
2346 * of that execution</em>, the scheduler takes care of properly resuming all the
2347 * blocked fibers.
2349 * Note that the behavior described above is how the method is <em>expected</em>
2350 * to behave, actual behavior is up to the current scheduler's implementation of
2351 * Fiber::Scheduler#fiber method. Ruby doesn't enforce this method to
2352 * behave in any particular way.
2354 * If the scheduler is not set, the method raises
2355 * <tt>RuntimeError (No scheduler is available!)</tt>.
2358 static VALUE
2359 rb_fiber_s_schedule(int argc, VALUE *argv, VALUE obj)
2361 return rb_fiber_s_schedule_kw(argc, argv, rb_keyword_given_p());
2365 * call-seq:
2366 * Fiber.scheduler -> obj or nil
2368 * Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler.
2369 * Returns +nil+ if no scheduler is set (which is the default), and non-blocking fibers'
2370 * behavior is the same as blocking.
2371 * (see "Non-blocking fibers" section in class docs for details about the scheduler concept).
2374 static VALUE
2375 rb_fiber_s_scheduler(VALUE klass)
2377 return rb_fiber_scheduler_get();
2381 * call-seq:
2382 * Fiber.current_scheduler -> obj or nil
2384 * Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler
2385 * if and only if the current fiber is non-blocking.
2388 static VALUE
2389 rb_fiber_current_scheduler(VALUE klass)
2391 return rb_fiber_scheduler_current();
2395 * call-seq:
2396 * Fiber.set_scheduler(scheduler) -> scheduler
2398 * Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking
2399 * fibers (created by Fiber.new with <tt>blocking: false</tt>, or by Fiber.schedule)
2400 * call that scheduler's hook methods on potentially blocking operations, and the current
2401 * thread will call scheduler's +close+ method on finalization (allowing the scheduler to
2402 * properly manage all non-finished fibers).
2404 * +scheduler+ can be an object of any class corresponding to Fiber::Scheduler. Its
2405 * implementation is up to the user.
2407 * See also the "Non-blocking fibers" section in class docs.
2410 static VALUE
2411 rb_fiber_set_scheduler(VALUE klass, VALUE scheduler)
2413 return rb_fiber_scheduler_set(scheduler);
2416 NORETURN(static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE err));
2418 void
2419 rb_fiber_start(rb_fiber_t *fiber)
2421 rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
2423 rb_proc_t *proc;
2424 enum ruby_tag_type state;
2426 VM_ASSERT(th->ec == GET_EC());
2427 VM_ASSERT(FIBER_RESUMED_P(fiber));
2429 if (fiber->blocking) {
2430 th->blocking += 1;
2433 EC_PUSH_TAG(th->ec);
2434 if ((state = EC_EXEC_TAG()) == TAG_NONE) {
2435 rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont;
2436 int argc;
2437 const VALUE *argv, args = cont->value;
2438 GetProcPtr(fiber->first_proc, proc);
2439 argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
2440 cont->value = Qnil;
2441 th->ec->errinfo = Qnil;
2442 th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc);
2443 th->ec->root_svar = Qfalse;
2445 EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
2446 cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, cont->kw_splat, VM_BLOCK_HANDLER_NONE);
2448 EC_POP_TAG();
2450 int need_interrupt = TRUE;
2451 VALUE err = Qfalse;
2452 if (state) {
2453 err = th->ec->errinfo;
2454 VM_ASSERT(FIBER_RESUMED_P(fiber));
2456 if (state == TAG_RAISE) {
2457 // noop...
2459 else if (state == TAG_FATAL && err == RUBY_FATAL_FIBER_KILLED) {
2460 need_interrupt = FALSE;
2461 err = Qfalse;
2463 else if (state == TAG_FATAL) {
2464 rb_threadptr_pending_interrupt_enque(th, err);
2466 else {
2467 err = rb_vm_make_jump_tag_but_local_jump(state, err);
2471 rb_fiber_terminate(fiber, need_interrupt, err);
2474 // Set up a "root fiber", which is the fiber that every Ractor has.
2475 void
2476 rb_threadptr_root_fiber_setup(rb_thread_t *th)
2478 rb_fiber_t *fiber = ruby_mimcalloc(1, sizeof(rb_fiber_t));
2479 if (!fiber) {
2480 rb_bug("%s", strerror(errno)); /* ... is it possible to call rb_bug here? */
2482 fiber->cont.type = FIBER_CONTEXT;
2483 fiber->cont.saved_ec.fiber_ptr = fiber;
2484 fiber->cont.saved_ec.thread_ptr = th;
2485 fiber->blocking = 1;
2486 fiber->killed = 0;
2487 fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */
2488 th->ec = &fiber->cont.saved_ec;
2489 cont_init_jit_cont(&fiber->cont);
2492 void
2493 rb_threadptr_root_fiber_release(rb_thread_t *th)
2495 if (th->root_fiber) {
2496 /* ignore. A root fiber object will free th->ec */
2498 else {
2499 rb_execution_context_t *ec = rb_current_execution_context(false);
2501 VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT);
2502 VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
2504 if (ec && th->ec == ec) {
2505 rb_ractor_set_current_ec(th->ractor, NULL);
2507 fiber_free(th->ec->fiber_ptr);
2508 th->ec = NULL;
2512 void
2513 rb_threadptr_root_fiber_terminate(rb_thread_t *th)
2515 rb_fiber_t *fiber = th->ec->fiber_ptr;
2517 fiber->status = FIBER_TERMINATED;
2519 // The vm_stack is `alloca`ed on the thread stack, so it's gone too:
2520 rb_ec_clear_vm_stack(th->ec);
2523 static inline rb_fiber_t*
2524 return_fiber(bool terminate)
2526 rb_fiber_t *fiber = fiber_current();
2527 rb_fiber_t *prev = fiber->prev;
2529 if (prev) {
2530 fiber->prev = NULL;
2531 prev->resuming_fiber = NULL;
2532 return prev;
2534 else {
2535 if (!terminate) {
2536 rb_raise(rb_eFiberError, "attempt to yield on a not resumed fiber");
2539 rb_thread_t *th = GET_THREAD();
2540 rb_fiber_t *root_fiber = th->root_fiber;
2542 VM_ASSERT(root_fiber != NULL);
2544 // search resuming fiber
2545 for (fiber = root_fiber; fiber->resuming_fiber; fiber = fiber->resuming_fiber) {
2548 return fiber;
2552 VALUE
2553 rb_fiber_current(void)
2555 return fiber_current()->cont.self;
2558 // Prepare to execute next_fiber on the given thread.
2559 static inline void
2560 fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th)
2562 rb_fiber_t *fiber;
2564 if (th->ec->fiber_ptr != NULL) {
2565 fiber = th->ec->fiber_ptr;
2567 else {
2568 /* create root fiber */
2569 fiber = root_fiber_alloc(th);
2572 if (FIBER_CREATED_P(next_fiber)) {
2573 fiber_prepare_stack(next_fiber);
2576 VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber));
2577 VM_ASSERT(FIBER_RUNNABLE_P(next_fiber));
2579 if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED);
2581 fiber_status_set(next_fiber, FIBER_RESUMED);
2582 fiber_setcontext(next_fiber, fiber);
2585 static void
2586 fiber_check_killed(rb_fiber_t *fiber)
2588 VM_ASSERT(fiber == fiber_current());
2590 if (fiber->killed) {
2591 rb_thread_t *thread = fiber->cont.saved_ec.thread_ptr;
2593 thread->ec->errinfo = RUBY_FATAL_FIBER_KILLED;
2594 EC_JUMP_TAG(thread->ec, RUBY_TAG_FATAL);
2598 static inline VALUE
2599 fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat, rb_fiber_t *resuming_fiber, bool yielding)
2601 VALUE value;
2602 rb_context_t *cont = &fiber->cont;
2603 rb_thread_t *th = GET_THREAD();
2605 /* make sure the root_fiber object is available */
2606 if (th->root_fiber == NULL) root_fiber_alloc(th);
2608 if (th->ec->fiber_ptr == fiber) {
2609 /* ignore fiber context switch
2610 * because destination fiber is the same as current fiber
2612 return make_passing_arg(argc, argv);
2615 if (cont_thread_value(cont) != th->self) {
2616 rb_raise(rb_eFiberError, "fiber called across threads");
2619 if (FIBER_TERMINATED_P(fiber)) {
2620 value = rb_exc_new2(rb_eFiberError, "dead fiber called");
2622 if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
2623 rb_exc_raise(value);
2624 VM_UNREACHABLE(fiber_switch);
2626 else {
2627 /* th->ec->fiber_ptr is also dead => switch to root fiber */
2628 /* (this means we're being called from rb_fiber_terminate, */
2629 /* and the terminated fiber's return_fiber() is already dead) */
2630 VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
2632 cont = &th->root_fiber->cont;
2633 cont->argc = -1;
2634 cont->value = value;
2636 fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
2638 VM_UNREACHABLE(fiber_switch);
2642 VM_ASSERT(FIBER_RUNNABLE_P(fiber));
2644 rb_fiber_t *current_fiber = fiber_current();
2646 VM_ASSERT(!current_fiber->resuming_fiber);
2648 if (resuming_fiber) {
2649 current_fiber->resuming_fiber = resuming_fiber;
2650 fiber->prev = fiber_current();
2651 fiber->yielding = 0;
2654 VM_ASSERT(!current_fiber->yielding);
2655 if (yielding) {
2656 current_fiber->yielding = 1;
2659 if (current_fiber->blocking) {
2660 th->blocking -= 1;
2663 cont->argc = argc;
2664 cont->kw_splat = kw_splat;
2665 cont->value = make_passing_arg(argc, argv);
2667 fiber_store(fiber, th);
2669 // We cannot free the stack until the pthread is joined:
2670 #ifndef COROUTINE_PTHREAD_CONTEXT
2671 if (resuming_fiber && FIBER_TERMINATED_P(fiber)) {
2672 fiber_stack_release(fiber);
2674 #endif
2676 if (fiber_current()->blocking) {
2677 th->blocking += 1;
2680 RUBY_VM_CHECK_INTS(th->ec);
2682 EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
2684 current_fiber = th->ec->fiber_ptr;
2685 value = current_fiber->cont.value;
2687 fiber_check_killed(current_fiber);
2689 if (current_fiber->cont.argc == -1) {
2690 // Fiber#raise will trigger this path.
2691 rb_exc_raise(value);
2694 return value;
2697 VALUE
2698 rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv)
2700 return fiber_switch(fiber_ptr(fiber_value), argc, argv, RB_NO_KEYWORDS, NULL, false);
2704 * call-seq:
2705 * fiber.blocking? -> true or false
2707 * Returns +true+ if +fiber+ is blocking and +false+ otherwise.
2708 * Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
2709 * to Fiber.new, or via Fiber.schedule.
2711 * Note that, even if the method returns +false+, the fiber behaves differently
2712 * only if Fiber.scheduler is set in the current thread.
2714 * See the "Non-blocking fibers" section in class docs for details.
2717 VALUE
2718 rb_fiber_blocking_p(VALUE fiber)
2720 return RBOOL(fiber_ptr(fiber)->blocking);
2723 static VALUE
2724 fiber_blocking_yield(VALUE fiber_value)
2726 rb_fiber_t *fiber = fiber_ptr(fiber_value);
2727 rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
2729 VM_ASSERT(fiber->blocking == 0);
2731 // fiber->blocking is `unsigned int : 1`, so we use it as a boolean:
2732 fiber->blocking = 1;
2734 // Once the fiber is blocking, and current, we increment the thread blocking state:
2735 th->blocking += 1;
2737 return rb_yield(fiber_value);
2740 static VALUE
2741 fiber_blocking_ensure(VALUE fiber_value)
2743 rb_fiber_t *fiber = fiber_ptr(fiber_value);
2744 rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
2746 // We are no longer blocking:
2747 fiber->blocking = 0;
2748 th->blocking -= 1;
2750 return Qnil;
2754 * call-seq:
2755 * Fiber.blocking{|fiber| ...} -> result
2757 * Forces the fiber to be blocking for the duration of the block. Returns the
2758 * result of the block.
2760 * See the "Non-blocking fibers" section in class docs for details.
2763 VALUE
2764 rb_fiber_blocking(VALUE class)
2766 VALUE fiber_value = rb_fiber_current();
2767 rb_fiber_t *fiber = fiber_ptr(fiber_value);
2769 // If we are already blocking, this is essentially a no-op:
2770 if (fiber->blocking) {
2771 return rb_yield(fiber_value);
2773 else {
2774 return rb_ensure(fiber_blocking_yield, fiber_value, fiber_blocking_ensure, fiber_value);
2779 * call-seq:
2780 * Fiber.blocking? -> false or 1
2782 * Returns +false+ if the current fiber is non-blocking.
2783 * Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
2784 * to Fiber.new, or via Fiber.schedule.
2786 * If the current Fiber is blocking, the method returns 1.
2787 * Future developments may allow for situations where larger integers
2788 * could be returned.
2790 * Note that, even if the method returns +false+, Fiber behaves differently
2791 * only if Fiber.scheduler is set in the current thread.
2793 * See the "Non-blocking fibers" section in class docs for details.
2796 static VALUE
2797 rb_fiber_s_blocking_p(VALUE klass)
2799 rb_thread_t *thread = GET_THREAD();
2800 unsigned blocking = thread->blocking;
2802 if (blocking == 0)
2803 return Qfalse;
2805 return INT2NUM(blocking);
2808 void
2809 rb_fiber_close(rb_fiber_t *fiber)
2811 fiber_status_set(fiber, FIBER_TERMINATED);
2814 static void
2815 rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE error)
2817 VALUE value = fiber->cont.value;
2819 VM_ASSERT(FIBER_RESUMED_P(fiber));
2820 rb_fiber_close(fiber);
2822 fiber->cont.machine.stack = NULL;
2823 fiber->cont.machine.stack_size = 0;
2825 rb_fiber_t *next_fiber = return_fiber(true);
2827 if (need_interrupt) RUBY_VM_SET_INTERRUPT(&next_fiber->cont.saved_ec);
2829 if (RTEST(error))
2830 fiber_switch(next_fiber, -1, &error, RB_NO_KEYWORDS, NULL, false);
2831 else
2832 fiber_switch(next_fiber, 1, &value, RB_NO_KEYWORDS, NULL, false);
2833 ruby_stop(0);
2836 static VALUE
2837 fiber_resume_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
2839 rb_fiber_t *current_fiber = fiber_current();
2841 if (argc == -1 && FIBER_CREATED_P(fiber)) {
2842 rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber");
2844 else if (FIBER_TERMINATED_P(fiber)) {
2845 rb_raise(rb_eFiberError, "attempt to resume a terminated fiber");
2847 else if (fiber == current_fiber) {
2848 rb_raise(rb_eFiberError, "attempt to resume the current fiber");
2850 else if (fiber->prev != NULL) {
2851 rb_raise(rb_eFiberError, "attempt to resume a resumed fiber (double resume)");
2853 else if (fiber->resuming_fiber) {
2854 rb_raise(rb_eFiberError, "attempt to resume a resuming fiber");
2856 else if (fiber->prev == NULL &&
2857 (!fiber->yielding && fiber->status != FIBER_CREATED)) {
2858 rb_raise(rb_eFiberError, "attempt to resume a transferring fiber");
2861 return fiber_switch(fiber, argc, argv, kw_splat, fiber, false);
2864 VALUE
2865 rb_fiber_resume_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
2867 return fiber_resume_kw(fiber_ptr(self), argc, argv, kw_splat);
2870 VALUE
2871 rb_fiber_resume(VALUE self, int argc, const VALUE *argv)
2873 return fiber_resume_kw(fiber_ptr(self), argc, argv, RB_NO_KEYWORDS);
2876 VALUE
2877 rb_fiber_yield_kw(int argc, const VALUE *argv, int kw_splat)
2879 return fiber_switch(return_fiber(false), argc, argv, kw_splat, NULL, true);
2882 VALUE
2883 rb_fiber_yield(int argc, const VALUE *argv)
2885 return fiber_switch(return_fiber(false), argc, argv, RB_NO_KEYWORDS, NULL, true);
2888 void
2889 rb_fiber_reset_root_local_storage(rb_thread_t *th)
2891 if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
2892 th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
2897 * call-seq:
2898 * fiber.alive? -> true or false
2900 * Returns true if the fiber can still be resumed (or transferred
2901 * to). After finishing execution of the fiber block this method will
2902 * always return +false+.
2904 VALUE
2905 rb_fiber_alive_p(VALUE fiber_value)
2907 return RBOOL(!FIBER_TERMINATED_P(fiber_ptr(fiber_value)));
2911 * call-seq:
2912 * fiber.resume(args, ...) -> obj
2914 * Resumes the fiber from the point at which the last Fiber.yield was
2915 * called, or starts running it if it is the first call to
2916 * #resume. Arguments passed to resume will be the value of the
2917 * Fiber.yield expression or will be passed as block parameters to
2918 * the fiber's block if this is the first #resume.
2920 * Alternatively, when resume is called it evaluates to the arguments passed
2921 * to the next Fiber.yield statement inside the fiber's block
2922 * or to the block value if it runs to completion without any
2923 * Fiber.yield
2925 static VALUE
2926 rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber)
2928 return rb_fiber_resume_kw(fiber, argc, argv, rb_keyword_given_p());
2932 * call-seq:
2933 * fiber.backtrace -> array
2934 * fiber.backtrace(start) -> array
2935 * fiber.backtrace(start, count) -> array
2936 * fiber.backtrace(start..end) -> array
2938 * Returns the current execution stack of the fiber. +start+, +count+ and +end+ allow
2939 * to select only parts of the backtrace.
2941 * def level3
2942 * Fiber.yield
2943 * end
2945 * def level2
2946 * level3
2947 * end
2949 * def level1
2950 * level2
2951 * end
2953 * f = Fiber.new { level1 }
2955 * # It is empty before the fiber started
2956 * f.backtrace
2957 * #=> []
2959 * f.resume
2961 * f.backtrace
2962 * #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
2963 * p f.backtrace(1) # start from the item 1
2964 * #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
2965 * p f.backtrace(2, 2) # start from item 2, take 2
2966 * #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"]
2967 * p f.backtrace(1..3) # take items from 1 to 3
2968 * #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"]
2970 * f.resume
2972 * # It is nil after the fiber is finished
2973 * f.backtrace
2974 * #=> nil
2977 static VALUE
2978 rb_fiber_backtrace(int argc, VALUE *argv, VALUE fiber)
2980 return rb_vm_backtrace(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
2984 * call-seq:
2985 * fiber.backtrace_locations -> array
2986 * fiber.backtrace_locations(start) -> array
2987 * fiber.backtrace_locations(start, count) -> array
2988 * fiber.backtrace_locations(start..end) -> array
2990 * Like #backtrace, but returns each line of the execution stack as a
2991 * Thread::Backtrace::Location. Accepts the same arguments as #backtrace.
2993 * f = Fiber.new { Fiber.yield }
2994 * f.resume
2995 * loc = f.backtrace_locations.first
2996 * loc.label #=> "yield"
2997 * loc.path #=> "test.rb"
2998 * loc.lineno #=> 1
3002 static VALUE
3003 rb_fiber_backtrace_locations(int argc, VALUE *argv, VALUE fiber)
3005 return rb_vm_backtrace_locations(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
3009 * call-seq:
3010 * fiber.transfer(args, ...) -> obj
3012 * Transfer control to another fiber, resuming it from where it last
3013 * stopped or starting it if it was not resumed before. The calling
3014 * fiber will be suspended much like in a call to
3015 * Fiber.yield.
3017 * The fiber which receives the transfer call treats it much like
3018 * a resume call. Arguments passed to transfer are treated like those
3019 * passed to resume.
3021 * The two style of control passing to and from fiber (one is #resume and
3022 * Fiber::yield, another is #transfer to and from fiber) can't be freely
3023 * mixed.
3025 * * If the Fiber's lifecycle had started with transfer, it will never
3026 * be able to yield or be resumed control passing, only
3027 * finish or transfer back. (It still can resume other fibers that
3028 * are allowed to be resumed.)
3029 * * If the Fiber's lifecycle had started with resume, it can yield
3030 * or transfer to another Fiber, but can receive control back only
3031 * the way compatible with the way it was given away: if it had
3032 * transferred, it only can be transferred back, and if it had
3033 * yielded, it only can be resumed back. After that, it again can
3034 * transfer or yield.
3036 * If those rules are broken FiberError is raised.
3038 * For an individual Fiber design, yield/resume is easier to use
3039 * (the Fiber just gives away control, it doesn't need to think
3040 * about who the control is given to), while transfer is more flexible
3041 * for complex cases, allowing to build arbitrary graphs of Fibers
3042 * dependent on each other.
3045 * Example:
3047 * manager = nil # For local var to be visible inside worker block
3049 * # This fiber would be started with transfer
3050 * # It can't yield, and can't be resumed
3051 * worker = Fiber.new { |work|
3052 * puts "Worker: starts"
3053 * puts "Worker: Performed #{work.inspect}, transferring back"
3054 * # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber
3055 * # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume)
3056 * manager.transfer(work.capitalize)
3059 * # This fiber would be started with resume
3060 * # It can yield or transfer, and can be transferred
3061 * # back or resumed
3062 * manager = Fiber.new {
3063 * puts "Manager: starts"
3064 * puts "Manager: transferring 'something' to worker"
3065 * result = worker.transfer('something')
3066 * puts "Manager: worker returned #{result.inspect}"
3067 * # worker.resume # this would raise FiberError: attempt to resume a transferring fiber
3068 * Fiber.yield # this is OK, the fiber transferred from and to, now it can yield
3069 * puts "Manager: finished"
3072 * puts "Starting the manager"
3073 * manager.resume
3074 * puts "Resuming the manager"
3075 * # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber
3076 * manager.resume
3078 * <em>produces</em>
3080 * Starting the manager
3081 * Manager: starts
3082 * Manager: transferring 'something' to worker
3083 * Worker: starts
3084 * Worker: Performed "something", transferring back
3085 * Manager: worker returned "Something"
3086 * Resuming the manager
3087 * Manager: finished
3090 static VALUE
3091 rb_fiber_m_transfer(int argc, VALUE *argv, VALUE self)
3093 return rb_fiber_transfer_kw(self, argc, argv, rb_keyword_given_p());
3096 static VALUE
3097 fiber_transfer_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
3099 if (fiber->resuming_fiber) {
3100 rb_raise(rb_eFiberError, "attempt to transfer to a resuming fiber");
3103 if (fiber->yielding) {
3104 rb_raise(rb_eFiberError, "attempt to transfer to a yielding fiber");
3107 return fiber_switch(fiber, argc, argv, kw_splat, NULL, false);
3110 VALUE
3111 rb_fiber_transfer_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
3113 return fiber_transfer_kw(fiber_ptr(self), argc, argv, kw_splat);
3117 * call-seq:
3118 * Fiber.yield(args, ...) -> obj
3120 * Yields control back to the context that resumed the fiber, passing
3121 * along any arguments that were passed to it. The fiber will resume
3122 * processing at this point when #resume is called next.
3123 * Any arguments passed to the next #resume will be the value that
3124 * this Fiber.yield expression evaluates to.
3126 static VALUE
3127 rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
3129 return rb_fiber_yield_kw(argc, argv, rb_keyword_given_p());
3132 static VALUE
3133 fiber_raise(rb_fiber_t *fiber, VALUE exception)
3135 if (fiber == fiber_current()) {
3136 rb_exc_raise(exception);
3138 else if (fiber->resuming_fiber) {
3139 return fiber_raise(fiber->resuming_fiber, exception);
3141 else if (FIBER_SUSPENDED_P(fiber) && !fiber->yielding) {
3142 return fiber_transfer_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
3144 else {
3145 return fiber_resume_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
3149 VALUE
3150 rb_fiber_raise(VALUE fiber, int argc, const VALUE *argv)
3152 VALUE exception = rb_make_exception(argc, argv);
3154 return fiber_raise(fiber_ptr(fiber), exception);
3158 * call-seq:
3159 * fiber.raise -> obj
3160 * fiber.raise(string) -> obj
3161 * fiber.raise(exception [, string [, array]]) -> obj
3163 * Raises an exception in the fiber at the point at which the last
3164 * +Fiber.yield+ was called. If the fiber has not been started or has
3165 * already run to completion, raises +FiberError+. If the fiber is
3166 * yielding, it is resumed. If it is transferring, it is transferred into.
3167 * But if it is resuming, raises +FiberError+.
3169 * With no arguments, raises a +RuntimeError+. With a single +String+
3170 * argument, raises a +RuntimeError+ with the string as a message. Otherwise,
3171 * the first parameter should be the name of an +Exception+ class (or an
3172 * object that returns an +Exception+ object when sent an +exception+
3173 * message). The optional second parameter sets the message associated with
3174 * the exception, and the third parameter is an array of callback information.
3175 * Exceptions are caught by the +rescue+ clause of <code>begin...end</code>
3176 * blocks.
3178 * Raises +FiberError+ if called on a Fiber belonging to another +Thread+.
3180 * See Kernel#raise for more information.
3182 static VALUE
3183 rb_fiber_m_raise(int argc, VALUE *argv, VALUE self)
3185 return rb_fiber_raise(self, argc, argv);
3189 * call-seq:
3190 * fiber.kill -> nil
3192 * Terminates the fiber by raising an uncatchable exception.
3193 * It only terminates the given fiber and no other fiber, returning +nil+ to
3194 * another fiber if that fiber was calling #resume or #transfer.
3196 * <tt>Fiber#kill</tt> only interrupts another fiber when it is in Fiber.yield.
3197 * If called on the current fiber then it raises that exception at the <tt>Fiber#kill</tt> call site.
3199 * If the fiber has not been started, transition directly to the terminated state.
3201 * If the fiber is already terminated, does nothing.
3203 * Raises FiberError if called on a fiber belonging to another thread.
3205 static VALUE
3206 rb_fiber_m_kill(VALUE self)
3208 rb_fiber_t *fiber = fiber_ptr(self);
3210 if (fiber->killed) return Qfalse;
3211 fiber->killed = 1;
3213 if (fiber->status == FIBER_CREATED) {
3214 fiber->status = FIBER_TERMINATED;
3216 else if (fiber->status != FIBER_TERMINATED) {
3217 if (fiber_current() == fiber) {
3218 fiber_check_killed(fiber);
3220 else {
3221 fiber_raise(fiber_ptr(self), Qnil);
3225 return self;
3229 * call-seq:
3230 * Fiber.current -> fiber
3232 * Returns the current fiber. If you are not running in the context of
3233 * a fiber this method will return the root fiber.
3235 static VALUE
3236 rb_fiber_s_current(VALUE klass)
3238 return rb_fiber_current();
3241 static VALUE
3242 fiber_to_s(VALUE fiber_value)
3244 const rb_fiber_t *fiber = fiber_ptr(fiber_value);
3245 const rb_proc_t *proc;
3246 char status_info[0x20];
3248 if (fiber->resuming_fiber) {
3249 snprintf(status_info, 0x20, " (%s by resuming)", fiber_status_name(fiber->status));
3251 else {
3252 snprintf(status_info, 0x20, " (%s)", fiber_status_name(fiber->status));
3255 if (!rb_obj_is_proc(fiber->first_proc)) {
3256 VALUE str = rb_any_to_s(fiber_value);
3257 strlcat(status_info, ">", sizeof(status_info));
3258 rb_str_set_len(str, RSTRING_LEN(str)-1);
3259 rb_str_cat_cstr(str, status_info);
3260 return str;
3262 GetProcPtr(fiber->first_proc, proc);
3263 return rb_block_to_s(fiber_value, &proc->block, status_info);
3266 #ifdef HAVE_WORKING_FORK
3267 void
3268 rb_fiber_atfork(rb_thread_t *th)
3270 if (th->root_fiber) {
3271 if (&th->root_fiber->cont.saved_ec != th->ec) {
3272 th->root_fiber = th->ec->fiber_ptr;
3274 th->root_fiber->prev = 0;
3277 #endif
3279 #ifdef RB_EXPERIMENTAL_FIBER_POOL
3280 static void
3281 fiber_pool_free(void *ptr)
3283 struct fiber_pool * fiber_pool = ptr;
3284 RUBY_FREE_ENTER("fiber_pool");
3286 fiber_pool_allocation_free(fiber_pool->allocations);
3287 ruby_xfree(fiber_pool);
3289 RUBY_FREE_LEAVE("fiber_pool");
3292 static size_t
3293 fiber_pool_memsize(const void *ptr)
3295 const struct fiber_pool * fiber_pool = ptr;
3296 size_t size = sizeof(*fiber_pool);
3298 size += fiber_pool->count * fiber_pool->size;
3300 return size;
3303 static const rb_data_type_t FiberPoolDataType = {
3304 "fiber_pool",
3305 {NULL, fiber_pool_free, fiber_pool_memsize,},
3306 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
3309 static VALUE
3310 fiber_pool_alloc(VALUE klass)
3312 struct fiber_pool *fiber_pool;
3314 return TypedData_Make_Struct(klass, struct fiber_pool, &FiberPoolDataType, fiber_pool);
3317 static VALUE
3318 rb_fiber_pool_initialize(int argc, VALUE* argv, VALUE self)
3320 rb_thread_t *th = GET_THREAD();
3321 VALUE size = Qnil, count = Qnil, vm_stack_size = Qnil;
3322 struct fiber_pool * fiber_pool = NULL;
3324 // Maybe these should be keyword arguments.
3325 rb_scan_args(argc, argv, "03", &size, &count, &vm_stack_size);
3327 if (NIL_P(size)) {
3328 size = SIZET2NUM(th->vm->default_params.fiber_machine_stack_size);
3331 if (NIL_P(count)) {
3332 count = INT2NUM(128);
3335 if (NIL_P(vm_stack_size)) {
3336 vm_stack_size = SIZET2NUM(th->vm->default_params.fiber_vm_stack_size);
3339 TypedData_Get_Struct(self, struct fiber_pool, &FiberPoolDataType, fiber_pool);
3341 fiber_pool_initialize(fiber_pool, NUM2SIZET(size), NUM2SIZET(count), NUM2SIZET(vm_stack_size));
3343 return self;
3345 #endif
3348 * Document-class: FiberError
3350 * Raised when an invalid operation is attempted on a Fiber, in
3351 * particular when attempting to call/resume a dead fiber,
3352 * attempting to yield from the root fiber, or calling a fiber across
3353 * threads.
3355 * fiber = Fiber.new{}
3356 * fiber.resume #=> nil
3357 * fiber.resume #=> FiberError: dead fiber called
3360 void
3361 Init_Cont(void)
3363 rb_thread_t *th = GET_THREAD();
3364 size_t vm_stack_size = th->vm->default_params.fiber_vm_stack_size;
3365 size_t machine_stack_size = th->vm->default_params.fiber_machine_stack_size;
3366 size_t stack_size = machine_stack_size + vm_stack_size;
3368 #ifdef _WIN32
3369 SYSTEM_INFO info;
3370 GetSystemInfo(&info);
3371 pagesize = info.dwPageSize;
3372 #else /* not WIN32 */
3373 pagesize = sysconf(_SC_PAGESIZE);
3374 #endif
3375 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
3377 fiber_pool_initialize(&shared_fiber_pool, stack_size, FIBER_POOL_INITIAL_SIZE, vm_stack_size);
3379 fiber_initialize_keywords[0] = rb_intern_const("blocking");
3380 fiber_initialize_keywords[1] = rb_intern_const("pool");
3381 fiber_initialize_keywords[2] = rb_intern_const("storage");
3383 const char *fiber_shared_fiber_pool_free_stacks = getenv("RUBY_SHARED_FIBER_POOL_FREE_STACKS");
3384 if (fiber_shared_fiber_pool_free_stacks) {
3385 shared_fiber_pool.free_stacks = atoi(fiber_shared_fiber_pool_free_stacks);
3387 if (shared_fiber_pool.free_stacks < 0) {
3388 rb_warn("Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a negative value is not allowed.");
3389 shared_fiber_pool.free_stacks = 0;
3392 if (shared_fiber_pool.free_stacks > 1) {
3393 rb_warn("Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a value greater than 1 is operating system specific, and may cause crashes.");
3397 rb_cFiber = rb_define_class("Fiber", rb_cObject);
3398 rb_define_alloc_func(rb_cFiber, fiber_alloc);
3399 rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
3400 rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
3401 rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
3402 rb_define_singleton_method(rb_cFiber, "blocking", rb_fiber_blocking, 0);
3403 rb_define_singleton_method(rb_cFiber, "[]", rb_fiber_storage_aref, 1);
3404 rb_define_singleton_method(rb_cFiber, "[]=", rb_fiber_storage_aset, 2);
3406 rb_define_method(rb_cFiber, "initialize", rb_fiber_initialize, -1);
3407 rb_define_method(rb_cFiber, "blocking?", rb_fiber_blocking_p, 0);
3408 rb_define_method(rb_cFiber, "storage", rb_fiber_storage_get, 0);
3409 rb_define_method(rb_cFiber, "storage=", rb_fiber_storage_set, 1);
3410 rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
3411 rb_define_method(rb_cFiber, "raise", rb_fiber_m_raise, -1);
3412 rb_define_method(rb_cFiber, "kill", rb_fiber_m_kill, 0);
3413 rb_define_method(rb_cFiber, "backtrace", rb_fiber_backtrace, -1);
3414 rb_define_method(rb_cFiber, "backtrace_locations", rb_fiber_backtrace_locations, -1);
3415 rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
3416 rb_define_alias(rb_cFiber, "inspect", "to_s");
3417 rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
3418 rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
3420 rb_define_singleton_method(rb_cFiber, "blocking?", rb_fiber_s_blocking_p, 0);
3421 rb_define_singleton_method(rb_cFiber, "scheduler", rb_fiber_s_scheduler, 0);
3422 rb_define_singleton_method(rb_cFiber, "set_scheduler", rb_fiber_set_scheduler, 1);
3423 rb_define_singleton_method(rb_cFiber, "current_scheduler", rb_fiber_current_scheduler, 0);
3425 rb_define_singleton_method(rb_cFiber, "schedule", rb_fiber_s_schedule, -1);
3427 #ifdef RB_EXPERIMENTAL_FIBER_POOL
3428 rb_cFiberPool = rb_define_class_under(rb_cFiber, "Pool", rb_cObject);
3429 rb_define_alloc_func(rb_cFiberPool, fiber_pool_alloc);
3430 rb_define_method(rb_cFiberPool, "initialize", rb_fiber_pool_initialize, -1);
3431 #endif
3433 rb_provide("fiber.so");
3436 RUBY_SYMBOL_EXPORT_BEGIN
3438 void
3439 ruby_Init_Continuation_body(void)
3441 rb_cContinuation = rb_define_class("Continuation", rb_cObject);
3442 rb_undef_alloc_func(rb_cContinuation);
3443 rb_undef_method(CLASS_OF(rb_cContinuation), "new");
3444 rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
3445 rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
3446 rb_define_global_function("callcc", rb_callcc, 0);
3449 RUBY_SYMBOL_EXPORT_END