[rubygems/rubygems] Use a constant empty tar header to avoid extra allocations
[ruby.git] / enum.c
blobdcb374778e469dc02b8067f59392a4b803129e5f
1 /**********************************************************************
3 enum.c -
5 $Author$
6 created at: Fri Oct 1 15:15:19 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "id.h"
13 #include "internal.h"
14 #include "internal/compar.h"
15 #include "internal/enum.h"
16 #include "internal/hash.h"
17 #include "internal/imemo.h"
18 #include "internal/numeric.h"
19 #include "internal/object.h"
20 #include "internal/proc.h"
21 #include "internal/rational.h"
22 #include "internal/re.h"
23 #include "ruby/util.h"
24 #include "ruby_assert.h"
25 #include "symbol.h"
27 VALUE rb_mEnumerable;
29 static ID id_next;
30 static ID id__alone;
31 static ID id__separator;
32 static ID id_chunk_categorize;
33 static ID id_chunk_enumerable;
34 static ID id_sliceafter_enum;
35 static ID id_sliceafter_pat;
36 static ID id_sliceafter_pred;
37 static ID id_slicebefore_enumerable;
38 static ID id_slicebefore_sep_pat;
39 static ID id_slicebefore_sep_pred;
40 static ID id_slicewhen_enum;
41 static ID id_slicewhen_inverted;
42 static ID id_slicewhen_pred;
44 #define id_div idDiv
45 #define id_each idEach
46 #define id_eqq idEqq
47 #define id_cmp idCmp
48 #define id_lshift idLTLT
49 #define id_call idCall
50 #define id_size idSize
52 VALUE
53 rb_enum_values_pack(int argc, const VALUE *argv)
55 if (argc == 0) return Qnil;
56 if (argc == 1) return argv[0];
57 return rb_ary_new4(argc, argv);
60 #define ENUM_WANT_SVALUE() do { \
61 i = rb_enum_values_pack(argc, argv); \
62 } while (0)
64 static VALUE
65 enum_yield(int argc, VALUE ary)
67 if (argc > 1)
68 return rb_yield_force_blockarg(ary);
69 if (argc == 1)
70 return rb_yield(ary);
71 return rb_yield_values2(0, 0);
74 static VALUE
75 enum_yield_array(VALUE ary)
77 long len = RARRAY_LEN(ary);
79 if (len > 1)
80 return rb_yield_force_blockarg(ary);
81 if (len == 1)
82 return rb_yield(RARRAY_AREF(ary, 0));
83 return rb_yield_values2(0, 0);
86 static VALUE
87 grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
89 struct MEMO *memo = MEMO_CAST(args);
90 ENUM_WANT_SVALUE();
92 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
93 rb_ary_push(memo->v2, i);
95 return Qnil;
98 static VALUE
99 grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
101 struct MEMO *memo = MEMO_CAST(args);
102 VALUE converted_element, match;
103 ENUM_WANT_SVALUE();
105 /* In case element can't be converted to a Symbol or String: not a match (don't raise) */
106 converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i);
107 match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0);
108 if (match == memo->u3.value) {
109 rb_ary_push(memo->v2, i);
111 return Qnil;
114 static VALUE
115 grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
117 struct MEMO *memo = MEMO_CAST(args);
118 ENUM_WANT_SVALUE();
120 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
121 rb_ary_push(memo->v2, enum_yield(argc, i));
123 return Qnil;
126 static VALUE
127 enum_grep0(VALUE obj, VALUE pat, VALUE test)
129 VALUE ary = rb_ary_new();
130 struct MEMO *memo = MEMO_NEW(pat, ary, test);
131 rb_block_call_func_t fn;
132 if (rb_block_given_p()) {
133 fn = grep_iter_i;
135 else if (RB_TYPE_P(pat, T_REGEXP) &&
136 LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) {
137 fn = grep_regexp_i;
139 else {
140 fn = grep_i;
142 rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo);
144 return ary;
148 * call-seq:
149 * grep(pattern) -> array
150 * grep(pattern) {|element| ... } -> array
152 * Returns an array of objects based elements of +self+ that match the given pattern.
154 * With no block given, returns an array containing each element
155 * for which <tt>pattern === element</tt> is +true+:
157 * a = ['foo', 'bar', 'car', 'moo']
158 * a.grep(/ar/) # => ["bar", "car"]
159 * (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8]
160 * ['a', 'b', 0, 1].grep(Integer) # => [0, 1]
162 * With a block given,
163 * calls the block with each matching element and returns an array containing each
164 * object returned by the block:
166 * a = ['foo', 'bar', 'car', 'moo']
167 * a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"]
169 * Related: #grep_v.
172 static VALUE
173 enum_grep(VALUE obj, VALUE pat)
175 return enum_grep0(obj, pat, Qtrue);
179 * call-seq:
180 * grep_v(pattern) -> array
181 * grep_v(pattern) {|element| ... } -> array
183 * Returns an array of objects based on elements of +self+
184 * that <em>don't</em> match the given pattern.
186 * With no block given, returns an array containing each element
187 * for which <tt>pattern === element</tt> is +false+:
189 * a = ['foo', 'bar', 'car', 'moo']
190 * a.grep_v(/ar/) # => ["foo", "moo"]
191 * (1..10).grep_v(3..8) # => [1, 2, 9, 10]
192 * ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"]
194 * With a block given,
195 * calls the block with each non-matching element and returns an array containing each
196 * object returned by the block:
198 * a = ['foo', 'bar', 'car', 'moo']
199 * a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"]
201 * Related: #grep.
204 static VALUE
205 enum_grep_v(VALUE obj, VALUE pat)
207 return enum_grep0(obj, pat, Qfalse);
210 #define COUNT_BIGNUM IMEMO_FL_USER0
211 #define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
213 static void
214 imemo_count_up(struct MEMO *memo)
216 if (memo->flags & COUNT_BIGNUM) {
217 MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
219 else if (++memo->u3.cnt == 0) {
220 /* overflow */
221 unsigned long buf[2] = {0, 1};
222 MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
223 memo->flags |= COUNT_BIGNUM;
227 static VALUE
228 imemo_count_value(struct MEMO *memo)
230 if (memo->flags & COUNT_BIGNUM) {
231 return memo->u3.value;
233 else {
234 return ULONG2NUM(memo->u3.cnt);
238 static VALUE
239 count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
241 struct MEMO *memo = MEMO_CAST(memop);
243 ENUM_WANT_SVALUE();
245 if (rb_equal(i, memo->v1)) {
246 imemo_count_up(memo);
248 return Qnil;
251 static VALUE
252 count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
254 struct MEMO *memo = MEMO_CAST(memop);
256 if (RTEST(rb_yield_values2(argc, argv))) {
257 imemo_count_up(memo);
259 return Qnil;
262 static VALUE
263 count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
265 struct MEMO *memo = MEMO_CAST(memop);
267 imemo_count_up(memo);
268 return Qnil;
272 * call-seq:
273 * count -> integer
274 * count(object) -> integer
275 * count {|element| ... } -> integer
277 * Returns the count of elements, based on an argument or block criterion, if given.
279 * With no argument and no block given, returns the number of elements:
281 * [0, 1, 2].count # => 3
282 * {foo: 0, bar: 1, baz: 2}.count # => 3
284 * With argument +object+ given,
285 * returns the number of elements that are <tt>==</tt> to +object+:
287 * [0, 1, 2, 1].count(1) # => 2
289 * With a block given, calls the block with each element
290 * and returns the number of elements for which the block returns a truthy value:
292 * [0, 1, 2, 3].count {|element| element < 2} # => 2
293 * {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2
297 static VALUE
298 enum_count(int argc, VALUE *argv, VALUE obj)
300 VALUE item = Qnil;
301 struct MEMO *memo;
302 rb_block_call_func *func;
304 if (argc == 0) {
305 if (rb_block_given_p()) {
306 func = count_iter_i;
308 else {
309 func = count_all_i;
312 else {
313 rb_scan_args(argc, argv, "1", &item);
314 if (rb_block_given_p()) {
315 rb_warn("given block not used");
317 func = count_i;
320 memo = MEMO_NEW(item, 0, 0);
321 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
322 return imemo_count_value(memo);
325 static VALUE
326 find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
328 ENUM_WANT_SVALUE();
330 if (RTEST(enum_yield(argc, i))) {
331 struct MEMO *memo = MEMO_CAST(memop);
332 MEMO_V1_SET(memo, i);
333 memo->u3.cnt = 1;
334 rb_iter_break();
336 return Qnil;
340 * call-seq:
341 * find(if_none_proc = nil) {|element| ... } -> object or nil
342 * find(if_none_proc = nil) -> enumerator
344 * Returns the first element for which the block returns a truthy value.
346 * With a block given, calls the block with successive elements of the collection;
347 * returns the first element for which the block returns a truthy value:
349 * (0..9).find {|element| element > 2} # => 3
351 * If no such element is found, calls +if_none_proc+ and returns its return value.
353 * (0..9).find(proc {false}) {|element| element > 12} # => false
354 * {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
355 * {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
357 * With no block given, returns an Enumerator.
360 static VALUE
361 enum_find(int argc, VALUE *argv, VALUE obj)
363 struct MEMO *memo;
364 VALUE if_none;
366 if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
367 RETURN_ENUMERATOR(obj, argc, argv);
368 memo = MEMO_NEW(Qundef, 0, 0);
369 rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
370 if (memo->u3.cnt) {
371 return memo->v1;
373 if (!NIL_P(if_none)) {
374 return rb_funcallv(if_none, id_call, 0, 0);
376 return Qnil;
379 static VALUE
380 find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
382 struct MEMO *memo = MEMO_CAST(memop);
384 ENUM_WANT_SVALUE();
386 if (rb_equal(i, memo->v2)) {
387 MEMO_V1_SET(memo, imemo_count_value(memo));
388 rb_iter_break();
390 imemo_count_up(memo);
391 return Qnil;
394 static VALUE
395 find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
397 struct MEMO *memo = MEMO_CAST(memop);
399 if (RTEST(rb_yield_values2(argc, argv))) {
400 MEMO_V1_SET(memo, imemo_count_value(memo));
401 rb_iter_break();
403 imemo_count_up(memo);
404 return Qnil;
408 * call-seq:
409 * find_index(object) -> integer or nil
410 * find_index {|element| ... } -> integer or nil
411 * find_index -> enumerator
413 * Returns the index of the first element that meets a specified criterion,
414 * or +nil+ if no such element is found.
416 * With argument +object+ given,
417 * returns the index of the first element that is <tt>==</tt> +object+:
419 * ['a', 'b', 'c', 'b'].find_index('b') # => 1
421 * With a block given, calls the block with successive elements;
422 * returns the first element for which the block returns a truthy value:
424 * ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1
425 * {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
427 * With no argument and no block given, returns an Enumerator.
431 static VALUE
432 enum_find_index(int argc, VALUE *argv, VALUE obj)
434 struct MEMO *memo; /* [return value, current index, ] */
435 VALUE condition_value = Qnil;
436 rb_block_call_func *func;
438 if (argc == 0) {
439 RETURN_ENUMERATOR(obj, 0, 0);
440 func = find_index_iter_i;
442 else {
443 rb_scan_args(argc, argv, "1", &condition_value);
444 if (rb_block_given_p()) {
445 rb_warn("given block not used");
447 func = find_index_i;
450 memo = MEMO_NEW(Qnil, condition_value, 0);
451 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
452 return memo->v1;
455 static VALUE
456 find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
458 ENUM_WANT_SVALUE();
460 if (RTEST(enum_yield(argc, i))) {
461 rb_ary_push(ary, i);
463 return Qnil;
466 static VALUE
467 enum_size(VALUE self, VALUE args, VALUE eobj)
469 return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
472 static long
473 limit_by_enum_size(VALUE obj, long n)
475 unsigned long limit;
476 VALUE size = rb_check_funcall(obj, id_size, 0, 0);
477 if (!FIXNUM_P(size)) return n;
478 limit = FIX2ULONG(size);
479 return ((unsigned long)n > limit) ? (long)limit : n;
482 static int
483 enum_size_over_p(VALUE obj, long n)
485 VALUE size = rb_check_funcall(obj, id_size, 0, 0);
486 if (!FIXNUM_P(size)) return 0;
487 return ((unsigned long)n > FIX2ULONG(size));
491 * call-seq:
492 * select {|element| ... } -> array
493 * select -> enumerator
495 * Returns an array containing elements selected by the block.
497 * With a block given, calls the block with successive elements;
498 * returns an array of those elements for which the block returns a truthy value:
500 * (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
501 * a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
502 * a # => {:bar=>1, :baz=>2}
504 * With no block given, returns an Enumerator.
506 * Related: #reject.
508 static VALUE
509 enum_find_all(VALUE obj)
511 VALUE ary;
513 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
515 ary = rb_ary_new();
516 rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
518 return ary;
521 static VALUE
522 filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
524 i = rb_yield_values2(argc, argv);
526 if (RTEST(i)) {
527 rb_ary_push(ary, i);
530 return Qnil;
534 * call-seq:
535 * filter_map {|element| ... } -> array
536 * filter_map -> enumerator
538 * Returns an array containing truthy elements returned by the block.
540 * With a block given, calls the block with successive elements;
541 * returns an array containing each truthy value returned by the block:
543 * (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16]
544 * {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]
546 * When no block given, returns an Enumerator.
549 static VALUE
550 enum_filter_map(VALUE obj)
552 VALUE ary;
554 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
556 ary = rb_ary_new();
557 rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
559 return ary;
563 static VALUE
564 reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
566 ENUM_WANT_SVALUE();
568 if (!RTEST(enum_yield(argc, i))) {
569 rb_ary_push(ary, i);
571 return Qnil;
575 * call-seq:
576 * reject {|element| ... } -> array
577 * reject -> enumerator
579 * Returns an array of objects rejected by the block.
581 * With a block given, calls the block with successive elements;
582 * returns an array of those elements for which the block returns +nil+ or +false+:
584 * (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9]
585 * {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2}
587 * When no block given, returns an Enumerator.
589 * Related: #select.
592 static VALUE
593 enum_reject(VALUE obj)
595 VALUE ary;
597 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
599 ary = rb_ary_new();
600 rb_block_call(obj, id_each, 0, 0, reject_i, ary);
602 return ary;
605 static VALUE
606 collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
608 rb_ary_push(ary, rb_yield_values2(argc, argv));
610 return Qnil;
613 static VALUE
614 collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
616 rb_ary_push(ary, rb_enum_values_pack(argc, argv));
618 return Qnil;
622 * call-seq:
623 * map {|element| ... } -> array
624 * map -> enumerator
626 * Returns an array of objects returned by the block.
628 * With a block given, calls the block with successive elements;
629 * returns an array of the objects returned by the block:
631 * (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
632 * {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
634 * With no block given, returns an Enumerator.
637 static VALUE
638 enum_collect(VALUE obj)
640 VALUE ary;
641 int min_argc, max_argc;
643 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
645 ary = rb_ary_new();
646 min_argc = rb_block_min_max_arity(&max_argc);
647 rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
649 return ary;
652 static VALUE
653 flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
655 VALUE tmp;
657 i = rb_yield_values2(argc, argv);
658 tmp = rb_check_array_type(i);
660 if (NIL_P(tmp)) {
661 rb_ary_push(ary, i);
663 else {
664 rb_ary_concat(ary, tmp);
666 return Qnil;
670 * call-seq:
671 * flat_map {|element| ... } -> array
672 * flat_map -> enumerator
674 * Returns an array of flattened objects returned by the block.
676 * With a block given, calls the block with successive elements;
677 * returns a flattened array of objects returned by the block:
679 * [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3]
680 * [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3]
681 * [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
682 * {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
684 * With no block given, returns an Enumerator.
686 * Alias: #collect_concat.
688 static VALUE
689 enum_flat_map(VALUE obj)
691 VALUE ary;
693 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
695 ary = rb_ary_new();
696 rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
698 return ary;
702 * call-seq:
703 * to_a(*args) -> array
705 * Returns an array containing the items in +self+:
707 * (0..4).to_a # => [0, 1, 2, 3, 4]
710 static VALUE
711 enum_to_a(int argc, VALUE *argv, VALUE obj)
713 VALUE ary = rb_ary_new();
715 rb_block_call_kw(obj, id_each, argc, argv, collect_all, ary, RB_PASS_CALLED_KEYWORDS);
717 return ary;
720 static VALUE
721 enum_hashify_into(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter, VALUE hash)
723 rb_block_call(obj, id_each, argc, argv, iter, hash);
724 return hash;
727 static VALUE
728 enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter)
730 return enum_hashify_into(obj, argc, argv, iter, rb_hash_new());
733 static VALUE
734 enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
736 ENUM_WANT_SVALUE();
737 return rb_hash_set_pair(hash, i);
740 static VALUE
741 enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
743 return rb_hash_set_pair(hash, rb_yield_values2(argc, argv));
747 * call-seq:
748 * to_h(*args) -> hash
749 * to_h(*args) {|element| ... } -> hash
751 * When +self+ consists of 2-element arrays,
752 * returns a hash each of whose entries is the key-value pair
753 * formed from one of those arrays:
755 * [[:foo, 0], [:bar, 1], [:baz, 2]].to_h # => {:foo=>0, :bar=>1, :baz=>2}
757 * When a block is given, the block is called with each element of +self+;
758 * the block should return a 2-element array which becomes a key-value pair
759 * in the returned hash:
761 * (0..3).to_h {|i| [i, i ** 2]} # => {0=>0, 1=>1, 2=>4, 3=>9}
763 * Raises an exception if an element of +self+ is not a 2-element array,
764 * and a block is not passed.
767 static VALUE
768 enum_to_h(int argc, VALUE *argv, VALUE obj)
770 rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
771 return enum_hashify(obj, argc, argv, iter);
774 static VALUE
775 inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
777 struct MEMO *memo = MEMO_CAST(p);
779 ENUM_WANT_SVALUE();
781 if (UNDEF_P(memo->v1)) {
782 MEMO_V1_SET(memo, i);
784 else {
785 MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
787 return Qnil;
790 static VALUE
791 inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
793 struct MEMO *memo = MEMO_CAST(p);
794 VALUE name;
796 ENUM_WANT_SVALUE();
798 if (UNDEF_P(memo->v1)) {
799 MEMO_V1_SET(memo, i);
801 else if (SYMBOL_P(name = memo->u3.value)) {
802 const ID mid = SYM2ID(name);
803 MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i));
805 else {
806 VALUE args[2];
807 args[0] = name;
808 args[1] = i;
809 MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
811 return Qnil;
814 static VALUE
815 ary_inject_op(VALUE ary, VALUE init, VALUE op)
817 ID id;
818 VALUE v, e;
819 long i, n;
821 if (RARRAY_LEN(ary) == 0)
822 return UNDEF_P(init) ? Qnil : init;
824 if (UNDEF_P(init)) {
825 v = RARRAY_AREF(ary, 0);
826 i = 1;
827 if (RARRAY_LEN(ary) == 1)
828 return v;
830 else {
831 v = init;
832 i = 0;
835 id = SYM2ID(op);
836 if (id == idPLUS) {
837 if (RB_INTEGER_TYPE_P(v) &&
838 rb_method_basic_definition_p(rb_cInteger, idPLUS) &&
839 rb_obj_respond_to(v, idPLUS, FALSE)) {
840 n = 0;
841 for (; i < RARRAY_LEN(ary); i++) {
842 e = RARRAY_AREF(ary, i);
843 if (FIXNUM_P(e)) {
844 n += FIX2LONG(e); /* should not overflow long type */
845 if (!FIXABLE(n)) {
846 v = rb_big_plus(LONG2NUM(n), v);
847 n = 0;
850 else if (RB_BIGNUM_TYPE_P(e))
851 v = rb_big_plus(e, v);
852 else
853 goto not_integer;
855 if (n != 0)
856 v = rb_fix_plus(LONG2FIX(n), v);
857 return v;
859 not_integer:
860 if (n != 0)
861 v = rb_fix_plus(LONG2FIX(n), v);
864 for (; i < RARRAY_LEN(ary); i++) {
865 VALUE arg = RARRAY_AREF(ary, i);
866 v = rb_funcallv_public(v, id, 1, &arg);
868 return v;
872 * call-seq:
873 * inject(symbol) -> object
874 * inject(initial_value, symbol) -> object
875 * inject {|memo, value| ... } -> object
876 * inject(initial_value) {|memo, value| ... } -> object
878 * Returns the result of applying a reducer to an initial value and
879 * the first element of the Enumerable. It then takes the result and applies the
880 * function to it and the second element of the collection, and so on. The
881 * return value is the result returned by the final call to the function.
883 * You can think of
885 * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) }
887 * as being
889 * fn(fn(fn(fn(i, a), b), c), d)
891 * In a way the +inject+ function _injects_ the function
892 * between the elements of the enumerable.
894 * +inject+ is aliased as +reduce+. You use it when you want to
895 * _reduce_ a collection to a single value.
897 * <b>The Calling Sequences</b>
899 * Let's start with the most verbose:
901 * enum.inject(initial_value) do |result, next_value|
902 * # do something with +result+ and +next_value+
903 * # the value returned by the block becomes the
904 * # value passed in to the next iteration
905 * # as +result+
906 * end
908 * For example:
910 * product = [ 2, 3, 4 ].inject(1) do |result, next_value|
911 * result * next_value
912 * end
913 * product #=> 24
915 * When this runs, the block is first called with +1+ (the initial value) and
916 * +2+ (the first element of the array). The block returns <tt>1*2</tt>, so on
917 * the next iteration the block is called with +2+ (the previous result) and
918 * +3+. The block returns +6+, and is called one last time with +6+ and +4+.
919 * The result of the block, +24+ becomes the value returned by +inject+. This
920 * code returns the product of the elements in the enumerable.
922 * <b>First Shortcut: Default Initial value</b>
924 * In the case of the previous example, the initial value, +1+, wasn't really
925 * necessary: the calculation of the product of a list of numbers is self-contained.
927 * In these circumstances, you can omit the +initial_value+ parameter. +inject+
928 * will then initially call the block with the first element of the collection
929 * as the +result+ parameter and the second element as the +next_value+.
931 * [ 2, 3, 4 ].inject do |result, next_value|
932 * result * next_value
933 * end
935 * This shortcut is convenient, but can only be used when the block produces a result
936 * which can be passed back to it as a first parameter.
938 * Here's an example where that's not the case: it returns a hash where the keys are words
939 * and the values are the number of occurrences of that word in the enumerable.
941 * freqs = File.read("README.md")
942 * .scan(/\w{2,}/)
943 * .reduce(Hash.new(0)) do |counts, word|
944 * counts[word] += 1
945 * counts
946 * end
947 * freqs #=> {"Actions"=>4,
948 * "Status"=>5,
949 * "MinGW"=>3,
950 * "https"=>27,
951 * "github"=>10,
952 * "com"=>15, ...
954 * Note that the last line of the block is just the word +counts+. This ensures the
955 * return value of the block is the result that's being calculated.
957 * <b>Second Shortcut: a Reducer function</b>
959 * A <i>reducer function</i> is a function that takes a partial result and the next value,
960 * returning the next partial result. The block that is given to +inject+ is a reducer.
962 * You can also write a reducer as a function and pass the name of that function
963 * (as a symbol) to +inject+. However, for this to work, the function
965 * 1. Must be defined on the type of the result value
966 * 2. Must accept a single parameter, the next value in the collection, and
967 * 3. Must return an updated result which will also implement the function.
969 * Here's an example that adds elements to a string. The two calls invoke the functions
970 * String#concat and String#+ on the result so far, passing it the next value.
972 * s = [ "cat", " ", "dog" ].inject("", :concat)
973 * s #=> "cat dog"
974 * s = [ "cat", " ", "dog" ].inject("The result is:", :+)
975 * s #=> "The result is: cat dog"
977 * Here's a more complex example when the result object maintains
978 * state of a different type to the enumerable elements.
980 * class Turtle
982 * def initialize
983 * @x = @y = 0
984 * end
986 * def move(dir)
987 * case dir
988 * when "n" then @y += 1
989 * when "s" then @y -= 1
990 * when "e" then @x += 1
991 * when "w" then @x -= 1
992 * end
993 * self
994 * end
995 * end
997 * position = "nnneesw".chars.reduce(Turtle.new, :move)
998 * position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1>
1000 * <b>Third Shortcut: Reducer With no Initial Value</b>
1002 * If your reducer returns a value that it can accept as a parameter, then you
1003 * don't have to pass in an initial value. Here <tt>:*</tt> is the name of the
1004 * _times_ function:
1006 * product = [ 2, 3, 4 ].inject(:*)
1007 * product # => 24
1009 * String concatenation again:
1011 * s = [ "cat", " ", "dog" ].inject(:+)
1012 * s #=> "cat dog"
1014 * And an example that converts a hash to an array of two-element subarrays.
1016 * nested = {foo: 0, bar: 1}.inject([], :push)
1017 * nested # => [[:foo, 0], [:bar, 1]]
1021 static VALUE
1022 enum_inject(int argc, VALUE *argv, VALUE obj)
1024 struct MEMO *memo;
1025 VALUE init, op;
1026 rb_block_call_func *iter = inject_i;
1027 ID id;
1028 int num_args;
1030 if (rb_block_given_p()) {
1031 num_args = rb_scan_args(argc, argv, "02", &init, &op);
1033 else {
1034 num_args = rb_scan_args(argc, argv, "11", &init, &op);
1037 switch (num_args) {
1038 case 0:
1039 init = Qundef;
1040 break;
1041 case 1:
1042 if (rb_block_given_p()) {
1043 break;
1045 id = rb_check_id(&init);
1046 op = id ? ID2SYM(id) : init;
1047 init = Qundef;
1048 iter = inject_op_i;
1049 break;
1050 case 2:
1051 if (rb_block_given_p()) {
1052 rb_warning("given block not used");
1054 id = rb_check_id(&op);
1055 if (id) op = ID2SYM(id);
1056 iter = inject_op_i;
1057 break;
1060 if (iter == inject_op_i &&
1061 SYMBOL_P(op) &&
1062 RB_TYPE_P(obj, T_ARRAY) &&
1063 rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
1064 return ary_inject_op(obj, init, op);
1067 memo = MEMO_NEW(init, Qnil, op);
1068 rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
1069 if (UNDEF_P(memo->v1)) return Qnil;
1070 return memo->v1;
1073 static VALUE
1074 partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
1076 struct MEMO *memo = MEMO_CAST(arys);
1077 VALUE ary;
1078 ENUM_WANT_SVALUE();
1080 if (RTEST(enum_yield(argc, i))) {
1081 ary = memo->v1;
1083 else {
1084 ary = memo->v2;
1086 rb_ary_push(ary, i);
1087 return Qnil;
1091 * call-seq:
1092 * partition {|element| ... } -> [true_array, false_array]
1093 * partition -> enumerator
1095 * With a block given, returns an array of two arrays:
1097 * - The first having those elements for which the block returns a truthy value.
1098 * - The other having all other elements.
1100 * Examples:
1102 * p = (1..4).partition {|i| i.even? }
1103 * p # => [[2, 4], [1, 3]]
1104 * p = ('a'..'d').partition {|c| c < 'c' }
1105 * p # => [["a", "b"], ["c", "d"]]
1106 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
1107 * p = h.partition {|key, value| key.start_with?('b') }
1108 * p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]]
1109 * p = h.partition {|key, value| value < 2 }
1110 * p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]
1112 * With no block given, returns an Enumerator.
1114 * Related: Enumerable#group_by.
1118 static VALUE
1119 enum_partition(VALUE obj)
1121 struct MEMO *memo;
1123 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1125 memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
1126 rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
1128 return rb_assoc_new(memo->v1, memo->v2);
1131 static VALUE
1132 group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
1134 VALUE group;
1135 VALUE values;
1137 ENUM_WANT_SVALUE();
1139 group = enum_yield(argc, i);
1140 values = rb_hash_aref(hash, group);
1141 if (!RB_TYPE_P(values, T_ARRAY)) {
1142 values = rb_ary_new3(1, i);
1143 rb_hash_aset(hash, group, values);
1145 else {
1146 rb_ary_push(values, i);
1148 return Qnil;
1152 * call-seq:
1153 * group_by {|element| ... } -> hash
1154 * group_by -> enumerator
1156 * With a block given returns a hash:
1158 * - Each key is a return value from the block.
1159 * - Each value is an array of those elements for which the block returned that key.
1161 * Examples:
1163 * g = (1..6).group_by {|i| i%3 }
1164 * g # => {1=>[1, 4], 2=>[2, 5], 0=>[3, 6]}
1165 * h = {foo: 0, bar: 1, baz: 0, bat: 1}
1166 * g = h.group_by {|key, value| value }
1167 * g # => {0=>[[:foo, 0], [:baz, 0]], 1=>[[:bar, 1], [:bat, 1]]}
1169 * With no block given, returns an Enumerator.
1173 static VALUE
1174 enum_group_by(VALUE obj)
1176 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1178 return enum_hashify(obj, 0, 0, group_by_i);
1181 static int
1182 tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing)
1184 VALUE tally = (VALUE)*value;
1185 VALUE hash = (VALUE)arg;
1186 if (!existing) {
1187 tally = INT2FIX(1);
1189 else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
1190 tally += INT2FIX(1) & ~FIXNUM_FLAG;
1192 else {
1193 Check_Type(tally, T_BIGNUM);
1194 tally = rb_big_plus(tally, INT2FIX(1));
1195 RB_OBJ_WRITTEN(hash, Qundef, tally);
1197 *value = (st_data_t)tally;
1198 if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group);
1199 return ST_CONTINUE;
1202 static VALUE
1203 rb_enum_tally_up(VALUE hash, VALUE group)
1205 rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash);
1206 return hash;
1209 static VALUE
1210 tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
1212 ENUM_WANT_SVALUE();
1213 rb_enum_tally_up(hash, i);
1214 return Qnil;
1218 * call-seq:
1219 * tally -> new_hash
1220 * tally(hash) -> hash
1222 * Returns a hash containing the counts of equal elements:
1224 * - Each key is an element of +self+.
1225 * - Each value is the number elements equal to that key.
1227 * With no argument:
1229 * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
1231 * With a hash argument, that hash is used for the tally (instead of a new hash),
1232 * and is returned;
1233 * this may be useful for accumulating tallies across multiple enumerables:
1235 * hash = {}
1236 * hash = %w[a c d b c a].tally(hash)
1237 * hash # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
1238 * hash = %w[b a z].tally(hash)
1239 * hash # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
1240 * hash = %w[b a m].tally(hash)
1241 * hash # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=> 1}
1245 static VALUE
1246 enum_tally(int argc, VALUE *argv, VALUE obj)
1248 VALUE hash;
1249 if (rb_check_arity(argc, 0, 1)) {
1250 hash = rb_to_hash_type(argv[0]);
1251 rb_check_frozen(hash);
1253 else {
1254 hash = rb_hash_new();
1257 return enum_hashify_into(obj, 0, 0, tally_i, hash);
1260 NORETURN(static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)));
1261 static VALUE
1262 first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
1264 struct MEMO *memo = MEMO_CAST(params);
1265 ENUM_WANT_SVALUE();
1267 MEMO_V1_SET(memo, i);
1268 rb_iter_break();
1270 UNREACHABLE_RETURN(Qnil);
1273 static VALUE enum_take(VALUE obj, VALUE n);
1276 * call-seq:
1277 * first -> element or nil
1278 * first(n) -> array
1280 * Returns the first element or elements.
1282 * With no argument, returns the first element, or +nil+ if there is none:
1284 * (1..4).first # => 1
1285 * %w[a b c].first # => "a"
1286 * {foo: 1, bar: 1, baz: 2}.first # => [:foo, 1]
1287 * [].first # => nil
1289 * With integer argument +n+, returns an array
1290 * containing the first +n+ elements that exist:
1292 * (1..4).first(2) # => [1, 2]
1293 * %w[a b c d].first(3) # => ["a", "b", "c"]
1294 * %w[a b c d].first(50) # => ["a", "b", "c", "d"]
1295 * {foo: 1, bar: 1, baz: 2}.first(2) # => [[:foo, 1], [:bar, 1]]
1296 * [].first(2) # => []
1300 static VALUE
1301 enum_first(int argc, VALUE *argv, VALUE obj)
1303 struct MEMO *memo;
1304 rb_check_arity(argc, 0, 1);
1305 if (argc > 0) {
1306 return enum_take(obj, argv[0]);
1308 else {
1309 memo = MEMO_NEW(Qnil, 0, 0);
1310 rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
1311 return memo->v1;
1316 * call-seq:
1317 * sort -> array
1318 * sort {|a, b| ... } -> array
1320 * Returns an array containing the sorted elements of +self+.
1321 * The ordering of equal elements is indeterminate and may be unstable.
1323 * With no block given, the sort compares
1324 * using the elements' own method <tt><=></tt>:
1326 * %w[b c a d].sort # => ["a", "b", "c", "d"]
1327 * {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]]
1329 * With a block given, comparisons in the block determine the ordering.
1330 * The block is called with two elements +a+ and +b+, and must return:
1332 * - A negative integer if <tt>a < b</tt>.
1333 * - Zero if <tt>a == b</tt>.
1334 * - A positive integer if <tt>a > b</tt>.
1336 * Examples:
1338 * a = %w[b c a d]
1339 * a.sort {|a, b| b <=> a } # => ["d", "c", "b", "a"]
1340 * h = {foo: 0, bar: 1, baz: 2}
1341 * h.sort {|a, b| b <=> a } # => [[:foo, 0], [:baz, 2], [:bar, 1]]
1343 * See also #sort_by. It implements a Schwartzian transform
1344 * which is useful when key computation or comparison is expensive.
1347 static VALUE
1348 enum_sort(VALUE obj)
1350 return rb_ary_sort_bang(enum_to_a(0, 0, obj));
1353 #define SORT_BY_BUFSIZE 16
1354 #define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix)
1355 struct sort_by_data {
1356 const VALUE ary;
1357 const VALUE buf;
1358 uint8_t n;
1359 uint8_t primitive_uniformed;
1362 static VALUE
1363 sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
1365 struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
1366 VALUE ary = data->ary;
1367 VALUE v;
1369 ENUM_WANT_SVALUE();
1371 v = enum_yield(argc, i);
1373 if (RBASIC(ary)->klass) {
1374 rb_raise(rb_eRuntimeError, "sort_by reentered");
1376 if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
1377 rb_raise(rb_eRuntimeError, "sort_by reentered");
1380 if (data->primitive_uniformed) {
1381 data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)),
1382 RB_FLOAT_TYPE_P(v),
1383 FIXNUM_P(v));
1385 RARRAY_ASET(data->buf, data->n*2, v);
1386 RARRAY_ASET(data->buf, data->n*2+1, i);
1387 data->n++;
1388 if (data->n == SORT_BY_BUFSIZE) {
1389 rb_ary_concat(ary, data->buf);
1390 data->n = 0;
1392 return Qnil;
1395 static int
1396 sort_by_cmp(const void *ap, const void *bp, void *data)
1398 VALUE a;
1399 VALUE b;
1400 VALUE ary = (VALUE)data;
1402 if (RBASIC(ary)->klass) {
1403 rb_raise(rb_eRuntimeError, "sort_by reentered");
1406 a = *(VALUE *)ap;
1407 b = *(VALUE *)bp;
1409 return OPTIMIZED_CMP(a, b);
1414 This is parts of uniform sort
1417 #define uless rb_uniform_is_less
1418 #define UNIFORM_SWAP(a,b)\
1419 do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0)
1421 struct rb_uniform_sort_data {
1422 VALUE v;
1423 VALUE i;
1426 static inline bool
1427 rb_uniform_is_less(VALUE a, VALUE b)
1430 if (FIXNUM_P(a) && FIXNUM_P(b)) {
1431 return (SIGNED_VALUE)a < (SIGNED_VALUE)b;
1433 else if (FIXNUM_P(a)) {
1434 RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
1435 return rb_float_cmp(b, a) > 0;
1437 else {
1438 RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
1439 return rb_float_cmp(a, b) < 0;
1443 static inline bool
1444 rb_uniform_is_larger(VALUE a, VALUE b)
1447 if (FIXNUM_P(a) && FIXNUM_P(b)) {
1448 return (SIGNED_VALUE)a > (SIGNED_VALUE)b;
1450 else if (FIXNUM_P(a)) {
1451 RUBY_ASSERT(RB_FLOAT_TYPE_P(b));
1452 return rb_float_cmp(b, a) < 0;
1454 else {
1455 RUBY_ASSERT(RB_FLOAT_TYPE_P(a));
1456 return rb_float_cmp(a, b) > 0;
1460 #define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c))
1462 static void
1463 rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin,
1464 struct rb_uniform_sort_data* ptr_end)
1466 if ((ptr_end - ptr_begin) < 2) return;
1467 struct rb_uniform_sort_data tmp, *j, *k,
1468 *index = ptr_begin+1;
1469 for (; index < ptr_end; index++) {
1470 tmp = *index;
1471 j = k = index;
1472 if (uless(tmp.v, ptr_begin->v)) {
1473 while (ptr_begin < j) {
1474 *j = *(--k);
1475 j = k;
1478 else {
1479 while (uless(tmp.v, (--k)->v)) {
1480 *j = *k;
1481 j = k;
1484 *j = tmp;
1488 static inline void
1489 rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin,
1490 size_t offset, size_t len)
1492 size_t c;
1493 struct rb_uniform_sort_data tmp = ptr_begin[offset];
1494 while ((c = (offset<<1)+1) <= len) {
1495 if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) {
1496 c++;
1498 if (!uless(tmp.v, ptr_begin[c].v)) break;
1499 ptr_begin[offset] = ptr_begin[c];
1500 offset = c;
1502 ptr_begin[offset] = tmp;
1505 static void
1506 rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin,
1507 struct rb_uniform_sort_data* ptr_end)
1509 size_t n = ptr_end - ptr_begin;
1510 if (n < 2) return;
1512 for (size_t offset = n>>1; offset > 0;) {
1513 rb_uniform_heap_down_2(ptr_begin, --offset, n-1);
1515 for (size_t offset = n-1; offset > 0;) {
1516 UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]);
1517 rb_uniform_heap_down_2(ptr_begin, 0, --offset);
1522 static void
1523 rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin,
1524 struct rb_uniform_sort_data* ptr_end, size_t d)
1527 if (ptr_end - ptr_begin <= 16) {
1528 rb_uniform_insertionsort_2(ptr_begin, ptr_end);
1529 return;
1531 if (d == 0) {
1532 rb_uniform_heapsort_2(ptr_begin, ptr_end);
1533 return;
1536 VALUE x = med3_val(ptr_begin->v,
1537 ptr_begin[(ptr_end - ptr_begin)>>1].v,
1538 ptr_end[-1].v);
1539 struct rb_uniform_sort_data *i = ptr_begin;
1540 struct rb_uniform_sort_data *j = ptr_end-1;
1542 do {
1543 while (uless(i->v, x)) i++;
1544 while (uless(x, j->v)) j--;
1545 if (i <= j) {
1546 UNIFORM_SWAP(*i, *j);
1547 i++;
1548 j--;
1550 } while (i <= j);
1551 j++;
1552 if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1);
1553 if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1);
1557 * Direct primitive data compare sort. Implement with intro sort.
1558 * @param[in] ptr_begin The begin address of target rb_ary's raw pointer.
1559 * @param[in] ptr_end The end address of target rb_ary's raw pointer.
1561 static void
1562 rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin,
1563 struct rb_uniform_sort_data* ptr_end)
1565 size_t n = ptr_end - ptr_begin;
1566 size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1;
1567 bool sorted_flag = true;
1569 for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) {
1570 if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) {
1571 sorted_flag = false;
1572 break;
1576 if (sorted_flag) {
1577 return;
1579 rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1);
1582 #undef uless
1586 * call-seq:
1587 * sort_by {|element| ... } -> array
1588 * sort_by -> enumerator
1590 * With a block given, returns an array of elements of +self+,
1591 * sorted according to the value returned by the block for each element.
1592 * The ordering of equal elements is indeterminate and may be unstable.
1594 * Examples:
1596 * a = %w[xx xxx x xxxx]
1597 * a.sort_by {|s| s.size } # => ["x", "xx", "xxx", "xxxx"]
1598 * a.sort_by {|s| -s.size } # => ["xxxx", "xxx", "xx", "x"]
1599 * h = {foo: 2, bar: 1, baz: 0}
1600 * h.sort_by{|key, value| value } # => [[:baz, 0], [:bar, 1], [:foo, 2]]
1601 * h.sort_by{|key, value| key } # => [[:bar, 1], [:baz, 0], [:foo, 2]]
1603 * With no block given, returns an Enumerator.
1605 * The current implementation of #sort_by generates an array of
1606 * tuples containing the original collection element and the mapped
1607 * value. This makes #sort_by fairly expensive when the keysets are
1608 * simple.
1610 * require 'benchmark'
1612 * a = (1..100000).map { rand(100000) }
1614 * Benchmark.bm(10) do |b|
1615 * b.report("Sort") { a.sort }
1616 * b.report("Sort by") { a.sort_by { |a| a } }
1617 * end
1619 * <em>produces:</em>
1621 * user system total real
1622 * Sort 0.180000 0.000000 0.180000 ( 0.175469)
1623 * Sort by 1.980000 0.040000 2.020000 ( 2.013586)
1625 * However, consider the case where comparing the keys is a non-trivial
1626 * operation. The following code sorts some files on modification time
1627 * using the basic #sort method.
1629 * files = Dir["*"]
1630 * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
1631 * sorted #=> ["mon", "tues", "wed", "thurs"]
1633 * This sort is inefficient: it generates two new File
1634 * objects during every comparison. A slightly better technique is to
1635 * use the Kernel#test method to generate the modification
1636 * times directly.
1638 * files = Dir["*"]
1639 * sorted = files.sort { |a, b|
1640 * test(?M, a) <=> test(?M, b)
1642 * sorted #=> ["mon", "tues", "wed", "thurs"]
1644 * This still generates many unnecessary Time objects. A more
1645 * efficient technique is to cache the sort keys (modification times
1646 * in this case) before the sort. Perl users often call this approach
1647 * a Schwartzian transform, after Randal Schwartz. We construct a
1648 * temporary array, where each element is an array containing our
1649 * sort key along with the filename. We sort this array, and then
1650 * extract the filename from the result.
1652 * sorted = Dir["*"].collect { |f|
1653 * [test(?M, f), f]
1654 * }.sort.collect { |f| f[1] }
1655 * sorted #=> ["mon", "tues", "wed", "thurs"]
1657 * This is exactly what #sort_by does internally.
1659 * sorted = Dir["*"].sort_by { |f| test(?M, f) }
1660 * sorted #=> ["mon", "tues", "wed", "thurs"]
1662 * To produce the reverse of a specific order, the following can be used:
1664 * ary.sort_by { ... }.reverse!
1667 static VALUE
1668 enum_sort_by(VALUE obj)
1670 VALUE ary, buf;
1671 struct MEMO *memo;
1672 long i;
1673 struct sort_by_data *data;
1675 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1677 if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
1678 ary = rb_ary_new2(RARRAY_LEN(obj)*2);
1680 else {
1681 ary = rb_ary_new();
1683 RBASIC_CLEAR_CLASS(ary);
1684 buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2);
1685 rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
1686 memo = MEMO_NEW(0, 0, 0);
1687 data = (struct sort_by_data *)&memo->v1;
1688 RB_OBJ_WRITE(memo, &data->ary, ary);
1689 RB_OBJ_WRITE(memo, &data->buf, buf);
1690 data->n = 0;
1691 data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)),
1692 CMP_OPTIMIZABLE(FLOAT),
1693 CMP_OPTIMIZABLE(INTEGER));
1694 rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
1695 ary = data->ary;
1696 buf = data->buf;
1697 if (data->n) {
1698 rb_ary_resize(buf, data->n*2);
1699 rb_ary_concat(ary, buf);
1701 if (RARRAY_LEN(ary) > 2) {
1702 if (data->primitive_uniformed) {
1703 RARRAY_PTR_USE(ary, ptr,
1704 rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr,
1705 (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary))));
1707 else {
1708 RARRAY_PTR_USE(ary, ptr,
1709 ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
1710 sort_by_cmp, (void *)ary));
1713 if (RBASIC(ary)->klass) {
1714 rb_raise(rb_eRuntimeError, "sort_by reentered");
1716 for (i=1; i<RARRAY_LEN(ary); i+=2) {
1717 RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
1719 rb_ary_resize(ary, RARRAY_LEN(ary)/2);
1720 RBASIC_SET_CLASS_RAW(ary, rb_cArray);
1722 return ary;
1725 #define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
1727 #define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
1729 #define DEFINE_ENUMFUNCS(name) \
1730 static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
1732 static VALUE \
1733 name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1735 return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
1738 static VALUE \
1739 name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1741 return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \
1744 static VALUE \
1745 name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1747 ENUM_WANT_SVALUE(); \
1748 return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
1751 static VALUE \
1752 enum_##name##_func(VALUE result, struct MEMO *memo)
1754 #define WARN_UNUSED_BLOCK(argc) do { \
1755 if ((argc) > 0 && rb_block_given_p()) { \
1756 rb_warn("given block not used"); \
1758 } while (0)
1760 DEFINE_ENUMFUNCS(all)
1762 if (!RTEST(result)) {
1763 MEMO_V1_SET(memo, Qfalse);
1764 rb_iter_break();
1766 return Qnil;
1770 * call-seq:
1771 * all? -> true or false
1772 * all?(pattern) -> true or false
1773 * all? {|element| ... } -> true or false
1775 * Returns whether every element meets a given criterion.
1777 * If +self+ has no element, returns +true+ and argument or block
1778 * are not used.
1780 * With no argument and no block,
1781 * returns whether every element is truthy:
1783 * (1..4).all? # => true
1784 * %w[a b c d].all? # => true
1785 * [1, 2, nil].all? # => false
1786 * ['a','b', false].all? # => false
1787 * [].all? # => true
1789 * With argument +pattern+ and no block,
1790 * returns whether for each element +element+,
1791 * <tt>pattern === element</tt>:
1793 * (1..4).all?(Integer) # => true
1794 * (1..4).all?(Numeric) # => true
1795 * (1..4).all?(Float) # => false
1796 * %w[bar baz bat bam].all?(/ba/) # => true
1797 * %w[bar baz bat bam].all?(/bar/) # => false
1798 * %w[bar baz bat bam].all?('ba') # => false
1799 * {foo: 0, bar: 1, baz: 2}.all?(Array) # => true
1800 * {foo: 0, bar: 1, baz: 2}.all?(Hash) # => false
1801 * [].all?(Integer) # => true
1803 * With a block given, returns whether the block returns a truthy value
1804 * for every element:
1806 * (1..4).all? {|element| element < 5 } # => true
1807 * (1..4).all? {|element| element < 4 } # => false
1808 * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 3 } # => true
1809 * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 2 } # => false
1811 * Related: #any?, #none? #one?.
1815 static VALUE
1816 enum_all(int argc, VALUE *argv, VALUE obj)
1818 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
1819 WARN_UNUSED_BLOCK(argc);
1820 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
1821 return memo->v1;
1824 DEFINE_ENUMFUNCS(any)
1826 if (RTEST(result)) {
1827 MEMO_V1_SET(memo, Qtrue);
1828 rb_iter_break();
1830 return Qnil;
1834 * call-seq:
1835 * any? -> true or false
1836 * any?(pattern) -> true or false
1837 * any? {|element| ... } -> true or false
1839 * Returns whether any element meets a given criterion.
1841 * If +self+ has no element, returns +false+ and argument or block
1842 * are not used.
1844 * With no argument and no block,
1845 * returns whether any element is truthy:
1847 * (1..4).any? # => true
1848 * %w[a b c d].any? # => true
1849 * [1, false, nil].any? # => true
1850 * [].any? # => false
1852 * With argument +pattern+ and no block,
1853 * returns whether for any element +element+,
1854 * <tt>pattern === element</tt>:
1856 * [nil, false, 0].any?(Integer) # => true
1857 * [nil, false, 0].any?(Numeric) # => true
1858 * [nil, false, 0].any?(Float) # => false
1859 * %w[bar baz bat bam].any?(/m/) # => true
1860 * %w[bar baz bat bam].any?(/foo/) # => false
1861 * %w[bar baz bat bam].any?('ba') # => false
1862 * {foo: 0, bar: 1, baz: 2}.any?(Array) # => true
1863 * {foo: 0, bar: 1, baz: 2}.any?(Hash) # => false
1864 * [].any?(Integer) # => false
1866 * With a block given, returns whether the block returns a truthy value
1867 * for any element:
1869 * (1..4).any? {|element| element < 2 } # => true
1870 * (1..4).any? {|element| element < 1 } # => false
1871 * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true
1872 * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false
1874 * Related: #all?, #none?, #one?.
1877 static VALUE
1878 enum_any(int argc, VALUE *argv, VALUE obj)
1880 struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
1881 WARN_UNUSED_BLOCK(argc);
1882 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
1883 return memo->v1;
1886 DEFINE_ENUMFUNCS(one)
1888 if (RTEST(result)) {
1889 if (UNDEF_P(memo->v1)) {
1890 MEMO_V1_SET(memo, Qtrue);
1892 else if (memo->v1 == Qtrue) {
1893 MEMO_V1_SET(memo, Qfalse);
1894 rb_iter_break();
1897 return Qnil;
1900 struct nmin_data {
1901 long n;
1902 long bufmax;
1903 long curlen;
1904 VALUE buf;
1905 VALUE limit;
1906 int (*cmpfunc)(const void *, const void *, void *);
1907 int rev: 1; /* max if 1 */
1908 int by: 1; /* min_by if 1 */
1911 static VALUE
1912 cmpint_reenter_check(struct nmin_data *data, VALUE val)
1914 if (RBASIC(data->buf)->klass) {
1915 rb_raise(rb_eRuntimeError, "%s%s reentered",
1916 data->rev ? "max" : "min",
1917 data->by ? "_by" : "");
1919 return val;
1922 static int
1923 nmin_cmp(const void *ap, const void *bp, void *_data)
1925 struct nmin_data *data = (struct nmin_data *)_data;
1926 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1927 #define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
1928 return OPTIMIZED_CMP(a, b);
1929 #undef rb_cmpint
1932 static int
1933 nmin_block_cmp(const void *ap, const void *bp, void *_data)
1935 struct nmin_data *data = (struct nmin_data *)_data;
1936 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1937 VALUE cmp = rb_yield_values(2, a, b);
1938 cmpint_reenter_check(data, cmp);
1939 return rb_cmpint(cmp, a, b);
1942 static void
1943 nmin_filter(struct nmin_data *data)
1945 long n;
1946 VALUE *beg;
1947 int eltsize;
1948 long numelts;
1950 long left, right;
1951 long store_index;
1953 long i, j;
1955 if (data->curlen <= data->n)
1956 return;
1958 n = data->n;
1959 beg = RARRAY_PTR(data->buf);
1960 eltsize = data->by ? 2 : 1;
1961 numelts = data->curlen;
1963 left = 0;
1964 right = numelts-1;
1966 #define GETPTR(i) (beg+(i)*eltsize)
1968 #define SWAP(i, j) do { \
1969 VALUE tmp[2]; \
1970 memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
1971 memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
1972 memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
1973 } while (0)
1975 while (1) {
1976 long pivot_index = left + (right-left)/2;
1977 long num_pivots = 1;
1979 SWAP(pivot_index, right);
1980 pivot_index = right;
1982 store_index = left;
1983 i = left;
1984 while (i <= right-num_pivots) {
1985 int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
1986 if (data->rev)
1987 c = -c;
1988 if (c == 0) {
1989 SWAP(i, right-num_pivots);
1990 num_pivots++;
1991 continue;
1993 if (c < 0) {
1994 SWAP(i, store_index);
1995 store_index++;
1997 i++;
1999 j = store_index;
2000 for (i = right; right-num_pivots < i; i--) {
2001 if (i <= j)
2002 break;
2003 SWAP(j, i);
2004 j++;
2007 if (store_index <= n && n <= store_index+num_pivots)
2008 break;
2010 if (n < store_index) {
2011 right = store_index-1;
2013 else {
2014 left = store_index+num_pivots;
2017 #undef GETPTR
2018 #undef SWAP
2020 data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */
2021 data->curlen = data->n;
2022 rb_ary_resize(data->buf, data->n * eltsize);
2025 static VALUE
2026 nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
2028 struct nmin_data *data = (struct nmin_data *)_data;
2029 VALUE cmpv;
2031 ENUM_WANT_SVALUE();
2033 if (data->by)
2034 cmpv = enum_yield(argc, i);
2035 else
2036 cmpv = i;
2038 if (!UNDEF_P(data->limit)) {
2039 int c = data->cmpfunc(&cmpv, &data->limit, data);
2040 if (data->rev)
2041 c = -c;
2042 if (c >= 0)
2043 return Qnil;
2046 if (data->by)
2047 rb_ary_push(data->buf, cmpv);
2048 rb_ary_push(data->buf, i);
2050 data->curlen++;
2052 if (data->curlen == data->bufmax) {
2053 nmin_filter(data);
2056 return Qnil;
2059 VALUE
2060 rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
2062 VALUE result;
2063 struct nmin_data data;
2065 data.n = NUM2LONG(num);
2066 if (data.n < 0)
2067 rb_raise(rb_eArgError, "negative size (%ld)", data.n);
2068 if (data.n == 0)
2069 return rb_ary_new2(0);
2070 if (LONG_MAX/4/(by ? 2 : 1) < data.n)
2071 rb_raise(rb_eArgError, "too big size");
2072 data.bufmax = data.n * 4;
2073 data.curlen = 0;
2074 data.buf = rb_ary_hidden_new(data.bufmax * (by ? 2 : 1));
2075 data.limit = Qundef;
2076 data.cmpfunc = by ? nmin_cmp :
2077 rb_block_given_p() ? nmin_block_cmp :
2078 nmin_cmp;
2079 data.rev = rev;
2080 data.by = by;
2081 if (ary) {
2082 long i;
2083 for (i = 0; i < RARRAY_LEN(obj); i++) {
2084 VALUE args[1];
2085 args[0] = RARRAY_AREF(obj, i);
2086 nmin_i(obj, (VALUE)&data, 1, args, Qundef);
2089 else {
2090 rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
2092 nmin_filter(&data);
2093 result = data.buf;
2094 if (by) {
2095 long i;
2096 RARRAY_PTR_USE(result, ptr, {
2097 ruby_qsort(ptr,
2098 RARRAY_LEN(result)/2,
2099 sizeof(VALUE)*2,
2100 data.cmpfunc, (void *)&data);
2101 for (i=1; i<RARRAY_LEN(result); i+=2) {
2102 ptr[i/2] = ptr[i];
2105 rb_ary_resize(result, RARRAY_LEN(result)/2);
2107 else {
2108 RARRAY_PTR_USE(result, ptr, {
2109 ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE),
2110 data.cmpfunc, (void *)&data);
2113 if (rev) {
2114 rb_ary_reverse(result);
2116 RBASIC_SET_CLASS(result, rb_cArray);
2117 return result;
2122 * call-seq:
2123 * one? -> true or false
2124 * one?(pattern) -> true or false
2125 * one? {|element| ... } -> true or false
2127 * Returns whether exactly one element meets a given criterion.
2129 * With no argument and no block,
2130 * returns whether exactly one element is truthy:
2132 * (1..1).one? # => true
2133 * [1, nil, false].one? # => true
2134 * (1..4).one? # => false
2135 * {foo: 0}.one? # => true
2136 * {foo: 0, bar: 1}.one? # => false
2137 * [].one? # => false
2139 * With argument +pattern+ and no block,
2140 * returns whether for exactly one element +element+,
2141 * <tt>pattern === element</tt>:
2143 * [nil, false, 0].one?(Integer) # => true
2144 * [nil, false, 0].one?(Numeric) # => true
2145 * [nil, false, 0].one?(Float) # => false
2146 * %w[bar baz bat bam].one?(/m/) # => true
2147 * %w[bar baz bat bam].one?(/foo/) # => false
2148 * %w[bar baz bat bam].one?('ba') # => false
2149 * {foo: 0, bar: 1, baz: 2}.one?(Array) # => false
2150 * {foo: 0}.one?(Array) # => true
2151 * [].one?(Integer) # => false
2153 * With a block given, returns whether the block returns a truthy value
2154 * for exactly one element:
2156 * (1..4).one? {|element| element < 2 } # => true
2157 * (1..4).one? {|element| element < 1 } # => false
2158 * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 1 } # => true
2159 * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 2 } # => false
2161 * Related: #none?, #all?, #any?.
2164 static VALUE
2165 enum_one(int argc, VALUE *argv, VALUE obj)
2167 struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
2168 VALUE result;
2170 WARN_UNUSED_BLOCK(argc);
2171 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
2172 result = memo->v1;
2173 if (UNDEF_P(result)) return Qfalse;
2174 return result;
2177 DEFINE_ENUMFUNCS(none)
2179 if (RTEST(result)) {
2180 MEMO_V1_SET(memo, Qfalse);
2181 rb_iter_break();
2183 return Qnil;
2187 * call-seq:
2188 * none? -> true or false
2189 * none?(pattern) -> true or false
2190 * none? {|element| ... } -> true or false
2192 * Returns whether no element meets a given criterion.
2194 * With no argument and no block,
2195 * returns whether no element is truthy:
2197 * (1..4).none? # => false
2198 * [nil, false].none? # => true
2199 * {foo: 0}.none? # => false
2200 * {foo: 0, bar: 1}.none? # => false
2201 * [].none? # => true
2203 * With argument +pattern+ and no block,
2204 * returns whether for no element +element+,
2205 * <tt>pattern === element</tt>:
2207 * [nil, false, 1.1].none?(Integer) # => true
2208 * %w[bar baz bat bam].none?(/m/) # => false
2209 * %w[bar baz bat bam].none?(/foo/) # => true
2210 * %w[bar baz bat bam].none?('ba') # => true
2211 * {foo: 0, bar: 1, baz: 2}.none?(Hash) # => true
2212 * {foo: 0}.none?(Array) # => false
2213 * [].none?(Integer) # => true
2215 * With a block given, returns whether the block returns a truthy value
2216 * for no element:
2218 * (1..4).none? {|element| element < 1 } # => true
2219 * (1..4).none? {|element| element < 2 } # => false
2220 * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 0 } # => true
2221 * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 1 } # => false
2223 * Related: #one?, #all?, #any?.
2226 static VALUE
2227 enum_none(int argc, VALUE *argv, VALUE obj)
2229 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
2231 WARN_UNUSED_BLOCK(argc);
2232 rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
2233 return memo->v1;
2236 struct min_t {
2237 VALUE min;
2240 static VALUE
2241 min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2243 struct min_t *memo = MEMO_FOR(struct min_t, args);
2245 ENUM_WANT_SVALUE();
2247 if (UNDEF_P(memo->min)) {
2248 memo->min = i;
2250 else {
2251 if (OPTIMIZED_CMP(i, memo->min) < 0) {
2252 memo->min = i;
2255 return Qnil;
2258 static VALUE
2259 min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2261 VALUE cmp;
2262 struct min_t *memo = MEMO_FOR(struct min_t, args);
2264 ENUM_WANT_SVALUE();
2266 if (UNDEF_P(memo->min)) {
2267 memo->min = i;
2269 else {
2270 cmp = rb_yield_values(2, i, memo->min);
2271 if (rb_cmpint(cmp, i, memo->min) < 0) {
2272 memo->min = i;
2275 return Qnil;
2280 * call-seq:
2281 * min -> element
2282 * min(n) -> array
2283 * min {|a, b| ... } -> element
2284 * min(n) {|a, b| ... } -> array
2286 * Returns the element with the minimum element according to a given criterion.
2287 * The ordering of equal elements is indeterminate and may be unstable.
2289 * With no argument and no block, returns the minimum element,
2290 * using the elements' own method <tt><=></tt> for comparison:
2292 * (1..4).min # => 1
2293 * (-4..-1).min # => -4
2294 * %w[d c b a].min # => "a"
2295 * {foo: 0, bar: 1, baz: 2}.min # => [:bar, 1]
2296 * [].min # => nil
2298 * With positive integer argument +n+ given, and no block,
2299 * returns an array containing the first +n+ minimum elements that exist:
2301 * (1..4).min(2) # => [1, 2]
2302 * (-4..-1).min(2) # => [-4, -3]
2303 * %w[d c b a].min(2) # => ["a", "b"]
2304 * {foo: 0, bar: 1, baz: 2}.min(2) # => [[:bar, 1], [:baz, 2]]
2305 * [].min(2) # => []
2307 * With a block given, the block determines the minimum elements.
2308 * The block is called with two elements +a+ and +b+, and must return:
2310 * - A negative integer if <tt>a < b</tt>.
2311 * - Zero if <tt>a == b</tt>.
2312 * - A positive integer if <tt>a > b</tt>.
2314 * With a block given and no argument,
2315 * returns the minimum element as determined by the block:
2317 * %w[xxx x xxxx xx].min {|a, b| a.size <=> b.size } # => "x"
2318 * h = {foo: 0, bar: 1, baz: 2}
2319 * h.min {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:foo, 0]
2320 * [].min {|a, b| a <=> b } # => nil
2322 * With a block given and positive integer argument +n+ given,
2323 * returns an array containing the first +n+ minimum elements that exist,
2324 * as determined by the block.
2326 * %w[xxx x xxxx xx].min(2) {|a, b| a.size <=> b.size } # => ["x", "xx"]
2327 * h = {foo: 0, bar: 1, baz: 2}
2328 * h.min(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
2329 * # => [[:foo, 0], [:bar, 1]]
2330 * [].min(2) {|a, b| a <=> b } # => []
2332 * Related: #min_by, #minmax, #max.
2336 static VALUE
2337 enum_min(int argc, VALUE *argv, VALUE obj)
2339 VALUE memo;
2340 struct min_t *m = NEW_MEMO_FOR(struct min_t, memo);
2341 VALUE result;
2342 VALUE num;
2344 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
2345 return rb_nmin_run(obj, num, 0, 0, 0);
2347 m->min = Qundef;
2348 if (rb_block_given_p()) {
2349 rb_block_call(obj, id_each, 0, 0, min_ii, memo);
2351 else {
2352 rb_block_call(obj, id_each, 0, 0, min_i, memo);
2354 result = m->min;
2355 if (UNDEF_P(result)) return Qnil;
2356 return result;
2359 struct max_t {
2360 VALUE max;
2363 static VALUE
2364 max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2366 struct max_t *memo = MEMO_FOR(struct max_t, args);
2368 ENUM_WANT_SVALUE();
2370 if (UNDEF_P(memo->max)) {
2371 memo->max = i;
2373 else {
2374 if (OPTIMIZED_CMP(i, memo->max) > 0) {
2375 memo->max = i;
2378 return Qnil;
2381 static VALUE
2382 max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2384 struct max_t *memo = MEMO_FOR(struct max_t, args);
2385 VALUE cmp;
2387 ENUM_WANT_SVALUE();
2389 if (UNDEF_P(memo->max)) {
2390 memo->max = i;
2392 else {
2393 cmp = rb_yield_values(2, i, memo->max);
2394 if (rb_cmpint(cmp, i, memo->max) > 0) {
2395 memo->max = i;
2398 return Qnil;
2402 * call-seq:
2403 * max -> element
2404 * max(n) -> array
2405 * max {|a, b| ... } -> element
2406 * max(n) {|a, b| ... } -> array
2408 * Returns the element with the maximum element according to a given criterion.
2409 * The ordering of equal elements is indeterminate and may be unstable.
2411 * With no argument and no block, returns the maximum element,
2412 * using the elements' own method <tt><=></tt> for comparison:
2414 * (1..4).max # => 4
2415 * (-4..-1).max # => -1
2416 * %w[d c b a].max # => "d"
2417 * {foo: 0, bar: 1, baz: 2}.max # => [:foo, 0]
2418 * [].max # => nil
2420 * With positive integer argument +n+ given, and no block,
2421 * returns an array containing the first +n+ maximum elements that exist:
2423 * (1..4).max(2) # => [4, 3]
2424 * (-4..-1).max(2) # => [-1, -2]
2425 * %w[d c b a].max(2) # => ["d", "c"]
2426 * {foo: 0, bar: 1, baz: 2}.max(2) # => [[:foo, 0], [:baz, 2]]
2427 * [].max(2) # => []
2429 * With a block given, the block determines the maximum elements.
2430 * The block is called with two elements +a+ and +b+, and must return:
2432 * - A negative integer if <tt>a < b</tt>.
2433 * - Zero if <tt>a == b</tt>.
2434 * - A positive integer if <tt>a > b</tt>.
2436 * With a block given and no argument,
2437 * returns the maximum element as determined by the block:
2439 * %w[xxx x xxxx xx].max {|a, b| a.size <=> b.size } # => "xxxx"
2440 * h = {foo: 0, bar: 1, baz: 2}
2441 * h.max {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:baz, 2]
2442 * [].max {|a, b| a <=> b } # => nil
2444 * With a block given and positive integer argument +n+ given,
2445 * returns an array containing the first +n+ maximum elements that exist,
2446 * as determined by the block.
2448 * %w[xxx x xxxx xx].max(2) {|a, b| a.size <=> b.size } # => ["xxxx", "xxx"]
2449 * h = {foo: 0, bar: 1, baz: 2}
2450 * h.max(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
2451 * # => [[:baz, 2], [:bar, 1]]
2452 * [].max(2) {|a, b| a <=> b } # => []
2454 * Related: #min, #minmax, #max_by.
2458 static VALUE
2459 enum_max(int argc, VALUE *argv, VALUE obj)
2461 VALUE memo;
2462 struct max_t *m = NEW_MEMO_FOR(struct max_t, memo);
2463 VALUE result;
2464 VALUE num;
2466 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
2467 return rb_nmin_run(obj, num, 0, 1, 0);
2469 m->max = Qundef;
2470 if (rb_block_given_p()) {
2471 rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
2473 else {
2474 rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
2476 result = m->max;
2477 if (UNDEF_P(result)) return Qnil;
2478 return result;
2481 struct minmax_t {
2482 VALUE min;
2483 VALUE max;
2484 VALUE last;
2487 static void
2488 minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
2490 int n;
2492 if (UNDEF_P(memo->min)) {
2493 memo->min = i;
2494 memo->max = j;
2496 else {
2497 n = OPTIMIZED_CMP(i, memo->min);
2498 if (n < 0) {
2499 memo->min = i;
2501 n = OPTIMIZED_CMP(j, memo->max);
2502 if (n > 0) {
2503 memo->max = j;
2508 static VALUE
2509 minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2511 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
2512 int n;
2513 VALUE j;
2515 ENUM_WANT_SVALUE();
2517 if (UNDEF_P(memo->last)) {
2518 memo->last = i;
2519 return Qnil;
2521 j = memo->last;
2522 memo->last = Qundef;
2524 n = OPTIMIZED_CMP(j, i);
2525 if (n == 0)
2526 i = j;
2527 else if (n < 0) {
2528 VALUE tmp;
2529 tmp = i;
2530 i = j;
2531 j = tmp;
2534 minmax_i_update(i, j, memo);
2536 return Qnil;
2539 static void
2540 minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
2542 int n;
2544 if (UNDEF_P(memo->min)) {
2545 memo->min = i;
2546 memo->max = j;
2548 else {
2549 n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
2550 if (n < 0) {
2551 memo->min = i;
2553 n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
2554 if (n > 0) {
2555 memo->max = j;
2560 static VALUE
2561 minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2563 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
2564 int n;
2565 VALUE j;
2567 ENUM_WANT_SVALUE();
2569 if (UNDEF_P(memo->last)) {
2570 memo->last = i;
2571 return Qnil;
2573 j = memo->last;
2574 memo->last = Qundef;
2576 n = rb_cmpint(rb_yield_values(2, j, i), j, i);
2577 if (n == 0)
2578 i = j;
2579 else if (n < 0) {
2580 VALUE tmp;
2581 tmp = i;
2582 i = j;
2583 j = tmp;
2586 minmax_ii_update(i, j, memo);
2588 return Qnil;
2592 * call-seq:
2593 * minmax -> [minimum, maximum]
2594 * minmax {|a, b| ... } -> [minimum, maximum]
2596 * Returns a 2-element array containing the minimum and maximum elements
2597 * according to a given criterion.
2598 * The ordering of equal elements is indeterminate and may be unstable.
2600 * With no argument and no block, returns the minimum and maximum elements,
2601 * using the elements' own method <tt><=></tt> for comparison:
2603 * (1..4).minmax # => [1, 4]
2604 * (-4..-1).minmax # => [-4, -1]
2605 * %w[d c b a].minmax # => ["a", "d"]
2606 * {foo: 0, bar: 1, baz: 2}.minmax # => [[:bar, 1], [:foo, 0]]
2607 * [].minmax # => [nil, nil]
2609 * With a block given, returns the minimum and maximum elements
2610 * as determined by the block:
2612 * %w[xxx x xxxx xx].minmax {|a, b| a.size <=> b.size } # => ["x", "xxxx"]
2613 * h = {foo: 0, bar: 1, baz: 2}
2614 * h.minmax {|pair1, pair2| pair1[1] <=> pair2[1] }
2615 * # => [[:foo, 0], [:baz, 2]]
2616 * [].minmax {|a, b| a <=> b } # => [nil, nil]
2618 * Related: #min, #max, #minmax_by.
2622 static VALUE
2623 enum_minmax(VALUE obj)
2625 VALUE memo;
2626 struct minmax_t *m = NEW_MEMO_FOR(struct minmax_t, memo);
2628 m->min = Qundef;
2629 m->last = Qundef;
2630 if (rb_block_given_p()) {
2631 rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
2632 if (!UNDEF_P(m->last))
2633 minmax_ii_update(m->last, m->last, m);
2635 else {
2636 rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
2637 if (!UNDEF_P(m->last))
2638 minmax_i_update(m->last, m->last, m);
2640 if (!UNDEF_P(m->min)) {
2641 return rb_assoc_new(m->min, m->max);
2643 return rb_assoc_new(Qnil, Qnil);
2646 static VALUE
2647 min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2649 struct MEMO *memo = MEMO_CAST(args);
2650 VALUE v;
2652 ENUM_WANT_SVALUE();
2654 v = enum_yield(argc, i);
2655 if (UNDEF_P(memo->v1)) {
2656 MEMO_V1_SET(memo, v);
2657 MEMO_V2_SET(memo, i);
2659 else if (OPTIMIZED_CMP(v, memo->v1) < 0) {
2660 MEMO_V1_SET(memo, v);
2661 MEMO_V2_SET(memo, i);
2663 return Qnil;
2667 * call-seq:
2668 * min_by {|element| ... } -> element
2669 * min_by(n) {|element| ... } -> array
2670 * min_by -> enumerator
2671 * min_by(n) -> enumerator
2673 * Returns the elements for which the block returns the minimum values.
2675 * With a block given and no argument,
2676 * returns the element for which the block returns the minimum value:
2678 * (1..4).min_by {|element| -element } # => 4
2679 * %w[a b c d].min_by {|element| -element.ord } # => "d"
2680 * {foo: 0, bar: 1, baz: 2}.min_by {|key, value| -value } # => [:baz, 2]
2681 * [].min_by {|element| -element } # => nil
2683 * With a block given and positive integer argument +n+ given,
2684 * returns an array containing the +n+ elements
2685 * for which the block returns minimum values:
2687 * (1..4).min_by(2) {|element| -element }
2688 * # => [4, 3]
2689 * %w[a b c d].min_by(2) {|element| -element.ord }
2690 * # => ["d", "c"]
2691 * {foo: 0, bar: 1, baz: 2}.min_by(2) {|key, value| -value }
2692 * # => [[:baz, 2], [:bar, 1]]
2693 * [].min_by(2) {|element| -element }
2694 * # => []
2696 * Returns an Enumerator if no block is given.
2698 * Related: #min, #minmax, #max_by.
2702 static VALUE
2703 enum_min_by(int argc, VALUE *argv, VALUE obj)
2705 struct MEMO *memo;
2706 VALUE num;
2708 rb_check_arity(argc, 0, 1);
2710 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2712 if (argc && !NIL_P(num = argv[0]))
2713 return rb_nmin_run(obj, num, 1, 0, 0);
2715 memo = MEMO_NEW(Qundef, Qnil, 0);
2716 rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
2717 return memo->v2;
2720 static VALUE
2721 max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2723 struct MEMO *memo = MEMO_CAST(args);
2724 VALUE v;
2726 ENUM_WANT_SVALUE();
2728 v = enum_yield(argc, i);
2729 if (UNDEF_P(memo->v1)) {
2730 MEMO_V1_SET(memo, v);
2731 MEMO_V2_SET(memo, i);
2733 else if (OPTIMIZED_CMP(v, memo->v1) > 0) {
2734 MEMO_V1_SET(memo, v);
2735 MEMO_V2_SET(memo, i);
2737 return Qnil;
2741 * call-seq:
2742 * max_by {|element| ... } -> element
2743 * max_by(n) {|element| ... } -> array
2744 * max_by -> enumerator
2745 * max_by(n) -> enumerator
2747 * Returns the elements for which the block returns the maximum values.
2749 * With a block given and no argument,
2750 * returns the element for which the block returns the maximum value:
2752 * (1..4).max_by {|element| -element } # => 1
2753 * %w[a b c d].max_by {|element| -element.ord } # => "a"
2754 * {foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0]
2755 * [].max_by {|element| -element } # => nil
2757 * With a block given and positive integer argument +n+ given,
2758 * returns an array containing the +n+ elements
2759 * for which the block returns maximum values:
2761 * (1..4).max_by(2) {|element| -element }
2762 * # => [1, 2]
2763 * %w[a b c d].max_by(2) {|element| -element.ord }
2764 * # => ["a", "b"]
2765 * {foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value }
2766 * # => [[:foo, 0], [:bar, 1]]
2767 * [].max_by(2) {|element| -element }
2768 * # => []
2770 * Returns an Enumerator if no block is given.
2772 * Related: #max, #minmax, #min_by.
2776 static VALUE
2777 enum_max_by(int argc, VALUE *argv, VALUE obj)
2779 struct MEMO *memo;
2780 VALUE num;
2782 rb_check_arity(argc, 0, 1);
2784 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2786 if (argc && !NIL_P(num = argv[0]))
2787 return rb_nmin_run(obj, num, 1, 1, 0);
2789 memo = MEMO_NEW(Qundef, Qnil, 0);
2790 rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
2791 return memo->v2;
2794 struct minmax_by_t {
2795 VALUE min_bv;
2796 VALUE max_bv;
2797 VALUE min;
2798 VALUE max;
2799 VALUE last_bv;
2800 VALUE last;
2803 static void
2804 minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
2806 if (UNDEF_P(memo->min_bv)) {
2807 memo->min_bv = v1;
2808 memo->max_bv = v2;
2809 memo->min = i1;
2810 memo->max = i2;
2812 else {
2813 if (OPTIMIZED_CMP(v1, memo->min_bv) < 0) {
2814 memo->min_bv = v1;
2815 memo->min = i1;
2817 if (OPTIMIZED_CMP(v2, memo->max_bv) > 0) {
2818 memo->max_bv = v2;
2819 memo->max = i2;
2824 static VALUE
2825 minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2827 struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
2828 VALUE vi, vj, j;
2829 int n;
2831 ENUM_WANT_SVALUE();
2833 vi = enum_yield(argc, i);
2835 if (UNDEF_P(memo->last_bv)) {
2836 memo->last_bv = vi;
2837 memo->last = i;
2838 return Qnil;
2840 vj = memo->last_bv;
2841 j = memo->last;
2842 memo->last_bv = Qundef;
2844 n = OPTIMIZED_CMP(vj, vi);
2845 if (n == 0) {
2846 i = j;
2847 vi = vj;
2849 else if (n < 0) {
2850 VALUE tmp;
2851 tmp = i;
2852 i = j;
2853 j = tmp;
2854 tmp = vi;
2855 vi = vj;
2856 vj = tmp;
2859 minmax_by_i_update(vi, vj, i, j, memo);
2861 return Qnil;
2865 * call-seq:
2866 * minmax_by {|element| ... } -> [minimum, maximum]
2867 * minmax_by -> enumerator
2869 * Returns a 2-element array containing the elements
2870 * for which the block returns minimum and maximum values:
2872 * (1..4).minmax_by {|element| -element }
2873 * # => [4, 1]
2874 * %w[a b c d].minmax_by {|element| -element.ord }
2875 * # => ["d", "a"]
2876 * {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value }
2877 * # => [[:baz, 2], [:foo, 0]]
2878 * [].minmax_by {|element| -element }
2879 * # => [nil, nil]
2881 * Returns an Enumerator if no block is given.
2883 * Related: #max_by, #minmax, #min_by.
2887 static VALUE
2888 enum_minmax_by(VALUE obj)
2890 VALUE memo;
2891 struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
2893 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
2895 m->min_bv = Qundef;
2896 m->max_bv = Qundef;
2897 m->min = Qnil;
2898 m->max = Qnil;
2899 m->last_bv = Qundef;
2900 m->last = Qundef;
2901 rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
2902 if (!UNDEF_P(m->last_bv))
2903 minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
2904 m = MEMO_FOR(struct minmax_by_t, memo);
2905 return rb_assoc_new(m->min, m->max);
2908 static VALUE
2909 member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
2911 struct MEMO *memo = MEMO_CAST(args);
2913 if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
2914 MEMO_V2_SET(memo, Qtrue);
2915 rb_iter_break();
2917 return Qnil;
2921 * call-seq:
2922 * include?(object) -> true or false
2924 * Returns whether for any element <tt>object == element</tt>:
2926 * (1..4).include?(2) # => true
2927 * (1..4).include?(5) # => false
2928 * (1..4).include?('2') # => false
2929 * %w[a b c d].include?('b') # => true
2930 * %w[a b c d].include?('2') # => false
2931 * {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true
2932 * {foo: 0, bar: 1, baz: 2}.include?('foo') # => false
2933 * {foo: 0, bar: 1, baz: 2}.include?(0) # => false
2937 static VALUE
2938 enum_member(VALUE obj, VALUE val)
2940 struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
2942 rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
2943 return memo->v2;
2946 static VALUE
2947 each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
2949 struct MEMO *m = MEMO_CAST(memo);
2950 VALUE n = imemo_count_value(m);
2952 imemo_count_up(m);
2953 return rb_yield_values(2, rb_enum_values_pack(argc, argv), n);
2957 * call-seq:
2958 * each_with_index(*args) {|element, i| ..... } -> self
2959 * each_with_index(*args) -> enumerator
2961 * With a block given, calls the block with each element and its index;
2962 * returns +self+:
2964 * h = {}
2965 * (1..4).each_with_index {|element, i| h[element] = i } # => 1..4
2966 * h # => {1=>0, 2=>1, 3=>2, 4=>3}
2968 * h = {}
2969 * %w[a b c d].each_with_index {|element, i| h[element] = i }
2970 * # => ["a", "b", "c", "d"]
2971 * h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3}
2973 * a = []
2974 * h = {foo: 0, bar: 1, baz: 2}
2975 * h.each_with_index {|element, i| a.push([i, element]) }
2976 * # => {:foo=>0, :bar=>1, :baz=>2}
2977 * a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
2979 * With no block given, returns an Enumerator.
2983 static VALUE
2984 enum_each_with_index(int argc, VALUE *argv, VALUE obj)
2986 struct MEMO *memo;
2988 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2990 memo = MEMO_NEW(0, 0, 0);
2991 rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
2992 return obj;
2997 * call-seq:
2998 * reverse_each(*args) {|element| ... } -> self
2999 * reverse_each(*args) -> enumerator
3001 * With a block given, calls the block with each element,
3002 * but in reverse order; returns +self+:
3004 * a = []
3005 * (1..4).reverse_each {|element| a.push(-element) } # => 1..4
3006 * a # => [-4, -3, -2, -1]
3008 * a = []
3009 * %w[a b c d].reverse_each {|element| a.push(element) }
3010 * # => ["a", "b", "c", "d"]
3011 * a # => ["d", "c", "b", "a"]
3013 * a = []
3014 * h.reverse_each {|element| a.push(element) }
3015 * # => {:foo=>0, :bar=>1, :baz=>2}
3016 * a # => [[:baz, 2], [:bar, 1], [:foo, 0]]
3018 * With no block given, returns an Enumerator.
3022 static VALUE
3023 enum_reverse_each(int argc, VALUE *argv, VALUE obj)
3025 VALUE ary;
3026 long len;
3028 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
3030 ary = enum_to_a(argc, argv, obj);
3032 len = RARRAY_LEN(ary);
3033 while (len--) {
3034 long nlen;
3035 rb_yield(RARRAY_AREF(ary, len));
3036 nlen = RARRAY_LEN(ary);
3037 if (nlen < len) {
3038 len = nlen;
3042 return obj;
3046 static VALUE
3047 each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
3049 ENUM_WANT_SVALUE();
3050 enum_yield(argc, i);
3051 return Qnil;
3055 * call-seq:
3056 * each_entry(*args) {|element| ... } -> self
3057 * each_entry(*args) -> enumerator
3059 * Calls the given block with each element,
3060 * converting multiple values from yield to an array; returns +self+:
3062 * a = []
3063 * (1..4).each_entry {|element| a.push(element) } # => 1..4
3064 * a # => [1, 2, 3, 4]
3066 * a = []
3067 * h = {foo: 0, bar: 1, baz:2}
3068 * h.each_entry {|element| a.push(element) }
3069 * # => {:foo=>0, :bar=>1, :baz=>2}
3070 * a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
3072 * class Foo
3073 * include Enumerable
3074 * def each
3075 * yield 1
3076 * yield 1, 2
3077 * yield
3078 * end
3079 * end
3080 * Foo.new.each_entry {|yielded| p yielded }
3082 * Output:
3085 * [1, 2]
3086 * nil
3088 * With no block given, returns an Enumerator.
3092 static VALUE
3093 enum_each_entry(int argc, VALUE *argv, VALUE obj)
3095 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
3096 rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
3097 return obj;
3100 static VALUE
3101 add_int(VALUE x, long n)
3103 const VALUE y = LONG2NUM(n);
3104 if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
3105 return rb_funcallv(x, '+', 1, &y);
3108 static VALUE
3109 div_int(VALUE x, long n)
3111 const VALUE y = LONG2NUM(n);
3112 if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
3113 return rb_funcallv(x, id_div, 1, &y);
3116 #define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
3118 static VALUE
3119 each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
3121 struct MEMO *memo = MEMO_CAST(m);
3122 VALUE ary = memo->v1;
3123 VALUE v = Qnil;
3124 long size = memo->u3.cnt;
3125 ENUM_WANT_SVALUE();
3127 rb_ary_push(ary, i);
3129 if (RARRAY_LEN(ary) == size) {
3130 v = rb_yield(ary);
3132 if (memo->v2) {
3133 MEMO_V1_SET(memo, rb_ary_new2(size));
3135 else {
3136 rb_ary_clear(ary);
3140 return v;
3143 static VALUE
3144 enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
3146 VALUE n, size;
3147 long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
3148 ID infinite_p;
3149 CONST_ID(infinite_p, "infinite?");
3150 if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
3152 size = enum_size(obj, 0, 0);
3153 if (NIL_P(size)) return Qnil;
3154 if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) {
3155 return size;
3158 n = add_int(size, slice_size-1);
3159 return div_int(n, slice_size);
3163 * call-seq:
3164 * each_slice(n) { ... } -> self
3165 * each_slice(n) -> enumerator
3167 * Calls the block with each successive disjoint +n+-tuple of elements;
3168 * returns +self+:
3170 * a = []
3171 * (1..10).each_slice(3) {|tuple| a.push(tuple) }
3172 * a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
3174 * a = []
3175 * h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4}
3176 * h.each_slice(2) {|tuple| a.push(tuple) }
3177 * a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]
3179 * With no block given, returns an Enumerator.
3182 static VALUE
3183 enum_each_slice(VALUE obj, VALUE n)
3185 long size = NUM2LONG(n);
3186 VALUE ary;
3187 struct MEMO *memo;
3188 int arity;
3190 if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
3191 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
3192 size = limit_by_enum_size(obj, size);
3193 ary = rb_ary_new2(size);
3194 arity = rb_block_arity();
3195 memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
3196 rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
3197 ary = memo->v1;
3198 if (RARRAY_LEN(ary) > 0) rb_yield(ary);
3200 return obj;
3203 static VALUE
3204 each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3206 struct MEMO *memo = MEMO_CAST(args);
3207 VALUE ary = memo->v1;
3208 VALUE v = Qnil;
3209 long size = memo->u3.cnt;
3210 ENUM_WANT_SVALUE();
3212 if (RARRAY_LEN(ary) == size) {
3213 rb_ary_shift(ary);
3215 rb_ary_push(ary, i);
3216 if (RARRAY_LEN(ary) == size) {
3217 if (memo->v2) {
3218 ary = rb_ary_dup(ary);
3220 v = rb_yield(ary);
3222 return v;
3225 static VALUE
3226 enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
3228 const VALUE zero = LONG2FIX(0);
3229 VALUE n, size;
3230 long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
3231 if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
3233 size = enum_size(obj, 0, 0);
3234 if (NIL_P(size)) return Qnil;
3236 n = add_int(size, 1 - cons_size);
3237 return (OPTIMIZED_CMP(n, zero) == -1) ? zero : n;
3241 * call-seq:
3242 * each_cons(n) { ... } -> self
3243 * each_cons(n) -> enumerator
3245 * Calls the block with each successive overlapped +n+-tuple of elements;
3246 * returns +self+:
3248 * a = []
3249 * (1..5).each_cons(3) {|element| a.push(element) }
3250 * a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
3252 * a = []
3253 * h = {foo: 0, bar: 1, baz: 2, bam: 3}
3254 * h.each_cons(2) {|element| a.push(element) }
3255 * a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]]
3257 * With no block given, returns an Enumerator.
3260 static VALUE
3261 enum_each_cons(VALUE obj, VALUE n)
3263 long size = NUM2LONG(n);
3264 struct MEMO *memo;
3265 int arity;
3267 if (size <= 0) rb_raise(rb_eArgError, "invalid size");
3268 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
3269 arity = rb_block_arity();
3270 if (enum_size_over_p(obj, size)) return obj;
3271 memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
3272 rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
3274 return obj;
3277 static VALUE
3278 each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
3280 ENUM_WANT_SVALUE();
3281 return rb_yield_values(2, i, memo);
3285 * call-seq:
3286 * each_with_object(object) { |(*args), memo_object| ... } -> object
3287 * each_with_object(object) -> enumerator
3289 * Calls the block once for each element, passing both the element
3290 * and the given object:
3292 * (1..4).each_with_object([]) {|i, a| a.push(i**2) }
3293 * # => [1, 4, 9, 16]
3295 * {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k }
3296 * # => {0=>:foo, 1=>:bar, 2=>:baz}
3298 * With no block given, returns an Enumerator.
3301 static VALUE
3302 enum_each_with_object(VALUE obj, VALUE memo)
3304 RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
3306 rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
3308 return memo;
3311 static VALUE
3312 zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
3314 struct MEMO *memo = (struct MEMO *)memoval;
3315 VALUE result = memo->v1;
3316 VALUE args = memo->v2;
3317 long n = memo->u3.cnt++;
3318 VALUE tmp;
3319 int i;
3321 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
3322 rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
3323 for (i=0; i<RARRAY_LEN(args); i++) {
3324 VALUE e = RARRAY_AREF(args, i);
3326 if (RARRAY_LEN(e) <= n) {
3327 rb_ary_push(tmp, Qnil);
3329 else {
3330 rb_ary_push(tmp, RARRAY_AREF(e, n));
3333 if (NIL_P(result)) {
3334 enum_yield_array(tmp);
3336 else {
3337 rb_ary_push(result, tmp);
3340 RB_GC_GUARD(args);
3342 return Qnil;
3345 static VALUE
3346 call_next(VALUE w)
3348 VALUE *v = (VALUE *)w;
3349 return v[0] = rb_funcallv(v[1], id_next, 0, 0);
3352 static VALUE
3353 call_stop(VALUE w, VALUE _)
3355 VALUE *v = (VALUE *)w;
3356 return v[0] = Qundef;
3359 static VALUE
3360 zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
3362 struct MEMO *memo = (struct MEMO *)memoval;
3363 VALUE result = memo->v1;
3364 VALUE args = memo->v2;
3365 VALUE tmp;
3366 int i;
3368 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
3369 rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
3370 for (i=0; i<RARRAY_LEN(args); i++) {
3371 if (NIL_P(RARRAY_AREF(args, i))) {
3372 rb_ary_push(tmp, Qnil);
3374 else {
3375 VALUE v[2];
3377 v[1] = RARRAY_AREF(args, i);
3378 rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
3379 if (UNDEF_P(v[0])) {
3380 RARRAY_ASET(args, i, Qnil);
3381 v[0] = Qnil;
3383 rb_ary_push(tmp, v[0]);
3386 if (NIL_P(result)) {
3387 enum_yield_array(tmp);
3389 else {
3390 rb_ary_push(result, tmp);
3393 RB_GC_GUARD(args);
3395 return Qnil;
3399 * call-seq:
3400 * zip(*other_enums) -> array
3401 * zip(*other_enums) {|array| ... } -> nil
3403 * With no block given, returns a new array +new_array+ of size self.size
3404 * whose elements are arrays.
3405 * Each nested array <tt>new_array[n]</tt>
3406 * is of size <tt>other_enums.size+1</tt>, and contains:
3408 * - The +n+-th element of self.
3409 * - The +n+-th element of each of the +other_enums+.
3411 * If all +other_enums+ and self are the same size,
3412 * all elements are included in the result, and there is no +nil+-filling:
3414 * a = [:a0, :a1, :a2, :a3]
3415 * b = [:b0, :b1, :b2, :b3]
3416 * c = [:c0, :c1, :c2, :c3]
3417 * d = a.zip(b, c)
3418 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
3420 * f = {foo: 0, bar: 1, baz: 2}
3421 * g = {goo: 3, gar: 4, gaz: 5}
3422 * h = {hoo: 6, har: 7, haz: 8}
3423 * d = f.zip(g, h)
3424 * d # => [
3425 * # [[:foo, 0], [:goo, 3], [:hoo, 6]],
3426 * # [[:bar, 1], [:gar, 4], [:har, 7]],
3427 * # [[:baz, 2], [:gaz, 5], [:haz, 8]]
3428 * # ]
3430 * If any enumerable in other_enums is smaller than self,
3431 * fills to <tt>self.size</tt> with +nil+:
3433 * a = [:a0, :a1, :a2, :a3]
3434 * b = [:b0, :b1, :b2]
3435 * c = [:c0, :c1]
3436 * d = a.zip(b, c)
3437 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
3439 * If any enumerable in other_enums is larger than self,
3440 * its trailing elements are ignored:
3442 * a = [:a0, :a1, :a2, :a3]
3443 * b = [:b0, :b1, :b2, :b3, :b4]
3444 * c = [:c0, :c1, :c2, :c3, :c4, :c5]
3445 * d = a.zip(b, c)
3446 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
3448 * When a block is given, calls the block with each of the sub-arrays
3449 * (formed as above); returns nil:
3451 * a = [:a0, :a1, :a2, :a3]
3452 * b = [:b0, :b1, :b2, :b3]
3453 * c = [:c0, :c1, :c2, :c3]
3454 * a.zip(b, c) {|sub_array| p sub_array} # => nil
3456 * Output:
3458 * [:a0, :b0, :c0]
3459 * [:a1, :b1, :c1]
3460 * [:a2, :b2, :c2]
3461 * [:a3, :b3, :c3]
3465 static VALUE
3466 enum_zip(int argc, VALUE *argv, VALUE obj)
3468 int i;
3469 ID conv;
3470 struct MEMO *memo;
3471 VALUE result = Qnil;
3472 VALUE args = rb_ary_new4(argc, argv);
3473 int allary = TRUE;
3475 argv = RARRAY_PTR(args);
3476 for (i=0; i<argc; i++) {
3477 VALUE ary = rb_check_array_type(argv[i]);
3478 if (NIL_P(ary)) {
3479 allary = FALSE;
3480 break;
3482 argv[i] = ary;
3484 if (!allary) {
3485 static const VALUE sym_each = STATIC_ID2SYM(id_each);
3486 CONST_ID(conv, "to_enum");
3487 for (i=0; i<argc; i++) {
3488 if (!rb_respond_to(argv[i], id_each)) {
3489 rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
3490 rb_obj_class(argv[i]));
3492 argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
3495 if (!rb_block_given_p()) {
3496 result = rb_ary_new();
3499 /* TODO: use NODE_DOT2 as memo(v, v, -) */
3500 memo = MEMO_NEW(result, args, 0);
3501 rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
3503 return result;
3506 static VALUE
3507 take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3509 struct MEMO *memo = MEMO_CAST(args);
3510 rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
3511 if (--memo->u3.cnt == 0) rb_iter_break();
3512 return Qnil;
3516 * call-seq:
3517 * take(n) -> array
3519 * For non-negative integer +n+, returns the first +n+ elements:
3521 * r = (1..4)
3522 * r.take(2) # => [1, 2]
3523 * r.take(0) # => []
3525 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
3526 * h.take(2) # => [[:foo, 0], [:bar, 1]]
3530 static VALUE
3531 enum_take(VALUE obj, VALUE n)
3533 struct MEMO *memo;
3534 VALUE result;
3535 long len = NUM2LONG(n);
3537 if (len < 0) {
3538 rb_raise(rb_eArgError, "attempt to take negative size");
3541 if (len == 0) return rb_ary_new2(0);
3542 result = rb_ary_new2(len);
3543 memo = MEMO_NEW(result, 0, len);
3544 rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
3545 return result;
3549 static VALUE
3550 take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
3552 if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break();
3553 rb_ary_push(ary, rb_enum_values_pack(argc, argv));
3554 return Qnil;
3558 * call-seq:
3559 * take_while {|element| ... } -> array
3560 * take_while -> enumerator
3562 * Calls the block with successive elements as long as the block
3563 * returns a truthy value;
3564 * returns an array of all elements up to that point:
3567 * (1..4).take_while{|i| i < 3 } # => [1, 2]
3568 * h = {foo: 0, bar: 1, baz: 2}
3569 * h.take_while{|element| key, value = *element; value < 2 }
3570 * # => [[:foo, 0], [:bar, 1]]
3572 * With no block given, returns an Enumerator.
3576 static VALUE
3577 enum_take_while(VALUE obj)
3579 VALUE ary;
3581 RETURN_ENUMERATOR(obj, 0, 0);
3582 ary = rb_ary_new();
3583 rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
3584 return ary;
3587 static VALUE
3588 drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3590 struct MEMO *memo = MEMO_CAST(args);
3591 if (memo->u3.cnt == 0) {
3592 rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
3594 else {
3595 memo->u3.cnt--;
3597 return Qnil;
3601 * call-seq:
3602 * drop(n) -> array
3604 * For positive integer +n+, returns an array containing
3605 * all but the first +n+ elements:
3607 * r = (1..4)
3608 * r.drop(3) # => [4]
3609 * r.drop(2) # => [3, 4]
3610 * r.drop(1) # => [2, 3, 4]
3611 * r.drop(0) # => [1, 2, 3, 4]
3612 * r.drop(50) # => []
3614 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
3615 * h.drop(2) # => [[:baz, 2], [:bat, 3]]
3619 static VALUE
3620 enum_drop(VALUE obj, VALUE n)
3622 VALUE result;
3623 struct MEMO *memo;
3624 long len = NUM2LONG(n);
3626 if (len < 0) {
3627 rb_raise(rb_eArgError, "attempt to drop negative size");
3630 result = rb_ary_new();
3631 memo = MEMO_NEW(result, 0, len);
3632 rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
3633 return result;
3637 static VALUE
3638 drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3640 struct MEMO *memo = MEMO_CAST(args);
3641 ENUM_WANT_SVALUE();
3643 if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
3644 memo->u3.state = TRUE;
3646 if (memo->u3.state) {
3647 rb_ary_push(memo->v1, i);
3649 return Qnil;
3653 * call-seq:
3654 * drop_while {|element| ... } -> array
3655 * drop_while -> enumerator
3657 * Calls the block with successive elements as long as the block
3658 * returns a truthy value;
3659 * returns an array of all elements after that point:
3662 * (1..4).drop_while{|i| i < 3 } # => [3, 4]
3663 * h = {foo: 0, bar: 1, baz: 2}
3664 * a = h.drop_while{|element| key, value = *element; value < 2 }
3665 * a # => [[:baz, 2]]
3667 * With no block given, returns an Enumerator.
3671 static VALUE
3672 enum_drop_while(VALUE obj)
3674 VALUE result;
3675 struct MEMO *memo;
3677 RETURN_ENUMERATOR(obj, 0, 0);
3678 result = rb_ary_new();
3679 memo = MEMO_NEW(result, 0, FALSE);
3680 rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
3681 return result;
3684 static VALUE
3685 cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
3687 ENUM_WANT_SVALUE();
3689 rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv));
3690 enum_yield(argc, i);
3691 return Qnil;
3694 static VALUE
3695 enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
3697 long mul = 0;
3698 VALUE n = Qnil;
3699 VALUE size;
3701 if (args && (RARRAY_LEN(args) > 0)) {
3702 n = RARRAY_AREF(args, 0);
3703 if (!NIL_P(n)) mul = NUM2LONG(n);
3706 size = enum_size(self, args, 0);
3707 if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
3709 if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
3710 if (mul <= 0) return INT2FIX(0);
3711 n = LONG2FIX(mul);
3712 return rb_funcallv(size, '*', 1, &n);
3716 * call-seq:
3717 * cycle(n = nil) {|element| ...} -> nil
3718 * cycle(n = nil) -> enumerator
3720 * When called with positive integer argument +n+ and a block,
3721 * calls the block with each element, then does so again,
3722 * until it has done so +n+ times; returns +nil+:
3724 * a = []
3725 * (1..4).cycle(3) {|element| a.push(element) } # => nil
3726 * a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
3727 * a = []
3728 * ('a'..'d').cycle(2) {|element| a.push(element) }
3729 * a # => ["a", "b", "c", "d", "a", "b", "c", "d"]
3730 * a = []
3731 * {foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) }
3732 * a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]]
3734 * If count is zero or negative, does not call the block.
3736 * When called with a block and +n+ is +nil+, cycles forever.
3738 * When no block is given, returns an Enumerator.
3742 static VALUE
3743 enum_cycle(int argc, VALUE *argv, VALUE obj)
3745 VALUE ary;
3746 VALUE nv = Qnil;
3747 long n, i, len;
3749 rb_check_arity(argc, 0, 1);
3751 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
3752 if (!argc || NIL_P(nv = argv[0])) {
3753 n = -1;
3755 else {
3756 n = NUM2LONG(nv);
3757 if (n <= 0) return Qnil;
3759 ary = rb_ary_new();
3760 RBASIC_CLEAR_CLASS(ary);
3761 rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
3762 len = RARRAY_LEN(ary);
3763 if (len == 0) return Qnil;
3764 while (n < 0 || 0 < --n) {
3765 for (i=0; i<len; i++) {
3766 enum_yield_array(RARRAY_AREF(ary, i));
3769 return Qnil;
3772 struct chunk_arg {
3773 VALUE categorize;
3774 VALUE prev_value;
3775 VALUE prev_elts;
3776 VALUE yielder;
3779 static VALUE
3780 chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
3782 struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
3783 VALUE v, s;
3784 VALUE alone = ID2SYM(id__alone);
3785 VALUE separator = ID2SYM(id__separator);
3787 ENUM_WANT_SVALUE();
3789 v = rb_funcallv(argp->categorize, id_call, 1, &i);
3791 if (v == alone) {
3792 if (!NIL_P(argp->prev_value)) {
3793 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3794 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3795 argp->prev_value = argp->prev_elts = Qnil;
3797 v = rb_assoc_new(v, rb_ary_new3(1, i));
3798 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3800 else if (NIL_P(v) || v == separator) {
3801 if (!NIL_P(argp->prev_value)) {
3802 v = rb_assoc_new(argp->prev_value, argp->prev_elts);
3803 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3804 argp->prev_value = argp->prev_elts = Qnil;
3807 else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
3808 rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
3810 else {
3811 if (NIL_P(argp->prev_value)) {
3812 argp->prev_value = v;
3813 argp->prev_elts = rb_ary_new3(1, i);
3815 else {
3816 if (rb_equal(argp->prev_value, v)) {
3817 rb_ary_push(argp->prev_elts, i);
3819 else {
3820 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3821 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3822 argp->prev_value = v;
3823 argp->prev_elts = rb_ary_new3(1, i);
3827 return Qnil;
3830 static VALUE
3831 chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
3833 VALUE enumerable;
3834 VALUE arg;
3835 struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
3837 enumerable = rb_ivar_get(enumerator, id_chunk_enumerable);
3838 memo->categorize = rb_ivar_get(enumerator, id_chunk_categorize);
3839 memo->prev_value = Qnil;
3840 memo->prev_elts = Qnil;
3841 memo->yielder = yielder;
3843 rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
3844 memo = MEMO_FOR(struct chunk_arg, arg);
3845 if (!NIL_P(memo->prev_elts)) {
3846 arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
3847 rb_funcallv(memo->yielder, id_lshift, 1, &arg);
3849 return Qnil;
3853 * call-seq:
3854 * chunk {|array| ... } -> enumerator
3856 * Each element in the returned enumerator is a 2-element array consisting of:
3858 * - A value returned by the block.
3859 * - An array ("chunk") containing the element for which that value was returned,
3860 * and all following elements for which the block returned the same value:
3862 * So that:
3864 * - Each block return value that is different from its predecessor
3865 * begins a new chunk.
3866 * - Each block return value that is the same as its predecessor
3867 * continues the same chunk.
3869 * Example:
3871 * e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
3872 * # The enumerator elements.
3873 * e.next # => [0, [0, 1, 2]]
3874 * e.next # => [1, [3, 4, 5]]
3875 * e.next # => [2, [6, 7, 8]]
3876 * e.next # => [3, [9, 10]]
3878 * \Method +chunk+ is especially useful for an enumerable that is already sorted.
3879 * This example counts words for each initial letter in a large array of words:
3881 * # Get sorted words from a web page.
3882 * url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
3883 * words = URI::open(url).readlines
3884 * # Make chunks, one for each letter.
3885 * e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
3886 * # Display 'A' through 'F'.
3887 * e.each {|c, words| p [c, words.length]; break if c == 'F' }
3889 * Output:
3891 * ["A", 17096]
3892 * ["B", 11070]
3893 * ["C", 19901]
3894 * ["D", 10896]
3895 * ["E", 8736]
3896 * ["F", 6860]
3898 * You can use the special symbol <tt>:_alone</tt> to force an element
3899 * into its own separate chuck:
3901 * a = [0, 0, 1, 1]
3902 * e = a.chunk{|i| i.even? ? :_alone : true }
3903 * e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]
3905 * For example, you can put each line that contains a URL into its own chunk:
3907 * pattern = /http/
3908 * open(filename) { |f|
3909 * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
3910 * pp lines
3914 * You can use the special symbol <tt>:_separator</tt> or +nil+
3915 * to force an element to be ignored (not included in any chunk):
3917 * a = [0, 0, -1, 1, 1]
3918 * e = a.chunk{|i| i < 0 ? :_separator : true }
3919 * e.to_a # => [[true, [0, 0]], [true, [1, 1]]]
3921 * Note that the separator does end the chunk:
3923 * a = [0, 0, -1, 1, -1, 1]
3924 * e = a.chunk{|i| i < 0 ? :_separator : true }
3925 * e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]
3927 * For example, the sequence of hyphens in svn log can be eliminated as follows:
3929 * sep = "-"*72 + "\n"
3930 * IO.popen("svn log README") { |f|
3931 * f.chunk { |line|
3932 * line != sep || nil
3933 * }.each { |_, lines|
3934 * pp lines
3937 * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
3938 * # "\n",
3939 * # "* README, README.ja: Update the portability section.\n",
3940 * # "\n"]
3941 * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
3942 * # "\n",
3943 * # "* README, README.ja: Add a note about default C flags.\n",
3944 * # "\n"]
3945 * # ...
3947 * Paragraphs separated by empty lines can be parsed as follows:
3949 * File.foreach("README").chunk { |line|
3950 * /\A\s*\z/ !~ line || nil
3951 * }.each { |_, lines|
3952 * pp lines
3956 static VALUE
3957 enum_chunk(VALUE enumerable)
3959 VALUE enumerator;
3961 RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
3963 enumerator = rb_obj_alloc(rb_cEnumerator);
3964 rb_ivar_set(enumerator, id_chunk_enumerable, enumerable);
3965 rb_ivar_set(enumerator, id_chunk_categorize, rb_block_proc());
3966 rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
3967 return enumerator;
3971 struct slicebefore_arg {
3972 VALUE sep_pred;
3973 VALUE sep_pat;
3974 VALUE prev_elts;
3975 VALUE yielder;
3978 static VALUE
3979 slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
3981 struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
3982 VALUE header_p;
3984 ENUM_WANT_SVALUE();
3986 if (!NIL_P(argp->sep_pat))
3987 header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
3988 else
3989 header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
3990 if (RTEST(header_p)) {
3991 if (!NIL_P(argp->prev_elts))
3992 rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
3993 argp->prev_elts = rb_ary_new3(1, i);
3995 else {
3996 if (NIL_P(argp->prev_elts))
3997 argp->prev_elts = rb_ary_new3(1, i);
3998 else
3999 rb_ary_push(argp->prev_elts, i);
4002 return Qnil;
4005 static VALUE
4006 slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
4008 VALUE enumerable;
4009 VALUE arg;
4010 struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
4012 enumerable = rb_ivar_get(enumerator, id_slicebefore_enumerable);
4013 memo->sep_pred = rb_attr_get(enumerator, id_slicebefore_sep_pred);
4014 memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, id_slicebefore_sep_pat) : Qnil;
4015 memo->prev_elts = Qnil;
4016 memo->yielder = yielder;
4018 rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
4019 memo = MEMO_FOR(struct slicebefore_arg, arg);
4020 if (!NIL_P(memo->prev_elts))
4021 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4022 return Qnil;
4026 * call-seq:
4027 * slice_before(pattern) -> enumerator
4028 * slice_before {|elt| ... } -> enumerator
4030 * With argument +pattern+, returns an enumerator that uses the pattern
4031 * to partition elements into arrays ("slices").
4032 * An element begins a new slice if <tt>element === pattern</tt>
4033 * (or if it is the first element).
4035 * a = %w[foo bar fop for baz fob fog bam foy]
4036 * e = a.slice_before(/ba/) # => #<Enumerator: ...>
4037 * e.each {|array| p array }
4039 * Output:
4041 * ["foo"]
4042 * ["bar", "fop", "for"]
4043 * ["baz", "fob", "fog"]
4044 * ["bam", "foy"]
4046 * With a block, returns an enumerator that uses the block
4047 * to partition elements into arrays.
4048 * An element begins a new slice if its block return is a truthy value
4049 * (or if it is the first element):
4051 * e = (1..20).slice_before {|i| i % 4 == 2 } # => #<Enumerator: ...>
4052 * e.each {|array| p array }
4054 * Output:
4056 * [1]
4057 * [2, 3, 4, 5]
4058 * [6, 7, 8, 9]
4059 * [10, 11, 12, 13]
4060 * [14, 15, 16, 17]
4061 * [18, 19, 20]
4063 * Other methods of the Enumerator class and Enumerable module,
4064 * such as +to_a+, +map+, etc., are also usable.
4066 * For example, iteration over ChangeLog entries can be implemented as
4067 * follows:
4069 * # iterate over ChangeLog entries.
4070 * open("ChangeLog") { |f|
4071 * f.slice_before(/\A\S/).each { |e| pp e }
4074 * # same as above. block is used instead of pattern argument.
4075 * open("ChangeLog") { |f|
4076 * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
4079 * "svn proplist -R" produces multiline output for each file.
4080 * They can be chunked as follows:
4082 * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
4083 * f.lines.slice_before(/\AProp/).each { |lines| p lines }
4085 * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
4086 * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
4087 * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
4088 * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
4089 * # ...
4091 * If the block needs to maintain state over multiple elements,
4092 * local variables can be used.
4093 * For example, three or more consecutive increasing numbers can be squashed
4094 * as follows (see +chunk_while+ for a better way):
4096 * a = [0, 2, 3, 4, 6, 7, 9]
4097 * prev = a[0]
4098 * p a.slice_before { |e|
4099 * prev, prev2 = e, prev
4100 * prev2 + 1 != e
4101 * }.map { |es|
4102 * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
4103 * }.join(",")
4104 * #=> "0,2-4,6,7,9"
4106 * However local variables should be used carefully
4107 * if the result enumerator is enumerated twice or more.
4108 * The local variables should be initialized for each enumeration.
4109 * Enumerator.new can be used to do it.
4111 * # Word wrapping. This assumes all characters have same width.
4112 * def wordwrap(words, maxwidth)
4113 * Enumerator.new {|y|
4114 * # cols is initialized in Enumerator.new.
4115 * cols = 0
4116 * words.slice_before { |w|
4117 * cols += 1 if cols != 0
4118 * cols += w.length
4119 * if maxwidth < cols
4120 * cols = w.length
4121 * true
4122 * else
4123 * false
4124 * end
4125 * }.each {|ws| y.yield ws }
4127 * end
4128 * text = (1..20).to_a.join(" ")
4129 * enum = wordwrap(text.split(/\s+/), 10)
4130 * puts "-"*10
4131 * enum.each { |ws| puts ws.join(" ") } # first enumeration.
4132 * puts "-"*10
4133 * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
4134 * puts "-"*10
4135 * #=> ----------
4136 * # 1 2 3 4 5
4137 * # 6 7 8 9 10
4138 * # 11 12 13
4139 * # 14 15 16
4140 * # 17 18 19
4141 * # 20
4142 * # ----------
4143 * # 1 2 3 4 5
4144 * # 6 7 8 9 10
4145 * # 11 12 13
4146 * # 14 15 16
4147 * # 17 18 19
4148 * # 20
4149 * # ----------
4151 * mbox contains series of mails which start with Unix From line.
4152 * So each mail can be extracted by slice before Unix From line.
4154 * # parse mbox
4155 * open("mbox") { |f|
4156 * f.slice_before { |line|
4157 * line.start_with? "From "
4158 * }.each { |mail|
4159 * unix_from = mail.shift
4160 * i = mail.index("\n")
4161 * header = mail[0...i]
4162 * body = mail[(i+1)..-1]
4163 * body.pop if body.last == "\n"
4164 * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
4165 * p unix_from
4166 * pp fields
4167 * pp body
4171 * # split mails in mbox (slice before Unix From line after an empty line)
4172 * open("mbox") { |f|
4173 * emp = true
4174 * f.slice_before { |line|
4175 * prevemp = emp
4176 * emp = line == "\n"
4177 * prevemp && line.start_with?("From ")
4178 * }.each { |mail|
4179 * mail.pop if mail.last == "\n"
4180 * pp mail
4185 static VALUE
4186 enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
4188 VALUE enumerator;
4190 if (rb_block_given_p()) {
4191 if (argc != 0)
4192 rb_error_arity(argc, 0, 0);
4193 enumerator = rb_obj_alloc(rb_cEnumerator);
4194 rb_ivar_set(enumerator, id_slicebefore_sep_pred, rb_block_proc());
4196 else {
4197 VALUE sep_pat;
4198 rb_scan_args(argc, argv, "1", &sep_pat);
4199 enumerator = rb_obj_alloc(rb_cEnumerator);
4200 rb_ivar_set(enumerator, id_slicebefore_sep_pat, sep_pat);
4202 rb_ivar_set(enumerator, id_slicebefore_enumerable, enumerable);
4203 rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
4204 return enumerator;
4208 struct sliceafter_arg {
4209 VALUE pat;
4210 VALUE pred;
4211 VALUE prev_elts;
4212 VALUE yielder;
4215 static VALUE
4216 sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
4218 #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
4219 struct sliceafter_arg *memo;
4220 int split_p;
4221 UPDATE_MEMO;
4223 ENUM_WANT_SVALUE();
4225 if (NIL_P(memo->prev_elts)) {
4226 memo->prev_elts = rb_ary_new3(1, i);
4228 else {
4229 rb_ary_push(memo->prev_elts, i);
4232 if (NIL_P(memo->pred)) {
4233 split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
4234 UPDATE_MEMO;
4236 else {
4237 split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
4238 UPDATE_MEMO;
4241 if (split_p) {
4242 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4243 UPDATE_MEMO;
4244 memo->prev_elts = Qnil;
4247 return Qnil;
4248 #undef UPDATE_MEMO
4251 static VALUE
4252 sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
4254 VALUE enumerable;
4255 VALUE arg;
4256 struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
4258 enumerable = rb_ivar_get(enumerator, id_sliceafter_enum);
4259 memo->pat = rb_ivar_get(enumerator, id_sliceafter_pat);
4260 memo->pred = rb_attr_get(enumerator, id_sliceafter_pred);
4261 memo->prev_elts = Qnil;
4262 memo->yielder = yielder;
4264 rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
4265 memo = MEMO_FOR(struct sliceafter_arg, arg);
4266 if (!NIL_P(memo->prev_elts))
4267 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4268 return Qnil;
4272 * call-seq:
4273 * enum.slice_after(pattern) -> an_enumerator
4274 * enum.slice_after { |elt| bool } -> an_enumerator
4276 * Creates an enumerator for each chunked elements.
4277 * The ends of chunks are defined by _pattern_ and the block.
4279 * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
4280 * returns <code>true</code> for the element, the element is end of a
4281 * chunk.
4283 * The <code>===</code> and _block_ is called from the first element to the last
4284 * element of _enum_.
4286 * The result enumerator yields the chunked elements as an array.
4287 * So +each+ method can be called as follows:
4289 * enum.slice_after(pattern).each { |ary| ... }
4290 * enum.slice_after { |elt| bool }.each { |ary| ... }
4292 * Other methods of the Enumerator class and Enumerable module,
4293 * such as +map+, etc., are also usable.
4295 * For example, continuation lines (lines end with backslash) can be
4296 * concatenated as follows:
4298 * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
4299 * e = lines.slice_after(/(?<!\\)\n\z/)
4300 * p e.to_a
4301 * #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
4302 * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
4303 * #=>["foo\n", "barbaz\n", "\n", "qux\n"]
4307 static VALUE
4308 enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
4310 VALUE enumerator;
4311 VALUE pat = Qnil, pred = Qnil;
4313 if (rb_block_given_p()) {
4314 if (0 < argc)
4315 rb_raise(rb_eArgError, "both pattern and block are given");
4316 pred = rb_block_proc();
4318 else {
4319 rb_scan_args(argc, argv, "1", &pat);
4322 enumerator = rb_obj_alloc(rb_cEnumerator);
4323 rb_ivar_set(enumerator, id_sliceafter_enum, enumerable);
4324 rb_ivar_set(enumerator, id_sliceafter_pat, pat);
4325 rb_ivar_set(enumerator, id_sliceafter_pred, pred);
4327 rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
4328 return enumerator;
4331 struct slicewhen_arg {
4332 VALUE pred;
4333 VALUE prev_elt;
4334 VALUE prev_elts;
4335 VALUE yielder;
4336 int inverted; /* 0 for slice_when and 1 for chunk_while. */
4339 static VALUE
4340 slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
4342 #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
4343 struct slicewhen_arg *memo;
4344 int split_p;
4345 UPDATE_MEMO;
4347 ENUM_WANT_SVALUE();
4349 if (UNDEF_P(memo->prev_elt)) {
4350 /* The first element */
4351 memo->prev_elt = i;
4352 memo->prev_elts = rb_ary_new3(1, i);
4354 else {
4355 VALUE args[2];
4356 args[0] = memo->prev_elt;
4357 args[1] = i;
4358 split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
4359 UPDATE_MEMO;
4361 if (memo->inverted)
4362 split_p = !split_p;
4364 if (split_p) {
4365 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4366 UPDATE_MEMO;
4367 memo->prev_elts = rb_ary_new3(1, i);
4369 else {
4370 rb_ary_push(memo->prev_elts, i);
4373 memo->prev_elt = i;
4376 return Qnil;
4377 #undef UPDATE_MEMO
4380 static VALUE
4381 slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
4383 VALUE enumerable;
4384 VALUE arg;
4385 struct slicewhen_arg *memo =
4386 NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted);
4388 enumerable = rb_ivar_get(enumerator, id_slicewhen_enum);
4389 memo->pred = rb_attr_get(enumerator, id_slicewhen_pred);
4390 memo->prev_elt = Qundef;
4391 memo->prev_elts = Qnil;
4392 memo->yielder = yielder;
4393 memo->inverted = RTEST(rb_attr_get(enumerator, id_slicewhen_inverted));
4395 rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
4396 memo = MEMO_FOR(struct slicewhen_arg, arg);
4397 if (!NIL_P(memo->prev_elts))
4398 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4399 return Qnil;
4403 * call-seq:
4404 * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
4406 * Creates an enumerator for each chunked elements.
4407 * The beginnings of chunks are defined by the block.
4409 * This method splits each chunk using adjacent elements,
4410 * _elt_before_ and _elt_after_,
4411 * in the receiver enumerator.
4412 * This method split chunks between _elt_before_ and _elt_after_ where
4413 * the block returns <code>true</code>.
4415 * The block is called the length of the receiver enumerator minus one.
4417 * The result enumerator yields the chunked elements as an array.
4418 * So +each+ method can be called as follows:
4420 * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
4422 * Other methods of the Enumerator class and Enumerable module,
4423 * such as +to_a+, +map+, etc., are also usable.
4425 * For example, one-by-one increasing subsequence can be chunked as follows:
4427 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
4428 * b = a.slice_when {|i, j| i+1 != j }
4429 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
4430 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
4431 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
4432 * d = c.join(",")
4433 * p d #=> "1,2,4,9-12,15,16,19-21"
4435 * Near elements (threshold: 6) in sorted array can be chunked as follows:
4437 * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
4438 * p a.slice_when {|i, j| 6 < j - i }.to_a
4439 * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
4441 * Increasing (non-decreasing) subsequence can be chunked as follows:
4443 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
4444 * p a.slice_when {|i, j| i > j }.to_a
4445 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
4447 * Adjacent evens and odds can be chunked as follows:
4448 * (Enumerable#chunk is another way to do it.)
4450 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
4451 * p a.slice_when {|i, j| i.even? != j.even? }.to_a
4452 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
4454 * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
4455 * (See Enumerable#chunk to ignore empty lines.)
4457 * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
4458 * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
4459 * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
4461 * Enumerable#chunk_while does the same, except splitting when the block
4462 * returns <code>false</code> instead of <code>true</code>.
4464 static VALUE
4465 enum_slice_when(VALUE enumerable)
4467 VALUE enumerator;
4468 VALUE pred;
4470 pred = rb_block_proc();
4472 enumerator = rb_obj_alloc(rb_cEnumerator);
4473 rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
4474 rb_ivar_set(enumerator, id_slicewhen_pred, pred);
4475 rb_ivar_set(enumerator, id_slicewhen_inverted, Qfalse);
4477 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
4478 return enumerator;
4482 * call-seq:
4483 * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
4485 * Creates an enumerator for each chunked elements.
4486 * The beginnings of chunks are defined by the block.
4488 * This method splits each chunk using adjacent elements,
4489 * _elt_before_ and _elt_after_,
4490 * in the receiver enumerator.
4491 * This method split chunks between _elt_before_ and _elt_after_ where
4492 * the block returns <code>false</code>.
4494 * The block is called the length of the receiver enumerator minus one.
4496 * The result enumerator yields the chunked elements as an array.
4497 * So +each+ method can be called as follows:
4499 * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
4501 * Other methods of the Enumerator class and Enumerable module,
4502 * such as +to_a+, +map+, etc., are also usable.
4504 * For example, one-by-one increasing subsequence can be chunked as follows:
4506 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
4507 * b = a.chunk_while {|i, j| i+1 == j }
4508 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
4509 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
4510 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
4511 * d = c.join(",")
4512 * p d #=> "1,2,4,9-12,15,16,19-21"
4514 * Increasing (non-decreasing) subsequence can be chunked as follows:
4516 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
4517 * p a.chunk_while {|i, j| i <= j }.to_a
4518 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
4520 * Adjacent evens and odds can be chunked as follows:
4521 * (Enumerable#chunk is another way to do it.)
4523 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
4524 * p a.chunk_while {|i, j| i.even? == j.even? }.to_a
4525 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
4527 * Enumerable#slice_when does the same, except splitting when the block
4528 * returns <code>true</code> instead of <code>false</code>.
4530 static VALUE
4531 enum_chunk_while(VALUE enumerable)
4533 VALUE enumerator;
4534 VALUE pred;
4536 pred = rb_block_proc();
4538 enumerator = rb_obj_alloc(rb_cEnumerator);
4539 rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
4540 rb_ivar_set(enumerator, id_slicewhen_pred, pred);
4541 rb_ivar_set(enumerator, id_slicewhen_inverted, Qtrue);
4543 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
4544 return enumerator;
4547 struct enum_sum_memo {
4548 VALUE v, r;
4549 long n;
4550 double f, c;
4551 int block_given;
4552 int float_value;
4555 static void
4556 sum_iter_normalize_memo(struct enum_sum_memo *memo)
4558 RUBY_ASSERT(FIXABLE(memo->n));
4559 memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v);
4560 memo->n = 0;
4562 switch (TYPE(memo->r)) {
4563 case T_RATIONAL: memo->v = rb_rational_plus(memo->r, memo->v); break;
4564 case T_UNDEF: break;
4565 default: UNREACHABLE; /* or ...? */
4567 memo->r = Qundef;
4570 static void
4571 sum_iter_fixnum(VALUE i, struct enum_sum_memo *memo)
4573 memo->n += FIX2LONG(i); /* should not overflow long type */
4574 if (! FIXABLE(memo->n)) {
4575 memo->v = rb_big_plus(LONG2NUM(memo->n), memo->v);
4576 memo->n = 0;
4580 static void
4581 sum_iter_bignum(VALUE i, struct enum_sum_memo *memo)
4583 memo->v = rb_big_plus(i, memo->v);
4586 static void
4587 sum_iter_rational(VALUE i, struct enum_sum_memo *memo)
4589 if (UNDEF_P(memo->r)) {
4590 memo->r = i;
4592 else {
4593 memo->r = rb_rational_plus(memo->r, i);
4597 static void
4598 sum_iter_some_value(VALUE i, struct enum_sum_memo *memo)
4600 memo->v = rb_funcallv(memo->v, idPLUS, 1, &i);
4603 static void
4604 sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo)
4607 * Kahan-Babuska balancing compensated summation algorithm
4608 * See https://link.springer.com/article/10.1007/s00607-005-0139-x
4610 double x;
4612 switch (TYPE(i)) {
4613 case T_FLOAT: x = RFLOAT_VALUE(i); break;
4614 case T_FIXNUM: x = FIX2LONG(i); break;
4615 case T_BIGNUM: x = rb_big2dbl(i); break;
4616 case T_RATIONAL: x = rb_num2dbl(i); break;
4617 default:
4618 memo->v = DBL2NUM(memo->f);
4619 memo->float_value = 0;
4620 sum_iter_some_value(i, memo);
4621 return;
4624 double f = memo->f;
4626 if (isnan(f)) {
4627 return;
4629 else if (! isfinite(x)) {
4630 if (isinf(x) && isinf(f) && signbit(x) != signbit(f)) {
4631 i = DBL2NUM(f);
4632 x = nan("");
4634 memo->v = i;
4635 memo->f = x;
4636 return;
4638 else if (isinf(f)) {
4639 return;
4642 double c = memo->c;
4643 double t = f + x;
4645 if (fabs(f) >= fabs(x)) {
4646 c += ((f - t) + x);
4648 else {
4649 c += ((x - t) + f);
4651 f = t;
4653 memo->f = f;
4654 memo->c = c;
4657 static void
4658 sum_iter(VALUE i, struct enum_sum_memo *memo)
4660 RUBY_ASSERT(memo != NULL);
4661 if (memo->block_given) {
4662 i = rb_yield(i);
4665 if (memo->float_value) {
4666 sum_iter_Kahan_Babuska(i, memo);
4668 else switch (TYPE(memo->v)) {
4669 default: sum_iter_some_value(i, memo); return;
4670 case T_FLOAT: sum_iter_Kahan_Babuska(i, memo); return;
4671 case T_FIXNUM:
4672 case T_BIGNUM:
4673 case T_RATIONAL:
4674 switch (TYPE(i)) {
4675 case T_FIXNUM: sum_iter_fixnum(i, memo); return;
4676 case T_BIGNUM: sum_iter_bignum(i, memo); return;
4677 case T_RATIONAL: sum_iter_rational(i, memo); return;
4678 case T_FLOAT:
4679 sum_iter_normalize_memo(memo);
4680 memo->f = NUM2DBL(memo->v);
4681 memo->c = 0.0;
4682 memo->float_value = 1;
4683 sum_iter_Kahan_Babuska(i, memo);
4684 return;
4685 default:
4686 sum_iter_normalize_memo(memo);
4687 sum_iter_some_value(i, memo);
4688 return;
4693 static VALUE
4694 enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
4696 ENUM_WANT_SVALUE();
4697 sum_iter(i, (struct enum_sum_memo *) args);
4698 return Qnil;
4701 static int
4702 hash_sum_i(VALUE key, VALUE value, VALUE arg)
4704 sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
4705 return ST_CONTINUE;
4708 static void
4709 hash_sum(VALUE hash, struct enum_sum_memo *memo)
4711 RUBY_ASSERT(RB_TYPE_P(hash, T_HASH));
4712 RUBY_ASSERT(memo != NULL);
4714 rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
4717 static VALUE
4718 int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
4720 if (excl) {
4721 if (FIXNUM_P(end))
4722 end = LONG2FIX(FIX2LONG(end) - 1);
4723 else
4724 end = rb_big_minus(end, LONG2FIX(1));
4727 if (rb_int_ge(end, beg)) {
4728 VALUE a;
4729 a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
4730 a = rb_int_mul(a, rb_int_plus(end, beg));
4731 a = rb_int_idiv(a, LONG2FIX(2));
4732 return rb_int_plus(init, a);
4735 return init;
4739 * call-seq:
4740 * sum(initial_value = 0) -> number
4741 * sum(initial_value = 0) {|element| ... } -> object
4743 * With no block given,
4744 * returns the sum of +initial_value+ and the elements:
4746 * (1..100).sum # => 5050
4747 * (1..100).sum(1) # => 5051
4748 * ('a'..'d').sum('foo') # => "fooabcd"
4750 * Generally, the sum is computed using methods <tt>+</tt> and +each+;
4751 * for performance optimizations, those methods may not be used,
4752 * and so any redefinition of those methods may not have effect here.
4754 * One such optimization: When possible, computes using Gauss's summation
4755 * formula <em>n(n+1)/2</em>:
4757 * 100 * (100 + 1) / 2 # => 5050
4759 * With a block given, calls the block with each element;
4760 * returns the sum of +initial_value+ and the block return values:
4762 * (1..4).sum {|i| i*i } # => 30
4763 * (1..4).sum(100) {|i| i*i } # => 130
4764 * h = {a: 0, b: 1, c: 2, d: 3, e: 4, f: 5}
4765 * h.sum {|key, value| value.odd? ? value : 0 } # => 9
4766 * ('a'..'f').sum('x') {|c| c < 'd' ? c : '' } # => "xabc"
4769 static VALUE
4770 enum_sum(int argc, VALUE* argv, VALUE obj)
4772 struct enum_sum_memo memo;
4773 VALUE beg, end;
4774 int excl;
4776 memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
4777 memo.block_given = rb_block_given_p();
4778 memo.n = 0;
4779 memo.r = Qundef;
4781 if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
4782 memo.f = RFLOAT_VALUE(memo.v);
4783 memo.c = 0.0;
4785 else {
4786 memo.f = 0.0;
4787 memo.c = 0.0;
4790 if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
4791 if (!memo.block_given && !memo.float_value &&
4792 (FIXNUM_P(beg) || RB_BIGNUM_TYPE_P(beg)) &&
4793 (FIXNUM_P(end) || RB_BIGNUM_TYPE_P(end))) {
4794 return int_range_sum(beg, end, excl, memo.v);
4798 if (RB_TYPE_P(obj, T_HASH) &&
4799 rb_method_basic_definition_p(CLASS_OF(obj), id_each))
4800 hash_sum(obj, &memo);
4801 else
4802 rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
4804 if (memo.float_value) {
4805 return DBL2NUM(memo.f + memo.c);
4807 else {
4808 if (memo.n != 0)
4809 memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
4810 if (!UNDEF_P(memo.r)) {
4811 memo.v = rb_rational_plus(memo.r, memo.v);
4813 return memo.v;
4817 static VALUE
4818 uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4820 ENUM_WANT_SVALUE();
4821 rb_hash_add_new_element(hash, i, i);
4822 return Qnil;
4825 static VALUE
4826 uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4828 ENUM_WANT_SVALUE();
4829 rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i);
4830 return Qnil;
4834 * call-seq:
4835 * uniq -> array
4836 * uniq {|element| ... } -> array
4838 * With no block, returns a new array containing only unique elements;
4839 * the array has no two elements +e0+ and +e1+ such that <tt>e0.eql?(e1)</tt>:
4841 * %w[a b c c b a a b c].uniq # => ["a", "b", "c"]
4842 * [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
4844 * With a block, returns a new array containing elements only for which the block
4845 * returns a unique value:
4847 * a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
4848 * a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
4849 * a = %w[a b c d e e d c b a a b c d e]
4850 * a.uniq {|c| c < 'c' } # => ["a", "c"]
4854 static VALUE
4855 enum_uniq(VALUE obj)
4857 VALUE hash, ret;
4858 rb_block_call_func *const func =
4859 rb_block_given_p() ? uniq_iter : uniq_func;
4861 hash = rb_obj_hide(rb_hash_new());
4862 rb_block_call(obj, id_each, 0, 0, func, hash);
4863 ret = rb_hash_values(hash);
4864 rb_hash_clear(hash);
4865 return ret;
4868 static VALUE
4869 compact_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
4871 ENUM_WANT_SVALUE();
4873 if (!NIL_P(i)) {
4874 rb_ary_push(ary, i);
4876 return Qnil;
4880 * call-seq:
4881 * compact -> array
4883 * Returns an array of all non-+nil+ elements:
4885 * a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil]
4886 * a.compact # => [0, "a", false, false, "a", 0]
4890 static VALUE
4891 enum_compact(VALUE obj)
4893 VALUE ary;
4895 ary = rb_ary_new();
4896 rb_block_call(obj, id_each, 0, 0, compact_i, ary);
4898 return ary;
4903 * == What's Here
4905 * \Module \Enumerable provides methods that are useful to a collection class for:
4907 * - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying]
4908 * - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching]
4909 * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering]
4910 * - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting]
4911 * - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating]
4912 * - {And more....}[rdoc-ref:Enumerable@Other+Methods]
4914 * === Methods for Querying
4916 * These methods return information about the \Enumerable other than the elements themselves:
4918 * - #include?, #member?: Returns +true+ if <tt>self == object</tt>, +false+ otherwise.
4919 * - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise.
4920 * - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise.
4921 * - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise.
4922 * - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise.
4923 * - #count: Returns the count of elements,
4924 * based on an argument or block criterion, if given.
4925 * - #tally: Returns a new Hash containing the counts of occurrences of each element.
4927 * === Methods for Fetching
4929 * These methods return entries from the \Enumerable, without modifying it:
4931 * <i>Leading, trailing, or all elements</i>:
4933 * - #entries, #to_a: Returns all elements.
4934 * - #first: Returns the first element or leading elements.
4935 * - #take: Returns a specified number of leading elements.
4936 * - #drop: Returns a specified number of trailing elements.
4937 * - #take_while: Returns leading elements as specified by the given block.
4938 * - #drop_while: Returns trailing elements as specified by the given block.
4940 * <i>Minimum and maximum value elements</i>:
4942 * - #min: Returns the elements whose values are smallest among the elements,
4943 * as determined by <tt><=></tt> or a given block.
4944 * - #max: Returns the elements whose values are largest among the elements,
4945 * as determined by <tt><=></tt> or a given block.
4946 * - #minmax: Returns a 2-element Array containing the smallest and largest elements.
4947 * - #min_by: Returns the smallest element, as determined by the given block.
4948 * - #max_by: Returns the largest element, as determined by the given block.
4949 * - #minmax_by: Returns the smallest and largest elements, as determined by the given block.
4951 * <i>Groups, slices, and partitions</i>:
4953 * - #group_by: Returns a Hash that partitions the elements into groups.
4954 * - #partition: Returns elements partitioned into two new Arrays, as determined by the given block.
4955 * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+,
4956 * based either on a given +object+ or a given block.
4957 * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+,
4958 * based either on a given +object+ or a given block.
4959 * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+
4960 * based on the given block.
4961 * - #chunk: Returns elements organized into chunks as specified by the given block.
4962 * - #chunk_while: Returns elements organized into chunks as specified by the given block.
4964 * === Methods for Searching and Filtering
4966 * These methods return elements that meet a specified criterion:
4968 * - #find, #detect: Returns an element selected by the block.
4969 * - #find_all, #filter, #select: Returns elements selected by the block.
4970 * - #find_index: Returns the index of an element selected by a given object or block.
4971 * - #reject: Returns elements not rejected by the block.
4972 * - #uniq: Returns elements that are not duplicates.
4974 * === Methods for Sorting
4976 * These methods return elements in sorted order:
4978 * - #sort: Returns the elements, sorted by <tt><=></tt> or the given block.
4979 * - #sort_by: Returns the elements, sorted by the given block.
4981 * === Methods for Iterating
4983 * - #each_entry: Calls the block with each successive element
4984 * (slightly different from #each).
4985 * - #each_with_index: Calls the block with each successive element and its index.
4986 * - #each_with_object: Calls the block with each successive element and a given object.
4987 * - #each_slice: Calls the block with successive non-overlapping slices.
4988 * - #each_cons: Calls the block with successive overlapping slices.
4989 * (different from #each_slice).
4990 * - #reverse_each: Calls the block with each successive element, in reverse order.
4992 * === Other Methods
4994 * - #map, #collect: Returns objects returned by the block.
4995 * - #filter_map: Returns truthy objects returned by the block.
4996 * - #flat_map, #collect_concat: Returns flattened objects returned by the block.
4997 * - #grep: Returns elements selected by a given object
4998 * or objects returned by a given block.
4999 * - #grep_v: Returns elements selected by a given object
5000 * or objects returned by a given block.
5001 * - #reduce, #inject: Returns the object formed by combining all elements.
5002 * - #sum: Returns the sum of the elements, using method <tt>+</tt>.
5003 * - #zip: Combines each element with elements from other enumerables;
5004 * returns the n-tuples or calls the block with each.
5005 * - #cycle: Calls the block with each element, cycling repeatedly.
5007 * == Usage
5009 * To use module \Enumerable in a collection class:
5011 * - Include it:
5013 * include Enumerable
5015 * - Implement method <tt>#each</tt>
5016 * which must yield successive elements of the collection.
5017 * The method will be called by almost any \Enumerable method.
5019 * Example:
5021 * class Foo
5022 * include Enumerable
5023 * def each
5024 * yield 1
5025 * yield 1, 2
5026 * yield
5027 * end
5028 * end
5029 * Foo.new.each_entry{ |element| p element }
5031 * Output:
5034 * [1, 2]
5035 * nil
5037 * == \Enumerable in Ruby Classes
5039 * These Ruby core classes include (or extend) \Enumerable:
5041 * - ARGF
5042 * - Array
5043 * - Dir
5044 * - Enumerator
5045 * - ENV (extends)
5046 * - Hash
5047 * - IO
5048 * - Range
5049 * - Struct
5051 * These Ruby standard library classes include \Enumerable:
5053 * - CSV
5054 * - CSV::Table
5055 * - CSV::Row
5056 * - Set
5058 * Virtually all methods in \Enumerable call method +#each+ in the including class:
5060 * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element Array.
5061 * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element Array.
5062 * - For the other classes above, +#each+ yields the next object from the collection.
5064 * == About the Examples
5066 * The example code snippets for the \Enumerable methods:
5068 * - Always show the use of one or more Array-like classes (often Array itself).
5069 * - Sometimes show the use of a Hash-like class.
5070 * For some methods, though, the usage would not make sense,
5071 * and so it is not shown. Example: #tally would find exactly one of each Hash entry.
5075 void
5076 Init_Enumerable(void)
5078 rb_mEnumerable = rb_define_module("Enumerable");
5080 rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
5081 rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
5082 rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
5084 rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
5085 rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
5086 rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
5087 rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
5088 rb_define_method(rb_mEnumerable, "count", enum_count, -1);
5089 rb_define_method(rb_mEnumerable, "find", enum_find, -1);
5090 rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
5091 rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
5092 rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
5093 rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
5094 rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
5095 rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0);
5096 rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
5097 rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
5098 rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
5099 rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
5100 rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
5101 rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
5102 rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
5103 rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
5104 rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
5105 rb_define_method(rb_mEnumerable, "tally", enum_tally, -1);
5106 rb_define_method(rb_mEnumerable, "first", enum_first, -1);
5107 rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
5108 rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
5109 rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
5110 rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
5111 rb_define_method(rb_mEnumerable, "min", enum_min, -1);
5112 rb_define_method(rb_mEnumerable, "max", enum_max, -1);
5113 rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
5114 rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
5115 rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
5116 rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
5117 rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
5118 rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
5119 rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
5120 rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
5121 rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
5122 rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
5123 rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
5124 rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
5125 rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
5126 rb_define_method(rb_mEnumerable, "take", enum_take, 1);
5127 rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
5128 rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
5129 rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
5130 rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
5131 rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
5132 rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
5133 rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
5134 rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
5135 rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
5136 rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
5137 rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
5138 rb_define_method(rb_mEnumerable, "compact", enum_compact, 0);
5140 id__alone = rb_intern_const("_alone");
5141 id__separator = rb_intern_const("_separator");
5142 id_chunk_categorize = rb_intern_const("chunk_categorize");
5143 id_chunk_enumerable = rb_intern_const("chunk_enumerable");
5144 id_next = rb_intern_const("next");
5145 id_sliceafter_enum = rb_intern_const("sliceafter_enum");
5146 id_sliceafter_pat = rb_intern_const("sliceafter_pat");
5147 id_sliceafter_pred = rb_intern_const("sliceafter_pred");
5148 id_slicebefore_enumerable = rb_intern_const("slicebefore_enumerable");
5149 id_slicebefore_sep_pat = rb_intern_const("slicebefore_sep_pat");
5150 id_slicebefore_sep_pred = rb_intern_const("slicebefore_sep_pred");
5151 id_slicewhen_enum = rb_intern_const("slicewhen_enum");
5152 id_slicewhen_inverted = rb_intern_const("slicewhen_inverted");
5153 id_slicewhen_pred = rb_intern_const("slicewhen_pred");