pc_memory_init: Move memory calculation to the caller.
[qemu/wangdongxu.git] / kvm-all.c
blob3b81b68b90a9c32d9cafa1d565921828cc2db619
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
81 KVMState *kvm_state;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
91 int i;
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
107 int i;
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
118 return NULL;
122 * Find overlapping slot with lowest start address
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
128 KVMSlot *found = NULL;
129 int i;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
145 return found;
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
151 int i;
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
163 return 0;
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207 if (ret < 0) {
208 DPRINTF("kvm_create_vcpu failed\n");
209 goto err;
212 env->kvm_fd = ret;
213 env->kvm_state = s;
214 env->kvm_vcpu_dirty = 1;
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
218 ret = mmap_size;
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
220 goto err;
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
227 DPRINTF("mmap'ing vcpu state failed\n");
228 goto err;
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
236 ret = kvm_arch_init_vcpu(env);
237 if (ret == 0) {
238 qemu_register_reset(kvm_reset_vcpu, env);
239 kvm_arch_reset_vcpu(env);
241 err:
242 return ret;
246 * dirty pages logging control
249 static int kvm_mem_flags(KVMState *s, bool log_dirty)
251 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
254 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
256 KVMState *s = kvm_state;
257 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
258 int old_flags;
260 old_flags = mem->flags;
262 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
263 mem->flags = flags;
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 if (flags == old_flags) {
271 return 0;
274 return kvm_set_user_memory_region(s, mem);
277 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
278 ram_addr_t size, bool log_dirty)
280 KVMState *s = kvm_state;
281 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
283 if (mem == NULL) {
284 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
285 TARGET_FMT_plx "\n", __func__, phys_addr,
286 (target_phys_addr_t)(phys_addr + size - 1));
287 return -EINVAL;
289 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
292 static int kvm_log_start(CPUPhysMemoryClient *client,
293 target_phys_addr_t phys_addr, ram_addr_t size)
295 return kvm_dirty_pages_log_change(phys_addr, size, true);
298 static int kvm_log_stop(CPUPhysMemoryClient *client,
299 target_phys_addr_t phys_addr, ram_addr_t size)
301 return kvm_dirty_pages_log_change(phys_addr, size, false);
304 static int kvm_set_migration_log(int enable)
306 KVMState *s = kvm_state;
307 KVMSlot *mem;
308 int i, err;
310 s->migration_log = enable;
312 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
313 mem = &s->slots[i];
315 if (!mem->memory_size) {
316 continue;
318 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
319 continue;
321 err = kvm_set_user_memory_region(s, mem);
322 if (err) {
323 return err;
326 return 0;
329 /* get kvm's dirty pages bitmap and update qemu's */
330 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
331 unsigned long *bitmap,
332 unsigned long offset,
333 unsigned long mem_size)
335 unsigned int i, j;
336 unsigned long page_number, addr, addr1, c;
337 ram_addr_t ram_addr;
338 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
339 HOST_LONG_BITS;
342 * bitmap-traveling is faster than memory-traveling (for addr...)
343 * especially when most of the memory is not dirty.
345 for (i = 0; i < len; i++) {
346 if (bitmap[i] != 0) {
347 c = leul_to_cpu(bitmap[i]);
348 do {
349 j = ffsl(c) - 1;
350 c &= ~(1ul << j);
351 page_number = i * HOST_LONG_BITS + j;
352 addr1 = page_number * TARGET_PAGE_SIZE;
353 addr = offset + addr1;
354 ram_addr = cpu_get_physical_page_desc(addr);
355 cpu_physical_memory_set_dirty(ram_addr);
356 } while (c != 0);
359 return 0;
362 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
365 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367 * This means all bits are set to dirty.
369 * @start_add: start of logged region.
370 * @end_addr: end of logged region.
372 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
373 target_phys_addr_t end_addr)
375 KVMState *s = kvm_state;
376 unsigned long size, allocated_size = 0;
377 KVMDirtyLog d;
378 KVMSlot *mem;
379 int ret = 0;
381 d.dirty_bitmap = NULL;
382 while (start_addr < end_addr) {
383 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
384 if (mem == NULL) {
385 break;
388 /* XXX bad kernel interface alert
389 * For dirty bitmap, kernel allocates array of size aligned to
390 * bits-per-long. But for case when the kernel is 64bits and
391 * the userspace is 32bits, userspace can't align to the same
392 * bits-per-long, since sizeof(long) is different between kernel
393 * and user space. This way, userspace will provide buffer which
394 * may be 4 bytes less than the kernel will use, resulting in
395 * userspace memory corruption (which is not detectable by valgrind
396 * too, in most cases).
397 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
398 * a hope that sizeof(long) wont become >8 any time soon.
400 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
401 /*HOST_LONG_BITS*/ 64) / 8;
402 if (!d.dirty_bitmap) {
403 d.dirty_bitmap = qemu_malloc(size);
404 } else if (size > allocated_size) {
405 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
407 allocated_size = size;
408 memset(d.dirty_bitmap, 0, allocated_size);
410 d.slot = mem->slot;
412 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
413 DPRINTF("ioctl failed %d\n", errno);
414 ret = -1;
415 break;
418 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
419 mem->start_addr, mem->memory_size);
420 start_addr = mem->start_addr + mem->memory_size;
422 qemu_free(d.dirty_bitmap);
424 return ret;
427 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
429 int ret = -ENOSYS;
430 KVMState *s = kvm_state;
432 if (s->coalesced_mmio) {
433 struct kvm_coalesced_mmio_zone zone;
435 zone.addr = start;
436 zone.size = size;
438 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
441 return ret;
444 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
446 int ret = -ENOSYS;
447 KVMState *s = kvm_state;
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
452 zone.addr = start;
453 zone.size = size;
455 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
458 return ret;
461 int kvm_check_extension(KVMState *s, unsigned int extension)
463 int ret;
465 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
466 if (ret < 0) {
467 ret = 0;
470 return ret;
473 static int kvm_check_many_ioeventfds(void)
475 /* Userspace can use ioeventfd for io notification. This requires a host
476 * that supports eventfd(2) and an I/O thread; since eventfd does not
477 * support SIGIO it cannot interrupt the vcpu.
479 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
480 * can avoid creating too many ioeventfds.
482 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
483 int ioeventfds[7];
484 int i, ret = 0;
485 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
486 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
487 if (ioeventfds[i] < 0) {
488 break;
490 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
491 if (ret < 0) {
492 close(ioeventfds[i]);
493 break;
497 /* Decide whether many devices are supported or not */
498 ret = i == ARRAY_SIZE(ioeventfds);
500 while (i-- > 0) {
501 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
502 close(ioeventfds[i]);
504 return ret;
505 #else
506 return 0;
507 #endif
510 static const KVMCapabilityInfo *
511 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
513 while (list->name) {
514 if (!kvm_check_extension(s, list->value)) {
515 return list;
517 list++;
519 return NULL;
522 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
523 ram_addr_t phys_offset, bool log_dirty)
525 KVMState *s = kvm_state;
526 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
527 KVMSlot *mem, old;
528 int err;
530 /* kvm works in page size chunks, but the function may be called
531 with sub-page size and unaligned start address. */
532 size = TARGET_PAGE_ALIGN(size);
533 start_addr = TARGET_PAGE_ALIGN(start_addr);
535 /* KVM does not support read-only slots */
536 phys_offset &= ~IO_MEM_ROM;
538 while (1) {
539 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
540 if (!mem) {
541 break;
544 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
545 (start_addr + size <= mem->start_addr + mem->memory_size) &&
546 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
547 /* The new slot fits into the existing one and comes with
548 * identical parameters - update flags and done. */
549 kvm_slot_dirty_pages_log_change(mem, log_dirty);
550 return;
553 old = *mem;
555 /* unregister the overlapping slot */
556 mem->memory_size = 0;
557 err = kvm_set_user_memory_region(s, mem);
558 if (err) {
559 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
560 __func__, strerror(-err));
561 abort();
564 /* Workaround for older KVM versions: we can't join slots, even not by
565 * unregistering the previous ones and then registering the larger
566 * slot. We have to maintain the existing fragmentation. Sigh.
568 * This workaround assumes that the new slot starts at the same
569 * address as the first existing one. If not or if some overlapping
570 * slot comes around later, we will fail (not seen in practice so far)
571 * - and actually require a recent KVM version. */
572 if (s->broken_set_mem_region &&
573 old.start_addr == start_addr && old.memory_size < size &&
574 flags < IO_MEM_UNASSIGNED) {
575 mem = kvm_alloc_slot(s);
576 mem->memory_size = old.memory_size;
577 mem->start_addr = old.start_addr;
578 mem->phys_offset = old.phys_offset;
579 mem->flags = kvm_mem_flags(s, log_dirty);
581 err = kvm_set_user_memory_region(s, mem);
582 if (err) {
583 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
584 strerror(-err));
585 abort();
588 start_addr += old.memory_size;
589 phys_offset += old.memory_size;
590 size -= old.memory_size;
591 continue;
594 /* register prefix slot */
595 if (old.start_addr < start_addr) {
596 mem = kvm_alloc_slot(s);
597 mem->memory_size = start_addr - old.start_addr;
598 mem->start_addr = old.start_addr;
599 mem->phys_offset = old.phys_offset;
600 mem->flags = kvm_mem_flags(s, log_dirty);
602 err = kvm_set_user_memory_region(s, mem);
603 if (err) {
604 fprintf(stderr, "%s: error registering prefix slot: %s\n",
605 __func__, strerror(-err));
606 abort();
610 /* register suffix slot */
611 if (old.start_addr + old.memory_size > start_addr + size) {
612 ram_addr_t size_delta;
614 mem = kvm_alloc_slot(s);
615 mem->start_addr = start_addr + size;
616 size_delta = mem->start_addr - old.start_addr;
617 mem->memory_size = old.memory_size - size_delta;
618 mem->phys_offset = old.phys_offset + size_delta;
619 mem->flags = kvm_mem_flags(s, log_dirty);
621 err = kvm_set_user_memory_region(s, mem);
622 if (err) {
623 fprintf(stderr, "%s: error registering suffix slot: %s\n",
624 __func__, strerror(-err));
625 abort();
630 /* in case the KVM bug workaround already "consumed" the new slot */
631 if (!size) {
632 return;
634 /* KVM does not need to know about this memory */
635 if (flags >= IO_MEM_UNASSIGNED) {
636 return;
638 mem = kvm_alloc_slot(s);
639 mem->memory_size = size;
640 mem->start_addr = start_addr;
641 mem->phys_offset = phys_offset;
642 mem->flags = kvm_mem_flags(s, log_dirty);
644 err = kvm_set_user_memory_region(s, mem);
645 if (err) {
646 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
647 strerror(-err));
648 abort();
652 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
653 target_phys_addr_t start_addr,
654 ram_addr_t size, ram_addr_t phys_offset,
655 bool log_dirty)
657 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
660 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
661 target_phys_addr_t start_addr,
662 target_phys_addr_t end_addr)
664 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
667 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
668 int enable)
670 return kvm_set_migration_log(enable);
673 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
674 .set_memory = kvm_client_set_memory,
675 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
676 .migration_log = kvm_client_migration_log,
677 .log_start = kvm_log_start,
678 .log_stop = kvm_log_stop,
681 static void kvm_handle_interrupt(CPUState *env, int mask)
683 env->interrupt_request |= mask;
685 if (!qemu_cpu_is_self(env)) {
686 qemu_cpu_kick(env);
690 int kvm_init(void)
692 static const char upgrade_note[] =
693 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
694 "(see http://sourceforge.net/projects/kvm).\n";
695 KVMState *s;
696 const KVMCapabilityInfo *missing_cap;
697 int ret;
698 int i;
700 s = qemu_mallocz(sizeof(KVMState));
702 #ifdef KVM_CAP_SET_GUEST_DEBUG
703 QTAILQ_INIT(&s->kvm_sw_breakpoints);
704 #endif
705 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
706 s->slots[i].slot = i;
708 s->vmfd = -1;
709 s->fd = qemu_open("/dev/kvm", O_RDWR);
710 if (s->fd == -1) {
711 fprintf(stderr, "Could not access KVM kernel module: %m\n");
712 ret = -errno;
713 goto err;
716 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
717 if (ret < KVM_API_VERSION) {
718 if (ret > 0) {
719 ret = -EINVAL;
721 fprintf(stderr, "kvm version too old\n");
722 goto err;
725 if (ret > KVM_API_VERSION) {
726 ret = -EINVAL;
727 fprintf(stderr, "kvm version not supported\n");
728 goto err;
731 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
732 if (s->vmfd < 0) {
733 #ifdef TARGET_S390X
734 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
735 "your host kernel command line\n");
736 #endif
737 goto err;
740 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
741 if (!missing_cap) {
742 missing_cap =
743 kvm_check_extension_list(s, kvm_arch_required_capabilities);
745 if (missing_cap) {
746 ret = -EINVAL;
747 fprintf(stderr, "kvm does not support %s\n%s",
748 missing_cap->name, upgrade_note);
749 goto err;
752 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
754 s->broken_set_mem_region = 1;
755 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
756 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
757 if (ret > 0) {
758 s->broken_set_mem_region = 0;
760 #endif
762 s->vcpu_events = 0;
763 #ifdef KVM_CAP_VCPU_EVENTS
764 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
765 #endif
767 s->robust_singlestep = 0;
768 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
769 s->robust_singlestep =
770 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
771 #endif
773 s->debugregs = 0;
774 #ifdef KVM_CAP_DEBUGREGS
775 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
776 #endif
778 s->xsave = 0;
779 #ifdef KVM_CAP_XSAVE
780 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
781 #endif
783 s->xcrs = 0;
784 #ifdef KVM_CAP_XCRS
785 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
786 #endif
788 ret = kvm_arch_init(s);
789 if (ret < 0) {
790 goto err;
793 kvm_state = s;
794 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
796 s->many_ioeventfds = kvm_check_many_ioeventfds();
798 cpu_interrupt_handler = kvm_handle_interrupt;
800 return 0;
802 err:
803 if (s) {
804 if (s->vmfd != -1) {
805 close(s->vmfd);
807 if (s->fd != -1) {
808 close(s->fd);
811 qemu_free(s);
813 return ret;
816 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
817 uint32_t count)
819 int i;
820 uint8_t *ptr = data;
822 for (i = 0; i < count; i++) {
823 if (direction == KVM_EXIT_IO_IN) {
824 switch (size) {
825 case 1:
826 stb_p(ptr, cpu_inb(port));
827 break;
828 case 2:
829 stw_p(ptr, cpu_inw(port));
830 break;
831 case 4:
832 stl_p(ptr, cpu_inl(port));
833 break;
835 } else {
836 switch (size) {
837 case 1:
838 cpu_outb(port, ldub_p(ptr));
839 break;
840 case 2:
841 cpu_outw(port, lduw_p(ptr));
842 break;
843 case 4:
844 cpu_outl(port, ldl_p(ptr));
845 break;
849 ptr += size;
853 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
854 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
856 fprintf(stderr, "KVM internal error.");
857 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
858 int i;
860 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
861 for (i = 0; i < run->internal.ndata; ++i) {
862 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
863 i, (uint64_t)run->internal.data[i]);
865 } else {
866 fprintf(stderr, "\n");
868 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
869 fprintf(stderr, "emulation failure\n");
870 if (!kvm_arch_stop_on_emulation_error(env)) {
871 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
872 return EXCP_INTERRUPT;
875 /* FIXME: Should trigger a qmp message to let management know
876 * something went wrong.
878 return -1;
880 #endif
882 void kvm_flush_coalesced_mmio_buffer(void)
884 KVMState *s = kvm_state;
885 if (s->coalesced_mmio_ring) {
886 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
887 while (ring->first != ring->last) {
888 struct kvm_coalesced_mmio *ent;
890 ent = &ring->coalesced_mmio[ring->first];
892 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
893 smp_wmb();
894 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
899 static void do_kvm_cpu_synchronize_state(void *_env)
901 CPUState *env = _env;
903 if (!env->kvm_vcpu_dirty) {
904 kvm_arch_get_registers(env);
905 env->kvm_vcpu_dirty = 1;
909 void kvm_cpu_synchronize_state(CPUState *env)
911 if (!env->kvm_vcpu_dirty) {
912 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
916 void kvm_cpu_synchronize_post_reset(CPUState *env)
918 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
919 env->kvm_vcpu_dirty = 0;
922 void kvm_cpu_synchronize_post_init(CPUState *env)
924 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
925 env->kvm_vcpu_dirty = 0;
928 int kvm_cpu_exec(CPUState *env)
930 struct kvm_run *run = env->kvm_run;
931 int ret, run_ret;
933 DPRINTF("kvm_cpu_exec()\n");
935 if (kvm_arch_process_async_events(env)) {
936 env->exit_request = 0;
937 return EXCP_HLT;
940 cpu_single_env = env;
942 do {
943 if (env->kvm_vcpu_dirty) {
944 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
945 env->kvm_vcpu_dirty = 0;
948 kvm_arch_pre_run(env, run);
949 if (env->exit_request) {
950 DPRINTF("interrupt exit requested\n");
952 * KVM requires us to reenter the kernel after IO exits to complete
953 * instruction emulation. This self-signal will ensure that we
954 * leave ASAP again.
956 qemu_cpu_kick_self();
958 cpu_single_env = NULL;
959 qemu_mutex_unlock_iothread();
961 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
963 qemu_mutex_lock_iothread();
964 cpu_single_env = env;
965 kvm_arch_post_run(env, run);
967 kvm_flush_coalesced_mmio_buffer();
969 if (run_ret < 0) {
970 if (run_ret == -EINTR || run_ret == -EAGAIN) {
971 DPRINTF("io window exit\n");
972 ret = EXCP_INTERRUPT;
973 break;
975 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
976 abort();
979 switch (run->exit_reason) {
980 case KVM_EXIT_IO:
981 DPRINTF("handle_io\n");
982 kvm_handle_io(run->io.port,
983 (uint8_t *)run + run->io.data_offset,
984 run->io.direction,
985 run->io.size,
986 run->io.count);
987 ret = 0;
988 break;
989 case KVM_EXIT_MMIO:
990 DPRINTF("handle_mmio\n");
991 cpu_physical_memory_rw(run->mmio.phys_addr,
992 run->mmio.data,
993 run->mmio.len,
994 run->mmio.is_write);
995 ret = 0;
996 break;
997 case KVM_EXIT_IRQ_WINDOW_OPEN:
998 DPRINTF("irq_window_open\n");
999 ret = EXCP_INTERRUPT;
1000 break;
1001 case KVM_EXIT_SHUTDOWN:
1002 DPRINTF("shutdown\n");
1003 qemu_system_reset_request();
1004 ret = EXCP_INTERRUPT;
1005 break;
1006 case KVM_EXIT_UNKNOWN:
1007 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1008 (uint64_t)run->hw.hardware_exit_reason);
1009 ret = -1;
1010 break;
1011 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
1012 case KVM_EXIT_INTERNAL_ERROR:
1013 ret = kvm_handle_internal_error(env, run);
1014 break;
1015 #endif
1016 default:
1017 DPRINTF("kvm_arch_handle_exit\n");
1018 ret = kvm_arch_handle_exit(env, run);
1019 break;
1021 } while (ret == 0);
1023 if (ret < 0) {
1024 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1025 vm_stop(VMSTOP_PANIC);
1028 env->exit_request = 0;
1029 cpu_single_env = NULL;
1030 return ret;
1033 int kvm_ioctl(KVMState *s, int type, ...)
1035 int ret;
1036 void *arg;
1037 va_list ap;
1039 va_start(ap, type);
1040 arg = va_arg(ap, void *);
1041 va_end(ap);
1043 ret = ioctl(s->fd, type, arg);
1044 if (ret == -1) {
1045 ret = -errno;
1047 return ret;
1050 int kvm_vm_ioctl(KVMState *s, int type, ...)
1052 int ret;
1053 void *arg;
1054 va_list ap;
1056 va_start(ap, type);
1057 arg = va_arg(ap, void *);
1058 va_end(ap);
1060 ret = ioctl(s->vmfd, type, arg);
1061 if (ret == -1) {
1062 ret = -errno;
1064 return ret;
1067 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1069 int ret;
1070 void *arg;
1071 va_list ap;
1073 va_start(ap, type);
1074 arg = va_arg(ap, void *);
1075 va_end(ap);
1077 ret = ioctl(env->kvm_fd, type, arg);
1078 if (ret == -1) {
1079 ret = -errno;
1081 return ret;
1084 int kvm_has_sync_mmu(void)
1086 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1089 int kvm_has_vcpu_events(void)
1091 return kvm_state->vcpu_events;
1094 int kvm_has_robust_singlestep(void)
1096 return kvm_state->robust_singlestep;
1099 int kvm_has_debugregs(void)
1101 return kvm_state->debugregs;
1104 int kvm_has_xsave(void)
1106 return kvm_state->xsave;
1109 int kvm_has_xcrs(void)
1111 return kvm_state->xcrs;
1114 int kvm_has_many_ioeventfds(void)
1116 if (!kvm_enabled()) {
1117 return 0;
1119 return kvm_state->many_ioeventfds;
1122 void kvm_setup_guest_memory(void *start, size_t size)
1124 if (!kvm_has_sync_mmu()) {
1125 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1127 if (ret) {
1128 perror("qemu_madvise");
1129 fprintf(stderr,
1130 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1131 exit(1);
1136 #ifdef KVM_CAP_SET_GUEST_DEBUG
1137 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1138 target_ulong pc)
1140 struct kvm_sw_breakpoint *bp;
1142 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1143 if (bp->pc == pc) {
1144 return bp;
1147 return NULL;
1150 int kvm_sw_breakpoints_active(CPUState *env)
1152 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1155 struct kvm_set_guest_debug_data {
1156 struct kvm_guest_debug dbg;
1157 CPUState *env;
1158 int err;
1161 static void kvm_invoke_set_guest_debug(void *data)
1163 struct kvm_set_guest_debug_data *dbg_data = data;
1164 CPUState *env = dbg_data->env;
1166 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1169 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1171 struct kvm_set_guest_debug_data data;
1173 data.dbg.control = reinject_trap;
1175 if (env->singlestep_enabled) {
1176 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1178 kvm_arch_update_guest_debug(env, &data.dbg);
1179 data.env = env;
1181 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1182 return data.err;
1185 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1186 target_ulong len, int type)
1188 struct kvm_sw_breakpoint *bp;
1189 CPUState *env;
1190 int err;
1192 if (type == GDB_BREAKPOINT_SW) {
1193 bp = kvm_find_sw_breakpoint(current_env, addr);
1194 if (bp) {
1195 bp->use_count++;
1196 return 0;
1199 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1200 if (!bp) {
1201 return -ENOMEM;
1204 bp->pc = addr;
1205 bp->use_count = 1;
1206 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1207 if (err) {
1208 qemu_free(bp);
1209 return err;
1212 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1213 bp, entry);
1214 } else {
1215 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1216 if (err) {
1217 return err;
1221 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1222 err = kvm_update_guest_debug(env, 0);
1223 if (err) {
1224 return err;
1227 return 0;
1230 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1231 target_ulong len, int type)
1233 struct kvm_sw_breakpoint *bp;
1234 CPUState *env;
1235 int err;
1237 if (type == GDB_BREAKPOINT_SW) {
1238 bp = kvm_find_sw_breakpoint(current_env, addr);
1239 if (!bp) {
1240 return -ENOENT;
1243 if (bp->use_count > 1) {
1244 bp->use_count--;
1245 return 0;
1248 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1249 if (err) {
1250 return err;
1253 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1254 qemu_free(bp);
1255 } else {
1256 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1257 if (err) {
1258 return err;
1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1263 err = kvm_update_guest_debug(env, 0);
1264 if (err) {
1265 return err;
1268 return 0;
1271 void kvm_remove_all_breakpoints(CPUState *current_env)
1273 struct kvm_sw_breakpoint *bp, *next;
1274 KVMState *s = current_env->kvm_state;
1275 CPUState *env;
1277 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1278 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1279 /* Try harder to find a CPU that currently sees the breakpoint. */
1280 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1281 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1282 break;
1287 kvm_arch_remove_all_hw_breakpoints();
1289 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1290 kvm_update_guest_debug(env, 0);
1294 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1296 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1298 return -EINVAL;
1301 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1302 target_ulong len, int type)
1304 return -EINVAL;
1307 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1308 target_ulong len, int type)
1310 return -EINVAL;
1313 void kvm_remove_all_breakpoints(CPUState *current_env)
1316 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1318 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1320 struct kvm_signal_mask *sigmask;
1321 int r;
1323 if (!sigset) {
1324 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1327 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1329 sigmask->len = 8;
1330 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1331 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1332 qemu_free(sigmask);
1334 return r;
1337 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1339 #ifdef KVM_IOEVENTFD
1340 int ret;
1341 struct kvm_ioeventfd iofd;
1343 iofd.datamatch = val;
1344 iofd.addr = addr;
1345 iofd.len = 4;
1346 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1347 iofd.fd = fd;
1349 if (!kvm_enabled()) {
1350 return -ENOSYS;
1353 if (!assign) {
1354 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1357 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1359 if (ret < 0) {
1360 return -errno;
1363 return 0;
1364 #else
1365 return -ENOSYS;
1366 #endif
1369 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1371 #ifdef KVM_IOEVENTFD
1372 struct kvm_ioeventfd kick = {
1373 .datamatch = val,
1374 .addr = addr,
1375 .len = 2,
1376 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1377 .fd = fd,
1379 int r;
1380 if (!kvm_enabled()) {
1381 return -ENOSYS;
1383 if (!assign) {
1384 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1386 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1387 if (r < 0) {
1388 return r;
1390 return 0;
1391 #else
1392 return -ENOSYS;
1393 #endif
1396 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1398 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1401 int kvm_on_sigbus(int code, void *addr)
1403 return kvm_arch_on_sigbus(code, addr);