2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
, bool exact_size
)
33 BDRVQcowState
*s
= bs
->opaque
;
34 int new_l1_size
, new_l1_size2
, ret
, i
;
35 uint64_t *new_l1_table
;
36 int64_t new_l1_table_offset
;
39 if (min_size
<= s
->l1_size
)
43 new_l1_size
= min_size
;
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size
= s
->l1_size
;
47 if (new_l1_size
== 0) {
50 while (min_size
> new_l1_size
) {
51 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
56 fprintf(stderr
, "grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
59 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
60 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
61 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
65 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
66 if (new_l1_table_offset
< 0) {
68 return new_l1_table_offset
;
71 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
76 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
77 for(i
= 0; i
< s
->l1_size
; i
++)
78 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
79 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
82 for(i
= 0; i
< s
->l1_size
; i
++)
83 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
86 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
87 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
88 cpu_to_be64wu((uint64_t*)(data
+ 4), new_l1_table_offset
);
89 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
94 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
95 s
->l1_table_offset
= new_l1_table_offset
;
96 s
->l1_table
= new_l1_table
;
97 s
->l1_size
= new_l1_size
;
100 g_free(new_l1_table
);
101 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
108 * Loads a L2 table into memory. If the table is in the cache, the cache
109 * is used; otherwise the L2 table is loaded from the image file.
111 * Returns a pointer to the L2 table on success, or NULL if the read from
112 * the image file failed.
115 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
118 BDRVQcowState
*s
= bs
->opaque
;
121 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
127 * Writes one sector of the L1 table to the disk (can't update single entries
128 * and we really don't want bdrv_pread to perform a read-modify-write)
130 #define L1_ENTRIES_PER_SECTOR (512 / 8)
131 static int write_l1_entry(BlockDriverState
*bs
, int l1_index
)
133 BDRVQcowState
*s
= bs
->opaque
;
134 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
138 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
139 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
140 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
143 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
144 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
156 * Allocate a new l2 entry in the file. If l1_index points to an already
157 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158 * table) copy the contents of the old L2 table into the newly allocated one.
159 * Otherwise the new table is initialized with zeros.
163 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
165 BDRVQcowState
*s
= bs
->opaque
;
166 uint64_t old_l2_offset
;
171 old_l2_offset
= s
->l1_table
[l1_index
];
173 /* allocate a new l2 entry */
175 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
180 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
185 /* allocate a new entry in the l2 cache */
187 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
194 if (old_l2_offset
== 0) {
195 /* if there was no old l2 table, clear the new table */
196 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
200 /* if there was an old l2 table, read it from the disk */
201 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
202 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_offset
,
203 (void**) &old_table
);
208 memcpy(l2_table
, old_table
, s
->cluster_size
);
210 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
216 /* write the l2 table to the file */
217 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
219 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
220 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
225 /* update the L1 entry */
226 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
227 ret
= write_l1_entry(bs
, l1_index
);
236 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
237 s
->l1_table
[l1_index
] = old_l2_offset
;
241 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
242 uint64_t *l2_table
, uint64_t start
, uint64_t mask
)
245 uint64_t offset
= be64_to_cpu(l2_table
[0]) & ~mask
;
250 for (i
= start
; i
< start
+ nb_clusters
; i
++)
251 if (offset
+ (uint64_t) i
* cluster_size
!= (be64_to_cpu(l2_table
[i
]) & ~mask
))
257 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
261 while(nb_clusters
-- && l2_table
[i
] == 0)
267 /* The crypt function is compatible with the linux cryptoloop
268 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
270 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
271 uint8_t *out_buf
, const uint8_t *in_buf
,
272 int nb_sectors
, int enc
,
281 for(i
= 0; i
< nb_sectors
; i
++) {
282 ivec
.ll
[0] = cpu_to_le64(sector_num
);
284 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
292 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
294 uint64_t cluster_offset
,
295 int n_start
, int n_end
)
297 BDRVQcowState
*s
= bs
->opaque
;
303 * If this is the last cluster and it is only partially used, we must only
304 * copy until the end of the image, or bdrv_check_request will fail for the
305 * bdrv_read/write calls below.
307 if (start_sect
+ n_end
> bs
->total_sectors
) {
308 n_end
= bs
->total_sectors
- start_sect
;
316 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
317 iov
.iov_base
= qemu_blockalign(bs
, iov
.iov_len
);
319 qemu_iovec_init_external(&qiov
, &iov
, 1);
321 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
323 /* Call .bdrv_co_readv() directly instead of using the public block-layer
324 * interface. This avoids double I/O throttling and request tracking,
325 * which can lead to deadlock when block layer copy-on-read is enabled.
327 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
332 if (s
->crypt_method
) {
333 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
334 iov
.iov_base
, iov
.iov_base
, n
, 1,
335 &s
->aes_encrypt_key
);
338 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
339 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
346 qemu_vfree(iov
.iov_base
);
354 * For a given offset of the disk image, find the cluster offset in
355 * qcow2 file. The offset is stored in *cluster_offset.
357 * on entry, *num is the number of contiguous sectors we'd like to
358 * access following offset.
360 * on exit, *num is the number of contiguous sectors we can read.
362 * Return 0, if the offset is found
363 * Return -errno, otherwise.
367 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
368 int *num
, uint64_t *cluster_offset
)
370 BDRVQcowState
*s
= bs
->opaque
;
371 unsigned int l1_index
, l2_index
;
372 uint64_t l2_offset
, *l2_table
;
374 unsigned int index_in_cluster
, nb_clusters
;
375 uint64_t nb_available
, nb_needed
;
378 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
379 nb_needed
= *num
+ index_in_cluster
;
381 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
383 /* compute how many bytes there are between the offset and
384 * the end of the l1 entry
387 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
389 /* compute the number of available sectors */
391 nb_available
= (nb_available
>> 9) + index_in_cluster
;
393 if (nb_needed
> nb_available
) {
394 nb_needed
= nb_available
;
399 /* seek the the l2 offset in the l1 table */
401 l1_index
= offset
>> l1_bits
;
402 if (l1_index
>= s
->l1_size
)
405 l2_offset
= s
->l1_table
[l1_index
];
407 /* seek the l2 table of the given l2 offset */
412 /* load the l2 table in memory */
414 l2_offset
&= ~QCOW_OFLAG_COPIED
;
415 ret
= l2_load(bs
, l2_offset
, &l2_table
);
420 /* find the cluster offset for the given disk offset */
422 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
423 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
424 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
426 if (!*cluster_offset
) {
427 /* how many empty clusters ? */
428 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
430 /* how many allocated clusters ? */
431 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
432 &l2_table
[l2_index
], 0, QCOW_OFLAG_COPIED
);
435 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
437 nb_available
= (c
* s
->cluster_sectors
);
439 if (nb_available
> nb_needed
)
440 nb_available
= nb_needed
;
442 *num
= nb_available
- index_in_cluster
;
444 *cluster_offset
&=~QCOW_OFLAG_COPIED
;
451 * for a given disk offset, load (and allocate if needed)
454 * the l2 table offset in the qcow2 file and the cluster index
455 * in the l2 table are given to the caller.
457 * Returns 0 on success, -errno in failure case
459 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
460 uint64_t **new_l2_table
,
461 uint64_t *new_l2_offset
,
464 BDRVQcowState
*s
= bs
->opaque
;
465 unsigned int l1_index
, l2_index
;
467 uint64_t *l2_table
= NULL
;
470 /* seek the the l2 offset in the l1 table */
472 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
473 if (l1_index
>= s
->l1_size
) {
474 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
479 l2_offset
= s
->l1_table
[l1_index
];
481 /* seek the l2 table of the given l2 offset */
483 if (l2_offset
& QCOW_OFLAG_COPIED
) {
484 /* load the l2 table in memory */
485 l2_offset
&= ~QCOW_OFLAG_COPIED
;
486 ret
= l2_load(bs
, l2_offset
, &l2_table
);
491 /* First allocate a new L2 table (and do COW if needed) */
492 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
497 /* Then decrease the refcount of the old table */
499 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
501 l2_offset
= s
->l1_table
[l1_index
] & ~QCOW_OFLAG_COPIED
;
504 /* find the cluster offset for the given disk offset */
506 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
508 *new_l2_table
= l2_table
;
509 *new_l2_offset
= l2_offset
;
510 *new_l2_index
= l2_index
;
516 * alloc_compressed_cluster_offset
518 * For a given offset of the disk image, return cluster offset in
521 * If the offset is not found, allocate a new compressed cluster.
523 * Return the cluster offset if successful,
524 * Return 0, otherwise.
528 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
532 BDRVQcowState
*s
= bs
->opaque
;
534 uint64_t l2_offset
, *l2_table
;
535 int64_t cluster_offset
;
538 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
543 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
544 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
545 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
550 qcow2_free_any_clusters(bs
, cluster_offset
, 1);
552 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
553 if (cluster_offset
< 0) {
554 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
558 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
559 (cluster_offset
>> 9);
561 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
562 ((uint64_t)nb_csectors
<< s
->csize_shift
);
564 /* update L2 table */
566 /* compressed clusters never have the copied flag */
568 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
569 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
570 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
571 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
576 return cluster_offset
;
579 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
581 BDRVQcowState
*s
= bs
->opaque
;
582 int i
, j
= 0, l2_index
, ret
;
583 uint64_t *old_cluster
, start_sect
, l2_offset
, *l2_table
;
584 uint64_t cluster_offset
= m
->cluster_offset
;
587 if (m
->nb_clusters
== 0)
590 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
592 /* copy content of unmodified sectors */
593 start_sect
= (m
->offset
& ~(s
->cluster_size
- 1)) >> 9;
596 qemu_co_mutex_unlock(&s
->lock
);
597 ret
= copy_sectors(bs
, start_sect
, cluster_offset
, 0, m
->n_start
);
598 qemu_co_mutex_lock(&s
->lock
);
603 if (m
->nb_available
& (s
->cluster_sectors
- 1)) {
604 uint64_t end
= m
->nb_available
& ~(uint64_t)(s
->cluster_sectors
- 1);
606 qemu_co_mutex_unlock(&s
->lock
);
607 ret
= copy_sectors(bs
, start_sect
+ end
, cluster_offset
+ (end
<< 9),
608 m
->nb_available
- end
, s
->cluster_sectors
);
609 qemu_co_mutex_lock(&s
->lock
);
617 * Before we update the L2 table to actually point to the new cluster, we
618 * need to be sure that the refcounts have been increased and COW was
622 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
625 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
626 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_offset
, &l2_index
);
630 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
632 for (i
= 0; i
< m
->nb_clusters
; i
++) {
633 /* if two concurrent writes happen to the same unallocated cluster
634 * each write allocates separate cluster and writes data concurrently.
635 * The first one to complete updates l2 table with pointer to its
636 * cluster the second one has to do RMW (which is done above by
637 * copy_sectors()), update l2 table with its cluster pointer and free
638 * old cluster. This is what this loop does */
639 if(l2_table
[l2_index
+ i
] != 0)
640 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
642 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
643 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
647 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
653 * If this was a COW, we need to decrease the refcount of the old cluster.
654 * Also flush bs->file to get the right order for L2 and refcount update.
657 for (i
= 0; i
< j
; i
++) {
658 qcow2_free_any_clusters(bs
,
659 be64_to_cpu(old_cluster
[i
]) & ~QCOW_OFLAG_COPIED
, 1);
670 * alloc_cluster_offset
672 * For a given offset of the disk image, return cluster offset in qcow2 file.
673 * If the offset is not found, allocate a new cluster.
675 * If the cluster was already allocated, m->nb_clusters is set to 0,
676 * other fields in m are meaningless.
678 * If the cluster is newly allocated, m->nb_clusters is set to the number of
679 * contiguous clusters that have been allocated. In this case, the other
680 * fields of m are valid and contain information about the first allocated
683 * If the request conflicts with another write request in flight, the coroutine
684 * is queued and will be reentered when the dependency has completed.
686 * Return 0 on success and -errno in error cases
688 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
689 int n_start
, int n_end
, int *num
, QCowL2Meta
*m
)
691 BDRVQcowState
*s
= bs
->opaque
;
693 uint64_t l2_offset
, *l2_table
;
694 int64_t cluster_offset
;
695 unsigned int nb_clusters
, i
= 0;
696 QCowL2Meta
*old_alloc
;
698 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
704 nb_clusters
= size_to_clusters(s
, n_end
<< 9);
706 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
708 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
710 /* We keep all QCOW_OFLAG_COPIED clusters */
712 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
713 nb_clusters
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
714 &l2_table
[l2_index
], 0, 0);
716 cluster_offset
&= ~QCOW_OFLAG_COPIED
;
722 /* for the moment, multiple compressed clusters are not managed */
724 if (cluster_offset
& QCOW_OFLAG_COMPRESSED
)
727 /* how many available clusters ? */
729 while (i
< nb_clusters
) {
730 i
+= count_contiguous_clusters(nb_clusters
- i
, s
->cluster_size
,
731 &l2_table
[l2_index
], i
, 0);
732 if ((i
>= nb_clusters
) || be64_to_cpu(l2_table
[l2_index
+ i
])) {
736 i
+= count_contiguous_free_clusters(nb_clusters
- i
,
737 &l2_table
[l2_index
+ i
]);
738 if (i
>= nb_clusters
) {
742 cluster_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
744 if ((cluster_offset
& QCOW_OFLAG_COPIED
) ||
745 (cluster_offset
& QCOW_OFLAG_COMPRESSED
))
748 assert(i
<= nb_clusters
);
752 * Check if there already is an AIO write request in flight which allocates
753 * the same cluster. In this case we need to wait until the previous
754 * request has completed and updated the L2 table accordingly.
756 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
758 uint64_t start
= offset
>> s
->cluster_bits
;
759 uint64_t end
= start
+ nb_clusters
;
760 uint64_t old_start
= old_alloc
->offset
>> s
->cluster_bits
;
761 uint64_t old_end
= old_start
+ old_alloc
->nb_clusters
;
763 if (end
< old_start
|| start
> old_end
) {
764 /* No intersection */
766 if (start
< old_start
) {
767 /* Stop at the start of a running allocation */
768 nb_clusters
= old_start
- start
;
773 if (nb_clusters
== 0) {
774 /* Wait for the dependency to complete. We need to recheck
775 * the free/allocated clusters when we continue. */
776 qemu_co_mutex_unlock(&s
->lock
);
777 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
778 qemu_co_mutex_lock(&s
->lock
);
788 /* save info needed for meta data update */
790 m
->n_start
= n_start
;
791 m
->nb_clusters
= nb_clusters
;
793 QLIST_INSERT_HEAD(&s
->cluster_allocs
, m
, next_in_flight
);
795 /* allocate a new cluster */
797 cluster_offset
= qcow2_alloc_clusters(bs
, nb_clusters
* s
->cluster_size
);
798 if (cluster_offset
< 0) {
799 ret
= cluster_offset
;
804 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
809 m
->nb_available
= MIN(nb_clusters
<< (s
->cluster_bits
- 9), n_end
);
810 m
->cluster_offset
= cluster_offset
;
812 *num
= m
->nb_available
- n_start
;
817 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
819 QLIST_REMOVE(m
, next_in_flight
);
823 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
824 const uint8_t *buf
, int buf_size
)
826 z_stream strm1
, *strm
= &strm1
;
829 memset(strm
, 0, sizeof(*strm
));
831 strm
->next_in
= (uint8_t *)buf
;
832 strm
->avail_in
= buf_size
;
833 strm
->next_out
= out_buf
;
834 strm
->avail_out
= out_buf_size
;
836 ret
= inflateInit2(strm
, -12);
839 ret
= inflate(strm
, Z_FINISH
);
840 out_len
= strm
->next_out
- out_buf
;
841 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
842 out_len
!= out_buf_size
) {
850 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
852 BDRVQcowState
*s
= bs
->opaque
;
853 int ret
, csize
, nb_csectors
, sector_offset
;
856 coffset
= cluster_offset
& s
->cluster_offset_mask
;
857 if (s
->cluster_cache_offset
!= coffset
) {
858 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
859 sector_offset
= coffset
& 511;
860 csize
= nb_csectors
* 512 - sector_offset
;
861 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
862 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
866 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
867 s
->cluster_data
+ sector_offset
, csize
) < 0) {
870 s
->cluster_cache_offset
= coffset
;
876 * This discards as many clusters of nb_clusters as possible at once (i.e.
877 * all clusters in the same L2 table) and returns the number of discarded
880 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
881 unsigned int nb_clusters
)
883 BDRVQcowState
*s
= bs
->opaque
;
884 uint64_t l2_offset
, *l2_table
;
889 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
894 /* Limit nb_clusters to one L2 table */
895 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
897 for (i
= 0; i
< nb_clusters
; i
++) {
900 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
901 old_offset
&= ~QCOW_OFLAG_COPIED
;
903 if (old_offset
== 0) {
907 /* First remove L2 entries */
908 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
909 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
911 /* Then decrease the refcount */
912 qcow2_free_any_clusters(bs
, old_offset
, 1);
915 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
923 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
926 BDRVQcowState
*s
= bs
->opaque
;
928 unsigned int nb_clusters
;
931 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
933 /* Round start up and end down */
934 offset
= align_offset(offset
, s
->cluster_size
);
935 end_offset
&= ~(s
->cluster_size
- 1);
937 if (offset
> end_offset
) {
941 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
943 /* Each L2 table is handled by its own loop iteration */
944 while (nb_clusters
> 0) {
945 ret
= discard_single_l2(bs
, offset
, nb_clusters
);
951 offset
+= (ret
* s
->cluster_size
);