ppc4xx_sdram: convert to memory API
[qemu/wangdongxu.git] / hw / onenand.c
blob00276a03cbee195b599d7729e008448dc9c8cfaa
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
22 #include "hw.h"
23 #include "flash.h"
24 #include "irq.h"
25 #include "blockdev.h"
26 #include "memory.h"
27 #include "exec-memory.h"
29 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
30 #define PAGE_SHIFT 11
32 /* Fixed */
33 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
35 typedef struct {
36 struct {
37 uint16_t man;
38 uint16_t dev;
39 uint16_t ver;
40 } id;
41 int shift;
42 target_phys_addr_t base;
43 qemu_irq intr;
44 qemu_irq rdy;
45 BlockDriverState *bdrv;
46 BlockDriverState *bdrv_cur;
47 uint8_t *image;
48 uint8_t *otp;
49 uint8_t *current;
50 MemoryRegion ram;
51 MemoryRegion mapped_ram;
52 uint8_t *boot[2];
53 uint8_t *data[2][2];
54 MemoryRegion iomem;
55 MemoryRegion container;
56 int cycle;
57 int otpmode;
59 uint16_t addr[8];
60 uint16_t unladdr[8];
61 int bufaddr;
62 int count;
63 uint16_t command;
64 uint16_t config[2];
65 uint16_t status;
66 uint16_t intstatus;
67 uint16_t wpstatus;
69 ECCState ecc;
71 int density_mask;
72 int secs;
73 int secs_cur;
74 int blocks;
75 uint8_t *blockwp;
76 } OneNANDState;
78 enum {
79 ONEN_BUF_BLOCK = 0,
80 ONEN_BUF_BLOCK2 = 1,
81 ONEN_BUF_DEST_BLOCK = 2,
82 ONEN_BUF_DEST_PAGE = 3,
83 ONEN_BUF_PAGE = 7,
86 enum {
87 ONEN_ERR_CMD = 1 << 10,
88 ONEN_ERR_ERASE = 1 << 11,
89 ONEN_ERR_PROG = 1 << 12,
90 ONEN_ERR_LOAD = 1 << 13,
93 enum {
94 ONEN_INT_RESET = 1 << 4,
95 ONEN_INT_ERASE = 1 << 5,
96 ONEN_INT_PROG = 1 << 6,
97 ONEN_INT_LOAD = 1 << 7,
98 ONEN_INT = 1 << 15,
101 enum {
102 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
103 ONEN_LOCK_LOCKED = 1 << 1,
104 ONEN_LOCK_UNLOCKED = 1 << 2,
107 static void onenand_mem_setup(OneNANDState *s)
109 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111 * write boot commands. Also take note of the BWPS bit. */
112 memory_region_init(&s->container, "onenand", 0x10000 << s->shift);
113 memory_region_add_subregion(&s->container, 0, &s->iomem);
114 memory_region_init_alias(&s->mapped_ram, "onenand-mapped-ram",
115 &s->ram, 0x0200 << s->shift,
116 0xbe00 << s->shift);
117 memory_region_add_subregion_overlap(&s->container,
118 0x0200 << s->shift,
119 &s->mapped_ram,
123 void onenand_base_update(void *opaque, target_phys_addr_t new)
125 OneNANDState *s = (OneNANDState *) opaque;
127 s->base = new;
129 memory_region_add_subregion(get_system_memory(), s->base, &s->container);
132 void onenand_base_unmap(void *opaque)
134 OneNANDState *s = (OneNANDState *) opaque;
136 memory_region_del_subregion(get_system_memory(), &s->container);
139 static void onenand_intr_update(OneNANDState *s)
141 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
144 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
145 static void onenand_reset(OneNANDState *s, int cold)
147 memset(&s->addr, 0, sizeof(s->addr));
148 s->command = 0;
149 s->count = 1;
150 s->bufaddr = 0;
151 s->config[0] = 0x40c0;
152 s->config[1] = 0x0000;
153 onenand_intr_update(s);
154 qemu_irq_raise(s->rdy);
155 s->status = 0x0000;
156 s->intstatus = cold ? 0x8080 : 0x8010;
157 s->unladdr[0] = 0;
158 s->unladdr[1] = 0;
159 s->wpstatus = 0x0002;
160 s->cycle = 0;
161 s->otpmode = 0;
162 s->bdrv_cur = s->bdrv;
163 s->current = s->image;
164 s->secs_cur = s->secs;
166 if (cold) {
167 /* Lock the whole flash */
168 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
170 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
171 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
175 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
176 void *dest)
178 if (s->bdrv_cur)
179 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
180 else if (sec + secn > s->secs_cur)
181 return 1;
183 memcpy(dest, s->current + (sec << 9), secn << 9);
185 return 0;
188 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
189 void *src)
191 int result = 0;
193 if (secn > 0) {
194 uint32_t size = (uint32_t) secn * 512;
195 const uint8_t *sp = (const uint8_t *) src;
196 uint8_t *dp = 0;
197 if (s->bdrv_cur) {
198 dp = g_malloc(size);
199 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
200 result = 1;
202 } else {
203 if (sec + secn > s->secs_cur) {
204 result = 1;
205 } else {
206 dp = (uint8_t *) s->current + (sec << 9);
209 if (!result) {
210 uint32_t i;
211 for (i = 0; i < size; i++) {
212 dp[i] &= sp[i];
214 if (s->bdrv_cur) {
215 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
218 if (dp && s->bdrv_cur) {
219 g_free(dp);
223 return result;
226 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
227 void *dest)
229 uint8_t buf[512];
231 if (s->bdrv_cur) {
232 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
233 return 1;
234 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
235 } else if (sec + secn > s->secs_cur)
236 return 1;
237 else
238 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
240 return 0;
243 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
244 void *src)
246 int result = 0;
247 if (secn > 0) {
248 const uint8_t *sp = (const uint8_t *) src;
249 uint8_t *dp = 0, *dpp = 0;
250 if (s->bdrv_cur) {
251 dp = g_malloc(512);
252 if (!dp || bdrv_read(s->bdrv_cur,
253 s->secs_cur + (sec >> 5),
254 dp, 1) < 0) {
255 result = 1;
256 } else {
257 dpp = dp + ((sec & 31) << 4);
259 } else {
260 if (sec + secn > s->secs_cur) {
261 result = 1;
262 } else {
263 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
266 if (!result) {
267 uint32_t i;
268 for (i = 0; i < (secn << 4); i++) {
269 dpp[i] &= sp[i];
271 if (s->bdrv_cur) {
272 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
273 dp, 1) < 0;
276 if (dp) {
277 g_free(dp);
280 return result;
283 static inline int onenand_erase(OneNANDState *s, int sec, int num)
285 uint8_t *blankbuf, *tmpbuf;
286 blankbuf = g_malloc(512);
287 if (!blankbuf) {
288 return 1;
290 tmpbuf = g_malloc(512);
291 if (!tmpbuf) {
292 g_free(blankbuf);
293 return 1;
295 memset(blankbuf, 0xff, 512);
296 for (; num > 0; num--, sec++) {
297 if (s->bdrv_cur) {
298 int erasesec = s->secs_cur + (sec >> 5);
299 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
300 goto fail;
302 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
303 goto fail;
305 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
306 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
307 goto fail;
309 } else {
310 if (sec + 1 > s->secs_cur) {
311 goto fail;
313 memcpy(s->current + (sec << 9), blankbuf, 512);
314 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
315 blankbuf, 1 << 4);
319 g_free(tmpbuf);
320 g_free(blankbuf);
321 return 0;
323 fail:
324 g_free(tmpbuf);
325 g_free(blankbuf);
326 return 1;
329 static void onenand_command(OneNANDState *s, int cmd)
331 int b;
332 int sec;
333 void *buf;
334 #define SETADDR(block, page) \
335 sec = (s->addr[page] & 3) + \
336 ((((s->addr[page] >> 2) & 0x3f) + \
337 (((s->addr[block] & 0xfff) | \
338 (s->addr[block] >> 15 ? \
339 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
340 #define SETBUF_M() \
341 buf = (s->bufaddr & 8) ? \
342 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
343 buf += (s->bufaddr & 3) << 9;
344 #define SETBUF_S() \
345 buf = (s->bufaddr & 8) ? \
346 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
347 buf += (s->bufaddr & 3) << 4;
349 switch (cmd) {
350 case 0x00: /* Load single/multiple sector data unit into buffer */
351 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
353 SETBUF_M()
354 if (onenand_load_main(s, sec, s->count, buf))
355 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
357 #if 0
358 SETBUF_S()
359 if (onenand_load_spare(s, sec, s->count, buf))
360 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
361 #endif
363 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
364 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
365 * then we need two split the read/write into two chunks.
367 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
368 break;
369 case 0x13: /* Load single/multiple spare sector into buffer */
370 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
372 SETBUF_S()
373 if (onenand_load_spare(s, sec, s->count, buf))
374 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
376 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
377 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
378 * then we need two split the read/write into two chunks.
380 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
381 break;
382 case 0x80: /* Program single/multiple sector data unit from buffer */
383 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
385 SETBUF_M()
386 if (onenand_prog_main(s, sec, s->count, buf))
387 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
389 #if 0
390 SETBUF_S()
391 if (onenand_prog_spare(s, sec, s->count, buf))
392 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
393 #endif
395 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
396 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
397 * then we need two split the read/write into two chunks.
399 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
400 break;
401 case 0x1a: /* Program single/multiple spare area sector from buffer */
402 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
404 SETBUF_S()
405 if (onenand_prog_spare(s, sec, s->count, buf))
406 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
408 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
409 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
410 * then we need two split the read/write into two chunks.
412 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
413 break;
414 case 0x1b: /* Copy-back program */
415 SETBUF_S()
417 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
418 if (onenand_load_main(s, sec, s->count, buf))
419 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
421 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
422 if (onenand_prog_main(s, sec, s->count, buf))
423 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
425 /* TODO: spare areas */
427 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
428 break;
430 case 0x23: /* Unlock NAND array block(s) */
431 s->intstatus |= ONEN_INT;
433 /* XXX the previous (?) area should be locked automatically */
434 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
435 if (b >= s->blocks) {
436 s->status |= ONEN_ERR_CMD;
437 break;
439 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
440 break;
442 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
444 break;
445 case 0x27: /* Unlock All NAND array blocks */
446 s->intstatus |= ONEN_INT;
448 for (b = 0; b < s->blocks; b ++) {
449 if (b >= s->blocks) {
450 s->status |= ONEN_ERR_CMD;
451 break;
453 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
454 break;
456 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
458 break;
460 case 0x2a: /* Lock NAND array block(s) */
461 s->intstatus |= ONEN_INT;
463 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
464 if (b >= s->blocks) {
465 s->status |= ONEN_ERR_CMD;
466 break;
468 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
469 break;
471 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
473 break;
474 case 0x2c: /* Lock-tight NAND array block(s) */
475 s->intstatus |= ONEN_INT;
477 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
478 if (b >= s->blocks) {
479 s->status |= ONEN_ERR_CMD;
480 break;
482 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
483 continue;
485 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
487 break;
489 case 0x71: /* Erase-Verify-Read */
490 s->intstatus |= ONEN_INT;
491 break;
492 case 0x95: /* Multi-block erase */
493 qemu_irq_pulse(s->intr);
494 /* Fall through. */
495 case 0x94: /* Block erase */
496 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
497 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
498 << (BLOCK_SHIFT - 9);
499 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
500 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
502 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
503 break;
504 case 0xb0: /* Erase suspend */
505 break;
506 case 0x30: /* Erase resume */
507 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
508 break;
510 case 0xf0: /* Reset NAND Flash core */
511 onenand_reset(s, 0);
512 break;
513 case 0xf3: /* Reset OneNAND */
514 onenand_reset(s, 0);
515 break;
517 case 0x65: /* OTP Access */
518 s->intstatus |= ONEN_INT;
519 s->bdrv_cur = NULL;
520 s->current = s->otp;
521 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
522 s->addr[ONEN_BUF_BLOCK] = 0;
523 s->otpmode = 1;
524 break;
526 default:
527 s->status |= ONEN_ERR_CMD;
528 s->intstatus |= ONEN_INT;
529 fprintf(stderr, "%s: unknown OneNAND command %x\n",
530 __FUNCTION__, cmd);
533 onenand_intr_update(s);
536 static uint64_t onenand_read(void *opaque, target_phys_addr_t addr,
537 unsigned size)
539 OneNANDState *s = (OneNANDState *) opaque;
540 int offset = addr >> s->shift;
542 switch (offset) {
543 case 0x0000 ... 0xc000:
544 return lduw_le_p(s->boot[0] + addr);
546 case 0xf000: /* Manufacturer ID */
547 return s->id.man;
548 case 0xf001: /* Device ID */
549 return s->id.dev;
550 case 0xf002: /* Version ID */
551 return s->id.ver;
552 /* TODO: get the following values from a real chip! */
553 case 0xf003: /* Data Buffer size */
554 return 1 << PAGE_SHIFT;
555 case 0xf004: /* Boot Buffer size */
556 return 0x200;
557 case 0xf005: /* Amount of buffers */
558 return 1 | (2 << 8);
559 case 0xf006: /* Technology */
560 return 0;
562 case 0xf100 ... 0xf107: /* Start addresses */
563 return s->addr[offset - 0xf100];
565 case 0xf200: /* Start buffer */
566 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
568 case 0xf220: /* Command */
569 return s->command;
570 case 0xf221: /* System Configuration 1 */
571 return s->config[0] & 0xffe0;
572 case 0xf222: /* System Configuration 2 */
573 return s->config[1];
575 case 0xf240: /* Controller Status */
576 return s->status;
577 case 0xf241: /* Interrupt */
578 return s->intstatus;
579 case 0xf24c: /* Unlock Start Block Address */
580 return s->unladdr[0];
581 case 0xf24d: /* Unlock End Block Address */
582 return s->unladdr[1];
583 case 0xf24e: /* Write Protection Status */
584 return s->wpstatus;
586 case 0xff00: /* ECC Status */
587 return 0x00;
588 case 0xff01: /* ECC Result of main area data */
589 case 0xff02: /* ECC Result of spare area data */
590 case 0xff03: /* ECC Result of main area data */
591 case 0xff04: /* ECC Result of spare area data */
592 hw_error("%s: imeplement ECC\n", __FUNCTION__);
593 return 0x0000;
596 fprintf(stderr, "%s: unknown OneNAND register %x\n",
597 __FUNCTION__, offset);
598 return 0;
601 static void onenand_write(void *opaque, target_phys_addr_t addr,
602 uint64_t value, unsigned size)
604 OneNANDState *s = (OneNANDState *) opaque;
605 int offset = addr >> s->shift;
606 int sec;
608 switch (offset) {
609 case 0x0000 ... 0x01ff:
610 case 0x8000 ... 0x800f:
611 if (s->cycle) {
612 s->cycle = 0;
614 if (value == 0x0000) {
615 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
616 onenand_load_main(s, sec,
617 1 << (PAGE_SHIFT - 9), s->data[0][0]);
618 s->addr[ONEN_BUF_PAGE] += 4;
619 s->addr[ONEN_BUF_PAGE] &= 0xff;
621 break;
624 switch (value) {
625 case 0x00f0: /* Reset OneNAND */
626 onenand_reset(s, 0);
627 break;
629 case 0x00e0: /* Load Data into Buffer */
630 s->cycle = 1;
631 break;
633 case 0x0090: /* Read Identification Data */
634 memset(s->boot[0], 0, 3 << s->shift);
635 s->boot[0][0 << s->shift] = s->id.man & 0xff;
636 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
637 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
638 break;
640 default:
641 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
642 __FUNCTION__, value);
644 break;
646 case 0xf100 ... 0xf107: /* Start addresses */
647 s->addr[offset - 0xf100] = value;
648 break;
650 case 0xf200: /* Start buffer */
651 s->bufaddr = (value >> 8) & 0xf;
652 if (PAGE_SHIFT == 11)
653 s->count = (value & 3) ?: 4;
654 else if (PAGE_SHIFT == 10)
655 s->count = (value & 1) ?: 2;
656 break;
658 case 0xf220: /* Command */
659 if (s->intstatus & (1 << 15))
660 break;
661 s->command = value;
662 onenand_command(s, s->command);
663 break;
664 case 0xf221: /* System Configuration 1 */
665 s->config[0] = value;
666 onenand_intr_update(s);
667 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
668 break;
669 case 0xf222: /* System Configuration 2 */
670 s->config[1] = value;
671 break;
673 case 0xf241: /* Interrupt */
674 s->intstatus &= value;
675 if ((1 << 15) & ~s->intstatus)
676 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
677 ONEN_ERR_PROG | ONEN_ERR_LOAD);
678 onenand_intr_update(s);
679 break;
680 case 0xf24c: /* Unlock Start Block Address */
681 s->unladdr[0] = value & (s->blocks - 1);
682 /* For some reason we have to set the end address to by default
683 * be same as start because the software forgets to write anything
684 * in there. */
685 s->unladdr[1] = value & (s->blocks - 1);
686 break;
687 case 0xf24d: /* Unlock End Block Address */
688 s->unladdr[1] = value & (s->blocks - 1);
689 break;
691 default:
692 fprintf(stderr, "%s: unknown OneNAND register %x\n",
693 __FUNCTION__, offset);
697 static const MemoryRegionOps onenand_ops = {
698 .read = onenand_read,
699 .write = onenand_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
703 void *onenand_init(BlockDriverState *bdrv,
704 uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
705 int regshift, qemu_irq irq)
707 OneNANDState *s = (OneNANDState *) g_malloc0(sizeof(*s));
708 uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
709 void *ram;
711 s->shift = regshift;
712 s->intr = irq;
713 s->rdy = NULL;
714 s->id.man = man_id;
715 s->id.dev = dev_id;
716 s->id.ver = ver_id;
717 s->blocks = size >> BLOCK_SHIFT;
718 s->secs = size >> 9;
719 s->blockwp = g_malloc(s->blocks);
720 s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
721 memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand",
722 0x10000 << s->shift);
723 s->bdrv = bdrv;
724 if (!s->bdrv) {
725 s->image = memset(g_malloc(size + (size >> 5)),
726 0xff, size + (size >> 5));
728 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
729 0xff, (64 + 2) << PAGE_SHIFT);
730 memory_region_init_ram(&s->ram, NULL, "onenand.ram", 0xc000 << s->shift);
731 ram = memory_region_get_ram_ptr(&s->ram);
732 s->boot[0] = ram + (0x0000 << s->shift);
733 s->boot[1] = ram + (0x8000 << s->shift);
734 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
735 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
736 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
737 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
738 onenand_mem_setup(s);
740 onenand_reset(s, 1);
742 return s;
745 void *onenand_raw_otp(void *opaque)
747 OneNANDState *s = (OneNANDState *) opaque;
749 return s->otp;