Merge remote-tracking branch 'mdroth/qga-pull-3-26-12' into staging
[qemu/wangdongxu.git] / cpu-all.h
blob9621c3c92e9707fefe7e08e5b07440715d33e092
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "qemu-tls.h"
24 #include "cpu-common.h"
26 /* some important defines:
28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29 * memory accesses.
31 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32 * otherwise little endian.
34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 * TARGET_WORDS_BIGENDIAN : same for target cpu
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40 #define BSWAP_NEEDED
41 #endif
43 #ifdef BSWAP_NEEDED
45 static inline uint16_t tswap16(uint16_t s)
47 return bswap16(s);
50 static inline uint32_t tswap32(uint32_t s)
52 return bswap32(s);
55 static inline uint64_t tswap64(uint64_t s)
57 return bswap64(s);
60 static inline void tswap16s(uint16_t *s)
62 *s = bswap16(*s);
65 static inline void tswap32s(uint32_t *s)
67 *s = bswap32(*s);
70 static inline void tswap64s(uint64_t *s)
72 *s = bswap64(*s);
75 #else
77 static inline uint16_t tswap16(uint16_t s)
79 return s;
82 static inline uint32_t tswap32(uint32_t s)
84 return s;
87 static inline uint64_t tswap64(uint64_t s)
89 return s;
92 static inline void tswap16s(uint16_t *s)
96 static inline void tswap32s(uint32_t *s)
100 static inline void tswap64s(uint64_t *s)
104 #endif
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
110 #else
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
114 #endif
116 /* CPU memory access without any memory or io remapping */
119 * the generic syntax for the memory accesses is:
121 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123 * store: st{type}{size}{endian}_{access_type}(ptr, val)
125 * type is:
126 * (empty): integer access
127 * f : float access
129 * sign is:
130 * (empty): for floats or 32 bit size
131 * u : unsigned
132 * s : signed
134 * size is:
135 * b: 8 bits
136 * w: 16 bits
137 * l: 32 bits
138 * q: 64 bits
140 * endian is:
141 * (empty): target cpu endianness or 8 bit access
142 * r : reversed target cpu endianness (not implemented yet)
143 * be : big endian (not implemented yet)
144 * le : little endian (not implemented yet)
146 * access_type is:
147 * raw : host memory access
148 * user : user mode access using soft MMU
149 * kernel : kernel mode access using soft MMU
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
165 #else
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
177 #endif
179 /* MMU memory access macros */
181 #if defined(CONFIG_USER_ONLY)
182 #include <assert.h>
183 #include "qemu-types.h"
185 /* On some host systems the guest address space is reserved on the host.
186 * This allows the guest address space to be offset to a convenient location.
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base;
190 extern int have_guest_base;
191 extern unsigned long reserved_va;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
194 #else
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
197 #endif
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
200 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
204 #else
205 #define h2g_valid(x) ({ \
206 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
209 #endif
211 #define h2g(x) ({ \
212 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
213 /* Check if given address fits target address space */ \
214 assert(h2g_valid(x)); \
215 (abi_ulong)__ret; \
218 #define saddr(x) g2h(x)
219 #define laddr(x) g2h(x)
221 #else /* !CONFIG_USER_ONLY */
222 /* NOTE: we use double casts if pointers and target_ulong have
223 different sizes */
224 #define saddr(x) (uint8_t *)(long)(x)
225 #define laddr(x) (uint8_t *)(long)(x)
226 #endif
228 #define ldub_raw(p) ldub_p(laddr((p)))
229 #define ldsb_raw(p) ldsb_p(laddr((p)))
230 #define lduw_raw(p) lduw_p(laddr((p)))
231 #define ldsw_raw(p) ldsw_p(laddr((p)))
232 #define ldl_raw(p) ldl_p(laddr((p)))
233 #define ldq_raw(p) ldq_p(laddr((p)))
234 #define ldfl_raw(p) ldfl_p(laddr((p)))
235 #define ldfq_raw(p) ldfq_p(laddr((p)))
236 #define stb_raw(p, v) stb_p(saddr((p)), v)
237 #define stw_raw(p, v) stw_p(saddr((p)), v)
238 #define stl_raw(p, v) stl_p(saddr((p)), v)
239 #define stq_raw(p, v) stq_p(saddr((p)), v)
240 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
241 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
244 #if defined(CONFIG_USER_ONLY)
246 /* if user mode, no other memory access functions */
247 #define ldub(p) ldub_raw(p)
248 #define ldsb(p) ldsb_raw(p)
249 #define lduw(p) lduw_raw(p)
250 #define ldsw(p) ldsw_raw(p)
251 #define ldl(p) ldl_raw(p)
252 #define ldq(p) ldq_raw(p)
253 #define ldfl(p) ldfl_raw(p)
254 #define ldfq(p) ldfq_raw(p)
255 #define stb(p, v) stb_raw(p, v)
256 #define stw(p, v) stw_raw(p, v)
257 #define stl(p, v) stl_raw(p, v)
258 #define stq(p, v) stq_raw(p, v)
259 #define stfl(p, v) stfl_raw(p, v)
260 #define stfq(p, v) stfq_raw(p, v)
262 #ifndef CONFIG_TCG_PASS_AREG0
263 #define ldub_code(p) ldub_raw(p)
264 #define ldsb_code(p) ldsb_raw(p)
265 #define lduw_code(p) lduw_raw(p)
266 #define ldsw_code(p) ldsw_raw(p)
267 #define ldl_code(p) ldl_raw(p)
268 #define ldq_code(p) ldq_raw(p)
269 #else
270 #define cpu_ldub_code(env1, p) ldub_raw(p)
271 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
272 #define cpu_lduw_code(env1, p) lduw_raw(p)
273 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
274 #define cpu_ldl_code(env1, p) ldl_raw(p)
275 #define cpu_ldq_code(env1, p) ldq_raw(p)
276 #endif
278 #define ldub_kernel(p) ldub_raw(p)
279 #define ldsb_kernel(p) ldsb_raw(p)
280 #define lduw_kernel(p) lduw_raw(p)
281 #define ldsw_kernel(p) ldsw_raw(p)
282 #define ldl_kernel(p) ldl_raw(p)
283 #define ldq_kernel(p) ldq_raw(p)
284 #define ldfl_kernel(p) ldfl_raw(p)
285 #define ldfq_kernel(p) ldfq_raw(p)
286 #define stb_kernel(p, v) stb_raw(p, v)
287 #define stw_kernel(p, v) stw_raw(p, v)
288 #define stl_kernel(p, v) stl_raw(p, v)
289 #define stq_kernel(p, v) stq_raw(p, v)
290 #define stfl_kernel(p, v) stfl_raw(p, v)
291 #define stfq_kernel(p, vt) stfq_raw(p, v)
293 #endif /* defined(CONFIG_USER_ONLY) */
295 /* page related stuff */
297 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
298 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
299 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
301 /* ??? These should be the larger of unsigned long and target_ulong. */
302 extern unsigned long qemu_real_host_page_size;
303 extern unsigned long qemu_host_page_size;
304 extern unsigned long qemu_host_page_mask;
306 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
308 /* same as PROT_xxx */
309 #define PAGE_READ 0x0001
310 #define PAGE_WRITE 0x0002
311 #define PAGE_EXEC 0x0004
312 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
313 #define PAGE_VALID 0x0008
314 /* original state of the write flag (used when tracking self-modifying
315 code */
316 #define PAGE_WRITE_ORG 0x0010
317 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
318 /* FIXME: Code that sets/uses this is broken and needs to go away. */
319 #define PAGE_RESERVED 0x0020
320 #endif
322 #if defined(CONFIG_USER_ONLY)
323 void page_dump(FILE *f);
325 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
326 abi_ulong, unsigned long);
327 int walk_memory_regions(void *, walk_memory_regions_fn);
329 int page_get_flags(target_ulong address);
330 void page_set_flags(target_ulong start, target_ulong end, int flags);
331 int page_check_range(target_ulong start, target_ulong len, int flags);
332 #endif
334 CPUArchState *cpu_copy(CPUArchState *env);
335 CPUArchState *qemu_get_cpu(int cpu);
337 #define CPU_DUMP_CODE 0x00010000
339 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
340 int flags);
341 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
342 int flags);
344 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
345 GCC_FMT_ATTR(2, 3);
346 extern CPUArchState *first_cpu;
347 DECLARE_TLS(CPUArchState *,cpu_single_env);
348 #define cpu_single_env tls_var(cpu_single_env)
350 /* Flags for use in ENV->INTERRUPT_PENDING.
352 The numbers assigned here are non-sequential in order to preserve
353 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
354 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
355 the vmstate dump. */
357 /* External hardware interrupt pending. This is typically used for
358 interrupts from devices. */
359 #define CPU_INTERRUPT_HARD 0x0002
361 /* Exit the current TB. This is typically used when some system-level device
362 makes some change to the memory mapping. E.g. the a20 line change. */
363 #define CPU_INTERRUPT_EXITTB 0x0004
365 /* Halt the CPU. */
366 #define CPU_INTERRUPT_HALT 0x0020
368 /* Debug event pending. */
369 #define CPU_INTERRUPT_DEBUG 0x0080
371 /* Several target-specific external hardware interrupts. Each target/cpu.h
372 should define proper names based on these defines. */
373 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
374 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
375 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
376 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
377 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
379 /* Several target-specific internal interrupts. These differ from the
380 preceding target-specific interrupts in that they are intended to
381 originate from within the cpu itself, typically in response to some
382 instruction being executed. These, therefore, are not masked while
383 single-stepping within the debugger. */
384 #define CPU_INTERRUPT_TGT_INT_0 0x0100
385 #define CPU_INTERRUPT_TGT_INT_1 0x0400
386 #define CPU_INTERRUPT_TGT_INT_2 0x0800
387 #define CPU_INTERRUPT_TGT_INT_3 0x2000
389 /* First unused bit: 0x4000. */
391 /* The set of all bits that should be masked when single-stepping. */
392 #define CPU_INTERRUPT_SSTEP_MASK \
393 (CPU_INTERRUPT_HARD \
394 | CPU_INTERRUPT_TGT_EXT_0 \
395 | CPU_INTERRUPT_TGT_EXT_1 \
396 | CPU_INTERRUPT_TGT_EXT_2 \
397 | CPU_INTERRUPT_TGT_EXT_3 \
398 | CPU_INTERRUPT_TGT_EXT_4)
400 #ifndef CONFIG_USER_ONLY
401 typedef void (*CPUInterruptHandler)(CPUArchState *, int);
403 extern CPUInterruptHandler cpu_interrupt_handler;
405 static inline void cpu_interrupt(CPUArchState *s, int mask)
407 cpu_interrupt_handler(s, mask);
409 #else /* USER_ONLY */
410 void cpu_interrupt(CPUArchState *env, int mask);
411 #endif /* USER_ONLY */
413 void cpu_reset_interrupt(CPUArchState *env, int mask);
415 void cpu_exit(CPUArchState *s);
417 bool qemu_cpu_has_work(CPUArchState *env);
419 /* Breakpoint/watchpoint flags */
420 #define BP_MEM_READ 0x01
421 #define BP_MEM_WRITE 0x02
422 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
423 #define BP_STOP_BEFORE_ACCESS 0x04
424 #define BP_WATCHPOINT_HIT 0x08
425 #define BP_GDB 0x10
426 #define BP_CPU 0x20
428 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
429 CPUBreakpoint **breakpoint);
430 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
431 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
432 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
433 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
434 int flags, CPUWatchpoint **watchpoint);
435 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
436 target_ulong len, int flags);
437 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
438 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
440 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
441 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
442 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
444 void cpu_single_step(CPUArchState *env, int enabled);
445 void cpu_state_reset(CPUArchState *s);
446 int cpu_is_stopped(CPUArchState *env);
447 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
449 #define CPU_LOG_TB_OUT_ASM (1 << 0)
450 #define CPU_LOG_TB_IN_ASM (1 << 1)
451 #define CPU_LOG_TB_OP (1 << 2)
452 #define CPU_LOG_TB_OP_OPT (1 << 3)
453 #define CPU_LOG_INT (1 << 4)
454 #define CPU_LOG_EXEC (1 << 5)
455 #define CPU_LOG_PCALL (1 << 6)
456 #define CPU_LOG_IOPORT (1 << 7)
457 #define CPU_LOG_TB_CPU (1 << 8)
458 #define CPU_LOG_RESET (1 << 9)
460 /* define log items */
461 typedef struct CPULogItem {
462 int mask;
463 const char *name;
464 const char *help;
465 } CPULogItem;
467 extern const CPULogItem cpu_log_items[];
469 void cpu_set_log(int log_flags);
470 void cpu_set_log_filename(const char *filename);
471 int cpu_str_to_log_mask(const char *str);
473 #if !defined(CONFIG_USER_ONLY)
475 /* Return the physical page corresponding to a virtual one. Use it
476 only for debugging because no protection checks are done. Return -1
477 if no page found. */
478 target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
480 /* memory API */
482 extern int phys_ram_fd;
483 extern ram_addr_t ram_size;
485 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
486 #define RAM_PREALLOC_MASK (1 << 0)
488 typedef struct RAMBlock {
489 struct MemoryRegion *mr;
490 uint8_t *host;
491 ram_addr_t offset;
492 ram_addr_t length;
493 uint32_t flags;
494 char idstr[256];
495 QLIST_ENTRY(RAMBlock) next;
496 #if defined(__linux__) && !defined(TARGET_S390X)
497 int fd;
498 #endif
499 } RAMBlock;
501 typedef struct RAMList {
502 uint8_t *phys_dirty;
503 QLIST_HEAD(, RAMBlock) blocks;
504 } RAMList;
505 extern RAMList ram_list;
507 extern const char *mem_path;
508 extern int mem_prealloc;
510 /* Flags stored in the low bits of the TLB virtual address. These are
511 defined so that fast path ram access is all zeros. */
512 /* Zero if TLB entry is valid. */
513 #define TLB_INVALID_MASK (1 << 3)
514 /* Set if TLB entry references a clean RAM page. The iotlb entry will
515 contain the page physical address. */
516 #define TLB_NOTDIRTY (1 << 4)
517 /* Set if TLB entry is an IO callback. */
518 #define TLB_MMIO (1 << 5)
520 void cpu_tlb_update_dirty(CPUArchState *env);
522 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
523 #endif /* !CONFIG_USER_ONLY */
525 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
526 uint8_t *buf, int len, int is_write);
528 #endif /* CPU_ALL_H */