4 #include "host-utils.h"
5 #if !defined(CONFIG_USER_ONLY)
10 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
13 case ARM_CPUID_ARM926
:
15 case ARM_CPUID_ARM946
:
17 case ARM_CPUID_ARM1026
:
19 case ARM_CPUID_ARM1136
:
20 /* This is the 1136 r1, which is a v6K core */
21 case ARM_CPUID_ARM1136_R2
:
23 case ARM_CPUID_ARM1176
:
25 case ARM_CPUID_ARM11MPCORE
:
27 case ARM_CPUID_CORTEXA8
:
29 case ARM_CPUID_CORTEXA9
:
31 case ARM_CPUID_CORTEXA15
:
33 case ARM_CPUID_CORTEXM3
:
35 case ARM_CPUID_ANY
: /* For userspace emulation. */
37 case ARM_CPUID_TI915T
:
38 case ARM_CPUID_TI925T
:
40 case ARM_CPUID_PXA250
:
41 case ARM_CPUID_PXA255
:
42 case ARM_CPUID_PXA260
:
43 case ARM_CPUID_PXA261
:
44 case ARM_CPUID_PXA262
:
46 case ARM_CPUID_PXA270_A0
:
47 case ARM_CPUID_PXA270_A1
:
48 case ARM_CPUID_PXA270_B0
:
49 case ARM_CPUID_PXA270_B1
:
50 case ARM_CPUID_PXA270_C0
:
51 case ARM_CPUID_PXA270_C5
:
53 case ARM_CPUID_SA1100
:
54 case ARM_CPUID_SA1110
:
57 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
63 /* TODO Move contents into arm_cpu_reset() in cpu.c,
64 * once cpu_reset_model_id() is eliminated,
65 * and then forward to cpu_reset() here.
67 void cpu_state_reset(CPUARMState
*env
)
71 ARMCPU
*cpu
= arm_env_get_cpu(env
);
73 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
74 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
75 log_cpu_state(env
, 0);
79 tmp
= env
->cp15
.c15_config_base_address
;
80 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
82 cpu_reset_model_id(env
, id
);
83 env
->cp15
.c15_config_base_address
= tmp
;
84 env
->cp15
.c0_cpuid
= cpu
->midr
;
85 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
86 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->mvfr0
;
87 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->mvfr1
;
88 env
->cp15
.c0_cachetype
= cpu
->ctr
;
89 env
->cp15
.c1_sys
= cpu
->reset_sctlr
;
90 env
->cp15
.c0_c1
[0] = cpu
->id_pfr0
;
91 env
->cp15
.c0_c1
[1] = cpu
->id_pfr1
;
92 env
->cp15
.c0_c1
[2] = cpu
->id_dfr0
;
93 env
->cp15
.c0_c1
[3] = cpu
->id_afr0
;
94 env
->cp15
.c0_c1
[4] = cpu
->id_mmfr0
;
95 env
->cp15
.c0_c1
[5] = cpu
->id_mmfr1
;
96 env
->cp15
.c0_c1
[6] = cpu
->id_mmfr2
;
97 env
->cp15
.c0_c1
[7] = cpu
->id_mmfr3
;
98 env
->cp15
.c0_c2
[0] = cpu
->id_isar0
;
99 env
->cp15
.c0_c2
[1] = cpu
->id_isar1
;
100 env
->cp15
.c0_c2
[2] = cpu
->id_isar2
;
101 env
->cp15
.c0_c2
[3] = cpu
->id_isar3
;
102 env
->cp15
.c0_c2
[4] = cpu
->id_isar4
;
103 env
->cp15
.c0_c2
[5] = cpu
->id_isar5
;
104 env
->cp15
.c15_i_min
= 0xff0;
105 env
->cp15
.c0_clid
= cpu
->clidr
;
106 memcpy(env
->cp15
.c0_ccsid
, cpu
->ccsidr
, ARRAY_SIZE(cpu
->ccsidr
));
108 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
109 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
112 #if defined (CONFIG_USER_ONLY)
113 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
114 /* For user mode we must enable access to coprocessors */
115 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
116 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
117 env
->cp15
.c15_cpar
= 3;
118 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
119 env
->cp15
.c15_cpar
= 1;
122 /* SVC mode with interrupts disabled. */
123 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
124 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
125 clear at reset. Initial SP and PC are loaded from ROM. */
129 env
->uncached_cpsr
&= ~CPSR_I
;
132 /* We should really use ldl_phys here, in case the guest
133 modified flash and reset itself. However images
134 loaded via -kernel have not been copied yet, so load the
135 values directly from there. */
136 env
->regs
[13] = ldl_p(rom
);
139 env
->regs
[15] = pc
& ~1;
142 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
143 env
->cp15
.c2_base_mask
= 0xffffc000u
;
144 /* v7 performance monitor control register: same implementor
145 * field as main ID register, and we implement no event counters.
147 env
->cp15
.c9_pmcr
= (id
& 0xff000000);
149 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
150 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
151 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
152 set_float_detect_tininess(float_tininess_before_rounding
,
153 &env
->vfp
.fp_status
);
154 set_float_detect_tininess(float_tininess_before_rounding
,
155 &env
->vfp
.standard_fp_status
);
157 /* Reset is a state change for some CPUARMState fields which we
158 * bake assumptions about into translated code, so we need to
164 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
168 /* VFP data registers are always little-endian. */
169 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
171 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
174 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
175 /* Aliases for Q regs. */
178 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
179 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
183 switch (reg
- nregs
) {
184 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
185 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
186 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
191 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
195 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
197 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
200 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
203 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
204 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
208 switch (reg
- nregs
) {
209 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
210 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
211 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
216 CPUARMState
*cpu_arm_init(const char *cpu_model
)
220 static int inited
= 0;
222 if (!object_class_by_name(cpu_model
)) {
225 cpu
= ARM_CPU(object_new(cpu_model
));
227 env
->cpu_model_str
= cpu_model
;
228 arm_cpu_realize(cpu
);
230 if (tcg_enabled() && !inited
) {
232 arm_translate_init();
235 cpu_state_reset(env
);
236 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
237 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
238 51, "arm-neon.xml", 0);
239 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
240 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
241 35, "arm-vfp3.xml", 0);
242 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
243 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
244 19, "arm-vfp.xml", 0);
250 typedef struct ARMCPUListState
{
251 fprintf_function cpu_fprintf
;
255 /* Sort alphabetically by type name, except for "any". */
256 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
258 ObjectClass
*class_a
= (ObjectClass
*)a
;
259 ObjectClass
*class_b
= (ObjectClass
*)b
;
260 const char *name_a
, *name_b
;
262 name_a
= object_class_get_name(class_a
);
263 name_b
= object_class_get_name(class_b
);
264 if (strcmp(name_a
, "any") == 0) {
266 } else if (strcmp(name_b
, "any") == 0) {
269 return strcmp(name_a
, name_b
);
273 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
275 ObjectClass
*oc
= data
;
276 ARMCPUListState
*s
= user_data
;
278 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
279 object_class_get_name(oc
));
282 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
284 ARMCPUListState s
= {
286 .cpu_fprintf
= cpu_fprintf
,
290 list
= object_class_get_list(TYPE_ARM_CPU
, false);
291 list
= g_slist_sort(list
, arm_cpu_list_compare
);
292 (*cpu_fprintf
)(f
, "Available CPUs:\n");
293 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
297 static int bad_mode_switch(CPUARMState
*env
, int mode
)
299 /* Return true if it is not valid for us to switch to
300 * this CPU mode (ie all the UNPREDICTABLE cases in
301 * the ARM ARM CPSRWriteByInstr pseudocode).
304 case ARM_CPU_MODE_USR
:
305 case ARM_CPU_MODE_SYS
:
306 case ARM_CPU_MODE_SVC
:
307 case ARM_CPU_MODE_ABT
:
308 case ARM_CPU_MODE_UND
:
309 case ARM_CPU_MODE_IRQ
:
310 case ARM_CPU_MODE_FIQ
:
317 uint32_t cpsr_read(CPUARMState
*env
)
321 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
322 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
323 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
324 | ((env
->condexec_bits
& 0xfc) << 8)
328 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
330 if (mask
& CPSR_NZCV
) {
331 env
->ZF
= (~val
) & CPSR_Z
;
333 env
->CF
= (val
>> 29) & 1;
334 env
->VF
= (val
<< 3) & 0x80000000;
337 env
->QF
= ((val
& CPSR_Q
) != 0);
339 env
->thumb
= ((val
& CPSR_T
) != 0);
340 if (mask
& CPSR_IT_0_1
) {
341 env
->condexec_bits
&= ~3;
342 env
->condexec_bits
|= (val
>> 25) & 3;
344 if (mask
& CPSR_IT_2_7
) {
345 env
->condexec_bits
&= 3;
346 env
->condexec_bits
|= (val
>> 8) & 0xfc;
348 if (mask
& CPSR_GE
) {
349 env
->GE
= (val
>> 16) & 0xf;
352 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
353 if (bad_mode_switch(env
, val
& CPSR_M
)) {
354 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
355 * We choose to ignore the attempt and leave the CPSR M field
360 switch_mode(env
, val
& CPSR_M
);
363 mask
&= ~CACHED_CPSR_BITS
;
364 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
367 /* Sign/zero extend */
368 uint32_t HELPER(sxtb16
)(uint32_t x
)
371 res
= (uint16_t)(int8_t)x
;
372 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
376 uint32_t HELPER(uxtb16
)(uint32_t x
)
379 res
= (uint16_t)(uint8_t)x
;
380 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
384 uint32_t HELPER(clz
)(uint32_t x
)
389 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
393 if (num
== INT_MIN
&& den
== -1)
398 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
405 uint32_t HELPER(rbit
)(uint32_t x
)
407 x
= ((x
& 0xff000000) >> 24)
408 | ((x
& 0x00ff0000) >> 8)
409 | ((x
& 0x0000ff00) << 8)
410 | ((x
& 0x000000ff) << 24);
411 x
= ((x
& 0xf0f0f0f0) >> 4)
412 | ((x
& 0x0f0f0f0f) << 4);
413 x
= ((x
& 0x88888888) >> 3)
414 | ((x
& 0x44444444) >> 1)
415 | ((x
& 0x22222222) << 1)
416 | ((x
& 0x11111111) << 3);
420 uint32_t HELPER(abs
)(uint32_t x
)
422 return ((int32_t)x
< 0) ? -x
: x
;
425 #if defined(CONFIG_USER_ONLY)
427 void do_interrupt (CPUARMState
*env
)
429 env
->exception_index
= -1;
432 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
436 env
->exception_index
= EXCP_PREFETCH_ABORT
;
437 env
->cp15
.c6_insn
= address
;
439 env
->exception_index
= EXCP_DATA_ABORT
;
440 env
->cp15
.c6_data
= address
;
445 /* These should probably raise undefined insn exceptions. */
446 void HELPER(set_cp
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
448 int op1
= (insn
>> 8) & 0xf;
449 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
453 uint32_t HELPER(get_cp
)(CPUARMState
*env
, uint32_t insn
)
455 int op1
= (insn
>> 8) & 0xf;
456 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
460 void HELPER(set_cp15
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
462 cpu_abort(env
, "cp15 insn %08x\n", insn
);
465 uint32_t HELPER(get_cp15
)(CPUARMState
*env
, uint32_t insn
)
467 cpu_abort(env
, "cp15 insn %08x\n", insn
);
470 /* These should probably raise undefined insn exceptions. */
471 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
473 cpu_abort(env
, "v7m_mrs %d\n", reg
);
476 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
478 cpu_abort(env
, "v7m_mrs %d\n", reg
);
482 void switch_mode(CPUARMState
*env
, int mode
)
484 if (mode
!= ARM_CPU_MODE_USR
)
485 cpu_abort(env
, "Tried to switch out of user mode\n");
488 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
490 cpu_abort(env
, "banked r13 write\n");
493 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
495 cpu_abort(env
, "banked r13 read\n");
501 /* Map CPU modes onto saved register banks. */
502 static inline int bank_number(CPUARMState
*env
, int mode
)
505 case ARM_CPU_MODE_USR
:
506 case ARM_CPU_MODE_SYS
:
508 case ARM_CPU_MODE_SVC
:
510 case ARM_CPU_MODE_ABT
:
512 case ARM_CPU_MODE_UND
:
514 case ARM_CPU_MODE_IRQ
:
516 case ARM_CPU_MODE_FIQ
:
519 cpu_abort(env
, "Bad mode %x\n", mode
);
523 void switch_mode(CPUARMState
*env
, int mode
)
528 old_mode
= env
->uncached_cpsr
& CPSR_M
;
529 if (mode
== old_mode
)
532 if (old_mode
== ARM_CPU_MODE_FIQ
) {
533 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
534 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
535 } else if (mode
== ARM_CPU_MODE_FIQ
) {
536 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
537 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
540 i
= bank_number(env
, old_mode
);
541 env
->banked_r13
[i
] = env
->regs
[13];
542 env
->banked_r14
[i
] = env
->regs
[14];
543 env
->banked_spsr
[i
] = env
->spsr
;
545 i
= bank_number(env
, mode
);
546 env
->regs
[13] = env
->banked_r13
[i
];
547 env
->regs
[14] = env
->banked_r14
[i
];
548 env
->spsr
= env
->banked_spsr
[i
];
551 static void v7m_push(CPUARMState
*env
, uint32_t val
)
554 stl_phys(env
->regs
[13], val
);
557 static uint32_t v7m_pop(CPUARMState
*env
)
560 val
= ldl_phys(env
->regs
[13]);
565 /* Switch to V7M main or process stack pointer. */
566 static void switch_v7m_sp(CPUARMState
*env
, int process
)
569 if (env
->v7m
.current_sp
!= process
) {
570 tmp
= env
->v7m
.other_sp
;
571 env
->v7m
.other_sp
= env
->regs
[13];
573 env
->v7m
.current_sp
= process
;
577 static void do_v7m_exception_exit(CPUARMState
*env
)
582 type
= env
->regs
[15];
583 if (env
->v7m
.exception
!= 0)
584 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
586 /* Switch to the target stack. */
587 switch_v7m_sp(env
, (type
& 4) != 0);
589 env
->regs
[0] = v7m_pop(env
);
590 env
->regs
[1] = v7m_pop(env
);
591 env
->regs
[2] = v7m_pop(env
);
592 env
->regs
[3] = v7m_pop(env
);
593 env
->regs
[12] = v7m_pop(env
);
594 env
->regs
[14] = v7m_pop(env
);
595 env
->regs
[15] = v7m_pop(env
);
597 xpsr_write(env
, xpsr
, 0xfffffdff);
598 /* Undo stack alignment. */
601 /* ??? The exception return type specifies Thread/Handler mode. However
602 this is also implied by the xPSR value. Not sure what to do
603 if there is a mismatch. */
604 /* ??? Likewise for mismatches between the CONTROL register and the stack
608 static void do_interrupt_v7m(CPUARMState
*env
)
610 uint32_t xpsr
= xpsr_read(env
);
615 if (env
->v7m
.current_sp
)
617 if (env
->v7m
.exception
== 0)
620 /* For exceptions we just mark as pending on the NVIC, and let that
622 /* TODO: Need to escalate if the current priority is higher than the
623 one we're raising. */
624 switch (env
->exception_index
) {
626 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
630 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
632 case EXCP_PREFETCH_ABORT
:
633 case EXCP_DATA_ABORT
:
634 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
637 if (semihosting_enabled
) {
639 nr
= arm_lduw_code(env
->regs
[15], env
->bswap_code
) & 0xff;
642 env
->regs
[0] = do_arm_semihosting(env
);
646 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
649 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
651 case EXCP_EXCEPTION_EXIT
:
652 do_v7m_exception_exit(env
);
655 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
656 return; /* Never happens. Keep compiler happy. */
659 /* Align stack pointer. */
660 /* ??? Should only do this if Configuration Control Register
661 STACKALIGN bit is set. */
662 if (env
->regs
[13] & 4) {
666 /* Switch to the handler mode. */
668 v7m_push(env
, env
->regs
[15]);
669 v7m_push(env
, env
->regs
[14]);
670 v7m_push(env
, env
->regs
[12]);
671 v7m_push(env
, env
->regs
[3]);
672 v7m_push(env
, env
->regs
[2]);
673 v7m_push(env
, env
->regs
[1]);
674 v7m_push(env
, env
->regs
[0]);
675 switch_v7m_sp(env
, 0);
677 env
->condexec_bits
= 0;
679 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
680 env
->regs
[15] = addr
& 0xfffffffe;
681 env
->thumb
= addr
& 1;
684 /* Handle a CPU exception. */
685 void do_interrupt(CPUARMState
*env
)
693 do_interrupt_v7m(env
);
696 /* TODO: Vectored interrupt controller. */
697 switch (env
->exception_index
) {
699 new_mode
= ARM_CPU_MODE_UND
;
708 if (semihosting_enabled
) {
709 /* Check for semihosting interrupt. */
711 mask
= arm_lduw_code(env
->regs
[15] - 2, env
->bswap_code
) & 0xff;
713 mask
= arm_ldl_code(env
->regs
[15] - 4, env
->bswap_code
)
716 /* Only intercept calls from privileged modes, to provide some
717 semblance of security. */
718 if (((mask
== 0x123456 && !env
->thumb
)
719 || (mask
== 0xab && env
->thumb
))
720 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
721 env
->regs
[0] = do_arm_semihosting(env
);
725 new_mode
= ARM_CPU_MODE_SVC
;
728 /* The PC already points to the next instruction. */
732 /* See if this is a semihosting syscall. */
733 if (env
->thumb
&& semihosting_enabled
) {
734 mask
= arm_lduw_code(env
->regs
[15], env
->bswap_code
) & 0xff;
736 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
738 env
->regs
[0] = do_arm_semihosting(env
);
742 env
->cp15
.c5_insn
= 2;
743 /* Fall through to prefetch abort. */
744 case EXCP_PREFETCH_ABORT
:
745 new_mode
= ARM_CPU_MODE_ABT
;
747 mask
= CPSR_A
| CPSR_I
;
750 case EXCP_DATA_ABORT
:
751 new_mode
= ARM_CPU_MODE_ABT
;
753 mask
= CPSR_A
| CPSR_I
;
757 new_mode
= ARM_CPU_MODE_IRQ
;
759 /* Disable IRQ and imprecise data aborts. */
760 mask
= CPSR_A
| CPSR_I
;
764 new_mode
= ARM_CPU_MODE_FIQ
;
766 /* Disable FIQ, IRQ and imprecise data aborts. */
767 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
771 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
772 return; /* Never happens. Keep compiler happy. */
775 if (env
->cp15
.c1_sys
& (1 << 13)) {
778 switch_mode (env
, new_mode
);
779 env
->spsr
= cpsr_read(env
);
781 env
->condexec_bits
= 0;
782 /* Switch to the new mode, and to the correct instruction set. */
783 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
784 env
->uncached_cpsr
|= mask
;
785 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
786 * and we should just guard the thumb mode on V4 */
787 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
788 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
790 env
->regs
[14] = env
->regs
[15] + offset
;
791 env
->regs
[15] = addr
;
792 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
795 /* Check section/page access permissions.
796 Returns the page protection flags, or zero if the access is not
798 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
799 int access_type
, int is_user
)
803 if (domain_prot
== 3) {
804 return PAGE_READ
| PAGE_WRITE
;
807 if (access_type
== 1)
814 if (access_type
== 1)
816 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
818 return is_user
? 0 : PAGE_READ
;
825 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
830 return PAGE_READ
| PAGE_WRITE
;
832 return PAGE_READ
| PAGE_WRITE
;
833 case 4: /* Reserved. */
836 return is_user
? 0 : prot_ro
;
840 if (!arm_feature (env
, ARM_FEATURE_V6K
))
848 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
852 if (address
& env
->cp15
.c2_mask
)
853 table
= env
->cp15
.c2_base1
& 0xffffc000;
855 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
857 table
|= (address
>> 18) & 0x3ffc;
861 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
862 int is_user
, uint32_t *phys_ptr
, int *prot
,
863 target_ulong
*page_size
)
874 /* Pagetable walk. */
875 /* Lookup l1 descriptor. */
876 table
= get_level1_table_address(env
, address
);
877 desc
= ldl_phys(table
);
879 domain
= (desc
>> 5) & 0x0f;
880 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
882 /* Section translation fault. */
886 if (domain_prot
== 0 || domain_prot
== 2) {
888 code
= 9; /* Section domain fault. */
890 code
= 11; /* Page domain fault. */
895 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
896 ap
= (desc
>> 10) & 3;
898 *page_size
= 1024 * 1024;
900 /* Lookup l2 entry. */
902 /* Coarse pagetable. */
903 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
905 /* Fine pagetable. */
906 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
908 desc
= ldl_phys(table
);
910 case 0: /* Page translation fault. */
913 case 1: /* 64k page. */
914 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
915 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
916 *page_size
= 0x10000;
918 case 2: /* 4k page. */
919 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
920 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
923 case 3: /* 1k page. */
925 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
926 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
928 /* Page translation fault. */
933 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
935 ap
= (desc
>> 4) & 3;
939 /* Never happens, but compiler isn't smart enough to tell. */
944 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
946 /* Access permission fault. */
950 *phys_ptr
= phys_addr
;
953 return code
| (domain
<< 4);
956 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
957 int is_user
, uint32_t *phys_ptr
, int *prot
,
958 target_ulong
*page_size
)
970 /* Pagetable walk. */
971 /* Lookup l1 descriptor. */
972 table
= get_level1_table_address(env
, address
);
973 desc
= ldl_phys(table
);
976 /* Section translation fault. */
980 } else if (type
== 2 && (desc
& (1 << 18))) {
984 /* Section or page. */
985 domain
= (desc
>> 5) & 0x0f;
987 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
988 if (domain_prot
== 0 || domain_prot
== 2) {
990 code
= 9; /* Section domain fault. */
992 code
= 11; /* Page domain fault. */
996 if (desc
& (1 << 18)) {
998 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
999 *page_size
= 0x1000000;
1002 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1003 *page_size
= 0x100000;
1005 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1006 xn
= desc
& (1 << 4);
1009 /* Lookup l2 entry. */
1010 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1011 desc
= ldl_phys(table
);
1012 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1014 case 0: /* Page translation fault. */
1017 case 1: /* 64k page. */
1018 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1019 xn
= desc
& (1 << 15);
1020 *page_size
= 0x10000;
1022 case 2: case 3: /* 4k page. */
1023 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1025 *page_size
= 0x1000;
1028 /* Never happens, but compiler isn't smart enough to tell. */
1033 if (domain_prot
== 3) {
1034 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1036 if (xn
&& access_type
== 2)
1039 /* The simplified model uses AP[0] as an access control bit. */
1040 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1041 /* Access flag fault. */
1042 code
= (code
== 15) ? 6 : 3;
1045 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
1047 /* Access permission fault. */
1054 *phys_ptr
= phys_addr
;
1057 return code
| (domain
<< 4);
1060 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
, int access_type
,
1061 int is_user
, uint32_t *phys_ptr
, int *prot
)
1067 *phys_ptr
= address
;
1068 for (n
= 7; n
>= 0; n
--) {
1069 base
= env
->cp15
.c6_region
[n
];
1070 if ((base
& 1) == 0)
1072 mask
= 1 << ((base
>> 1) & 0x1f);
1073 /* Keep this shift separate from the above to avoid an
1074 (undefined) << 32. */
1075 mask
= (mask
<< 1) - 1;
1076 if (((base
^ address
) & ~mask
) == 0)
1082 if (access_type
== 2) {
1083 mask
= env
->cp15
.c5_insn
;
1085 mask
= env
->cp15
.c5_data
;
1087 mask
= (mask
>> (n
* 4)) & 0xf;
1094 *prot
= PAGE_READ
| PAGE_WRITE
;
1099 *prot
|= PAGE_WRITE
;
1102 *prot
= PAGE_READ
| PAGE_WRITE
;
1113 /* Bad permission. */
1120 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
1121 int access_type
, int is_user
,
1122 uint32_t *phys_ptr
, int *prot
,
1123 target_ulong
*page_size
)
1125 /* Fast Context Switch Extension. */
1126 if (address
< 0x02000000)
1127 address
+= env
->cp15
.c13_fcse
;
1129 if ((env
->cp15
.c1_sys
& 1) == 0) {
1130 /* MMU/MPU disabled. */
1131 *phys_ptr
= address
;
1132 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1133 *page_size
= TARGET_PAGE_SIZE
;
1135 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1136 *page_size
= TARGET_PAGE_SIZE
;
1137 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1139 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1140 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1143 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1148 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
1149 int access_type
, int mmu_idx
)
1152 target_ulong page_size
;
1156 is_user
= mmu_idx
== MMU_USER_IDX
;
1157 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
1160 /* Map a single [sub]page. */
1161 phys_addr
&= ~(uint32_t)0x3ff;
1162 address
&= ~(uint32_t)0x3ff;
1163 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
1167 if (access_type
== 2) {
1168 env
->cp15
.c5_insn
= ret
;
1169 env
->cp15
.c6_insn
= address
;
1170 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1172 env
->cp15
.c5_data
= ret
;
1173 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1174 env
->cp15
.c5_data
|= (1 << 11);
1175 env
->cp15
.c6_data
= address
;
1176 env
->exception_index
= EXCP_DATA_ABORT
;
1181 target_phys_addr_t
cpu_get_phys_page_debug(CPUARMState
*env
, target_ulong addr
)
1184 target_ulong page_size
;
1188 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
1196 void HELPER(set_cp
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
1198 int cp_num
= (insn
>> 8) & 0xf;
1199 int cp_info
= (insn
>> 5) & 7;
1200 int src
= (insn
>> 16) & 0xf;
1201 int operand
= insn
& 0xf;
1203 if (env
->cp
[cp_num
].cp_write
)
1204 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1205 cp_info
, src
, operand
, val
);
1208 uint32_t HELPER(get_cp
)(CPUARMState
*env
, uint32_t insn
)
1210 int cp_num
= (insn
>> 8) & 0xf;
1211 int cp_info
= (insn
>> 5) & 7;
1212 int dest
= (insn
>> 16) & 0xf;
1213 int operand
= insn
& 0xf;
1215 if (env
->cp
[cp_num
].cp_read
)
1216 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1217 cp_info
, dest
, operand
);
1221 /* Return basic MPU access permission bits. */
1222 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1229 for (i
= 0; i
< 16; i
+= 2) {
1230 ret
|= (val
>> i
) & mask
;
1236 /* Pad basic MPU access permission bits to extended format. */
1237 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1244 for (i
= 0; i
< 16; i
+= 2) {
1245 ret
|= (val
& mask
) << i
;
1251 void HELPER(set_cp15
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
1257 op1
= (insn
>> 21) & 7;
1258 op2
= (insn
>> 5) & 7;
1260 switch ((insn
>> 16) & 0xf) {
1263 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1265 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1267 if (arm_feature(env
, ARM_FEATURE_V7
)
1268 && op1
== 2 && crm
== 0 && op2
== 0) {
1269 env
->cp15
.c0_cssel
= val
& 0xf;
1273 case 1: /* System configuration. */
1274 if (arm_feature(env
, ARM_FEATURE_V7
)
1275 && op1
== 0 && crm
== 1 && op2
== 0) {
1276 env
->cp15
.c1_scr
= val
;
1279 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1283 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1284 env
->cp15
.c1_sys
= val
;
1285 /* ??? Lots of these bits are not implemented. */
1286 /* This may enable/disable the MMU, so do a TLB flush. */
1289 case 1: /* Auxiliary control register. */
1290 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1291 env
->cp15
.c1_xscaleauxcr
= val
;
1294 /* Not implemented. */
1297 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1299 if (env
->cp15
.c1_coproc
!= val
) {
1300 env
->cp15
.c1_coproc
= val
;
1301 /* ??? Is this safe when called from within a TB? */
1309 case 2: /* MMU Page table control / MPU cache control. */
1310 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1313 env
->cp15
.c2_data
= val
;
1316 env
->cp15
.c2_insn
= val
;
1324 env
->cp15
.c2_base0
= val
;
1327 env
->cp15
.c2_base1
= val
;
1331 env
->cp15
.c2_control
= val
;
1332 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1333 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1340 case 3: /* MMU Domain access control / MPU write buffer control. */
1342 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1344 case 4: /* Reserved. */
1346 case 5: /* MMU Fault status / MPU access permission. */
1347 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1351 if (arm_feature(env
, ARM_FEATURE_MPU
))
1352 val
= extended_mpu_ap_bits(val
);
1353 env
->cp15
.c5_data
= val
;
1356 if (arm_feature(env
, ARM_FEATURE_MPU
))
1357 val
= extended_mpu_ap_bits(val
);
1358 env
->cp15
.c5_insn
= val
;
1361 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1363 env
->cp15
.c5_data
= val
;
1366 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1368 env
->cp15
.c5_insn
= val
;
1374 case 6: /* MMU Fault address / MPU base/size. */
1375 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1378 env
->cp15
.c6_region
[crm
] = val
;
1380 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1384 env
->cp15
.c6_data
= val
;
1386 case 1: /* ??? This is WFAR on armv6 */
1388 env
->cp15
.c6_insn
= val
;
1395 case 7: /* Cache control. */
1396 env
->cp15
.c15_i_max
= 0x000;
1397 env
->cp15
.c15_i_min
= 0xff0;
1401 /* No cache, so nothing to do except VA->PA translations. */
1402 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1405 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1406 env
->cp15
.c7_par
= val
& 0xfffff6ff;
1408 env
->cp15
.c7_par
= val
& 0xfffff1ff;
1413 target_ulong page_size
;
1415 int ret
, is_user
= op2
& 2;
1416 int access_type
= op2
& 1;
1419 /* Other states are only available with TrustZone */
1422 ret
= get_phys_addr(env
, val
, access_type
, is_user
,
1423 &phys_addr
, &prot
, &page_size
);
1425 /* We do not set any attribute bits in the PAR */
1426 if (page_size
== (1 << 24)
1427 && arm_feature(env
, ARM_FEATURE_V7
)) {
1428 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1430 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1433 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1434 ((ret
& (12 << 1)) >> 6) |
1435 ((ret
& 0xf) << 1) | 1;
1442 case 8: /* MMU TLB control. */
1444 case 0: /* Invalidate all (TLBIALL) */
1447 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1448 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1450 case 2: /* Invalidate by ASID (TLBIASID) */
1451 tlb_flush(env
, val
== 0);
1453 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1454 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1461 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1463 if (arm_feature(env
, ARM_FEATURE_STRONGARM
))
1464 break; /* Ignore ReadBuffer access */
1466 case 0: /* Cache lockdown. */
1468 case 0: /* L1 cache. */
1471 env
->cp15
.c9_data
= val
;
1474 env
->cp15
.c9_insn
= val
;
1480 case 1: /* L2 cache. */
1481 /* Ignore writes to L2 lockdown/auxiliary registers. */
1487 case 1: /* TCM memory region registers. */
1488 /* Not implemented. */
1490 case 12: /* Performance monitor control */
1491 /* Performance monitors are implementation defined in v7,
1492 * but with an ARM recommended set of registers, which we
1493 * follow (although we don't actually implement any counters)
1495 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1499 case 0: /* performance monitor control register */
1500 /* only the DP, X, D and E bits are writable */
1501 env
->cp15
.c9_pmcr
&= ~0x39;
1502 env
->cp15
.c9_pmcr
|= (val
& 0x39);
1504 case 1: /* Count enable set register */
1506 env
->cp15
.c9_pmcnten
|= val
;
1508 case 2: /* Count enable clear */
1510 env
->cp15
.c9_pmcnten
&= ~val
;
1512 case 3: /* Overflow flag status */
1513 env
->cp15
.c9_pmovsr
&= ~val
;
1515 case 4: /* Software increment */
1516 /* RAZ/WI since we don't implement the software-count event */
1518 case 5: /* Event counter selection register */
1519 /* Since we don't implement any events, writing to this register
1520 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1527 case 13: /* Performance counters */
1528 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1532 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1534 case 1: /* Event type select */
1535 env
->cp15
.c9_pmxevtyper
= val
& 0xff;
1537 case 2: /* Event count register */
1538 /* Unimplemented (we have no events), RAZ/WI */
1544 case 14: /* Performance monitor control */
1545 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1549 case 0: /* user enable */
1550 env
->cp15
.c9_pmuserenr
= val
& 1;
1551 /* changes access rights for cp registers, so flush tbs */
1554 case 1: /* interrupt enable set */
1555 /* We have no event counters so only the C bit can be changed */
1557 env
->cp15
.c9_pminten
|= val
;
1559 case 2: /* interrupt enable clear */
1561 env
->cp15
.c9_pminten
&= ~val
;
1569 case 10: /* MMU TLB lockdown. */
1570 /* ??? TLB lockdown not implemented. */
1572 case 12: /* Reserved. */
1574 case 13: /* Process ID. */
1577 /* Unlike real hardware the qemu TLB uses virtual addresses,
1578 not modified virtual addresses, so this causes a TLB flush.
1580 if (env
->cp15
.c13_fcse
!= val
)
1582 env
->cp15
.c13_fcse
= val
;
1585 /* This changes the ASID, so do a TLB flush. */
1586 if (env
->cp15
.c13_context
!= val
1587 && !arm_feature(env
, ARM_FEATURE_MPU
))
1589 env
->cp15
.c13_context
= val
;
1595 case 14: /* Generic timer */
1596 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1597 /* Dummy implementation: RAZ/WI for all */
1601 case 15: /* Implementation specific. */
1602 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1603 if (op2
== 0 && crm
== 1) {
1604 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1605 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1607 env
->cp15
.c15_cpar
= val
& 0x3fff;
1613 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1617 case 1: /* Set TI925T configuration. */
1618 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1619 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1620 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1622 case 2: /* Set I_max. */
1623 env
->cp15
.c15_i_max
= val
;
1625 case 3: /* Set I_min. */
1626 env
->cp15
.c15_i_min
= val
;
1628 case 4: /* Set thread-ID. */
1629 env
->cp15
.c15_threadid
= val
& 0xffff;
1631 case 8: /* Wait-for-interrupt (deprecated). */
1632 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1638 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
1641 if ((op1
== 0) && (op2
== 0)) {
1642 env
->cp15
.c15_power_control
= val
;
1643 } else if ((op1
== 0) && (op2
== 1)) {
1644 env
->cp15
.c15_diagnostic
= val
;
1645 } else if ((op1
== 0) && (op2
== 2)) {
1646 env
->cp15
.c15_power_diagnostic
= val
;
1656 /* ??? For debugging only. Should raise illegal instruction exception. */
1657 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1658 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1661 uint32_t HELPER(get_cp15
)(CPUARMState
*env
, uint32_t insn
)
1667 op1
= (insn
>> 21) & 7;
1668 op2
= (insn
>> 5) & 7;
1670 switch ((insn
>> 16) & 0xf) {
1671 case 0: /* ID codes. */
1677 case 0: /* Device ID. */
1678 return env
->cp15
.c0_cpuid
;
1679 case 1: /* Cache Type. */
1680 return env
->cp15
.c0_cachetype
;
1681 case 2: /* TCM status. */
1683 case 3: /* TLB type register. */
1684 return 0; /* No lockable TLB entries. */
1686 /* The MPIDR was standardised in v7; prior to
1687 * this it was implemented only in the 11MPCore.
1688 * For all other pre-v7 cores it does not exist.
1690 if (arm_feature(env
, ARM_FEATURE_V7
) ||
1691 ARM_CPUID(env
) == ARM_CPUID_ARM11MPCORE
) {
1692 int mpidr
= env
->cpu_index
;
1693 /* We don't support setting cluster ID ([8..11])
1694 * so these bits always RAZ.
1696 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1698 /* Cores which are uniprocessor (non-coherent)
1699 * but still implement the MP extensions set
1700 * bit 30. (For instance, A9UP.) However we do
1701 * not currently model any of those cores.
1706 /* otherwise fall through to the unimplemented-reg case */
1711 if (!arm_feature(env
, ARM_FEATURE_V6
))
1713 return env
->cp15
.c0_c1
[op2
];
1715 if (!arm_feature(env
, ARM_FEATURE_V6
))
1717 return env
->cp15
.c0_c2
[op2
];
1718 case 3: case 4: case 5: case 6: case 7:
1724 /* These registers aren't documented on arm11 cores. However
1725 Linux looks at them anyway. */
1726 if (!arm_feature(env
, ARM_FEATURE_V6
))
1730 if (!arm_feature(env
, ARM_FEATURE_V7
))
1735 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1737 return env
->cp15
.c0_clid
;
1743 if (op2
!= 0 || crm
!= 0)
1745 return env
->cp15
.c0_cssel
;
1749 case 1: /* System configuration. */
1750 if (arm_feature(env
, ARM_FEATURE_V7
)
1751 && op1
== 0 && crm
== 1 && op2
== 0) {
1752 return env
->cp15
.c1_scr
;
1754 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1757 case 0: /* Control register. */
1758 return env
->cp15
.c1_sys
;
1759 case 1: /* Auxiliary control register. */
1760 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1761 return env
->cp15
.c1_xscaleauxcr
;
1762 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1764 switch (ARM_CPUID(env
)) {
1765 case ARM_CPUID_ARM1026
:
1767 case ARM_CPUID_ARM1136
:
1768 case ARM_CPUID_ARM1136_R2
:
1769 case ARM_CPUID_ARM1176
:
1771 case ARM_CPUID_ARM11MPCORE
:
1773 case ARM_CPUID_CORTEXA8
:
1775 case ARM_CPUID_CORTEXA9
:
1776 case ARM_CPUID_CORTEXA15
:
1781 case 2: /* Coprocessor access register. */
1782 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1784 return env
->cp15
.c1_coproc
;
1788 case 2: /* MMU Page table control / MPU cache control. */
1789 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1792 return env
->cp15
.c2_data
;
1795 return env
->cp15
.c2_insn
;
1803 return env
->cp15
.c2_base0
;
1805 return env
->cp15
.c2_base1
;
1807 return env
->cp15
.c2_control
;
1812 case 3: /* MMU Domain access control / MPU write buffer control. */
1813 return env
->cp15
.c3
;
1814 case 4: /* Reserved. */
1816 case 5: /* MMU Fault status / MPU access permission. */
1817 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1821 if (arm_feature(env
, ARM_FEATURE_MPU
))
1822 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1823 return env
->cp15
.c5_data
;
1825 if (arm_feature(env
, ARM_FEATURE_MPU
))
1826 return simple_mpu_ap_bits(env
->cp15
.c5_insn
);
1827 return env
->cp15
.c5_insn
;
1829 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1831 return env
->cp15
.c5_data
;
1833 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1835 return env
->cp15
.c5_insn
;
1839 case 6: /* MMU Fault address. */
1840 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1843 return env
->cp15
.c6_region
[crm
];
1845 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1849 return env
->cp15
.c6_data
;
1851 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1852 /* Watchpoint Fault Adrress. */
1853 return 0; /* Not implemented. */
1855 /* Instruction Fault Adrress. */
1856 /* Arm9 doesn't have an IFAR, but implementing it anyway
1857 shouldn't do any harm. */
1858 return env
->cp15
.c6_insn
;
1861 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1862 /* Instruction Fault Adrress. */
1863 return env
->cp15
.c6_insn
;
1871 case 7: /* Cache control. */
1872 if (crm
== 4 && op1
== 0 && op2
== 0) {
1873 return env
->cp15
.c7_par
;
1875 /* FIXME: Should only clear Z flag if destination is r15. */
1878 case 8: /* MMU TLB control. */
1882 case 0: /* Cache lockdown */
1884 case 0: /* L1 cache. */
1885 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1890 return env
->cp15
.c9_data
;
1892 return env
->cp15
.c9_insn
;
1896 case 1: /* L2 cache */
1897 /* L2 Lockdown and Auxiliary control. */
1900 /* L2 cache lockdown (A8 only) */
1903 /* L2 cache auxiliary control (A8) or control (A15) */
1904 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA15
) {
1905 /* Linux wants the number of processors from here.
1906 * Might as well set the interrupt-controller bit too.
1908 return ((smp_cpus
- 1) << 24) | (1 << 23);
1912 /* L2 cache extended control (A15) */
1921 case 12: /* Performance monitor control */
1922 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1926 case 0: /* performance monitor control register */
1927 return env
->cp15
.c9_pmcr
;
1928 case 1: /* count enable set */
1929 case 2: /* count enable clear */
1930 return env
->cp15
.c9_pmcnten
;
1931 case 3: /* overflow flag status */
1932 return env
->cp15
.c9_pmovsr
;
1933 case 4: /* software increment */
1934 case 5: /* event counter selection register */
1935 return 0; /* Unimplemented, RAZ/WI */
1939 case 13: /* Performance counters */
1940 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1944 case 1: /* Event type select */
1945 return env
->cp15
.c9_pmxevtyper
;
1946 case 0: /* Cycle count register */
1947 case 2: /* Event count register */
1948 /* Unimplemented, so RAZ/WI */
1953 case 14: /* Performance monitor control */
1954 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1958 case 0: /* user enable */
1959 return env
->cp15
.c9_pmuserenr
;
1960 case 1: /* interrupt enable set */
1961 case 2: /* interrupt enable clear */
1962 return env
->cp15
.c9_pminten
;
1970 case 10: /* MMU TLB lockdown. */
1971 /* ??? TLB lockdown not implemented. */
1973 case 11: /* TCM DMA control. */
1974 case 12: /* Reserved. */
1976 case 13: /* Process ID. */
1979 return env
->cp15
.c13_fcse
;
1981 return env
->cp15
.c13_context
;
1985 case 14: /* Generic timer */
1986 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1987 /* Dummy implementation: RAZ/WI for all */
1991 case 15: /* Implementation specific. */
1992 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1993 if (op2
== 0 && crm
== 1)
1994 return env
->cp15
.c15_cpar
;
1998 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2002 case 1: /* Read TI925T configuration. */
2003 return env
->cp15
.c15_ticonfig
;
2004 case 2: /* Read I_max. */
2005 return env
->cp15
.c15_i_max
;
2006 case 3: /* Read I_min. */
2007 return env
->cp15
.c15_i_min
;
2008 case 4: /* Read thread-ID. */
2009 return env
->cp15
.c15_threadid
;
2010 case 8: /* TI925T_status */
2013 /* TODO: Peripheral port remap register:
2014 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2015 * controller base address at $rn & ~0xfff and map size of
2016 * 0x200 << ($rn & 0xfff), when MMU is off. */
2019 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
2022 if ((op1
== 4) && (op2
== 0)) {
2023 /* The config_base_address should hold the value of
2024 * the peripheral base. ARM should get this from a CPU
2025 * object property, but that support isn't available in
2026 * December 2011. Default to 0 for now and board models
2027 * that care can set it by a private hook */
2028 return env
->cp15
.c15_config_base_address
;
2029 } else if ((op1
== 0) && (op2
== 0)) {
2030 /* power_control should be set to maximum latency. Again,
2031 default to 0 and set by private hook */
2032 return env
->cp15
.c15_power_control
;
2033 } else if ((op1
== 0) && (op2
== 1)) {
2034 return env
->cp15
.c15_diagnostic
;
2035 } else if ((op1
== 0) && (op2
== 2)) {
2036 return env
->cp15
.c15_power_diagnostic
;
2039 case 1: /* NEON Busy */
2041 case 5: /* tlb lockdown */
2044 if ((op1
== 5) && (op2
== 2)) {
2056 /* ??? For debugging only. Should raise illegal instruction exception. */
2057 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2058 (insn
>> 16) & 0xf, crm
, op1
, op2
);
2062 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2064 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2065 env
->regs
[13] = val
;
2067 env
->banked_r13
[bank_number(env
, mode
)] = val
;
2071 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2073 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2074 return env
->regs
[13];
2076 return env
->banked_r13
[bank_number(env
, mode
)];
2080 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2084 return xpsr_read(env
) & 0xf8000000;
2086 return xpsr_read(env
) & 0xf80001ff;
2088 return xpsr_read(env
) & 0xff00fc00;
2090 return xpsr_read(env
) & 0xff00fdff;
2092 return xpsr_read(env
) & 0x000001ff;
2094 return xpsr_read(env
) & 0x0700fc00;
2096 return xpsr_read(env
) & 0x0700edff;
2098 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
2100 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
2101 case 16: /* PRIMASK */
2102 return (env
->uncached_cpsr
& CPSR_I
) != 0;
2103 case 17: /* BASEPRI */
2104 case 18: /* BASEPRI_MAX */
2105 return env
->v7m
.basepri
;
2106 case 19: /* FAULTMASK */
2107 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2108 case 20: /* CONTROL */
2109 return env
->v7m
.control
;
2111 /* ??? For debugging only. */
2112 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2117 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2121 xpsr_write(env
, val
, 0xf8000000);
2124 xpsr_write(env
, val
, 0xf8000000);
2127 xpsr_write(env
, val
, 0xfe00fc00);
2130 xpsr_write(env
, val
, 0xfe00fc00);
2133 /* IPSR bits are readonly. */
2136 xpsr_write(env
, val
, 0x0600fc00);
2139 xpsr_write(env
, val
, 0x0600fc00);
2142 if (env
->v7m
.current_sp
)
2143 env
->v7m
.other_sp
= val
;
2145 env
->regs
[13] = val
;
2148 if (env
->v7m
.current_sp
)
2149 env
->regs
[13] = val
;
2151 env
->v7m
.other_sp
= val
;
2153 case 16: /* PRIMASK */
2155 env
->uncached_cpsr
|= CPSR_I
;
2157 env
->uncached_cpsr
&= ~CPSR_I
;
2159 case 17: /* BASEPRI */
2160 env
->v7m
.basepri
= val
& 0xff;
2162 case 18: /* BASEPRI_MAX */
2164 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2165 env
->v7m
.basepri
= val
;
2167 case 19: /* FAULTMASK */
2169 env
->uncached_cpsr
|= CPSR_F
;
2171 env
->uncached_cpsr
&= ~CPSR_F
;
2173 case 20: /* CONTROL */
2174 env
->v7m
.control
= val
& 3;
2175 switch_v7m_sp(env
, (val
& 2) != 0);
2178 /* ??? For debugging only. */
2179 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2184 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2185 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2188 if (cpnum
< 0 || cpnum
> 14) {
2189 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2193 env
->cp
[cpnum
].cp_read
= cp_read
;
2194 env
->cp
[cpnum
].cp_write
= cp_write
;
2195 env
->cp
[cpnum
].opaque
= opaque
;
2200 /* Note that signed overflow is undefined in C. The following routines are
2201 careful to use unsigned types where modulo arithmetic is required.
2202 Failure to do so _will_ break on newer gcc. */
2204 /* Signed saturating arithmetic. */
2206 /* Perform 16-bit signed saturating addition. */
2207 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2212 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2221 /* Perform 8-bit signed saturating addition. */
2222 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2227 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2236 /* Perform 16-bit signed saturating subtraction. */
2237 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2242 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2251 /* Perform 8-bit signed saturating subtraction. */
2252 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2257 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2266 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2267 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2268 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2269 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2272 #include "op_addsub.h"
2274 /* Unsigned saturating arithmetic. */
2275 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2284 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2292 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2301 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2309 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2310 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2311 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2312 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2315 #include "op_addsub.h"
2317 /* Signed modulo arithmetic. */
2318 #define SARITH16(a, b, n, op) do { \
2320 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2321 RESULT(sum, n, 16); \
2323 ge |= 3 << (n * 2); \
2326 #define SARITH8(a, b, n, op) do { \
2328 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2329 RESULT(sum, n, 8); \
2335 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2336 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2337 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2338 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2342 #include "op_addsub.h"
2344 /* Unsigned modulo arithmetic. */
2345 #define ADD16(a, b, n) do { \
2347 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2348 RESULT(sum, n, 16); \
2349 if ((sum >> 16) == 1) \
2350 ge |= 3 << (n * 2); \
2353 #define ADD8(a, b, n) do { \
2355 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2356 RESULT(sum, n, 8); \
2357 if ((sum >> 8) == 1) \
2361 #define SUB16(a, b, n) do { \
2363 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2364 RESULT(sum, n, 16); \
2365 if ((sum >> 16) == 0) \
2366 ge |= 3 << (n * 2); \
2369 #define SUB8(a, b, n) do { \
2371 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2372 RESULT(sum, n, 8); \
2373 if ((sum >> 8) == 0) \
2380 #include "op_addsub.h"
2382 /* Halved signed arithmetic. */
2383 #define ADD16(a, b, n) \
2384 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2385 #define SUB16(a, b, n) \
2386 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2387 #define ADD8(a, b, n) \
2388 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2389 #define SUB8(a, b, n) \
2390 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2393 #include "op_addsub.h"
2395 /* Halved unsigned arithmetic. */
2396 #define ADD16(a, b, n) \
2397 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2398 #define SUB16(a, b, n) \
2399 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2400 #define ADD8(a, b, n) \
2401 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2402 #define SUB8(a, b, n) \
2403 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2406 #include "op_addsub.h"
2408 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2416 /* Unsigned sum of absolute byte differences. */
2417 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2420 sum
= do_usad(a
, b
);
2421 sum
+= do_usad(a
>> 8, b
>> 8);
2422 sum
+= do_usad(a
>> 16, b
>>16);
2423 sum
+= do_usad(a
>> 24, b
>> 24);
2427 /* For ARMv6 SEL instruction. */
2428 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2441 return (a
& mask
) | (b
& ~mask
);
2444 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2446 return (val
>> 32) | (val
!= 0);
2449 /* VFP support. We follow the convention used for VFP instrunctions:
2450 Single precition routines have a "s" suffix, double precision a
2453 /* Convert host exception flags to vfp form. */
2454 static inline int vfp_exceptbits_from_host(int host_bits
)
2456 int target_bits
= 0;
2458 if (host_bits
& float_flag_invalid
)
2460 if (host_bits
& float_flag_divbyzero
)
2462 if (host_bits
& float_flag_overflow
)
2464 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2466 if (host_bits
& float_flag_inexact
)
2467 target_bits
|= 0x10;
2468 if (host_bits
& float_flag_input_denormal
)
2469 target_bits
|= 0x80;
2473 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
2478 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2479 | (env
->vfp
.vec_len
<< 16)
2480 | (env
->vfp
.vec_stride
<< 20);
2481 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2482 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2483 fpscr
|= vfp_exceptbits_from_host(i
);
2487 uint32_t vfp_get_fpscr(CPUARMState
*env
)
2489 return HELPER(vfp_get_fpscr
)(env
);
2492 /* Convert vfp exception flags to target form. */
2493 static inline int vfp_exceptbits_to_host(int target_bits
)
2497 if (target_bits
& 1)
2498 host_bits
|= float_flag_invalid
;
2499 if (target_bits
& 2)
2500 host_bits
|= float_flag_divbyzero
;
2501 if (target_bits
& 4)
2502 host_bits
|= float_flag_overflow
;
2503 if (target_bits
& 8)
2504 host_bits
|= float_flag_underflow
;
2505 if (target_bits
& 0x10)
2506 host_bits
|= float_flag_inexact
;
2507 if (target_bits
& 0x80)
2508 host_bits
|= float_flag_input_denormal
;
2512 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
2517 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2518 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2519 env
->vfp
.vec_len
= (val
>> 16) & 7;
2520 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2523 if (changed
& (3 << 22)) {
2524 i
= (val
>> 22) & 3;
2527 i
= float_round_nearest_even
;
2533 i
= float_round_down
;
2536 i
= float_round_to_zero
;
2539 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2541 if (changed
& (1 << 24)) {
2542 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2543 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2545 if (changed
& (1 << 25))
2546 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2548 i
= vfp_exceptbits_to_host(val
);
2549 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2550 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
2553 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
2555 HELPER(vfp_set_fpscr
)(env
, val
);
2558 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2560 #define VFP_BINOP(name) \
2561 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2563 float_status *fpst = fpstp; \
2564 return float32_ ## name(a, b, fpst); \
2566 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2568 float_status *fpst = fpstp; \
2569 return float64_ ## name(a, b, fpst); \
2577 float32
VFP_HELPER(neg
, s
)(float32 a
)
2579 return float32_chs(a
);
2582 float64
VFP_HELPER(neg
, d
)(float64 a
)
2584 return float64_chs(a
);
2587 float32
VFP_HELPER(abs
, s
)(float32 a
)
2589 return float32_abs(a
);
2592 float64
VFP_HELPER(abs
, d
)(float64 a
)
2594 return float64_abs(a
);
2597 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
2599 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2602 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
2604 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2607 /* XXX: check quiet/signaling case */
2608 #define DO_VFP_cmp(p, type) \
2609 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2612 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2613 case 0: flags = 0x6; break; \
2614 case -1: flags = 0x8; break; \
2615 case 1: flags = 0x2; break; \
2616 default: case 2: flags = 0x3; break; \
2618 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2619 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2621 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2624 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2625 case 0: flags = 0x6; break; \
2626 case -1: flags = 0x8; break; \
2627 case 1: flags = 0x2; break; \
2628 default: case 2: flags = 0x3; break; \
2630 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2631 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2633 DO_VFP_cmp(s
, float32
)
2634 DO_VFP_cmp(d
, float64
)
2637 /* Integer to float and float to integer conversions */
2639 #define CONV_ITOF(name, fsz, sign) \
2640 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2642 float_status *fpst = fpstp; \
2643 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2646 #define CONV_FTOI(name, fsz, sign, round) \
2647 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2649 float_status *fpst = fpstp; \
2650 if (float##fsz##_is_any_nan(x)) { \
2651 float_raise(float_flag_invalid, fpst); \
2654 return float##fsz##_to_##sign##int32##round(x, fpst); \
2657 #define FLOAT_CONVS(name, p, fsz, sign) \
2658 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2659 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2660 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2662 FLOAT_CONVS(si
, s
, 32, )
2663 FLOAT_CONVS(si
, d
, 64, )
2664 FLOAT_CONVS(ui
, s
, 32, u
)
2665 FLOAT_CONVS(ui
, d
, 64, u
)
2671 /* floating point conversion */
2672 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
2674 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
2675 /* ARM requires that S<->D conversion of any kind of NaN generates
2676 * a quiet NaN by forcing the most significant frac bit to 1.
2678 return float64_maybe_silence_nan(r
);
2681 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
2683 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
2684 /* ARM requires that S<->D conversion of any kind of NaN generates
2685 * a quiet NaN by forcing the most significant frac bit to 1.
2687 return float32_maybe_silence_nan(r
);
2690 /* VFP3 fixed point conversion. */
2691 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2692 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2695 float_status *fpst = fpstp; \
2697 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2698 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2700 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2703 float_status *fpst = fpstp; \
2705 if (float##fsz##_is_any_nan(x)) { \
2706 float_raise(float_flag_invalid, fpst); \
2709 tmp = float##fsz##_scalbn(x, shift, fpst); \
2710 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2713 VFP_CONV_FIX(sh
, d
, 64, int16
, )
2714 VFP_CONV_FIX(sl
, d
, 64, int32
, )
2715 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
2716 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
2717 VFP_CONV_FIX(sh
, s
, 32, int16
, )
2718 VFP_CONV_FIX(sl
, s
, 32, int32
, )
2719 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
2720 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
2723 /* Half precision conversions. */
2724 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
2726 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2727 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
2729 return float32_maybe_silence_nan(r
);
2734 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
2736 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2737 float16 r
= float32_to_float16(a
, ieee
, s
);
2739 r
= float16_maybe_silence_nan(r
);
2741 return float16_val(r
);
2744 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
2746 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
2749 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
2751 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
2754 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
2756 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
2759 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
2761 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
2764 #define float32_two make_float32(0x40000000)
2765 #define float32_three make_float32(0x40400000)
2766 #define float32_one_point_five make_float32(0x3fc00000)
2768 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
2770 float_status
*s
= &env
->vfp
.standard_fp_status
;
2771 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2772 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2773 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2774 float_raise(float_flag_input_denormal
, s
);
2778 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
2781 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
2783 float_status
*s
= &env
->vfp
.standard_fp_status
;
2785 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2786 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2787 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2788 float_raise(float_flag_input_denormal
, s
);
2790 return float32_one_point_five
;
2792 product
= float32_mul(a
, b
, s
);
2793 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
2798 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2799 * int->float conversions at run-time. */
2800 #define float64_256 make_float64(0x4070000000000000LL)
2801 #define float64_512 make_float64(0x4080000000000000LL)
2803 /* The algorithm that must be used to calculate the estimate
2804 * is specified by the ARM ARM.
2806 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
2808 /* These calculations mustn't set any fp exception flags,
2809 * so we use a local copy of the fp_status.
2811 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2812 float_status
*s
= &dummy_status
;
2813 /* q = (int)(a * 512.0) */
2814 float64 q
= float64_mul(float64_512
, a
, s
);
2815 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2817 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2818 q
= int64_to_float64(q_int
, s
);
2819 q
= float64_add(q
, float64_half
, s
);
2820 q
= float64_div(q
, float64_512
, s
);
2821 q
= float64_div(float64_one
, q
, s
);
2823 /* s = (int)(256.0 * r + 0.5) */
2824 q
= float64_mul(q
, float64_256
, s
);
2825 q
= float64_add(q
, float64_half
, s
);
2826 q_int
= float64_to_int64_round_to_zero(q
, s
);
2828 /* return (double)s / 256.0 */
2829 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2832 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
2834 float_status
*s
= &env
->vfp
.standard_fp_status
;
2836 uint32_t val32
= float32_val(a
);
2839 int a_exp
= (val32
& 0x7f800000) >> 23;
2840 int sign
= val32
& 0x80000000;
2842 if (float32_is_any_nan(a
)) {
2843 if (float32_is_signaling_nan(a
)) {
2844 float_raise(float_flag_invalid
, s
);
2846 return float32_default_nan
;
2847 } else if (float32_is_infinity(a
)) {
2848 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2849 } else if (float32_is_zero_or_denormal(a
)) {
2850 if (!float32_is_zero(a
)) {
2851 float_raise(float_flag_input_denormal
, s
);
2853 float_raise(float_flag_divbyzero
, s
);
2854 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
2855 } else if (a_exp
>= 253) {
2856 float_raise(float_flag_underflow
, s
);
2857 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2860 f64
= make_float64((0x3feULL
<< 52)
2861 | ((int64_t)(val32
& 0x7fffff) << 29));
2863 result_exp
= 253 - a_exp
;
2865 f64
= recip_estimate(f64
, env
);
2868 | ((result_exp
& 0xff) << 23)
2869 | ((float64_val(f64
) >> 29) & 0x7fffff);
2870 return make_float32(val32
);
2873 /* The algorithm that must be used to calculate the estimate
2874 * is specified by the ARM ARM.
2876 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
2878 /* These calculations mustn't set any fp exception flags,
2879 * so we use a local copy of the fp_status.
2881 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2882 float_status
*s
= &dummy_status
;
2886 if (float64_lt(a
, float64_half
, s
)) {
2887 /* range 0.25 <= a < 0.5 */
2889 /* a in units of 1/512 rounded down */
2890 /* q0 = (int)(a * 512.0); */
2891 q
= float64_mul(float64_512
, a
, s
);
2892 q_int
= float64_to_int64_round_to_zero(q
, s
);
2894 /* reciprocal root r */
2895 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2896 q
= int64_to_float64(q_int
, s
);
2897 q
= float64_add(q
, float64_half
, s
);
2898 q
= float64_div(q
, float64_512
, s
);
2899 q
= float64_sqrt(q
, s
);
2900 q
= float64_div(float64_one
, q
, s
);
2902 /* range 0.5 <= a < 1.0 */
2904 /* a in units of 1/256 rounded down */
2905 /* q1 = (int)(a * 256.0); */
2906 q
= float64_mul(float64_256
, a
, s
);
2907 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2909 /* reciprocal root r */
2910 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2911 q
= int64_to_float64(q_int
, s
);
2912 q
= float64_add(q
, float64_half
, s
);
2913 q
= float64_div(q
, float64_256
, s
);
2914 q
= float64_sqrt(q
, s
);
2915 q
= float64_div(float64_one
, q
, s
);
2917 /* r in units of 1/256 rounded to nearest */
2918 /* s = (int)(256.0 * r + 0.5); */
2920 q
= float64_mul(q
, float64_256
,s
);
2921 q
= float64_add(q
, float64_half
, s
);
2922 q_int
= float64_to_int64_round_to_zero(q
, s
);
2924 /* return (double)s / 256.0;*/
2925 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2928 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
2930 float_status
*s
= &env
->vfp
.standard_fp_status
;
2936 val
= float32_val(a
);
2938 if (float32_is_any_nan(a
)) {
2939 if (float32_is_signaling_nan(a
)) {
2940 float_raise(float_flag_invalid
, s
);
2942 return float32_default_nan
;
2943 } else if (float32_is_zero_or_denormal(a
)) {
2944 if (!float32_is_zero(a
)) {
2945 float_raise(float_flag_input_denormal
, s
);
2947 float_raise(float_flag_divbyzero
, s
);
2948 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
2949 } else if (float32_is_neg(a
)) {
2950 float_raise(float_flag_invalid
, s
);
2951 return float32_default_nan
;
2952 } else if (float32_is_infinity(a
)) {
2953 return float32_zero
;
2956 /* Normalize to a double-precision value between 0.25 and 1.0,
2957 * preserving the parity of the exponent. */
2958 if ((val
& 0x800000) == 0) {
2959 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
2961 | ((uint64_t)(val
& 0x7fffff) << 29));
2963 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
2965 | ((uint64_t)(val
& 0x7fffff) << 29));
2968 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
2970 f64
= recip_sqrt_estimate(f64
, env
);
2972 val64
= float64_val(f64
);
2974 val
= ((result_exp
& 0xff) << 23)
2975 | ((val64
>> 29) & 0x7fffff);
2976 return make_float32(val
);
2979 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
2983 if ((a
& 0x80000000) == 0) {
2987 f64
= make_float64((0x3feULL
<< 52)
2988 | ((int64_t)(a
& 0x7fffffff) << 21));
2990 f64
= recip_estimate (f64
, env
);
2992 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
2995 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
2999 if ((a
& 0xc0000000) == 0) {
3003 if (a
& 0x80000000) {
3004 f64
= make_float64((0x3feULL
<< 52)
3005 | ((uint64_t)(a
& 0x7fffffff) << 21));
3006 } else { /* bits 31-30 == '01' */
3007 f64
= make_float64((0x3fdULL
<< 52)
3008 | ((uint64_t)(a
& 0x3fffffff) << 22));
3011 f64
= recip_sqrt_estimate(f64
, env
);
3013 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3016 /* VFPv4 fused multiply-accumulate */
3017 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
3019 float_status
*fpst
= fpstp
;
3020 return float32_muladd(a
, b
, c
, 0, fpst
);
3023 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
3025 float_status
*fpst
= fpstp
;
3026 return float64_muladd(a
, b
, c
, 0, fpst
);
3029 void HELPER(set_teecr
)(CPUARMState
*env
, uint32_t val
)
3032 if (env
->teecr
!= val
) {