memory: switch memory listeners to a QTAILQ
[qemu/wangdongxu.git] / kvm-all.c
blob6835fd46f8d04e074cd9daaf87bbabba222d71f0
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
32 /* This check must be after config-host.h is included */
33 #ifdef CONFIG_EVENTFD
34 #include <sys/eventfd.h>
35 #endif
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
40 //#define DEBUG_KVM
42 #ifdef DEBUG_KVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 typedef struct KVMSlot
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
54 void *ram;
55 int slot;
56 int flags;
57 } KVMSlot;
59 typedef struct kvm_dirty_log KVMDirtyLog;
61 struct KVMState
63 KVMSlot slots[32];
64 int fd;
65 int vmfd;
66 int coalesced_mmio;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int irqchip_inject_ioctl;
82 #ifdef KVM_CAP_IRQ_ROUTING
83 struct kvm_irq_routing *irq_routes;
84 int nr_allocated_irq_routes;
85 uint32_t *used_gsi_bitmap;
86 unsigned int max_gsi;
87 #endif
90 KVMState *kvm_state;
92 static const KVMCapabilityInfo kvm_required_capabilites[] = {
93 KVM_CAP_INFO(USER_MEMORY),
94 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
95 KVM_CAP_LAST_INFO
98 static KVMSlot *kvm_alloc_slot(KVMState *s)
100 int i;
102 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
103 if (s->slots[i].memory_size == 0) {
104 return &s->slots[i];
108 fprintf(stderr, "%s: no free slot available\n", __func__);
109 abort();
112 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113 target_phys_addr_t start_addr,
114 target_phys_addr_t end_addr)
116 int i;
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 KVMSlot *mem = &s->slots[i];
121 if (start_addr == mem->start_addr &&
122 end_addr == mem->start_addr + mem->memory_size) {
123 return mem;
127 return NULL;
131 * Find overlapping slot with lowest start address
133 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
137 KVMSlot *found = NULL;
138 int i;
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
143 if (mem->memory_size == 0 ||
144 (found && found->start_addr < mem->start_addr)) {
145 continue;
148 if (end_addr > mem->start_addr &&
149 start_addr < mem->start_addr + mem->memory_size) {
150 found = mem;
154 return found;
157 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
158 target_phys_addr_t *phys_addr)
160 int i;
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
165 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
166 *phys_addr = mem->start_addr + (ram - mem->ram);
167 return 1;
171 return 0;
174 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
176 struct kvm_userspace_memory_region mem;
178 mem.slot = slot->slot;
179 mem.guest_phys_addr = slot->start_addr;
180 mem.memory_size = slot->memory_size;
181 mem.userspace_addr = (unsigned long)slot->ram;
182 mem.flags = slot->flags;
183 if (s->migration_log) {
184 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
186 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
189 static void kvm_reset_vcpu(void *opaque)
191 CPUState *env = opaque;
193 kvm_arch_reset_vcpu(env);
196 int kvm_irqchip_in_kernel(void)
198 return kvm_state->irqchip_in_kernel;
201 int kvm_pit_in_kernel(void)
203 return kvm_state->pit_in_kernel;
206 int kvm_init_vcpu(CPUState *env)
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
212 DPRINTF("kvm_init_vcpu\n");
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
220 env->kvm_fd = ret;
221 env->kvm_state = s;
222 env->kvm_vcpu_dirty = 1;
224 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
225 if (mmap_size < 0) {
226 ret = mmap_size;
227 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 goto err;
231 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
232 env->kvm_fd, 0);
233 if (env->kvm_run == MAP_FAILED) {
234 ret = -errno;
235 DPRINTF("mmap'ing vcpu state failed\n");
236 goto err;
239 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
240 s->coalesced_mmio_ring =
241 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
244 ret = kvm_arch_init_vcpu(env);
245 if (ret == 0) {
246 qemu_register_reset(kvm_reset_vcpu, env);
247 kvm_arch_reset_vcpu(env);
249 err:
250 return ret;
254 * dirty pages logging control
257 static int kvm_mem_flags(KVMState *s, bool log_dirty)
259 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
262 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
264 KVMState *s = kvm_state;
265 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
266 int old_flags;
268 old_flags = mem->flags;
270 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
271 mem->flags = flags;
273 /* If nothing changed effectively, no need to issue ioctl */
274 if (s->migration_log) {
275 flags |= KVM_MEM_LOG_DIRTY_PAGES;
278 if (flags == old_flags) {
279 return 0;
282 return kvm_set_user_memory_region(s, mem);
285 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
286 ram_addr_t size, bool log_dirty)
288 KVMState *s = kvm_state;
289 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
291 if (mem == NULL) {
292 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
293 TARGET_FMT_plx "\n", __func__, phys_addr,
294 (target_phys_addr_t)(phys_addr + size - 1));
295 return -EINVAL;
297 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
300 static void kvm_log_start(MemoryListener *listener,
301 MemoryRegionSection *section)
303 int r;
305 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
306 section->size, true);
307 if (r < 0) {
308 abort();
312 static void kvm_log_stop(MemoryListener *listener,
313 MemoryRegionSection *section)
315 int r;
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, false);
319 if (r < 0) {
320 abort();
324 static int kvm_set_migration_log(int enable)
326 KVMState *s = kvm_state;
327 KVMSlot *mem;
328 int i, err;
330 s->migration_log = enable;
332 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
333 mem = &s->slots[i];
335 if (!mem->memory_size) {
336 continue;
338 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
339 continue;
341 err = kvm_set_user_memory_region(s, mem);
342 if (err) {
343 return err;
346 return 0;
349 /* get kvm's dirty pages bitmap and update qemu's */
350 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
351 unsigned long *bitmap)
353 unsigned int i, j;
354 unsigned long page_number, c;
355 target_phys_addr_t addr, addr1;
356 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
359 * bitmap-traveling is faster than memory-traveling (for addr...)
360 * especially when most of the memory is not dirty.
362 for (i = 0; i < len; i++) {
363 if (bitmap[i] != 0) {
364 c = leul_to_cpu(bitmap[i]);
365 do {
366 j = ffsl(c) - 1;
367 c &= ~(1ul << j);
368 page_number = i * HOST_LONG_BITS + j;
369 addr1 = page_number * TARGET_PAGE_SIZE;
370 addr = section->offset_within_region + addr1;
371 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
372 } while (c != 0);
375 return 0;
378 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
381 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
382 * This function updates qemu's dirty bitmap using
383 * memory_region_set_dirty(). This means all bits are set
384 * to dirty.
386 * @start_add: start of logged region.
387 * @end_addr: end of logged region.
389 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
391 KVMState *s = kvm_state;
392 unsigned long size, allocated_size = 0;
393 KVMDirtyLog d;
394 KVMSlot *mem;
395 int ret = 0;
396 target_phys_addr_t start_addr = section->offset_within_address_space;
397 target_phys_addr_t end_addr = start_addr + section->size;
399 d.dirty_bitmap = NULL;
400 while (start_addr < end_addr) {
401 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
402 if (mem == NULL) {
403 break;
406 /* XXX bad kernel interface alert
407 * For dirty bitmap, kernel allocates array of size aligned to
408 * bits-per-long. But for case when the kernel is 64bits and
409 * the userspace is 32bits, userspace can't align to the same
410 * bits-per-long, since sizeof(long) is different between kernel
411 * and user space. This way, userspace will provide buffer which
412 * may be 4 bytes less than the kernel will use, resulting in
413 * userspace memory corruption (which is not detectable by valgrind
414 * too, in most cases).
415 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
416 * a hope that sizeof(long) wont become >8 any time soon.
418 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
419 /*HOST_LONG_BITS*/ 64) / 8;
420 if (!d.dirty_bitmap) {
421 d.dirty_bitmap = g_malloc(size);
422 } else if (size > allocated_size) {
423 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
425 allocated_size = size;
426 memset(d.dirty_bitmap, 0, allocated_size);
428 d.slot = mem->slot;
430 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
431 DPRINTF("ioctl failed %d\n", errno);
432 ret = -1;
433 break;
436 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
437 start_addr = mem->start_addr + mem->memory_size;
439 g_free(d.dirty_bitmap);
441 return ret;
444 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
446 int ret = -ENOSYS;
447 KVMState *s = kvm_state;
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
452 zone.addr = start;
453 zone.size = size;
455 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
458 return ret;
461 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
463 int ret = -ENOSYS;
464 KVMState *s = kvm_state;
466 if (s->coalesced_mmio) {
467 struct kvm_coalesced_mmio_zone zone;
469 zone.addr = start;
470 zone.size = size;
472 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
475 return ret;
478 int kvm_check_extension(KVMState *s, unsigned int extension)
480 int ret;
482 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
483 if (ret < 0) {
484 ret = 0;
487 return ret;
490 static int kvm_check_many_ioeventfds(void)
492 /* Userspace can use ioeventfd for io notification. This requires a host
493 * that supports eventfd(2) and an I/O thread; since eventfd does not
494 * support SIGIO it cannot interrupt the vcpu.
496 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
497 * can avoid creating too many ioeventfds.
499 #if defined(CONFIG_EVENTFD)
500 int ioeventfds[7];
501 int i, ret = 0;
502 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
503 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
504 if (ioeventfds[i] < 0) {
505 break;
507 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
508 if (ret < 0) {
509 close(ioeventfds[i]);
510 break;
514 /* Decide whether many devices are supported or not */
515 ret = i == ARRAY_SIZE(ioeventfds);
517 while (i-- > 0) {
518 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
519 close(ioeventfds[i]);
521 return ret;
522 #else
523 return 0;
524 #endif
527 static const KVMCapabilityInfo *
528 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
530 while (list->name) {
531 if (!kvm_check_extension(s, list->value)) {
532 return list;
534 list++;
536 return NULL;
539 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
541 KVMState *s = kvm_state;
542 KVMSlot *mem, old;
543 int err;
544 MemoryRegion *mr = section->mr;
545 bool log_dirty = memory_region_is_logging(mr);
546 target_phys_addr_t start_addr = section->offset_within_address_space;
547 ram_addr_t size = section->size;
548 void *ram = NULL;
550 /* kvm works in page size chunks, but the function may be called
551 with sub-page size and unaligned start address. */
552 size = TARGET_PAGE_ALIGN(size);
553 start_addr = TARGET_PAGE_ALIGN(start_addr);
555 if (!memory_region_is_ram(mr)) {
556 return;
559 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
561 while (1) {
562 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
563 if (!mem) {
564 break;
567 if (add && start_addr >= mem->start_addr &&
568 (start_addr + size <= mem->start_addr + mem->memory_size) &&
569 (ram - start_addr == mem->ram - mem->start_addr)) {
570 /* The new slot fits into the existing one and comes with
571 * identical parameters - update flags and done. */
572 kvm_slot_dirty_pages_log_change(mem, log_dirty);
573 return;
576 old = *mem;
578 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
579 kvm_physical_sync_dirty_bitmap(section);
582 /* unregister the overlapping slot */
583 mem->memory_size = 0;
584 err = kvm_set_user_memory_region(s, mem);
585 if (err) {
586 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
587 __func__, strerror(-err));
588 abort();
591 /* Workaround for older KVM versions: we can't join slots, even not by
592 * unregistering the previous ones and then registering the larger
593 * slot. We have to maintain the existing fragmentation. Sigh.
595 * This workaround assumes that the new slot starts at the same
596 * address as the first existing one. If not or if some overlapping
597 * slot comes around later, we will fail (not seen in practice so far)
598 * - and actually require a recent KVM version. */
599 if (s->broken_set_mem_region &&
600 old.start_addr == start_addr && old.memory_size < size && add) {
601 mem = kvm_alloc_slot(s);
602 mem->memory_size = old.memory_size;
603 mem->start_addr = old.start_addr;
604 mem->ram = old.ram;
605 mem->flags = kvm_mem_flags(s, log_dirty);
607 err = kvm_set_user_memory_region(s, mem);
608 if (err) {
609 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
610 strerror(-err));
611 abort();
614 start_addr += old.memory_size;
615 ram += old.memory_size;
616 size -= old.memory_size;
617 continue;
620 /* register prefix slot */
621 if (old.start_addr < start_addr) {
622 mem = kvm_alloc_slot(s);
623 mem->memory_size = start_addr - old.start_addr;
624 mem->start_addr = old.start_addr;
625 mem->ram = old.ram;
626 mem->flags = kvm_mem_flags(s, log_dirty);
628 err = kvm_set_user_memory_region(s, mem);
629 if (err) {
630 fprintf(stderr, "%s: error registering prefix slot: %s\n",
631 __func__, strerror(-err));
632 #ifdef TARGET_PPC
633 fprintf(stderr, "%s: This is probably because your kernel's " \
634 "PAGE_SIZE is too big. Please try to use 4k " \
635 "PAGE_SIZE!\n", __func__);
636 #endif
637 abort();
641 /* register suffix slot */
642 if (old.start_addr + old.memory_size > start_addr + size) {
643 ram_addr_t size_delta;
645 mem = kvm_alloc_slot(s);
646 mem->start_addr = start_addr + size;
647 size_delta = mem->start_addr - old.start_addr;
648 mem->memory_size = old.memory_size - size_delta;
649 mem->ram = old.ram + size_delta;
650 mem->flags = kvm_mem_flags(s, log_dirty);
652 err = kvm_set_user_memory_region(s, mem);
653 if (err) {
654 fprintf(stderr, "%s: error registering suffix slot: %s\n",
655 __func__, strerror(-err));
656 abort();
661 /* in case the KVM bug workaround already "consumed" the new slot */
662 if (!size) {
663 return;
665 if (!add) {
666 return;
668 mem = kvm_alloc_slot(s);
669 mem->memory_size = size;
670 mem->start_addr = start_addr;
671 mem->ram = ram;
672 mem->flags = kvm_mem_flags(s, log_dirty);
674 err = kvm_set_user_memory_region(s, mem);
675 if (err) {
676 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
677 strerror(-err));
678 abort();
682 static void kvm_region_add(MemoryListener *listener,
683 MemoryRegionSection *section)
685 kvm_set_phys_mem(section, true);
688 static void kvm_region_del(MemoryListener *listener,
689 MemoryRegionSection *section)
691 kvm_set_phys_mem(section, false);
694 static void kvm_log_sync(MemoryListener *listener,
695 MemoryRegionSection *section)
697 int r;
699 r = kvm_physical_sync_dirty_bitmap(section);
700 if (r < 0) {
701 abort();
705 static void kvm_log_global_start(struct MemoryListener *listener)
707 int r;
709 r = kvm_set_migration_log(1);
710 assert(r >= 0);
713 static void kvm_log_global_stop(struct MemoryListener *listener)
715 int r;
717 r = kvm_set_migration_log(0);
718 assert(r >= 0);
721 static MemoryListener kvm_memory_listener = {
722 .region_add = kvm_region_add,
723 .region_del = kvm_region_del,
724 .log_start = kvm_log_start,
725 .log_stop = kvm_log_stop,
726 .log_sync = kvm_log_sync,
727 .log_global_start = kvm_log_global_start,
728 .log_global_stop = kvm_log_global_stop,
729 .priority = 10,
732 static void kvm_handle_interrupt(CPUState *env, int mask)
734 env->interrupt_request |= mask;
736 if (!qemu_cpu_is_self(env)) {
737 qemu_cpu_kick(env);
741 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
743 struct kvm_irq_level event;
744 int ret;
746 assert(s->irqchip_in_kernel);
748 event.level = level;
749 event.irq = irq;
750 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
751 if (ret < 0) {
752 perror("kvm_set_irqchip_line");
753 abort();
756 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
759 #ifdef KVM_CAP_IRQ_ROUTING
760 static void set_gsi(KVMState *s, unsigned int gsi)
762 assert(gsi < s->max_gsi);
764 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
767 static void kvm_init_irq_routing(KVMState *s)
769 int gsi_count;
771 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
772 if (gsi_count > 0) {
773 unsigned int gsi_bits, i;
775 /* Round up so we can search ints using ffs */
776 gsi_bits = (gsi_count + 31) / 32;
777 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
778 s->max_gsi = gsi_bits;
780 /* Mark any over-allocated bits as already in use */
781 for (i = gsi_count; i < gsi_bits; i++) {
782 set_gsi(s, i);
786 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
787 s->nr_allocated_irq_routes = 0;
789 kvm_arch_init_irq_routing(s);
792 static void kvm_add_routing_entry(KVMState *s,
793 struct kvm_irq_routing_entry *entry)
795 struct kvm_irq_routing_entry *new;
796 int n, size;
798 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
799 n = s->nr_allocated_irq_routes * 2;
800 if (n < 64) {
801 n = 64;
803 size = sizeof(struct kvm_irq_routing);
804 size += n * sizeof(*new);
805 s->irq_routes = g_realloc(s->irq_routes, size);
806 s->nr_allocated_irq_routes = n;
808 n = s->irq_routes->nr++;
809 new = &s->irq_routes->entries[n];
810 memset(new, 0, sizeof(*new));
811 new->gsi = entry->gsi;
812 new->type = entry->type;
813 new->flags = entry->flags;
814 new->u = entry->u;
816 set_gsi(s, entry->gsi);
819 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
821 struct kvm_irq_routing_entry e;
823 e.gsi = irq;
824 e.type = KVM_IRQ_ROUTING_IRQCHIP;
825 e.flags = 0;
826 e.u.irqchip.irqchip = irqchip;
827 e.u.irqchip.pin = pin;
828 kvm_add_routing_entry(s, &e);
831 int kvm_irqchip_commit_routes(KVMState *s)
833 s->irq_routes->flags = 0;
834 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
837 #else /* !KVM_CAP_IRQ_ROUTING */
839 static void kvm_init_irq_routing(KVMState *s)
842 #endif /* !KVM_CAP_IRQ_ROUTING */
844 static int kvm_irqchip_create(KVMState *s)
846 QemuOptsList *list = qemu_find_opts("machine");
847 int ret;
849 if (QTAILQ_EMPTY(&list->head) ||
850 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
851 "kernel_irqchip", false) ||
852 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
853 return 0;
856 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
857 if (ret < 0) {
858 fprintf(stderr, "Create kernel irqchip failed\n");
859 return ret;
862 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
863 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
864 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
866 s->irqchip_in_kernel = 1;
868 kvm_init_irq_routing(s);
870 return 0;
873 int kvm_init(void)
875 static const char upgrade_note[] =
876 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
877 "(see http://sourceforge.net/projects/kvm).\n";
878 KVMState *s;
879 const KVMCapabilityInfo *missing_cap;
880 int ret;
881 int i;
883 s = g_malloc0(sizeof(KVMState));
885 #ifdef KVM_CAP_SET_GUEST_DEBUG
886 QTAILQ_INIT(&s->kvm_sw_breakpoints);
887 #endif
888 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
889 s->slots[i].slot = i;
891 s->vmfd = -1;
892 s->fd = qemu_open("/dev/kvm", O_RDWR);
893 if (s->fd == -1) {
894 fprintf(stderr, "Could not access KVM kernel module: %m\n");
895 ret = -errno;
896 goto err;
899 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
900 if (ret < KVM_API_VERSION) {
901 if (ret > 0) {
902 ret = -EINVAL;
904 fprintf(stderr, "kvm version too old\n");
905 goto err;
908 if (ret > KVM_API_VERSION) {
909 ret = -EINVAL;
910 fprintf(stderr, "kvm version not supported\n");
911 goto err;
914 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
915 if (s->vmfd < 0) {
916 #ifdef TARGET_S390X
917 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
918 "your host kernel command line\n");
919 #endif
920 ret = s->vmfd;
921 goto err;
924 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
925 if (!missing_cap) {
926 missing_cap =
927 kvm_check_extension_list(s, kvm_arch_required_capabilities);
929 if (missing_cap) {
930 ret = -EINVAL;
931 fprintf(stderr, "kvm does not support %s\n%s",
932 missing_cap->name, upgrade_note);
933 goto err;
936 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
938 s->broken_set_mem_region = 1;
939 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
940 if (ret > 0) {
941 s->broken_set_mem_region = 0;
944 #ifdef KVM_CAP_VCPU_EVENTS
945 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
946 #endif
948 s->robust_singlestep =
949 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
951 #ifdef KVM_CAP_DEBUGREGS
952 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
953 #endif
955 #ifdef KVM_CAP_XSAVE
956 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
957 #endif
959 #ifdef KVM_CAP_XCRS
960 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
961 #endif
963 ret = kvm_arch_init(s);
964 if (ret < 0) {
965 goto err;
968 ret = kvm_irqchip_create(s);
969 if (ret < 0) {
970 goto err;
973 kvm_state = s;
974 memory_listener_register(&kvm_memory_listener);
976 s->many_ioeventfds = kvm_check_many_ioeventfds();
978 cpu_interrupt_handler = kvm_handle_interrupt;
980 return 0;
982 err:
983 if (s) {
984 if (s->vmfd >= 0) {
985 close(s->vmfd);
987 if (s->fd != -1) {
988 close(s->fd);
991 g_free(s);
993 return ret;
996 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
997 uint32_t count)
999 int i;
1000 uint8_t *ptr = data;
1002 for (i = 0; i < count; i++) {
1003 if (direction == KVM_EXIT_IO_IN) {
1004 switch (size) {
1005 case 1:
1006 stb_p(ptr, cpu_inb(port));
1007 break;
1008 case 2:
1009 stw_p(ptr, cpu_inw(port));
1010 break;
1011 case 4:
1012 stl_p(ptr, cpu_inl(port));
1013 break;
1015 } else {
1016 switch (size) {
1017 case 1:
1018 cpu_outb(port, ldub_p(ptr));
1019 break;
1020 case 2:
1021 cpu_outw(port, lduw_p(ptr));
1022 break;
1023 case 4:
1024 cpu_outl(port, ldl_p(ptr));
1025 break;
1029 ptr += size;
1033 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1035 fprintf(stderr, "KVM internal error.");
1036 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1037 int i;
1039 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1040 for (i = 0; i < run->internal.ndata; ++i) {
1041 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1042 i, (uint64_t)run->internal.data[i]);
1044 } else {
1045 fprintf(stderr, "\n");
1047 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1048 fprintf(stderr, "emulation failure\n");
1049 if (!kvm_arch_stop_on_emulation_error(env)) {
1050 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1051 return EXCP_INTERRUPT;
1054 /* FIXME: Should trigger a qmp message to let management know
1055 * something went wrong.
1057 return -1;
1060 void kvm_flush_coalesced_mmio_buffer(void)
1062 KVMState *s = kvm_state;
1064 if (s->coalesced_flush_in_progress) {
1065 return;
1068 s->coalesced_flush_in_progress = true;
1070 if (s->coalesced_mmio_ring) {
1071 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1072 while (ring->first != ring->last) {
1073 struct kvm_coalesced_mmio *ent;
1075 ent = &ring->coalesced_mmio[ring->first];
1077 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1078 smp_wmb();
1079 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1083 s->coalesced_flush_in_progress = false;
1086 static void do_kvm_cpu_synchronize_state(void *_env)
1088 CPUState *env = _env;
1090 if (!env->kvm_vcpu_dirty) {
1091 kvm_arch_get_registers(env);
1092 env->kvm_vcpu_dirty = 1;
1096 void kvm_cpu_synchronize_state(CPUState *env)
1098 if (!env->kvm_vcpu_dirty) {
1099 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1103 void kvm_cpu_synchronize_post_reset(CPUState *env)
1105 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1106 env->kvm_vcpu_dirty = 0;
1109 void kvm_cpu_synchronize_post_init(CPUState *env)
1111 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1112 env->kvm_vcpu_dirty = 0;
1115 int kvm_cpu_exec(CPUState *env)
1117 struct kvm_run *run = env->kvm_run;
1118 int ret, run_ret;
1120 DPRINTF("kvm_cpu_exec()\n");
1122 if (kvm_arch_process_async_events(env)) {
1123 env->exit_request = 0;
1124 return EXCP_HLT;
1127 cpu_single_env = env;
1129 do {
1130 if (env->kvm_vcpu_dirty) {
1131 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1132 env->kvm_vcpu_dirty = 0;
1135 kvm_arch_pre_run(env, run);
1136 if (env->exit_request) {
1137 DPRINTF("interrupt exit requested\n");
1139 * KVM requires us to reenter the kernel after IO exits to complete
1140 * instruction emulation. This self-signal will ensure that we
1141 * leave ASAP again.
1143 qemu_cpu_kick_self();
1145 cpu_single_env = NULL;
1146 qemu_mutex_unlock_iothread();
1148 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1150 qemu_mutex_lock_iothread();
1151 cpu_single_env = env;
1152 kvm_arch_post_run(env, run);
1154 kvm_flush_coalesced_mmio_buffer();
1156 if (run_ret < 0) {
1157 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1158 DPRINTF("io window exit\n");
1159 ret = EXCP_INTERRUPT;
1160 break;
1162 fprintf(stderr, "error: kvm run failed %s\n",
1163 strerror(-run_ret));
1164 abort();
1167 switch (run->exit_reason) {
1168 case KVM_EXIT_IO:
1169 DPRINTF("handle_io\n");
1170 kvm_handle_io(run->io.port,
1171 (uint8_t *)run + run->io.data_offset,
1172 run->io.direction,
1173 run->io.size,
1174 run->io.count);
1175 ret = 0;
1176 break;
1177 case KVM_EXIT_MMIO:
1178 DPRINTF("handle_mmio\n");
1179 cpu_physical_memory_rw(run->mmio.phys_addr,
1180 run->mmio.data,
1181 run->mmio.len,
1182 run->mmio.is_write);
1183 ret = 0;
1184 break;
1185 case KVM_EXIT_IRQ_WINDOW_OPEN:
1186 DPRINTF("irq_window_open\n");
1187 ret = EXCP_INTERRUPT;
1188 break;
1189 case KVM_EXIT_SHUTDOWN:
1190 DPRINTF("shutdown\n");
1191 qemu_system_reset_request();
1192 ret = EXCP_INTERRUPT;
1193 break;
1194 case KVM_EXIT_UNKNOWN:
1195 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1196 (uint64_t)run->hw.hardware_exit_reason);
1197 ret = -1;
1198 break;
1199 case KVM_EXIT_INTERNAL_ERROR:
1200 ret = kvm_handle_internal_error(env, run);
1201 break;
1202 default:
1203 DPRINTF("kvm_arch_handle_exit\n");
1204 ret = kvm_arch_handle_exit(env, run);
1205 break;
1207 } while (ret == 0);
1209 if (ret < 0) {
1210 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1211 vm_stop(RUN_STATE_INTERNAL_ERROR);
1214 env->exit_request = 0;
1215 cpu_single_env = NULL;
1216 return ret;
1219 int kvm_ioctl(KVMState *s, int type, ...)
1221 int ret;
1222 void *arg;
1223 va_list ap;
1225 va_start(ap, type);
1226 arg = va_arg(ap, void *);
1227 va_end(ap);
1229 ret = ioctl(s->fd, type, arg);
1230 if (ret == -1) {
1231 ret = -errno;
1233 return ret;
1236 int kvm_vm_ioctl(KVMState *s, int type, ...)
1238 int ret;
1239 void *arg;
1240 va_list ap;
1242 va_start(ap, type);
1243 arg = va_arg(ap, void *);
1244 va_end(ap);
1246 ret = ioctl(s->vmfd, type, arg);
1247 if (ret == -1) {
1248 ret = -errno;
1250 return ret;
1253 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1255 int ret;
1256 void *arg;
1257 va_list ap;
1259 va_start(ap, type);
1260 arg = va_arg(ap, void *);
1261 va_end(ap);
1263 ret = ioctl(env->kvm_fd, type, arg);
1264 if (ret == -1) {
1265 ret = -errno;
1267 return ret;
1270 int kvm_has_sync_mmu(void)
1272 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1275 int kvm_has_vcpu_events(void)
1277 return kvm_state->vcpu_events;
1280 int kvm_has_robust_singlestep(void)
1282 return kvm_state->robust_singlestep;
1285 int kvm_has_debugregs(void)
1287 return kvm_state->debugregs;
1290 int kvm_has_xsave(void)
1292 return kvm_state->xsave;
1295 int kvm_has_xcrs(void)
1297 return kvm_state->xcrs;
1300 int kvm_has_many_ioeventfds(void)
1302 if (!kvm_enabled()) {
1303 return 0;
1305 return kvm_state->many_ioeventfds;
1308 int kvm_has_gsi_routing(void)
1310 #ifdef KVM_CAP_IRQ_ROUTING
1311 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1312 #else
1313 return false;
1314 #endif
1317 int kvm_allows_irq0_override(void)
1319 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1322 void kvm_setup_guest_memory(void *start, size_t size)
1324 if (!kvm_has_sync_mmu()) {
1325 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1327 if (ret) {
1328 perror("qemu_madvise");
1329 fprintf(stderr,
1330 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1331 exit(1);
1336 #ifdef KVM_CAP_SET_GUEST_DEBUG
1337 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1338 target_ulong pc)
1340 struct kvm_sw_breakpoint *bp;
1342 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1343 if (bp->pc == pc) {
1344 return bp;
1347 return NULL;
1350 int kvm_sw_breakpoints_active(CPUState *env)
1352 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1355 struct kvm_set_guest_debug_data {
1356 struct kvm_guest_debug dbg;
1357 CPUState *env;
1358 int err;
1361 static void kvm_invoke_set_guest_debug(void *data)
1363 struct kvm_set_guest_debug_data *dbg_data = data;
1364 CPUState *env = dbg_data->env;
1366 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1369 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1371 struct kvm_set_guest_debug_data data;
1373 data.dbg.control = reinject_trap;
1375 if (env->singlestep_enabled) {
1376 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1378 kvm_arch_update_guest_debug(env, &data.dbg);
1379 data.env = env;
1381 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1382 return data.err;
1385 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1386 target_ulong len, int type)
1388 struct kvm_sw_breakpoint *bp;
1389 CPUState *env;
1390 int err;
1392 if (type == GDB_BREAKPOINT_SW) {
1393 bp = kvm_find_sw_breakpoint(current_env, addr);
1394 if (bp) {
1395 bp->use_count++;
1396 return 0;
1399 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1400 if (!bp) {
1401 return -ENOMEM;
1404 bp->pc = addr;
1405 bp->use_count = 1;
1406 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1407 if (err) {
1408 g_free(bp);
1409 return err;
1412 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1413 bp, entry);
1414 } else {
1415 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1416 if (err) {
1417 return err;
1421 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1422 err = kvm_update_guest_debug(env, 0);
1423 if (err) {
1424 return err;
1427 return 0;
1430 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1431 target_ulong len, int type)
1433 struct kvm_sw_breakpoint *bp;
1434 CPUState *env;
1435 int err;
1437 if (type == GDB_BREAKPOINT_SW) {
1438 bp = kvm_find_sw_breakpoint(current_env, addr);
1439 if (!bp) {
1440 return -ENOENT;
1443 if (bp->use_count > 1) {
1444 bp->use_count--;
1445 return 0;
1448 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1449 if (err) {
1450 return err;
1453 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1454 g_free(bp);
1455 } else {
1456 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1457 if (err) {
1458 return err;
1462 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1463 err = kvm_update_guest_debug(env, 0);
1464 if (err) {
1465 return err;
1468 return 0;
1471 void kvm_remove_all_breakpoints(CPUState *current_env)
1473 struct kvm_sw_breakpoint *bp, *next;
1474 KVMState *s = current_env->kvm_state;
1475 CPUState *env;
1477 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1478 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1479 /* Try harder to find a CPU that currently sees the breakpoint. */
1480 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1481 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1482 break;
1487 kvm_arch_remove_all_hw_breakpoints();
1489 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1490 kvm_update_guest_debug(env, 0);
1494 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1496 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1498 return -EINVAL;
1501 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1502 target_ulong len, int type)
1504 return -EINVAL;
1507 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1508 target_ulong len, int type)
1510 return -EINVAL;
1513 void kvm_remove_all_breakpoints(CPUState *current_env)
1516 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1518 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1520 struct kvm_signal_mask *sigmask;
1521 int r;
1523 if (!sigset) {
1524 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1527 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1529 sigmask->len = 8;
1530 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1531 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1532 g_free(sigmask);
1534 return r;
1537 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1539 int ret;
1540 struct kvm_ioeventfd iofd;
1542 iofd.datamatch = val;
1543 iofd.addr = addr;
1544 iofd.len = 4;
1545 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1546 iofd.fd = fd;
1548 if (!kvm_enabled()) {
1549 return -ENOSYS;
1552 if (!assign) {
1553 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1556 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1558 if (ret < 0) {
1559 return -errno;
1562 return 0;
1565 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1567 struct kvm_ioeventfd kick = {
1568 .datamatch = val,
1569 .addr = addr,
1570 .len = 2,
1571 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1572 .fd = fd,
1574 int r;
1575 if (!kvm_enabled()) {
1576 return -ENOSYS;
1578 if (!assign) {
1579 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1581 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1582 if (r < 0) {
1583 return r;
1585 return 0;
1588 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1590 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1593 int kvm_on_sigbus(int code, void *addr)
1595 return kvm_arch_on_sigbus(code, addr);