qtest: fix 32-bit build
[qemu/wangdongxu.git] / target-ppc / kvm.c
blob724f4c781551eddc2c5dc4a0b3af4e5addaedf46
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include <dirent.h>
18 #include <sys/types.h>
19 #include <sys/ioctl.h>
20 #include <sys/mman.h>
22 #include <linux/kvm.h>
24 #include "qemu-common.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "kvm.h"
28 #include "kvm_ppc.h"
29 #include "cpu.h"
30 #include "device_tree.h"
31 #include "hw/sysbus.h"
32 #include "hw/spapr.h"
34 #include "hw/sysbus.h"
35 #include "hw/spapr.h"
36 #include "hw/spapr_vio.h"
38 //#define DEBUG_KVM
40 #ifdef DEBUG_KVM
41 #define dprintf(fmt, ...) \
42 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #else
44 #define dprintf(fmt, ...) \
45 do { } while (0)
46 #endif
48 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
50 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
51 KVM_CAP_LAST_INFO
54 static int cap_interrupt_unset = false;
55 static int cap_interrupt_level = false;
56 static int cap_segstate;
57 static int cap_booke_sregs;
58 static int cap_ppc_smt;
59 static int cap_ppc_rma;
60 static int cap_spapr_tce;
62 /* XXX We have a race condition where we actually have a level triggered
63 * interrupt, but the infrastructure can't expose that yet, so the guest
64 * takes but ignores it, goes to sleep and never gets notified that there's
65 * still an interrupt pending.
67 * As a quick workaround, let's just wake up again 20 ms after we injected
68 * an interrupt. That way we can assure that we're always reinjecting
69 * interrupts in case the guest swallowed them.
71 static QEMUTimer *idle_timer;
73 static void kvm_kick_env(void *env)
75 qemu_cpu_kick(env);
78 int kvm_arch_init(KVMState *s)
80 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
81 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
82 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
83 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
84 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
85 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
86 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
88 if (!cap_interrupt_level) {
89 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
90 "VM to stall at times!\n");
93 return 0;
96 static int kvm_arch_sync_sregs(CPUPPCState *cenv)
98 struct kvm_sregs sregs;
99 int ret;
101 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
102 /* What we're really trying to say is "if we're on BookE, we use
103 the native PVR for now". This is the only sane way to check
104 it though, so we potentially confuse users that they can run
105 BookE guests on BookS. Let's hope nobody dares enough :) */
106 return 0;
107 } else {
108 if (!cap_segstate) {
109 fprintf(stderr, "kvm error: missing PVR setting capability\n");
110 return -ENOSYS;
114 ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
115 if (ret) {
116 return ret;
119 sregs.pvr = cenv->spr[SPR_PVR];
120 return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
123 /* Set up a shared TLB array with KVM */
124 static int kvm_booke206_tlb_init(CPUPPCState *env)
126 struct kvm_book3e_206_tlb_params params = {};
127 struct kvm_config_tlb cfg = {};
128 struct kvm_enable_cap encap = {};
129 unsigned int entries = 0;
130 int ret, i;
132 if (!kvm_enabled() ||
133 !kvm_check_extension(env->kvm_state, KVM_CAP_SW_TLB)) {
134 return 0;
137 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
139 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
140 params.tlb_sizes[i] = booke206_tlb_size(env, i);
141 params.tlb_ways[i] = booke206_tlb_ways(env, i);
142 entries += params.tlb_sizes[i];
145 assert(entries == env->nb_tlb);
146 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
148 env->tlb_dirty = true;
150 cfg.array = (uintptr_t)env->tlb.tlbm;
151 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
152 cfg.params = (uintptr_t)&params;
153 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
155 encap.cap = KVM_CAP_SW_TLB;
156 encap.args[0] = (uintptr_t)&cfg;
158 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &encap);
159 if (ret < 0) {
160 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
161 __func__, strerror(-ret));
162 return ret;
165 env->kvm_sw_tlb = true;
166 return 0;
169 int kvm_arch_init_vcpu(CPUPPCState *cenv)
171 int ret;
173 ret = kvm_arch_sync_sregs(cenv);
174 if (ret) {
175 return ret;
178 idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv);
180 /* Some targets support access to KVM's guest TLB. */
181 switch (cenv->mmu_model) {
182 case POWERPC_MMU_BOOKE206:
183 ret = kvm_booke206_tlb_init(cenv);
184 break;
185 default:
186 break;
189 return ret;
192 void kvm_arch_reset_vcpu(CPUPPCState *env)
196 static void kvm_sw_tlb_put(CPUPPCState *env)
198 struct kvm_dirty_tlb dirty_tlb;
199 unsigned char *bitmap;
200 int ret;
202 if (!env->kvm_sw_tlb) {
203 return;
206 bitmap = g_malloc((env->nb_tlb + 7) / 8);
207 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
209 dirty_tlb.bitmap = (uintptr_t)bitmap;
210 dirty_tlb.num_dirty = env->nb_tlb;
212 ret = kvm_vcpu_ioctl(env, KVM_DIRTY_TLB, &dirty_tlb);
213 if (ret) {
214 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
215 __func__, strerror(-ret));
218 g_free(bitmap);
221 int kvm_arch_put_registers(CPUPPCState *env, int level)
223 struct kvm_regs regs;
224 int ret;
225 int i;
227 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
228 if (ret < 0)
229 return ret;
231 regs.ctr = env->ctr;
232 regs.lr = env->lr;
233 regs.xer = env->xer;
234 regs.msr = env->msr;
235 regs.pc = env->nip;
237 regs.srr0 = env->spr[SPR_SRR0];
238 regs.srr1 = env->spr[SPR_SRR1];
240 regs.sprg0 = env->spr[SPR_SPRG0];
241 regs.sprg1 = env->spr[SPR_SPRG1];
242 regs.sprg2 = env->spr[SPR_SPRG2];
243 regs.sprg3 = env->spr[SPR_SPRG3];
244 regs.sprg4 = env->spr[SPR_SPRG4];
245 regs.sprg5 = env->spr[SPR_SPRG5];
246 regs.sprg6 = env->spr[SPR_SPRG6];
247 regs.sprg7 = env->spr[SPR_SPRG7];
249 regs.pid = env->spr[SPR_BOOKE_PID];
251 for (i = 0;i < 32; i++)
252 regs.gpr[i] = env->gpr[i];
254 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
255 if (ret < 0)
256 return ret;
258 if (env->tlb_dirty) {
259 kvm_sw_tlb_put(env);
260 env->tlb_dirty = false;
263 return ret;
266 int kvm_arch_get_registers(CPUPPCState *env)
268 struct kvm_regs regs;
269 struct kvm_sregs sregs;
270 uint32_t cr;
271 int i, ret;
273 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
274 if (ret < 0)
275 return ret;
277 cr = regs.cr;
278 for (i = 7; i >= 0; i--) {
279 env->crf[i] = cr & 15;
280 cr >>= 4;
283 env->ctr = regs.ctr;
284 env->lr = regs.lr;
285 env->xer = regs.xer;
286 env->msr = regs.msr;
287 env->nip = regs.pc;
289 env->spr[SPR_SRR0] = regs.srr0;
290 env->spr[SPR_SRR1] = regs.srr1;
292 env->spr[SPR_SPRG0] = regs.sprg0;
293 env->spr[SPR_SPRG1] = regs.sprg1;
294 env->spr[SPR_SPRG2] = regs.sprg2;
295 env->spr[SPR_SPRG3] = regs.sprg3;
296 env->spr[SPR_SPRG4] = regs.sprg4;
297 env->spr[SPR_SPRG5] = regs.sprg5;
298 env->spr[SPR_SPRG6] = regs.sprg6;
299 env->spr[SPR_SPRG7] = regs.sprg7;
301 env->spr[SPR_BOOKE_PID] = regs.pid;
303 for (i = 0;i < 32; i++)
304 env->gpr[i] = regs.gpr[i];
306 if (cap_booke_sregs) {
307 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
308 if (ret < 0) {
309 return ret;
312 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
313 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
314 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
315 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
316 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
317 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
318 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
319 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
320 env->spr[SPR_DECR] = sregs.u.e.dec;
321 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
322 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
323 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
326 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
327 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
328 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
329 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
330 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
331 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
334 if (sregs.u.e.features & KVM_SREGS_E_64) {
335 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
338 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
339 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
342 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
343 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
344 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
345 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
346 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
347 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
348 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
349 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
350 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
351 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
352 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
353 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
354 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
355 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
356 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
357 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
358 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
360 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
361 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
362 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
363 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
366 if (sregs.u.e.features & KVM_SREGS_E_PM) {
367 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
370 if (sregs.u.e.features & KVM_SREGS_E_PC) {
371 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
372 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
376 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
377 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
378 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
379 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
380 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
381 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
382 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
383 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
384 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
385 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
386 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
389 if (sregs.u.e.features & KVM_SREGS_EXP) {
390 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
393 if (sregs.u.e.features & KVM_SREGS_E_PD) {
394 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
395 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
398 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
399 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
400 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
401 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
403 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
404 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
405 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
410 if (cap_segstate) {
411 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
412 if (ret < 0) {
413 return ret;
416 ppc_store_sdr1(env, sregs.u.s.sdr1);
418 /* Sync SLB */
419 #ifdef TARGET_PPC64
420 for (i = 0; i < 64; i++) {
421 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
422 sregs.u.s.ppc64.slb[i].slbv);
424 #endif
426 /* Sync SRs */
427 for (i = 0; i < 16; i++) {
428 env->sr[i] = sregs.u.s.ppc32.sr[i];
431 /* Sync BATs */
432 for (i = 0; i < 8; i++) {
433 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
434 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
435 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
436 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
440 return 0;
443 int kvmppc_set_interrupt(CPUPPCState *env, int irq, int level)
445 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
447 if (irq != PPC_INTERRUPT_EXT) {
448 return 0;
451 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
452 return 0;
455 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
457 return 0;
460 #if defined(TARGET_PPCEMB)
461 #define PPC_INPUT_INT PPC40x_INPUT_INT
462 #elif defined(TARGET_PPC64)
463 #define PPC_INPUT_INT PPC970_INPUT_INT
464 #else
465 #define PPC_INPUT_INT PPC6xx_INPUT_INT
466 #endif
468 void kvm_arch_pre_run(CPUPPCState *env, struct kvm_run *run)
470 int r;
471 unsigned irq;
473 /* PowerPC Qemu tracks the various core input pins (interrupt, critical
474 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
475 if (!cap_interrupt_level &&
476 run->ready_for_interrupt_injection &&
477 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
478 (env->irq_input_state & (1<<PPC_INPUT_INT)))
480 /* For now KVM disregards the 'irq' argument. However, in the
481 * future KVM could cache it in-kernel to avoid a heavyweight exit
482 * when reading the UIC.
484 irq = KVM_INTERRUPT_SET;
486 dprintf("injected interrupt %d\n", irq);
487 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
488 if (r < 0)
489 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
491 /* Always wake up soon in case the interrupt was level based */
492 qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
493 (get_ticks_per_sec() / 50));
496 /* We don't know if there are more interrupts pending after this. However,
497 * the guest will return to userspace in the course of handling this one
498 * anyways, so we will get a chance to deliver the rest. */
501 void kvm_arch_post_run(CPUPPCState *env, struct kvm_run *run)
505 int kvm_arch_process_async_events(CPUPPCState *env)
507 return env->halted;
510 static int kvmppc_handle_halt(CPUPPCState *env)
512 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
513 env->halted = 1;
514 env->exception_index = EXCP_HLT;
517 return 0;
520 /* map dcr access to existing qemu dcr emulation */
521 static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
523 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
524 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
526 return 0;
529 static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
531 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
532 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
534 return 0;
537 int kvm_arch_handle_exit(CPUPPCState *env, struct kvm_run *run)
539 int ret;
541 switch (run->exit_reason) {
542 case KVM_EXIT_DCR:
543 if (run->dcr.is_write) {
544 dprintf("handle dcr write\n");
545 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
546 } else {
547 dprintf("handle dcr read\n");
548 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
550 break;
551 case KVM_EXIT_HLT:
552 dprintf("handle halt\n");
553 ret = kvmppc_handle_halt(env);
554 break;
555 #ifdef CONFIG_PSERIES
556 case KVM_EXIT_PAPR_HCALL:
557 dprintf("handle PAPR hypercall\n");
558 run->papr_hcall.ret = spapr_hypercall(env, run->papr_hcall.nr,
559 run->papr_hcall.args);
560 ret = 1;
561 break;
562 #endif
563 default:
564 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
565 ret = -1;
566 break;
569 return ret;
572 static int read_cpuinfo(const char *field, char *value, int len)
574 FILE *f;
575 int ret = -1;
576 int field_len = strlen(field);
577 char line[512];
579 f = fopen("/proc/cpuinfo", "r");
580 if (!f) {
581 return -1;
584 do {
585 if(!fgets(line, sizeof(line), f)) {
586 break;
588 if (!strncmp(line, field, field_len)) {
589 strncpy(value, line, len);
590 ret = 0;
591 break;
593 } while(*line);
595 fclose(f);
597 return ret;
600 uint32_t kvmppc_get_tbfreq(void)
602 char line[512];
603 char *ns;
604 uint32_t retval = get_ticks_per_sec();
606 if (read_cpuinfo("timebase", line, sizeof(line))) {
607 return retval;
610 if (!(ns = strchr(line, ':'))) {
611 return retval;
614 ns++;
616 retval = atoi(ns);
617 return retval;
620 /* Try to find a device tree node for a CPU with clock-frequency property */
621 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
623 struct dirent *dirp;
624 DIR *dp;
626 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
627 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
628 return -1;
631 buf[0] = '\0';
632 while ((dirp = readdir(dp)) != NULL) {
633 FILE *f;
634 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
635 dirp->d_name);
636 f = fopen(buf, "r");
637 if (f) {
638 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
639 fclose(f);
640 break;
642 buf[0] = '\0';
644 closedir(dp);
645 if (buf[0] == '\0') {
646 printf("Unknown host!\n");
647 return -1;
650 return 0;
653 /* Read a CPU node property from the host device tree that's a single
654 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
655 * (can't find or open the property, or doesn't understand the
656 * format) */
657 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
659 char buf[PATH_MAX];
660 union {
661 uint32_t v32;
662 uint64_t v64;
663 } u;
664 FILE *f;
665 int len;
667 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
668 return -1;
671 strncat(buf, "/", sizeof(buf) - strlen(buf));
672 strncat(buf, propname, sizeof(buf) - strlen(buf));
674 f = fopen(buf, "rb");
675 if (!f) {
676 return -1;
679 len = fread(&u, 1, sizeof(u), f);
680 fclose(f);
681 switch (len) {
682 case 4:
683 /* property is a 32-bit quantity */
684 return be32_to_cpu(u.v32);
685 case 8:
686 return be64_to_cpu(u.v64);
689 return 0;
692 uint64_t kvmppc_get_clockfreq(void)
694 return kvmppc_read_int_cpu_dt("clock-frequency");
697 uint32_t kvmppc_get_vmx(void)
699 return kvmppc_read_int_cpu_dt("ibm,vmx");
702 uint32_t kvmppc_get_dfp(void)
704 return kvmppc_read_int_cpu_dt("ibm,dfp");
707 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
709 uint32_t *hc = (uint32_t*)buf;
711 struct kvm_ppc_pvinfo pvinfo;
713 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
714 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
715 memcpy(buf, pvinfo.hcall, buf_len);
717 return 0;
721 * Fallback to always fail hypercalls:
723 * li r3, -1
724 * nop
725 * nop
726 * nop
729 hc[0] = 0x3860ffff;
730 hc[1] = 0x60000000;
731 hc[2] = 0x60000000;
732 hc[3] = 0x60000000;
734 return 0;
737 void kvmppc_set_papr(CPUPPCState *env)
739 struct kvm_enable_cap cap = {};
740 struct kvm_one_reg reg = {};
741 struct kvm_sregs sregs = {};
742 int ret;
743 uint64_t hior = env->spr[SPR_HIOR];
745 cap.cap = KVM_CAP_PPC_PAPR;
746 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &cap);
748 if (ret) {
749 goto fail;
753 * XXX We set HIOR here. It really should be a qdev property of
754 * the CPU node, but we don't have CPUs converted to qdev yet.
756 * Once we have qdev CPUs, move HIOR to a qdev property and
757 * remove this chunk.
759 reg.id = KVM_REG_PPC_HIOR;
760 reg.addr = (uintptr_t)&hior;
761 ret = kvm_vcpu_ioctl(env, KVM_SET_ONE_REG, &reg);
762 if (ret) {
763 fprintf(stderr, "Couldn't set HIOR. Maybe you're running an old \n"
764 "kernel with support for HV KVM but no PAPR PR \n"
765 "KVM in which case things will work. If they don't \n"
766 "please update your host kernel!\n");
769 /* Set SDR1 so kernel space finds the HTAB */
770 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
771 if (ret) {
772 goto fail;
775 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
777 ret = kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
778 if (ret) {
779 goto fail;
782 return;
784 fail:
785 cpu_abort(env, "This KVM version does not support PAPR\n");
788 int kvmppc_smt_threads(void)
790 return cap_ppc_smt ? cap_ppc_smt : 1;
793 off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
795 void *rma;
796 off_t size;
797 int fd;
798 struct kvm_allocate_rma ret;
799 MemoryRegion *rma_region;
801 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
802 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
803 * not necessary on this hardware
804 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
806 * FIXME: We should allow the user to force contiguous RMA
807 * allocation in the cap_ppc_rma==1 case.
809 if (cap_ppc_rma < 2) {
810 return 0;
813 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
814 if (fd < 0) {
815 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
816 strerror(errno));
817 return -1;
820 size = MIN(ret.rma_size, 256ul << 20);
822 rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
823 if (rma == MAP_FAILED) {
824 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
825 return -1;
828 rma_region = g_new(MemoryRegion, 1);
829 memory_region_init_ram_ptr(rma_region, name, size, rma);
830 vmstate_register_ram_global(rma_region);
831 memory_region_add_subregion(sysmem, 0, rma_region);
833 return size;
836 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
838 struct kvm_create_spapr_tce args = {
839 .liobn = liobn,
840 .window_size = window_size,
842 long len;
843 int fd;
844 void *table;
846 /* Must set fd to -1 so we don't try to munmap when called for
847 * destroying the table, which the upper layers -will- do
849 *pfd = -1;
850 if (!cap_spapr_tce) {
851 return NULL;
854 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
855 if (fd < 0) {
856 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
857 liobn);
858 return NULL;
861 len = (window_size / SPAPR_VIO_TCE_PAGE_SIZE) * sizeof(VIOsPAPR_RTCE);
862 /* FIXME: round this up to page size */
864 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
865 if (table == MAP_FAILED) {
866 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
867 liobn);
868 close(fd);
869 return NULL;
872 *pfd = fd;
873 return table;
876 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
878 long len;
880 if (fd < 0) {
881 return -1;
884 len = (window_size / SPAPR_VIO_TCE_PAGE_SIZE)*sizeof(VIOsPAPR_RTCE);
885 if ((munmap(table, len) < 0) ||
886 (close(fd) < 0)) {
887 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
888 strerror(errno));
889 /* Leak the table */
892 return 0;
895 static inline uint32_t mfpvr(void)
897 uint32_t pvr;
899 asm ("mfpvr %0"
900 : "=r"(pvr));
901 return pvr;
904 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
906 if (on) {
907 *word |= flags;
908 } else {
909 *word &= ~flags;
913 const ppc_def_t *kvmppc_host_cpu_def(void)
915 uint32_t host_pvr = mfpvr();
916 const ppc_def_t *base_spec;
917 ppc_def_t *spec;
918 uint32_t vmx = kvmppc_get_vmx();
919 uint32_t dfp = kvmppc_get_dfp();
921 base_spec = ppc_find_by_pvr(host_pvr);
923 spec = g_malloc0(sizeof(*spec));
924 memcpy(spec, base_spec, sizeof(*spec));
926 /* Now fix up the spec with information we can query from the host */
928 if (vmx != -1) {
929 /* Only override when we know what the host supports */
930 alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
931 alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
933 if (dfp != -1) {
934 /* Only override when we know what the host supports */
935 alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
938 return spec;
941 bool kvm_arch_stop_on_emulation_error(CPUPPCState *env)
943 return true;
946 int kvm_arch_on_sigbus_vcpu(CPUPPCState *env, int code, void *addr)
948 return 1;
951 int kvm_arch_on_sigbus(int code, void *addr)
953 return 1;