4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
45 static inline int target_memory_rw_debug(CPUState
*env
, target_ulong addr
,
46 uint8_t *buf
, int len
, int is_write
)
48 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
51 /* target_memory_rw_debug() defined in cpu.h */
63 GDB_SIGNAL_UNKNOWN
= 143
66 #ifdef CONFIG_USER_ONLY
68 /* Map target signal numbers to GDB protocol signal numbers and vice
69 * versa. For user emulation's currently supported systems, we can
70 * assume most signals are defined.
73 static int gdb_signal_table
[] = {
233 /* In system mode we only need SIGINT and SIGTRAP; other signals
234 are not yet supported. */
241 static int gdb_signal_table
[] = {
251 #ifdef CONFIG_USER_ONLY
252 static int target_signal_to_gdb (int sig
)
255 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
256 if (gdb_signal_table
[i
] == sig
)
258 return GDB_SIGNAL_UNKNOWN
;
262 static int gdb_signal_to_target (int sig
)
264 if (sig
< ARRAY_SIZE (gdb_signal_table
))
265 return gdb_signal_table
[sig
];
272 typedef struct GDBRegisterState
{
278 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUState
*g_cpu
; /* current CPU for other ops */
292 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
309 /* By default use no IRQs and no timers while single stepping so as to
310 * make single stepping like an ICE HW step.
312 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
314 static GDBState
*gdbserver_state
;
316 /* This is an ugly hack to cope with both new and old gdb.
317 If gdb sends qXfer:features:read then assume we're talking to a newish
318 gdb that understands target descriptions. */
319 static int gdb_has_xml
;
321 #ifdef CONFIG_USER_ONLY
322 /* XXX: This is not thread safe. Do we care? */
323 static int gdbserver_fd
= -1;
325 static int get_char(GDBState
*s
)
331 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
333 if (errno
== ECONNRESET
)
335 if (errno
!= EINTR
&& errno
!= EAGAIN
)
337 } else if (ret
== 0) {
349 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
378 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
380 #ifdef CONFIG_USER_ONLY
384 ret
= send(s
->fd
, buf
, len
, 0);
386 if (errno
!= EINTR
&& errno
!= EAGAIN
)
394 qemu_chr_fe_write(s
->chr
, buf
, len
);
398 static inline int fromhex(int v
)
400 if (v
>= '0' && v
<= '9')
402 else if (v
>= 'A' && v
<= 'F')
404 else if (v
>= 'a' && v
<= 'f')
410 static inline int tohex(int v
)
418 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
423 for(i
= 0; i
< len
; i
++) {
425 *q
++ = tohex(c
>> 4);
426 *q
++ = tohex(c
& 0xf);
431 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
435 for(i
= 0; i
< len
; i
++) {
436 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
453 for(i
= 0; i
< len
; i
++) {
457 *(p
++) = tohex((csum
>> 4) & 0xf);
458 *(p
++) = tohex((csum
) & 0xf);
460 s
->last_packet_len
= p
- s
->last_packet
;
461 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
463 #ifdef CONFIG_USER_ONLY
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState
*s
, const char *buf
)
480 printf("reply='%s'\n", buf
);
483 return put_packet_binary(s
, buf
, strlen(buf
));
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
515 #if defined(TARGET_I386)
518 static const int gpr_map
[16] = {
519 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
520 8, 9, 10, 11, 12, 13, 14, 15
523 #define gpr_map gpr_map32
525 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
536 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
538 if (n
< CPU_NB_REGS
) {
539 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
540 GET_REG64(env
->regs
[gpr_map
[n
]]);
541 } else if (n
< CPU_NB_REGS32
) {
542 GET_REG32(env
->regs
[gpr_map32
[n
]]);
544 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
549 memset(mem_buf
, 0, 10);
552 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
554 if (n
< CPU_NB_REGS32
||
555 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
556 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
557 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
563 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
568 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
570 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
571 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
572 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
573 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
574 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
575 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
577 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
578 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
579 (env
->fpstt
& 0x7) << 11);
580 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
587 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
593 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
595 uint16_t selector
= ldl_p(mem_buf
);
597 if (selector
!= env
->segs
[sreg
].selector
) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env
, sreg
, selector
);
601 unsigned int limit
, flags
;
604 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
605 base
= selector
<< 4;
609 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
612 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
618 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
622 if (n
< CPU_NB_REGS
) {
623 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
624 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
625 return sizeof(target_ulong
);
626 } else if (n
< CPU_NB_REGS32
) {
628 env
->regs
[n
] &= ~0xffffffffUL
;
629 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
632 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
638 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
640 if (n
< CPU_NB_REGS32
||
641 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
642 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
643 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
649 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
650 env
->eip
= ldq_p(mem_buf
);
653 env
->eip
&= ~0xffffffffUL
;
654 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
658 env
->eflags
= ldl_p(mem_buf
);
661 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
662 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
663 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
664 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
665 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
666 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
668 case IDX_FP_REGS
+ 8:
669 env
->fpuc
= ldl_p(mem_buf
);
671 case IDX_FP_REGS
+ 9:
672 tmp
= ldl_p(mem_buf
);
673 env
->fpstt
= (tmp
>> 11) & 7;
674 env
->fpus
= tmp
& ~0x3800;
676 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
677 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
678 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
679 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
680 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
681 case IDX_FP_REGS
+ 15: /* fop */ return 4;
684 env
->mxcsr
= ldl_p(mem_buf
);
688 /* Unrecognised register. */
692 #elif defined (TARGET_PPC)
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
703 #define GDB_CORE_XML "power-core.xml"
706 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
710 GET_REGL(env
->gpr
[n
]);
715 stfq_p(mem_buf
, env
->fpr
[n
-32]);
719 case 64: GET_REGL(env
->nip
);
720 case 65: GET_REGL(env
->msr
);
725 for (i
= 0; i
< 8; i
++)
726 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
729 case 67: GET_REGL(env
->lr
);
730 case 68: GET_REGL(env
->ctr
);
731 case 69: GET_REGL(env
->xer
);
736 GET_REG32(env
->fpscr
);
743 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
747 env
->gpr
[n
] = ldtul_p(mem_buf
);
748 return sizeof(target_ulong
);
753 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
758 env
->nip
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 ppc_store_msr(env
, ldtul_p(mem_buf
));
762 return sizeof(target_ulong
);
765 uint32_t cr
= ldl_p(mem_buf
);
767 for (i
= 0; i
< 8; i
++)
768 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
772 env
->lr
= ldtul_p(mem_buf
);
773 return sizeof(target_ulong
);
775 env
->ctr
= ldtul_p(mem_buf
);
776 return sizeof(target_ulong
);
778 env
->xer
= ldtul_p(mem_buf
);
779 return sizeof(target_ulong
);
790 #elif defined (TARGET_SPARC)
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
795 #define NUM_CORE_REGS 72
799 #define GET_REGA(val) GET_REG32(val)
801 #define GET_REGA(val) GET_REGL(val)
804 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
808 GET_REGA(env
->gregs
[n
]);
811 /* register window */
812 GET_REGA(env
->regwptr
[n
- 8]);
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
818 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
820 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
825 case 64: GET_REGA(env
->y
);
826 case 65: GET_REGA(cpu_get_psr(env
));
827 case 66: GET_REGA(env
->wim
);
828 case 67: GET_REGA(env
->tbr
);
829 case 68: GET_REGA(env
->pc
);
830 case 69: GET_REGA(env
->npc
);
831 case 70: GET_REGA(env
->fsr
);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
839 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
841 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
849 case 80: GET_REGL(env
->pc
);
850 case 81: GET_REGL(env
->npc
);
851 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
852 ((env
->asi
& 0xff) << 24) |
853 ((env
->pstate
& 0xfff) << 8) |
855 case 83: GET_REGL(env
->fsr
);
856 case 84: GET_REGL(env
->fprs
);
857 case 85: GET_REGL(env
->y
);
863 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
865 #if defined(TARGET_ABI32)
868 tmp
= ldl_p(mem_buf
);
872 tmp
= ldtul_p(mem_buf
);
879 /* register window */
880 env
->regwptr
[n
- 8] = tmp
;
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
887 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
889 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
894 case 64: env
->y
= tmp
; break;
895 case 65: cpu_put_psr(env
, tmp
); break;
896 case 66: env
->wim
= tmp
; break;
897 case 67: env
->tbr
= tmp
; break;
898 case 68: env
->pc
= tmp
; break;
899 case 69: env
->npc
= tmp
; break;
900 case 70: env
->fsr
= tmp
; break;
908 tmp
= ldl_p(mem_buf
);
910 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
912 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
916 /* f32-f62 (double width, even numbers only) */
917 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
920 case 80: env
->pc
= tmp
; break;
921 case 81: env
->npc
= tmp
; break;
923 cpu_put_ccr(env
, tmp
>> 32);
924 env
->asi
= (tmp
>> 24) & 0xff;
925 env
->pstate
= (tmp
>> 8) & 0xfff;
926 cpu_put_cwp64(env
, tmp
& 0xff);
928 case 83: env
->fsr
= tmp
; break;
929 case 84: env
->fprs
= tmp
; break;
930 case 85: env
->y
= tmp
; break;
937 #elif defined (TARGET_ARM)
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
947 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 /* Core integer register. */
951 GET_REG32(env
->regs
[n
]);
957 memset(mem_buf
, 0, 12);
962 /* FPA status register. */
968 GET_REG32(cpsr_read(env
));
970 /* Unknown register. */
974 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
978 tmp
= ldl_p(mem_buf
);
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
986 /* Core integer register. */
990 if (n
< 24) { /* 16-23 */
991 /* FPA registers (ignored). */
998 /* FPA status register (ignored). */
1004 cpsr_write (env
, tmp
, 0xffffffff);
1007 /* Unknown register. */
1011 #elif defined (TARGET_M68K)
1013 #define NUM_CORE_REGS 18
1015 #define GDB_CORE_XML "cf-core.xml"
1017 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1021 GET_REG32(env
->dregs
[n
]);
1022 } else if (n
< 16) {
1024 GET_REG32(env
->aregs
[n
- 8]);
1027 case 16: GET_REG32(env
->sr
);
1028 case 17: GET_REG32(env
->pc
);
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1036 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1040 tmp
= ldl_p(mem_buf
);
1044 env
->dregs
[n
] = tmp
;
1045 } else if (n
< 16) {
1047 env
->aregs
[n
- 8] = tmp
;
1050 case 16: env
->sr
= tmp
; break;
1051 case 17: env
->pc
= tmp
; break;
1057 #elif defined (TARGET_MIPS)
1059 #define NUM_CORE_REGS 73
1061 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1064 GET_REGL(env
->active_tc
.gpr
[n
]);
1066 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1067 if (n
>= 38 && n
< 70) {
1068 if (env
->CP0_Status
& (1 << CP0St_FR
))
1069 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1071 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1074 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1075 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1079 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1080 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1081 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1082 case 35: GET_REGL(env
->CP0_BadVAddr
);
1083 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1084 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1088 if (n
>= 73 && n
<= 88) {
1089 /* 16 embedded regs. */
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm
[] =
1099 float_round_nearest_even
,
1100 float_round_to_zero
,
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1107 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1111 tmp
= ldtul_p(mem_buf
);
1114 env
->active_tc
.gpr
[n
] = tmp
;
1115 return sizeof(target_ulong
);
1117 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1118 && n
>= 38 && n
< 73) {
1120 if (env
->CP0_Status
& (1 << CP0St_FR
))
1121 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1123 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1127 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE
;
1131 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1133 return sizeof(target_ulong
);
1136 case 32: env
->CP0_Status
= tmp
; break;
1137 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1138 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1139 case 35: env
->CP0_BadVAddr
= tmp
; break;
1140 case 36: env
->CP0_Cause
= tmp
; break;
1142 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1144 env
->hflags
|= MIPS_HFLAG_M16
;
1146 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1149 case 72: /* fp, ignored */ break;
1153 /* Other registers are readonly. Ignore writes. */
1157 return sizeof(target_ulong
);
1159 #elif defined (TARGET_SH4)
1161 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1162 /* FIXME: We should use XML for this. */
1164 #define NUM_CORE_REGS 59
1166 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1169 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1170 GET_REGL(env
->gregs
[n
+ 16]);
1172 GET_REGL(env
->gregs
[n
]);
1174 } else if (n
< 16) {
1175 GET_REGL(env
->gregs
[n
]);
1176 } else if (n
>= 25 && n
< 41) {
1177 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1178 } else if (n
>= 43 && n
< 51) {
1179 GET_REGL(env
->gregs
[n
- 43]);
1180 } else if (n
>= 51 && n
< 59) {
1181 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1184 case 16: GET_REGL(env
->pc
);
1185 case 17: GET_REGL(env
->pr
);
1186 case 18: GET_REGL(env
->gbr
);
1187 case 19: GET_REGL(env
->vbr
);
1188 case 20: GET_REGL(env
->mach
);
1189 case 21: GET_REGL(env
->macl
);
1190 case 22: GET_REGL(env
->sr
);
1191 case 23: GET_REGL(env
->fpul
);
1192 case 24: GET_REGL(env
->fpscr
);
1193 case 41: GET_REGL(env
->ssr
);
1194 case 42: GET_REGL(env
->spc
);
1200 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1204 tmp
= ldl_p(mem_buf
);
1207 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1208 env
->gregs
[n
+ 16] = tmp
;
1210 env
->gregs
[n
] = tmp
;
1213 } else if (n
< 16) {
1214 env
->gregs
[n
] = tmp
;
1216 } else if (n
>= 25 && n
< 41) {
1217 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1219 } else if (n
>= 43 && n
< 51) {
1220 env
->gregs
[n
- 43] = tmp
;
1222 } else if (n
>= 51 && n
< 59) {
1223 env
->gregs
[n
- (51 - 16)] = tmp
;
1227 case 16: env
->pc
= tmp
; break;
1228 case 17: env
->pr
= tmp
; break;
1229 case 18: env
->gbr
= tmp
; break;
1230 case 19: env
->vbr
= tmp
; break;
1231 case 20: env
->mach
= tmp
; break;
1232 case 21: env
->macl
= tmp
; break;
1233 case 22: env
->sr
= tmp
; break;
1234 case 23: env
->fpul
= tmp
; break;
1235 case 24: env
->fpscr
= tmp
; break;
1236 case 41: env
->ssr
= tmp
; break;
1237 case 42: env
->spc
= tmp
; break;
1243 #elif defined (TARGET_MICROBLAZE)
1245 #define NUM_CORE_REGS (32 + 5)
1247 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1250 GET_REG32(env
->regs
[n
]);
1252 GET_REG32(env
->sregs
[n
- 32]);
1257 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1261 if (n
> NUM_CORE_REGS
)
1264 tmp
= ldl_p(mem_buf
);
1269 env
->sregs
[n
- 32] = tmp
;
1273 #elif defined (TARGET_CRIS)
1275 #define NUM_CORE_REGS 49
1278 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1281 GET_REG32(env
->regs
[n
]);
1291 GET_REG8(env
->pregs
[n
- 16]);
1294 GET_REG8(env
->pregs
[n
- 16]);
1298 GET_REG16(env
->pregs
[n
- 16]);
1302 GET_REG32(env
->pregs
[n
- 16]);
1310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1314 if (env
->pregs
[PR_VR
] < 32)
1315 return read_register_crisv10(env
, mem_buf
, n
);
1317 srs
= env
->pregs
[PR_SRS
];
1319 GET_REG32(env
->regs
[n
]);
1322 if (n
>= 21 && n
< 32) {
1323 GET_REG32(env
->pregs
[n
- 16]);
1325 if (n
>= 33 && n
< 49) {
1326 GET_REG32(env
->sregs
[srs
][n
- 33]);
1329 case 16: GET_REG8(env
->pregs
[0]);
1330 case 17: GET_REG8(env
->pregs
[1]);
1331 case 18: GET_REG32(env
->pregs
[2]);
1332 case 19: GET_REG8(srs
);
1333 case 20: GET_REG16(env
->pregs
[4]);
1334 case 32: GET_REG32(env
->pc
);
1340 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1347 tmp
= ldl_p(mem_buf
);
1353 if (n
>= 21 && n
< 32) {
1354 env
->pregs
[n
- 16] = tmp
;
1357 /* FIXME: Should support function regs be writable? */
1361 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1364 case 32: env
->pc
= tmp
; break;
1369 #elif defined (TARGET_ALPHA)
1371 #define NUM_CORE_REGS 67
1373 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1383 d
.d
= env
->fir
[n
- 32];
1387 val
= cpu_alpha_load_fpcr(env
);
1397 /* 31 really is the zero register; 65 is unassigned in the
1398 gdb protocol, but is still required to occupy 8 bytes. */
1407 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1409 target_ulong tmp
= ldtul_p(mem_buf
);
1418 env
->fir
[n
- 32] = d
.d
;
1421 cpu_alpha_store_fpcr(env
, tmp
);
1431 /* 31 really is the zero register; 65 is unassigned in the
1432 gdb protocol, but is still required to occupy 8 bytes. */
1439 #elif defined (TARGET_S390X)
1441 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1443 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1446 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1447 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1448 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1449 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1450 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1451 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1452 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1453 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1456 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1457 case S390_CC_REGNUM
:
1458 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1460 GET_REG32(env
->cc_op
);
1467 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1472 tmpl
= ldtul_p(mem_buf
);
1473 tmp32
= ldl_p(mem_buf
);
1476 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1477 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1478 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1479 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1480 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1481 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1482 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1483 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1486 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1487 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1492 #elif defined (TARGET_LM32)
1494 #include "hw/lm32_pic.h"
1495 #define NUM_CORE_REGS (32 + 7)
1497 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1500 GET_REG32(env
->regs
[n
]);
1506 /* FIXME: put in right exception ID */
1511 GET_REG32(env
->eba
);
1514 GET_REG32(env
->deba
);
1520 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1523 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1530 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1534 if (n
> NUM_CORE_REGS
) {
1538 tmp
= ldl_p(mem_buf
);
1557 lm32_pic_set_im(env
->pic_state
, tmp
);
1560 lm32_pic_set_ip(env
->pic_state
, tmp
);
1566 #elif defined(TARGET_XTENSA)
1568 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1569 * Use num_regs to see all registers. gdb modification is required for that:
1570 * reset bit 0 in the 'flags' field of the registers definitions in the
1571 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1573 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1574 #define num_g_regs NUM_CORE_REGS
1576 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1578 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1580 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1584 switch (reg
->type
) {
1590 xtensa_sync_phys_from_window(env
);
1591 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1595 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1599 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1603 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1607 qemu_log("%s from reg %d of unsupported type %d\n",
1608 __func__
, n
, reg
->type
);
1613 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1616 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1618 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1622 tmp
= ldl_p(mem_buf
);
1624 switch (reg
->type
) {
1630 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1631 xtensa_sync_window_from_phys(env
);
1635 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1639 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1643 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1647 qemu_log("%s to reg %d of unsupported type %d\n",
1648 __func__
, n
, reg
->type
);
1656 #define NUM_CORE_REGS 0
1658 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1663 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1670 #if !defined(TARGET_XTENSA)
1671 static int num_g_regs
= NUM_CORE_REGS
;
1675 /* Encode data using the encoding for 'x' packets. */
1676 static int memtox(char *buf
, const char *mem
, int len
)
1684 case '#': case '$': case '*': case '}':
1696 static const char *get_feature_xml(const char *p
, const char **newp
)
1701 static char target_xml
[1024];
1704 while (p
[len
] && p
[len
] != ':')
1709 if (strncmp(p
, "target.xml", len
) == 0) {
1710 /* Generate the XML description for this CPU. */
1711 if (!target_xml
[0]) {
1712 GDBRegisterState
*r
;
1714 snprintf(target_xml
, sizeof(target_xml
),
1715 "<?xml version=\"1.0\"?>"
1716 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1718 "<xi:include href=\"%s\"/>",
1721 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1722 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1723 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1724 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1726 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1730 for (i
= 0; ; i
++) {
1731 name
= xml_builtin
[i
][0];
1732 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1735 return name
? xml_builtin
[i
][1] : NULL
;
1739 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1741 GDBRegisterState
*r
;
1743 if (reg
< NUM_CORE_REGS
)
1744 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1746 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1747 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1748 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1754 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1756 GDBRegisterState
*r
;
1758 if (reg
< NUM_CORE_REGS
)
1759 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1761 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1762 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1763 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1769 #if !defined(TARGET_XTENSA)
1770 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1771 specifies the first register number and these registers are included in
1772 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1773 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1776 void gdb_register_coprocessor(CPUState
* env
,
1777 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1778 int num_regs
, const char *xml
, int g_pos
)
1780 GDBRegisterState
*s
;
1781 GDBRegisterState
**p
;
1782 static int last_reg
= NUM_CORE_REGS
;
1786 /* Check for duplicates. */
1787 if (strcmp((*p
)->xml
, xml
) == 0)
1792 s
= g_new0(GDBRegisterState
, 1);
1793 s
->base_reg
= last_reg
;
1794 s
->num_regs
= num_regs
;
1795 s
->get_reg
= get_reg
;
1796 s
->set_reg
= set_reg
;
1799 /* Add to end of list. */
1800 last_reg
+= num_regs
;
1803 if (g_pos
!= s
->base_reg
) {
1804 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1805 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1807 num_g_regs
= last_reg
;
1813 #ifndef CONFIG_USER_ONLY
1814 static const int xlat_gdb_type
[] = {
1815 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1816 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1817 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1821 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1827 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1830 case GDB_BREAKPOINT_SW
:
1831 case GDB_BREAKPOINT_HW
:
1832 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1833 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1838 #ifndef CONFIG_USER_ONLY
1839 case GDB_WATCHPOINT_WRITE
:
1840 case GDB_WATCHPOINT_READ
:
1841 case GDB_WATCHPOINT_ACCESS
:
1842 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1843 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1855 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1861 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1864 case GDB_BREAKPOINT_SW
:
1865 case GDB_BREAKPOINT_HW
:
1866 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1867 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1872 #ifndef CONFIG_USER_ONLY
1873 case GDB_WATCHPOINT_WRITE
:
1874 case GDB_WATCHPOINT_READ
:
1875 case GDB_WATCHPOINT_ACCESS
:
1876 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1877 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1888 static void gdb_breakpoint_remove_all(void)
1892 if (kvm_enabled()) {
1893 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1897 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1898 cpu_breakpoint_remove_all(env
, BP_GDB
);
1899 #ifndef CONFIG_USER_ONLY
1900 cpu_watchpoint_remove_all(env
, BP_GDB
);
1905 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1907 #if defined(TARGET_I386)
1908 cpu_synchronize_state(s
->c_cpu
);
1910 #elif defined (TARGET_PPC)
1912 #elif defined (TARGET_SPARC)
1914 s
->c_cpu
->npc
= pc
+ 4;
1915 #elif defined (TARGET_ARM)
1916 s
->c_cpu
->regs
[15] = pc
;
1917 #elif defined (TARGET_SH4)
1919 #elif defined (TARGET_MIPS)
1920 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1922 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1924 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1926 #elif defined (TARGET_MICROBLAZE)
1927 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1928 #elif defined (TARGET_CRIS)
1930 #elif defined (TARGET_ALPHA)
1932 #elif defined (TARGET_S390X)
1933 cpu_synchronize_state(s
->c_cpu
);
1934 s
->c_cpu
->psw
.addr
= pc
;
1935 #elif defined (TARGET_LM32)
1937 #elif defined(TARGET_XTENSA)
1942 static inline int gdb_id(CPUState
*env
)
1944 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1945 return env
->host_tid
;
1947 return env
->cpu_index
+ 1;
1951 static CPUState
*find_cpu(uint32_t thread_id
)
1955 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1956 if (gdb_id(env
) == thread_id
) {
1964 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1969 int ch
, reg_size
, type
, res
;
1970 char buf
[MAX_PACKET_LENGTH
];
1971 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1973 target_ulong addr
, len
;
1976 printf("command='%s'\n", line_buf
);
1982 /* TODO: Make this return the correct value for user-mode. */
1983 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1986 /* Remove all the breakpoints when this query is issued,
1987 * because gdb is doing and initial connect and the state
1988 * should be cleaned up.
1990 gdb_breakpoint_remove_all();
1994 addr
= strtoull(p
, (char **)&p
, 16);
1995 gdb_set_cpu_pc(s
, addr
);
2001 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2002 if (s
->signal
== -1)
2007 if (strncmp(p
, "Cont", 4) == 0) {
2008 int res_signal
, res_thread
;
2012 put_packet(s
, "vCont;c;C;s;S");
2027 if (action
== 'C' || action
== 'S') {
2028 signal
= strtoul(p
, (char **)&p
, 16);
2029 } else if (action
!= 'c' && action
!= 's') {
2035 thread
= strtoull(p
+1, (char **)&p
, 16);
2037 action
= tolower(action
);
2038 if (res
== 0 || (res
== 'c' && action
== 's')) {
2040 res_signal
= signal
;
2041 res_thread
= thread
;
2045 if (res_thread
!= -1 && res_thread
!= 0) {
2046 env
= find_cpu(res_thread
);
2048 put_packet(s
, "E22");
2054 cpu_single_step(s
->c_cpu
, sstep_flags
);
2056 s
->signal
= res_signal
;
2062 goto unknown_command
;
2065 #ifdef CONFIG_USER_ONLY
2066 /* Kill the target */
2067 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2072 gdb_breakpoint_remove_all();
2073 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2075 put_packet(s
, "OK");
2079 addr
= strtoull(p
, (char **)&p
, 16);
2080 gdb_set_cpu_pc(s
, addr
);
2082 cpu_single_step(s
->c_cpu
, sstep_flags
);
2090 ret
= strtoull(p
, (char **)&p
, 16);
2093 err
= strtoull(p
, (char **)&p
, 16);
2100 if (gdb_current_syscall_cb
)
2101 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
2103 put_packet(s
, "T02");
2110 cpu_synchronize_state(s
->g_cpu
);
2113 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2114 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2117 memtohex(buf
, mem_buf
, len
);
2121 cpu_synchronize_state(s
->g_cpu
);
2123 registers
= mem_buf
;
2124 len
= strlen(p
) / 2;
2125 hextomem((uint8_t *)registers
, p
, len
);
2126 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2127 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2129 registers
+= reg_size
;
2131 put_packet(s
, "OK");
2134 addr
= strtoull(p
, (char **)&p
, 16);
2137 len
= strtoull(p
, NULL
, 16);
2138 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2139 put_packet (s
, "E14");
2141 memtohex(buf
, mem_buf
, len
);
2146 addr
= strtoull(p
, (char **)&p
, 16);
2149 len
= strtoull(p
, (char **)&p
, 16);
2152 hextomem(mem_buf
, p
, len
);
2153 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2154 put_packet(s
, "E14");
2156 put_packet(s
, "OK");
2160 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2161 This works, but can be very slow. Anything new enough to
2162 understand XML also knows how to use this properly. */
2164 goto unknown_command
;
2165 addr
= strtoull(p
, (char **)&p
, 16);
2166 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2168 memtohex(buf
, mem_buf
, reg_size
);
2171 put_packet(s
, "E14");
2176 goto unknown_command
;
2177 addr
= strtoull(p
, (char **)&p
, 16);
2180 reg_size
= strlen(p
) / 2;
2181 hextomem(mem_buf
, p
, reg_size
);
2182 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2183 put_packet(s
, "OK");
2187 type
= strtoul(p
, (char **)&p
, 16);
2190 addr
= strtoull(p
, (char **)&p
, 16);
2193 len
= strtoull(p
, (char **)&p
, 16);
2195 res
= gdb_breakpoint_insert(addr
, len
, type
);
2197 res
= gdb_breakpoint_remove(addr
, len
, type
);
2199 put_packet(s
, "OK");
2200 else if (res
== -ENOSYS
)
2203 put_packet(s
, "E22");
2207 thread
= strtoull(p
, (char **)&p
, 16);
2208 if (thread
== -1 || thread
== 0) {
2209 put_packet(s
, "OK");
2212 env
= find_cpu(thread
);
2214 put_packet(s
, "E22");
2220 put_packet(s
, "OK");
2224 put_packet(s
, "OK");
2227 put_packet(s
, "E22");
2232 thread
= strtoull(p
, (char **)&p
, 16);
2233 env
= find_cpu(thread
);
2236 put_packet(s
, "OK");
2238 put_packet(s
, "E22");
2243 /* parse any 'q' packets here */
2244 if (!strcmp(p
,"qemu.sstepbits")) {
2245 /* Query Breakpoint bit definitions */
2246 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2252 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2253 /* Display or change the sstep_flags */
2256 /* Display current setting */
2257 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2262 type
= strtoul(p
, (char **)&p
, 16);
2264 put_packet(s
, "OK");
2266 } else if (strcmp(p
,"C") == 0) {
2267 /* "Current thread" remains vague in the spec, so always return
2268 * the first CPU (gdb returns the first thread). */
2269 put_packet(s
, "QC1");
2271 } else if (strcmp(p
,"fThreadInfo") == 0) {
2272 s
->query_cpu
= first_cpu
;
2273 goto report_cpuinfo
;
2274 } else if (strcmp(p
,"sThreadInfo") == 0) {
2277 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2279 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2283 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2284 thread
= strtoull(p
+16, (char **)&p
, 16);
2285 env
= find_cpu(thread
);
2287 cpu_synchronize_state(env
);
2288 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2289 "CPU#%d [%s]", env
->cpu_index
,
2290 env
->halted
? "halted " : "running");
2291 memtohex(buf
, mem_buf
, len
);
2296 #ifdef CONFIG_USER_ONLY
2297 else if (strncmp(p
, "Offsets", 7) == 0) {
2298 TaskState
*ts
= s
->c_cpu
->opaque
;
2300 snprintf(buf
, sizeof(buf
),
2301 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2302 ";Bss=" TARGET_ABI_FMT_lx
,
2303 ts
->info
->code_offset
,
2304 ts
->info
->data_offset
,
2305 ts
->info
->data_offset
);
2309 #else /* !CONFIG_USER_ONLY */
2310 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2311 int len
= strlen(p
+ 5);
2313 if ((len
% 2) != 0) {
2314 put_packet(s
, "E01");
2317 hextomem(mem_buf
, p
+ 5, len
);
2320 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2321 put_packet(s
, "OK");
2324 #endif /* !CONFIG_USER_ONLY */
2325 if (strncmp(p
, "Supported", 9) == 0) {
2326 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2328 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2334 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2336 target_ulong total_len
;
2340 xml
= get_feature_xml(p
, &p
);
2342 snprintf(buf
, sizeof(buf
), "E00");
2349 addr
= strtoul(p
, (char **)&p
, 16);
2352 len
= strtoul(p
, (char **)&p
, 16);
2354 total_len
= strlen(xml
);
2355 if (addr
> total_len
) {
2356 snprintf(buf
, sizeof(buf
), "E00");
2360 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2361 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2362 if (len
< total_len
- addr
) {
2364 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2367 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2369 put_packet_binary(s
, buf
, len
+ 1);
2373 /* Unrecognised 'q' command. */
2374 goto unknown_command
;
2378 /* put empty packet */
2386 void gdb_set_stop_cpu(CPUState
*env
)
2388 gdbserver_state
->c_cpu
= env
;
2389 gdbserver_state
->g_cpu
= env
;
2392 #ifndef CONFIG_USER_ONLY
2393 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2395 GDBState
*s
= gdbserver_state
;
2396 CPUState
*env
= s
->c_cpu
;
2401 if (running
|| s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2405 case RUN_STATE_DEBUG
:
2406 if (env
->watchpoint_hit
) {
2407 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2418 snprintf(buf
, sizeof(buf
),
2419 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2420 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2421 env
->watchpoint_hit
->vaddr
);
2422 env
->watchpoint_hit
= NULL
;
2426 ret
= GDB_SIGNAL_TRAP
;
2428 case RUN_STATE_PAUSED
:
2429 ret
= GDB_SIGNAL_INT
;
2431 case RUN_STATE_SHUTDOWN
:
2432 ret
= GDB_SIGNAL_QUIT
;
2434 case RUN_STATE_IO_ERROR
:
2435 ret
= GDB_SIGNAL_IO
;
2437 case RUN_STATE_WATCHDOG
:
2438 ret
= GDB_SIGNAL_ALRM
;
2440 case RUN_STATE_INTERNAL_ERROR
:
2441 ret
= GDB_SIGNAL_ABRT
;
2443 case RUN_STATE_SAVE_VM
:
2444 case RUN_STATE_RESTORE_VM
:
2446 case RUN_STATE_FINISH_MIGRATE
:
2447 ret
= GDB_SIGNAL_XCPU
;
2450 ret
= GDB_SIGNAL_UNKNOWN
;
2453 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2458 /* disable single step if it was enabled */
2459 cpu_single_step(env
, 0);
2463 /* Send a gdb syscall request.
2464 This accepts limited printf-style format specifiers, specifically:
2465 %x - target_ulong argument printed in hex.
2466 %lx - 64-bit argument printed in hex.
2467 %s - string pointer (target_ulong) and length (int) pair. */
2468 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2477 s
= gdbserver_state
;
2480 gdb_current_syscall_cb
= cb
;
2481 s
->state
= RS_SYSCALL
;
2482 #ifndef CONFIG_USER_ONLY
2483 vm_stop(RUN_STATE_DEBUG
);
2494 addr
= va_arg(va
, target_ulong
);
2495 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2498 if (*(fmt
++) != 'x')
2500 i64
= va_arg(va
, uint64_t);
2501 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2504 addr
= va_arg(va
, target_ulong
);
2505 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2506 addr
, va_arg(va
, int));
2510 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2521 #ifdef CONFIG_USER_ONLY
2522 gdb_handlesig(s
->c_cpu
, 0);
2528 static void gdb_read_byte(GDBState
*s
, int ch
)
2533 #ifndef CONFIG_USER_ONLY
2534 if (s
->last_packet_len
) {
2535 /* Waiting for a response to the last packet. If we see the start
2536 of a new command then abandon the previous response. */
2539 printf("Got NACK, retransmitting\n");
2541 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2545 printf("Got ACK\n");
2547 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2549 if (ch
== '+' || ch
== '$')
2550 s
->last_packet_len
= 0;
2554 if (runstate_is_running()) {
2555 /* when the CPU is running, we cannot do anything except stop
2556 it when receiving a char */
2557 vm_stop(RUN_STATE_PAUSED
);
2564 s
->line_buf_index
= 0;
2565 s
->state
= RS_GETLINE
;
2570 s
->state
= RS_CHKSUM1
;
2571 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2574 s
->line_buf
[s
->line_buf_index
++] = ch
;
2578 s
->line_buf
[s
->line_buf_index
] = '\0';
2579 s
->line_csum
= fromhex(ch
) << 4;
2580 s
->state
= RS_CHKSUM2
;
2583 s
->line_csum
|= fromhex(ch
);
2585 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2586 csum
+= s
->line_buf
[i
];
2588 if (s
->line_csum
!= (csum
& 0xff)) {
2590 put_buffer(s
, &reply
, 1);
2594 put_buffer(s
, &reply
, 1);
2595 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2604 /* Tell the remote gdb that the process has exited. */
2605 void gdb_exit(CPUState
*env
, int code
)
2610 s
= gdbserver_state
;
2614 #ifdef CONFIG_USER_ONLY
2615 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2620 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2623 #ifndef CONFIG_USER_ONLY
2625 qemu_chr_delete(s
->chr
);
2630 #ifdef CONFIG_USER_ONLY
2636 s
= gdbserver_state
;
2638 if (gdbserver_fd
< 0 || s
->fd
< 0)
2645 gdb_handlesig (CPUState
*env
, int sig
)
2651 s
= gdbserver_state
;
2652 if (gdbserver_fd
< 0 || s
->fd
< 0)
2655 /* disable single step if it was enabled */
2656 cpu_single_step(env
, 0);
2661 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2664 /* put_packet() might have detected that the peer terminated the
2671 s
->running_state
= 0;
2672 while (s
->running_state
== 0) {
2673 n
= read (s
->fd
, buf
, 256);
2678 for (i
= 0; i
< n
; i
++)
2679 gdb_read_byte (s
, buf
[i
]);
2681 else if (n
== 0 || errno
!= EAGAIN
)
2683 /* XXX: Connection closed. Should probably wait for another
2684 connection before continuing. */
2693 /* Tell the remote gdb that the process has exited due to SIG. */
2694 void gdb_signalled(CPUState
*env
, int sig
)
2699 s
= gdbserver_state
;
2700 if (gdbserver_fd
< 0 || s
->fd
< 0)
2703 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2707 static void gdb_accept(void)
2710 struct sockaddr_in sockaddr
;
2715 len
= sizeof(sockaddr
);
2716 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2717 if (fd
< 0 && errno
!= EINTR
) {
2720 } else if (fd
>= 0) {
2722 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2728 /* set short latency */
2730 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2732 s
= g_malloc0(sizeof(GDBState
));
2733 s
->c_cpu
= first_cpu
;
2734 s
->g_cpu
= first_cpu
;
2738 gdbserver_state
= s
;
2740 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2743 static int gdbserver_open(int port
)
2745 struct sockaddr_in sockaddr
;
2748 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2754 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2757 /* allow fast reuse */
2759 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2761 sockaddr
.sin_family
= AF_INET
;
2762 sockaddr
.sin_port
= htons(port
);
2763 sockaddr
.sin_addr
.s_addr
= 0;
2764 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2770 ret
= listen(fd
, 0);
2779 int gdbserver_start(int port
)
2781 gdbserver_fd
= gdbserver_open(port
);
2782 if (gdbserver_fd
< 0)
2784 /* accept connections */
2789 /* Disable gdb stub for child processes. */
2790 void gdbserver_fork(CPUState
*env
)
2792 GDBState
*s
= gdbserver_state
;
2793 if (gdbserver_fd
< 0 || s
->fd
< 0)
2797 cpu_breakpoint_remove_all(env
, BP_GDB
);
2798 cpu_watchpoint_remove_all(env
, BP_GDB
);
2801 static int gdb_chr_can_receive(void *opaque
)
2803 /* We can handle an arbitrarily large amount of data.
2804 Pick the maximum packet size, which is as good as anything. */
2805 return MAX_PACKET_LENGTH
;
2808 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2812 for (i
= 0; i
< size
; i
++) {
2813 gdb_read_byte(gdbserver_state
, buf
[i
]);
2817 static void gdb_chr_event(void *opaque
, int event
)
2820 case CHR_EVENT_OPENED
:
2821 vm_stop(RUN_STATE_PAUSED
);
2829 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2831 char buf
[MAX_PACKET_LENGTH
];
2834 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2835 len
= (MAX_PACKET_LENGTH
/2) - 1;
2836 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2840 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2842 const char *p
= (const char *)buf
;
2845 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2847 if (len
<= max_sz
) {
2848 gdb_monitor_output(gdbserver_state
, p
, len
);
2851 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2859 static void gdb_sigterm_handler(int signal
)
2861 if (runstate_is_running()) {
2862 vm_stop(RUN_STATE_PAUSED
);
2867 int gdbserver_start(const char *device
)
2870 char gdbstub_device_name
[128];
2871 CharDriverState
*chr
= NULL
;
2872 CharDriverState
*mon_chr
;
2876 if (strcmp(device
, "none") != 0) {
2877 if (strstart(device
, "tcp:", NULL
)) {
2878 /* enforce required TCP attributes */
2879 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2880 "%s,nowait,nodelay,server", device
);
2881 device
= gdbstub_device_name
;
2884 else if (strcmp(device
, "stdio") == 0) {
2885 struct sigaction act
;
2887 memset(&act
, 0, sizeof(act
));
2888 act
.sa_handler
= gdb_sigterm_handler
;
2889 sigaction(SIGINT
, &act
, NULL
);
2892 chr
= qemu_chr_new("gdb", device
, NULL
);
2896 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2897 gdb_chr_event
, NULL
);
2900 s
= gdbserver_state
;
2902 s
= g_malloc0(sizeof(GDBState
));
2903 gdbserver_state
= s
;
2905 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2907 /* Initialize a monitor terminal for gdb */
2908 mon_chr
= g_malloc0(sizeof(*mon_chr
));
2909 mon_chr
->chr_write
= gdb_monitor_write
;
2910 monitor_init(mon_chr
, 0);
2913 qemu_chr_delete(s
->chr
);
2914 mon_chr
= s
->mon_chr
;
2915 memset(s
, 0, sizeof(GDBState
));
2917 s
->c_cpu
= first_cpu
;
2918 s
->g_cpu
= first_cpu
;
2920 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2921 s
->mon_chr
= mon_chr
;