Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu/wangdongxu.git] / hw / spapr.c
blobcca20f9a5124e65270e84a1308cecdd23251371d
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
49 #include "exec-memory.h"
51 #include <libfdt.h>
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
59 * and more
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
74 #define MAX_CPUS 256
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment *spapr;
86 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87 enum xics_irq_type type)
89 uint32_t irq;
90 qemu_irq qirq;
92 if (hint) {
93 irq = hint;
94 /* FIXME: we should probably check for collisions somehow */
95 } else {
96 irq = spapr->next_irq++;
99 qirq = xics_assign_irq(spapr->icp, irq, type);
100 if (!qirq) {
101 return NULL;
104 if (irq_num) {
105 *irq_num = irq;
108 return qirq;
111 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
113 int ret = 0, offset;
114 CPUPPCState *env;
115 char cpu_model[32];
116 int smt = kvmppc_smt_threads();
118 assert(spapr->cpu_model);
120 for (env = first_cpu; env != NULL; env = env->next_cpu) {
121 uint32_t associativity[] = {cpu_to_be32(0x5),
122 cpu_to_be32(0x0),
123 cpu_to_be32(0x0),
124 cpu_to_be32(0x0),
125 cpu_to_be32(env->numa_node),
126 cpu_to_be32(env->cpu_index)};
128 if ((env->cpu_index % smt) != 0) {
129 continue;
132 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133 env->cpu_index);
135 offset = fdt_path_offset(fdt, cpu_model);
136 if (offset < 0) {
137 return offset;
140 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141 sizeof(associativity));
142 if (ret < 0) {
143 return ret;
146 return ret;
149 static void *spapr_create_fdt_skel(const char *cpu_model,
150 target_phys_addr_t rma_size,
151 target_phys_addr_t initrd_base,
152 target_phys_addr_t initrd_size,
153 target_phys_addr_t kernel_size,
154 const char *boot_device,
155 const char *kernel_cmdline,
156 long hash_shift)
158 void *fdt;
159 CPUPPCState *env;
160 uint64_t mem_reg_property[2];
161 uint32_t start_prop = cpu_to_be32(initrd_base);
162 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
163 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
164 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
165 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
166 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
167 int i;
168 char *modelname;
169 int smt = kvmppc_smt_threads();
170 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
171 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
172 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
173 cpu_to_be32(0x0), cpu_to_be32(0x0),
174 cpu_to_be32(0x0)};
175 char mem_name[32];
176 target_phys_addr_t node0_size, mem_start;
178 #define _FDT(exp) \
179 do { \
180 int ret = (exp); \
181 if (ret < 0) { \
182 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
183 #exp, fdt_strerror(ret)); \
184 exit(1); \
186 } while (0)
188 fdt = g_malloc0(FDT_MAX_SIZE);
189 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
191 if (kernel_size) {
192 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
194 if (initrd_size) {
195 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
197 _FDT((fdt_finish_reservemap(fdt)));
199 /* Root node */
200 _FDT((fdt_begin_node(fdt, "")));
201 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
202 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
204 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
205 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
207 /* /chosen */
208 _FDT((fdt_begin_node(fdt, "chosen")));
210 /* Set Form1_affinity */
211 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
213 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
214 _FDT((fdt_property(fdt, "linux,initrd-start",
215 &start_prop, sizeof(start_prop))));
216 _FDT((fdt_property(fdt, "linux,initrd-end",
217 &end_prop, sizeof(end_prop))));
218 if (kernel_size) {
219 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
220 cpu_to_be64(kernel_size) };
222 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
224 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
226 _FDT((fdt_end_node(fdt)));
228 /* memory node(s) */
229 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
230 if (rma_size > node0_size) {
231 rma_size = node0_size;
234 /* RMA */
235 mem_reg_property[0] = 0;
236 mem_reg_property[1] = cpu_to_be64(rma_size);
237 _FDT((fdt_begin_node(fdt, "memory@0")));
238 _FDT((fdt_property_string(fdt, "device_type", "memory")));
239 _FDT((fdt_property(fdt, "reg", mem_reg_property,
240 sizeof(mem_reg_property))));
241 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
242 sizeof(associativity))));
243 _FDT((fdt_end_node(fdt)));
245 /* RAM: Node 0 */
246 if (node0_size > rma_size) {
247 mem_reg_property[0] = cpu_to_be64(rma_size);
248 mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
250 sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
251 _FDT((fdt_begin_node(fdt, mem_name)));
252 _FDT((fdt_property_string(fdt, "device_type", "memory")));
253 _FDT((fdt_property(fdt, "reg", mem_reg_property,
254 sizeof(mem_reg_property))));
255 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
256 sizeof(associativity))));
257 _FDT((fdt_end_node(fdt)));
260 /* RAM: Node 1 and beyond */
261 mem_start = node0_size;
262 for (i = 1; i < nb_numa_nodes; i++) {
263 mem_reg_property[0] = cpu_to_be64(mem_start);
264 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
265 associativity[3] = associativity[4] = cpu_to_be32(i);
266 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
267 _FDT((fdt_begin_node(fdt, mem_name)));
268 _FDT((fdt_property_string(fdt, "device_type", "memory")));
269 _FDT((fdt_property(fdt, "reg", mem_reg_property,
270 sizeof(mem_reg_property))));
271 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
272 sizeof(associativity))));
273 _FDT((fdt_end_node(fdt)));
274 mem_start += node_mem[i];
277 /* cpus */
278 _FDT((fdt_begin_node(fdt, "cpus")));
280 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
281 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
283 modelname = g_strdup(cpu_model);
285 for (i = 0; i < strlen(modelname); i++) {
286 modelname[i] = toupper(modelname[i]);
289 /* This is needed during FDT finalization */
290 spapr->cpu_model = g_strdup(modelname);
292 for (env = first_cpu; env != NULL; env = env->next_cpu) {
293 int index = env->cpu_index;
294 uint32_t servers_prop[smp_threads];
295 uint32_t gservers_prop[smp_threads * 2];
296 char *nodename;
297 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
298 0xffffffff, 0xffffffff};
299 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
300 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
302 if ((index % smt) != 0) {
303 continue;
306 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
307 fprintf(stderr, "Allocation failure\n");
308 exit(1);
311 _FDT((fdt_begin_node(fdt, nodename)));
313 free(nodename);
315 _FDT((fdt_property_cell(fdt, "reg", index)));
316 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
318 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
319 _FDT((fdt_property_cell(fdt, "dcache-block-size",
320 env->dcache_line_size)));
321 _FDT((fdt_property_cell(fdt, "icache-block-size",
322 env->icache_line_size)));
323 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
324 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
325 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
326 _FDT((fdt_property(fdt, "ibm,pft-size",
327 pft_size_prop, sizeof(pft_size_prop))));
328 _FDT((fdt_property_string(fdt, "status", "okay")));
329 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
331 /* Build interrupt servers and gservers properties */
332 for (i = 0; i < smp_threads; i++) {
333 servers_prop[i] = cpu_to_be32(index + i);
334 /* Hack, direct the group queues back to cpu 0 */
335 gservers_prop[i*2] = cpu_to_be32(index + i);
336 gservers_prop[i*2 + 1] = 0;
338 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
339 servers_prop, sizeof(servers_prop))));
340 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
341 gservers_prop, sizeof(gservers_prop))));
343 if (env->mmu_model & POWERPC_MMU_1TSEG) {
344 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
345 segs, sizeof(segs))));
348 /* Advertise VMX/VSX (vector extensions) if available
349 * 0 / no property == no vector extensions
350 * 1 == VMX / Altivec available
351 * 2 == VSX available */
352 if (env->insns_flags & PPC_ALTIVEC) {
353 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
355 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
358 /* Advertise DFP (Decimal Floating Point) if available
359 * 0 / no property == no DFP
360 * 1 == DFP available */
361 if (env->insns_flags2 & PPC2_DFP) {
362 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
365 _FDT((fdt_end_node(fdt)));
368 g_free(modelname);
370 _FDT((fdt_end_node(fdt)));
372 /* RTAS */
373 _FDT((fdt_begin_node(fdt, "rtas")));
375 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
376 sizeof(hypertas_prop))));
378 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
379 refpoints, sizeof(refpoints))));
381 _FDT((fdt_end_node(fdt)));
383 /* interrupt controller */
384 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
386 _FDT((fdt_property_string(fdt, "device_type",
387 "PowerPC-External-Interrupt-Presentation")));
388 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
389 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
390 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
391 interrupt_server_ranges_prop,
392 sizeof(interrupt_server_ranges_prop))));
393 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
394 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
395 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
397 _FDT((fdt_end_node(fdt)));
399 /* vdevice */
400 _FDT((fdt_begin_node(fdt, "vdevice")));
402 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
403 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
404 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
405 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
406 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
407 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
409 _FDT((fdt_end_node(fdt)));
411 _FDT((fdt_end_node(fdt))); /* close root node */
412 _FDT((fdt_finish(fdt)));
414 return fdt;
417 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
418 target_phys_addr_t fdt_addr,
419 target_phys_addr_t rtas_addr,
420 target_phys_addr_t rtas_size)
422 int ret;
423 void *fdt;
424 sPAPRPHBState *phb;
426 fdt = g_malloc(FDT_MAX_SIZE);
428 /* open out the base tree into a temp buffer for the final tweaks */
429 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
431 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
432 if (ret < 0) {
433 fprintf(stderr, "couldn't setup vio devices in fdt\n");
434 exit(1);
437 QLIST_FOREACH(phb, &spapr->phbs, list) {
438 ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
441 if (ret < 0) {
442 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
443 exit(1);
446 /* RTAS */
447 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
448 if (ret < 0) {
449 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
452 /* Advertise NUMA via ibm,associativity */
453 if (nb_numa_nodes > 1) {
454 ret = spapr_set_associativity(fdt, spapr);
455 if (ret < 0) {
456 fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
460 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
462 _FDT((fdt_pack(fdt)));
464 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
465 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
466 fdt_totalsize(fdt), FDT_MAX_SIZE);
467 exit(1);
470 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
472 g_free(fdt);
475 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
477 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
480 static void emulate_spapr_hypercall(CPUPPCState *env)
482 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
485 static void spapr_reset(void *opaque)
487 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
489 fprintf(stderr, "sPAPR reset\n");
491 /* flush out the hash table */
492 memset(spapr->htab, 0, spapr->htab_size);
494 /* Load the fdt */
495 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
496 spapr->rtas_size);
498 /* Set up the entry state */
499 first_cpu->gpr[3] = spapr->fdt_addr;
500 first_cpu->gpr[5] = 0;
501 first_cpu->halted = 0;
502 first_cpu->nip = spapr->entry_point;
506 static void spapr_cpu_reset(void *opaque)
508 CPUPPCState *env = opaque;
510 cpu_state_reset(env);
513 /* pSeries LPAR / sPAPR hardware init */
514 static void ppc_spapr_init(ram_addr_t ram_size,
515 const char *boot_device,
516 const char *kernel_filename,
517 const char *kernel_cmdline,
518 const char *initrd_filename,
519 const char *cpu_model)
521 CPUPPCState *env;
522 int i;
523 MemoryRegion *sysmem = get_system_memory();
524 MemoryRegion *ram = g_new(MemoryRegion, 1);
525 target_phys_addr_t rma_alloc_size, rma_size;
526 uint32_t initrd_base = 0;
527 long kernel_size = 0, initrd_size = 0;
528 long load_limit, rtas_limit, fw_size;
529 long pteg_shift = 17;
530 char *filename;
532 spapr = g_malloc0(sizeof(*spapr));
533 QLIST_INIT(&spapr->phbs);
535 cpu_ppc_hypercall = emulate_spapr_hypercall;
537 /* Allocate RMA if necessary */
538 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
540 if (rma_alloc_size == -1) {
541 hw_error("qemu: Unable to create RMA\n");
542 exit(1);
544 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
545 rma_size = rma_alloc_size;
546 } else {
547 rma_size = ram_size;
550 /* We place the device tree and RTAS just below either the top of the RMA,
551 * or just below 2GB, whichever is lowere, so that it can be
552 * processed with 32-bit real mode code if necessary */
553 rtas_limit = MIN(rma_size, 0x80000000);
554 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
555 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
556 load_limit = spapr->fdt_addr - FW_OVERHEAD;
558 /* init CPUs */
559 if (cpu_model == NULL) {
560 cpu_model = kvm_enabled() ? "host" : "POWER7";
562 for (i = 0; i < smp_cpus; i++) {
563 env = cpu_init(cpu_model);
565 if (!env) {
566 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
567 exit(1);
569 /* Set time-base frequency to 512 MHz */
570 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
571 qemu_register_reset(spapr_cpu_reset, env);
573 env->hreset_vector = 0x60;
574 env->hreset_excp_prefix = 0;
575 env->gpr[3] = env->cpu_index;
578 /* allocate RAM */
579 spapr->ram_limit = ram_size;
580 if (spapr->ram_limit > rma_alloc_size) {
581 ram_addr_t nonrma_base = rma_alloc_size;
582 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
584 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
585 vmstate_register_ram_global(ram);
586 memory_region_add_subregion(sysmem, nonrma_base, ram);
589 /* allocate hash page table. For now we always make this 16mb,
590 * later we should probably make it scale to the size of guest
591 * RAM */
592 spapr->htab_size = 1ULL << (pteg_shift + 7);
593 spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
595 for (env = first_cpu; env != NULL; env = env->next_cpu) {
596 env->external_htab = spapr->htab;
597 env->htab_base = -1;
598 env->htab_mask = spapr->htab_size - 1;
600 /* Tell KVM that we're in PAPR mode */
601 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
602 ((pteg_shift + 7) - 18);
603 env->spr[SPR_HIOR] = 0;
605 if (kvm_enabled()) {
606 kvmppc_set_papr(env);
610 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
611 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
612 rtas_limit - spapr->rtas_addr);
613 if (spapr->rtas_size < 0) {
614 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
615 exit(1);
617 if (spapr->rtas_size > RTAS_MAX_SIZE) {
618 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
619 spapr->rtas_size, RTAS_MAX_SIZE);
620 exit(1);
622 g_free(filename);
625 /* Set up Interrupt Controller */
626 spapr->icp = xics_system_init(XICS_IRQS);
627 spapr->next_irq = 16;
629 /* Set up VIO bus */
630 spapr->vio_bus = spapr_vio_bus_init();
632 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
633 if (serial_hds[i]) {
634 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
638 /* Set up PCI */
639 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
640 SPAPR_PCI_MEM_WIN_ADDR,
641 SPAPR_PCI_MEM_WIN_SIZE,
642 SPAPR_PCI_IO_WIN_ADDR);
644 for (i = 0; i < nb_nics; i++) {
645 NICInfo *nd = &nd_table[i];
647 if (!nd->model) {
648 nd->model = g_strdup("ibmveth");
651 if (strcmp(nd->model, "ibmveth") == 0) {
652 spapr_vlan_create(spapr->vio_bus, nd);
653 } else {
654 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
658 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
659 spapr_vscsi_create(spapr->vio_bus);
662 if (rma_size < (MIN_RMA_SLOF << 20)) {
663 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
664 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
665 exit(1);
668 fprintf(stderr, "sPAPR memory map:\n");
669 fprintf(stderr, "RTAS : 0x%08lx..%08lx\n",
670 (unsigned long)spapr->rtas_addr,
671 (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
672 fprintf(stderr, "FDT : 0x%08lx..%08lx\n",
673 (unsigned long)spapr->fdt_addr,
674 (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
676 if (kernel_filename) {
677 uint64_t lowaddr = 0;
679 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
680 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
681 if (kernel_size < 0) {
682 kernel_size = load_image_targphys(kernel_filename,
683 KERNEL_LOAD_ADDR,
684 load_limit - KERNEL_LOAD_ADDR);
686 if (kernel_size < 0) {
687 fprintf(stderr, "qemu: could not load kernel '%s'\n",
688 kernel_filename);
689 exit(1);
691 fprintf(stderr, "Kernel : 0x%08x..%08lx\n",
692 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
694 /* load initrd */
695 if (initrd_filename) {
696 /* Try to locate the initrd in the gap between the kernel
697 * and the firmware. Add a bit of space just in case
699 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
700 initrd_size = load_image_targphys(initrd_filename, initrd_base,
701 load_limit - initrd_base);
702 if (initrd_size < 0) {
703 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
704 initrd_filename);
705 exit(1);
707 fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n",
708 (long)initrd_base, (long)(initrd_base + initrd_size - 1));
709 } else {
710 initrd_base = 0;
711 initrd_size = 0;
715 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
716 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
717 if (fw_size < 0) {
718 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
719 exit(1);
721 g_free(filename);
722 fprintf(stderr, "Firmware load : 0x%08x..%08lx\n",
723 0, fw_size);
724 fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n",
725 load_limit, (unsigned long)spapr->fdt_addr);
727 spapr->entry_point = 0x100;
729 /* SLOF will startup the secondary CPUs using RTAS */
730 for (env = first_cpu; env != NULL; env = env->next_cpu) {
731 env->halted = 1;
734 /* Prepare the device tree */
735 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
736 initrd_base, initrd_size,
737 kernel_size,
738 boot_device, kernel_cmdline,
739 pteg_shift + 7);
740 assert(spapr->fdt_skel != NULL);
742 qemu_register_reset(spapr_reset, spapr);
745 static QEMUMachine spapr_machine = {
746 .name = "pseries",
747 .desc = "pSeries Logical Partition (PAPR compliant)",
748 .init = ppc_spapr_init,
749 .max_cpus = MAX_CPUS,
750 .no_parallel = 1,
751 .use_scsi = 1,
754 static void spapr_machine_init(void)
756 qemu_register_machine(&spapr_machine);
759 machine_init(spapr_machine_init);