4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr
;
52 ram_addr_t memory_size
;
53 ram_addr_t phys_offset
;
58 typedef struct kvm_dirty_log KVMDirtyLog
;
66 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
67 bool coalesced_flush_in_progress
;
68 int broken_set_mem_region
;
71 int robust_singlestep
;
73 #ifdef KVM_CAP_SET_GUEST_DEBUG
74 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
76 int irqchip_in_kernel
;
84 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
85 KVM_CAP_INFO(USER_MEMORY
),
86 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
90 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
94 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
95 if (s
->slots
[i
].memory_size
== 0) {
100 fprintf(stderr
, "%s: no free slot available\n", __func__
);
104 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
105 target_phys_addr_t start_addr
,
106 target_phys_addr_t end_addr
)
110 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
111 KVMSlot
*mem
= &s
->slots
[i
];
113 if (start_addr
== mem
->start_addr
&&
114 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
123 * Find overlapping slot with lowest start address
125 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
126 target_phys_addr_t start_addr
,
127 target_phys_addr_t end_addr
)
129 KVMSlot
*found
= NULL
;
132 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
133 KVMSlot
*mem
= &s
->slots
[i
];
135 if (mem
->memory_size
== 0 ||
136 (found
&& found
->start_addr
< mem
->start_addr
)) {
140 if (end_addr
> mem
->start_addr
&&
141 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
149 int kvm_physical_memory_addr_from_ram(KVMState
*s
, ram_addr_t ram_addr
,
150 target_phys_addr_t
*phys_addr
)
154 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
155 KVMSlot
*mem
= &s
->slots
[i
];
157 if (ram_addr
>= mem
->phys_offset
&&
158 ram_addr
< mem
->phys_offset
+ mem
->memory_size
) {
159 *phys_addr
= mem
->start_addr
+ (ram_addr
- mem
->phys_offset
);
167 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
169 struct kvm_userspace_memory_region mem
;
171 mem
.slot
= slot
->slot
;
172 mem
.guest_phys_addr
= slot
->start_addr
;
173 mem
.memory_size
= slot
->memory_size
;
174 mem
.userspace_addr
= (unsigned long)qemu_safe_ram_ptr(slot
->phys_offset
);
175 mem
.flags
= slot
->flags
;
176 if (s
->migration_log
) {
177 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
179 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
182 static void kvm_reset_vcpu(void *opaque
)
184 CPUState
*env
= opaque
;
186 kvm_arch_reset_vcpu(env
);
189 int kvm_irqchip_in_kernel(void)
191 return kvm_state
->irqchip_in_kernel
;
194 int kvm_pit_in_kernel(void)
196 return kvm_state
->pit_in_kernel
;
199 int kvm_init_vcpu(CPUState
*env
)
201 KVMState
*s
= kvm_state
;
205 DPRINTF("kvm_init_vcpu\n");
207 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
209 DPRINTF("kvm_create_vcpu failed\n");
215 env
->kvm_vcpu_dirty
= 1;
217 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
224 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
226 if (env
->kvm_run
== MAP_FAILED
) {
228 DPRINTF("mmap'ing vcpu state failed\n");
232 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
233 s
->coalesced_mmio_ring
=
234 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
237 ret
= kvm_arch_init_vcpu(env
);
239 qemu_register_reset(kvm_reset_vcpu
, env
);
240 kvm_arch_reset_vcpu(env
);
247 * dirty pages logging control
250 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
252 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
255 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
257 KVMState
*s
= kvm_state
;
258 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
261 old_flags
= mem
->flags
;
263 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s
->migration_log
) {
268 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
271 if (flags
== old_flags
) {
275 return kvm_set_user_memory_region(s
, mem
);
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
279 ram_addr_t size
, bool log_dirty
)
281 KVMState
*s
= kvm_state
;
282 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
285 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
286 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
287 (target_phys_addr_t
)(phys_addr
+ size
- 1));
290 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
293 static int kvm_log_start(CPUPhysMemoryClient
*client
,
294 target_phys_addr_t phys_addr
, ram_addr_t size
)
296 return kvm_dirty_pages_log_change(phys_addr
, size
, true);
299 static int kvm_log_stop(CPUPhysMemoryClient
*client
,
300 target_phys_addr_t phys_addr
, ram_addr_t size
)
302 return kvm_dirty_pages_log_change(phys_addr
, size
, false);
305 static int kvm_set_migration_log(int enable
)
307 KVMState
*s
= kvm_state
;
311 s
->migration_log
= enable
;
313 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
316 if (!mem
->memory_size
) {
319 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
322 err
= kvm_set_user_memory_region(s
, mem
);
330 /* get kvm's dirty pages bitmap and update qemu's */
331 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
332 unsigned long *bitmap
,
333 unsigned long offset
,
334 unsigned long mem_size
)
337 unsigned long page_number
, addr
, addr1
, c
;
339 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
343 * bitmap-traveling is faster than memory-traveling (for addr...)
344 * especially when most of the memory is not dirty.
346 for (i
= 0; i
< len
; i
++) {
347 if (bitmap
[i
] != 0) {
348 c
= leul_to_cpu(bitmap
[i
]);
352 page_number
= i
* HOST_LONG_BITS
+ j
;
353 addr1
= page_number
* TARGET_PAGE_SIZE
;
354 addr
= offset
+ addr1
;
355 ram_addr
= cpu_get_physical_page_desc(addr
);
356 cpu_physical_memory_set_dirty(ram_addr
);
363 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
366 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
367 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
368 * This means all bits are set to dirty.
370 * @start_add: start of logged region.
371 * @end_addr: end of logged region.
373 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
374 target_phys_addr_t end_addr
)
376 KVMState
*s
= kvm_state
;
377 unsigned long size
, allocated_size
= 0;
382 d
.dirty_bitmap
= NULL
;
383 while (start_addr
< end_addr
) {
384 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
389 /* XXX bad kernel interface alert
390 * For dirty bitmap, kernel allocates array of size aligned to
391 * bits-per-long. But for case when the kernel is 64bits and
392 * the userspace is 32bits, userspace can't align to the same
393 * bits-per-long, since sizeof(long) is different between kernel
394 * and user space. This way, userspace will provide buffer which
395 * may be 4 bytes less than the kernel will use, resulting in
396 * userspace memory corruption (which is not detectable by valgrind
397 * too, in most cases).
398 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
399 * a hope that sizeof(long) wont become >8 any time soon.
401 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
402 /*HOST_LONG_BITS*/ 64) / 8;
403 if (!d
.dirty_bitmap
) {
404 d
.dirty_bitmap
= g_malloc(size
);
405 } else if (size
> allocated_size
) {
406 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
408 allocated_size
= size
;
409 memset(d
.dirty_bitmap
, 0, allocated_size
);
413 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
414 DPRINTF("ioctl failed %d\n", errno
);
419 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
420 mem
->start_addr
, mem
->memory_size
);
421 start_addr
= mem
->start_addr
+ mem
->memory_size
;
423 g_free(d
.dirty_bitmap
);
428 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
431 KVMState
*s
= kvm_state
;
433 if (s
->coalesced_mmio
) {
434 struct kvm_coalesced_mmio_zone zone
;
439 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
445 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
448 KVMState
*s
= kvm_state
;
450 if (s
->coalesced_mmio
) {
451 struct kvm_coalesced_mmio_zone zone
;
456 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
462 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
466 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
474 static int kvm_check_many_ioeventfds(void)
476 /* Userspace can use ioeventfd for io notification. This requires a host
477 * that supports eventfd(2) and an I/O thread; since eventfd does not
478 * support SIGIO it cannot interrupt the vcpu.
480 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
481 * can avoid creating too many ioeventfds.
483 #if defined(CONFIG_EVENTFD)
486 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
487 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
488 if (ioeventfds
[i
] < 0) {
491 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
493 close(ioeventfds
[i
]);
498 /* Decide whether many devices are supported or not */
499 ret
= i
== ARRAY_SIZE(ioeventfds
);
502 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
503 close(ioeventfds
[i
]);
511 static const KVMCapabilityInfo
*
512 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
515 if (!kvm_check_extension(s
, list
->value
)) {
523 static void kvm_set_phys_mem(target_phys_addr_t start_addr
, ram_addr_t size
,
524 ram_addr_t phys_offset
, bool log_dirty
)
526 KVMState
*s
= kvm_state
;
527 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
531 /* kvm works in page size chunks, but the function may be called
532 with sub-page size and unaligned start address. */
533 size
= TARGET_PAGE_ALIGN(size
);
534 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
536 /* KVM does not support read-only slots */
537 phys_offset
&= ~IO_MEM_ROM
;
540 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
545 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
546 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
547 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
548 /* The new slot fits into the existing one and comes with
549 * identical parameters - update flags and done. */
550 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
556 /* unregister the overlapping slot */
557 mem
->memory_size
= 0;
558 err
= kvm_set_user_memory_region(s
, mem
);
560 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
561 __func__
, strerror(-err
));
565 /* Workaround for older KVM versions: we can't join slots, even not by
566 * unregistering the previous ones and then registering the larger
567 * slot. We have to maintain the existing fragmentation. Sigh.
569 * This workaround assumes that the new slot starts at the same
570 * address as the first existing one. If not or if some overlapping
571 * slot comes around later, we will fail (not seen in practice so far)
572 * - and actually require a recent KVM version. */
573 if (s
->broken_set_mem_region
&&
574 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
575 flags
< IO_MEM_UNASSIGNED
) {
576 mem
= kvm_alloc_slot(s
);
577 mem
->memory_size
= old
.memory_size
;
578 mem
->start_addr
= old
.start_addr
;
579 mem
->phys_offset
= old
.phys_offset
;
580 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
582 err
= kvm_set_user_memory_region(s
, mem
);
584 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
589 start_addr
+= old
.memory_size
;
590 phys_offset
+= old
.memory_size
;
591 size
-= old
.memory_size
;
595 /* register prefix slot */
596 if (old
.start_addr
< start_addr
) {
597 mem
= kvm_alloc_slot(s
);
598 mem
->memory_size
= start_addr
- old
.start_addr
;
599 mem
->start_addr
= old
.start_addr
;
600 mem
->phys_offset
= old
.phys_offset
;
601 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
603 err
= kvm_set_user_memory_region(s
, mem
);
605 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
606 __func__
, strerror(-err
));
608 fprintf(stderr
, "%s: This is probably because your kernel's " \
609 "PAGE_SIZE is too big. Please try to use 4k " \
610 "PAGE_SIZE!\n", __func__
);
616 /* register suffix slot */
617 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
618 ram_addr_t size_delta
;
620 mem
= kvm_alloc_slot(s
);
621 mem
->start_addr
= start_addr
+ size
;
622 size_delta
= mem
->start_addr
- old
.start_addr
;
623 mem
->memory_size
= old
.memory_size
- size_delta
;
624 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
625 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
627 err
= kvm_set_user_memory_region(s
, mem
);
629 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
630 __func__
, strerror(-err
));
636 /* in case the KVM bug workaround already "consumed" the new slot */
640 /* KVM does not need to know about this memory */
641 if (flags
>= IO_MEM_UNASSIGNED
) {
644 mem
= kvm_alloc_slot(s
);
645 mem
->memory_size
= size
;
646 mem
->start_addr
= start_addr
;
647 mem
->phys_offset
= phys_offset
;
648 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
650 err
= kvm_set_user_memory_region(s
, mem
);
652 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
658 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
659 target_phys_addr_t start_addr
,
660 ram_addr_t size
, ram_addr_t phys_offset
,
663 kvm_set_phys_mem(start_addr
, size
, phys_offset
, log_dirty
);
666 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
667 target_phys_addr_t start_addr
,
668 target_phys_addr_t end_addr
)
670 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
673 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
676 return kvm_set_migration_log(enable
);
679 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
680 .set_memory
= kvm_client_set_memory
,
681 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
682 .migration_log
= kvm_client_migration_log
,
683 .log_start
= kvm_log_start
,
684 .log_stop
= kvm_log_stop
,
687 static void kvm_handle_interrupt(CPUState
*env
, int mask
)
689 env
->interrupt_request
|= mask
;
691 if (!qemu_cpu_is_self(env
)) {
698 static const char upgrade_note
[] =
699 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
700 "(see http://sourceforge.net/projects/kvm).\n";
702 const KVMCapabilityInfo
*missing_cap
;
706 s
= g_malloc0(sizeof(KVMState
));
708 #ifdef KVM_CAP_SET_GUEST_DEBUG
709 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
711 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
712 s
->slots
[i
].slot
= i
;
715 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
717 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
722 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
723 if (ret
< KVM_API_VERSION
) {
727 fprintf(stderr
, "kvm version too old\n");
731 if (ret
> KVM_API_VERSION
) {
733 fprintf(stderr
, "kvm version not supported\n");
737 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
740 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
741 "your host kernel command line\n");
746 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
749 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
753 fprintf(stderr
, "kvm does not support %s\n%s",
754 missing_cap
->name
, upgrade_note
);
758 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
760 s
->broken_set_mem_region
= 1;
761 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
763 s
->broken_set_mem_region
= 0;
766 #ifdef KVM_CAP_VCPU_EVENTS
767 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
770 s
->robust_singlestep
=
771 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
773 #ifdef KVM_CAP_DEBUGREGS
774 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
778 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
782 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
785 ret
= kvm_arch_init(s
);
791 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
793 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
795 cpu_interrupt_handler
= kvm_handle_interrupt
;
813 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
819 for (i
= 0; i
< count
; i
++) {
820 if (direction
== KVM_EXIT_IO_IN
) {
823 stb_p(ptr
, cpu_inb(port
));
826 stw_p(ptr
, cpu_inw(port
));
829 stl_p(ptr
, cpu_inl(port
));
835 cpu_outb(port
, ldub_p(ptr
));
838 cpu_outw(port
, lduw_p(ptr
));
841 cpu_outl(port
, ldl_p(ptr
));
850 static int kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
852 fprintf(stderr
, "KVM internal error.");
853 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
856 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
857 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
858 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
859 i
, (uint64_t)run
->internal
.data
[i
]);
862 fprintf(stderr
, "\n");
864 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
865 fprintf(stderr
, "emulation failure\n");
866 if (!kvm_arch_stop_on_emulation_error(env
)) {
867 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
868 return EXCP_INTERRUPT
;
871 /* FIXME: Should trigger a qmp message to let management know
872 * something went wrong.
877 void kvm_flush_coalesced_mmio_buffer(void)
879 KVMState
*s
= kvm_state
;
881 if (s
->coalesced_flush_in_progress
) {
885 s
->coalesced_flush_in_progress
= true;
887 if (s
->coalesced_mmio_ring
) {
888 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
889 while (ring
->first
!= ring
->last
) {
890 struct kvm_coalesced_mmio
*ent
;
892 ent
= &ring
->coalesced_mmio
[ring
->first
];
894 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
896 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
900 s
->coalesced_flush_in_progress
= false;
903 static void do_kvm_cpu_synchronize_state(void *_env
)
905 CPUState
*env
= _env
;
907 if (!env
->kvm_vcpu_dirty
) {
908 kvm_arch_get_registers(env
);
909 env
->kvm_vcpu_dirty
= 1;
913 void kvm_cpu_synchronize_state(CPUState
*env
)
915 if (!env
->kvm_vcpu_dirty
) {
916 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
920 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
922 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
923 env
->kvm_vcpu_dirty
= 0;
926 void kvm_cpu_synchronize_post_init(CPUState
*env
)
928 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
929 env
->kvm_vcpu_dirty
= 0;
932 int kvm_cpu_exec(CPUState
*env
)
934 struct kvm_run
*run
= env
->kvm_run
;
937 DPRINTF("kvm_cpu_exec()\n");
939 if (kvm_arch_process_async_events(env
)) {
940 env
->exit_request
= 0;
944 cpu_single_env
= env
;
947 if (env
->kvm_vcpu_dirty
) {
948 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
949 env
->kvm_vcpu_dirty
= 0;
952 kvm_arch_pre_run(env
, run
);
953 if (env
->exit_request
) {
954 DPRINTF("interrupt exit requested\n");
956 * KVM requires us to reenter the kernel after IO exits to complete
957 * instruction emulation. This self-signal will ensure that we
960 qemu_cpu_kick_self();
962 cpu_single_env
= NULL
;
963 qemu_mutex_unlock_iothread();
965 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
967 qemu_mutex_lock_iothread();
968 cpu_single_env
= env
;
969 kvm_arch_post_run(env
, run
);
971 kvm_flush_coalesced_mmio_buffer();
974 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
975 DPRINTF("io window exit\n");
976 ret
= EXCP_INTERRUPT
;
979 DPRINTF("kvm run failed %s\n", strerror(-run_ret
));
983 switch (run
->exit_reason
) {
985 DPRINTF("handle_io\n");
986 kvm_handle_io(run
->io
.port
,
987 (uint8_t *)run
+ run
->io
.data_offset
,
994 DPRINTF("handle_mmio\n");
995 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1001 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1002 DPRINTF("irq_window_open\n");
1003 ret
= EXCP_INTERRUPT
;
1005 case KVM_EXIT_SHUTDOWN
:
1006 DPRINTF("shutdown\n");
1007 qemu_system_reset_request();
1008 ret
= EXCP_INTERRUPT
;
1010 case KVM_EXIT_UNKNOWN
:
1011 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1012 (uint64_t)run
->hw
.hardware_exit_reason
);
1015 case KVM_EXIT_INTERNAL_ERROR
:
1016 ret
= kvm_handle_internal_error(env
, run
);
1019 DPRINTF("kvm_arch_handle_exit\n");
1020 ret
= kvm_arch_handle_exit(env
, run
);
1026 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1027 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1030 env
->exit_request
= 0;
1031 cpu_single_env
= NULL
;
1035 int kvm_ioctl(KVMState
*s
, int type
, ...)
1042 arg
= va_arg(ap
, void *);
1045 ret
= ioctl(s
->fd
, type
, arg
);
1052 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1059 arg
= va_arg(ap
, void *);
1062 ret
= ioctl(s
->vmfd
, type
, arg
);
1069 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1076 arg
= va_arg(ap
, void *);
1079 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1086 int kvm_has_sync_mmu(void)
1088 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1091 int kvm_has_vcpu_events(void)
1093 return kvm_state
->vcpu_events
;
1096 int kvm_has_robust_singlestep(void)
1098 return kvm_state
->robust_singlestep
;
1101 int kvm_has_debugregs(void)
1103 return kvm_state
->debugregs
;
1106 int kvm_has_xsave(void)
1108 return kvm_state
->xsave
;
1111 int kvm_has_xcrs(void)
1113 return kvm_state
->xcrs
;
1116 int kvm_has_many_ioeventfds(void)
1118 if (!kvm_enabled()) {
1121 return kvm_state
->many_ioeventfds
;
1124 void kvm_setup_guest_memory(void *start
, size_t size
)
1126 if (!kvm_has_sync_mmu()) {
1127 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1130 perror("qemu_madvise");
1132 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1138 #ifdef KVM_CAP_SET_GUEST_DEBUG
1139 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1142 struct kvm_sw_breakpoint
*bp
;
1144 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1152 int kvm_sw_breakpoints_active(CPUState
*env
)
1154 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1157 struct kvm_set_guest_debug_data
{
1158 struct kvm_guest_debug dbg
;
1163 static void kvm_invoke_set_guest_debug(void *data
)
1165 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1166 CPUState
*env
= dbg_data
->env
;
1168 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1171 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1173 struct kvm_set_guest_debug_data data
;
1175 data
.dbg
.control
= reinject_trap
;
1177 if (env
->singlestep_enabled
) {
1178 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1180 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1183 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1187 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1188 target_ulong len
, int type
)
1190 struct kvm_sw_breakpoint
*bp
;
1194 if (type
== GDB_BREAKPOINT_SW
) {
1195 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1201 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1208 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1214 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1217 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1223 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1224 err
= kvm_update_guest_debug(env
, 0);
1232 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1233 target_ulong len
, int type
)
1235 struct kvm_sw_breakpoint
*bp
;
1239 if (type
== GDB_BREAKPOINT_SW
) {
1240 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1245 if (bp
->use_count
> 1) {
1250 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1255 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1258 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1264 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1265 err
= kvm_update_guest_debug(env
, 0);
1273 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1275 struct kvm_sw_breakpoint
*bp
, *next
;
1276 KVMState
*s
= current_env
->kvm_state
;
1279 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1280 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1281 /* Try harder to find a CPU that currently sees the breakpoint. */
1282 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1283 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1289 kvm_arch_remove_all_hw_breakpoints();
1291 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1292 kvm_update_guest_debug(env
, 0);
1296 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1298 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1303 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1304 target_ulong len
, int type
)
1309 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1310 target_ulong len
, int type
)
1315 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1318 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1320 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1322 struct kvm_signal_mask
*sigmask
;
1326 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1329 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1332 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1333 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1339 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1342 struct kvm_ioeventfd iofd
;
1344 iofd
.datamatch
= val
;
1347 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1350 if (!kvm_enabled()) {
1355 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1358 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1367 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1369 struct kvm_ioeventfd kick
= {
1373 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1377 if (!kvm_enabled()) {
1381 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1383 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1390 int kvm_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1392 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1395 int kvm_on_sigbus(int code
, void *addr
)
1397 return kvm_arch_on_sigbus(code
, addr
);