4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
64 int broken_set_mem_region
;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
70 int irqchip_in_kernel
;
74 static KVMState
*kvm_state
;
76 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
80 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
81 /* KVM private memory slots */
84 if (s
->slots
[i
].memory_size
== 0)
88 fprintf(stderr
, "%s: no free slot available\n", __func__
);
92 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
93 target_phys_addr_t start_addr
,
94 target_phys_addr_t end_addr
)
98 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
99 KVMSlot
*mem
= &s
->slots
[i
];
101 if (start_addr
== mem
->start_addr
&&
102 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
111 * Find overlapping slot with lowest start address
113 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
114 target_phys_addr_t start_addr
,
115 target_phys_addr_t end_addr
)
117 KVMSlot
*found
= NULL
;
120 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
121 KVMSlot
*mem
= &s
->slots
[i
];
123 if (mem
->memory_size
== 0 ||
124 (found
&& found
->start_addr
< mem
->start_addr
)) {
128 if (end_addr
> mem
->start_addr
&&
129 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
137 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
139 struct kvm_userspace_memory_region mem
;
141 mem
.slot
= slot
->slot
;
142 mem
.guest_phys_addr
= slot
->start_addr
;
143 mem
.memory_size
= slot
->memory_size
;
144 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
145 mem
.flags
= slot
->flags
;
146 if (s
->migration_log
) {
147 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
149 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
152 static void kvm_reset_vcpu(void *opaque
)
154 CPUState
*env
= opaque
;
156 kvm_arch_reset_vcpu(env
);
157 if (kvm_arch_put_registers(env
)) {
158 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
163 int kvm_irqchip_in_kernel(void)
165 return kvm_state
->irqchip_in_kernel
;
168 int kvm_pit_in_kernel(void)
170 return kvm_state
->pit_in_kernel
;
174 int kvm_init_vcpu(CPUState
*env
)
176 KVMState
*s
= kvm_state
;
180 dprintf("kvm_init_vcpu\n");
182 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
184 dprintf("kvm_create_vcpu failed\n");
191 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
197 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
199 if (env
->kvm_run
== MAP_FAILED
) {
201 dprintf("mmap'ing vcpu state failed\n");
205 #ifdef KVM_CAP_COALESCED_MMIO
206 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
207 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
208 s
->coalesced_mmio
* PAGE_SIZE
;
211 ret
= kvm_arch_init_vcpu(env
);
213 qemu_register_reset(kvm_reset_vcpu
, env
);
214 kvm_arch_reset_vcpu(env
);
215 ret
= kvm_arch_put_registers(env
);
222 * dirty pages logging control
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
225 ram_addr_t size
, int flags
, int mask
)
227 KVMState
*s
= kvm_state
;
228 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
232 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
233 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
234 (target_phys_addr_t
)(phys_addr
+ size
- 1));
238 old_flags
= mem
->flags
;
240 flags
= (mem
->flags
& ~mask
) | flags
;
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s
->migration_log
) {
245 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
247 if (flags
== old_flags
) {
251 return kvm_set_user_memory_region(s
, mem
);
254 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
256 return kvm_dirty_pages_log_change(phys_addr
, size
,
257 KVM_MEM_LOG_DIRTY_PAGES
,
258 KVM_MEM_LOG_DIRTY_PAGES
);
261 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
263 return kvm_dirty_pages_log_change(phys_addr
, size
,
265 KVM_MEM_LOG_DIRTY_PAGES
);
268 int kvm_set_migration_log(int enable
)
270 KVMState
*s
= kvm_state
;
274 s
->migration_log
= enable
;
276 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
279 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
282 err
= kvm_set_user_memory_region(s
, mem
);
290 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
292 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
300 * @start_add: start of logged region.
301 * @end_addr: end of logged region.
303 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
304 target_phys_addr_t end_addr
)
306 KVMState
*s
= kvm_state
;
307 unsigned long size
, allocated_size
= 0;
308 target_phys_addr_t phys_addr
;
314 d
.dirty_bitmap
= NULL
;
315 while (start_addr
< end_addr
) {
316 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
321 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
322 if (!d
.dirty_bitmap
) {
323 d
.dirty_bitmap
= qemu_malloc(size
);
324 } else if (size
> allocated_size
) {
325 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
327 allocated_size
= size
;
328 memset(d
.dirty_bitmap
, 0, allocated_size
);
332 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
333 dprintf("ioctl failed %d\n", errno
);
338 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
339 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
340 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
341 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
342 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
344 if (test_le_bit(nr
, bitmap
)) {
345 cpu_physical_memory_set_dirty(addr
);
348 start_addr
= phys_addr
;
350 qemu_free(d
.dirty_bitmap
);
355 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
358 #ifdef KVM_CAP_COALESCED_MMIO
359 KVMState
*s
= kvm_state
;
361 if (s
->coalesced_mmio
) {
362 struct kvm_coalesced_mmio_zone zone
;
367 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
374 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState
*s
= kvm_state
;
380 if (s
->coalesced_mmio
) {
381 struct kvm_coalesced_mmio_zone zone
;
386 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
393 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
397 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
405 int kvm_init(int smp_cpus
)
407 static const char upgrade_note
[] =
408 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
409 "(see http://sourceforge.net/projects/kvm).\n";
415 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
419 s
= qemu_mallocz(sizeof(KVMState
));
421 #ifdef KVM_CAP_SET_GUEST_DEBUG
422 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
424 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
425 s
->slots
[i
].slot
= i
;
428 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
430 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
435 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
436 if (ret
< KVM_API_VERSION
) {
439 fprintf(stderr
, "kvm version too old\n");
443 if (ret
> KVM_API_VERSION
) {
445 fprintf(stderr
, "kvm version not supported\n");
449 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
453 /* initially, KVM allocated its own memory and we had to jump through
454 * hooks to make phys_ram_base point to this. Modern versions of KVM
455 * just use a user allocated buffer so we can use regular pages
456 * unmodified. Make sure we have a sufficiently modern version of KVM.
458 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
460 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
465 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
466 * destroyed properly. Since we rely on this capability, refuse to work
467 * with any kernel without this capability. */
468 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
472 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
477 s
->coalesced_mmio
= 0;
478 #ifdef KVM_CAP_COALESCED_MMIO
479 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
480 s
->coalesced_mmio_ring
= NULL
;
483 s
->broken_set_mem_region
= 1;
484 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
485 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
487 s
->broken_set_mem_region
= 0;
492 #ifdef KVM_CAP_VCPU_EVENTS
493 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
496 ret
= kvm_arch_init(s
, smp_cpus
);
516 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
522 for (i
= 0; i
< count
; i
++) {
523 if (direction
== KVM_EXIT_IO_IN
) {
526 stb_p(ptr
, cpu_inb(port
));
529 stw_p(ptr
, cpu_inw(port
));
532 stl_p(ptr
, cpu_inl(port
));
538 cpu_outb(port
, ldub_p(ptr
));
541 cpu_outw(port
, lduw_p(ptr
));
544 cpu_outl(port
, ldl_p(ptr
));
555 void kvm_flush_coalesced_mmio_buffer(void)
557 #ifdef KVM_CAP_COALESCED_MMIO
558 KVMState
*s
= kvm_state
;
559 if (s
->coalesced_mmio_ring
) {
560 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
561 while (ring
->first
!= ring
->last
) {
562 struct kvm_coalesced_mmio
*ent
;
564 ent
= &ring
->coalesced_mmio
[ring
->first
];
566 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
567 /* FIXME smp_wmb() */
568 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
574 void kvm_cpu_synchronize_state(CPUState
*env
)
576 if (!env
->kvm_vcpu_dirty
) {
577 kvm_arch_get_registers(env
);
578 env
->kvm_vcpu_dirty
= 1;
582 int kvm_cpu_exec(CPUState
*env
)
584 struct kvm_run
*run
= env
->kvm_run
;
587 dprintf("kvm_cpu_exec()\n");
590 if (env
->exit_request
) {
591 dprintf("interrupt exit requested\n");
596 if (env
->kvm_vcpu_dirty
) {
597 kvm_arch_put_registers(env
);
598 env
->kvm_vcpu_dirty
= 0;
601 kvm_arch_pre_run(env
, run
);
602 qemu_mutex_unlock_iothread();
603 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
604 qemu_mutex_lock_iothread();
605 kvm_arch_post_run(env
, run
);
607 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
608 dprintf("io window exit\n");
614 dprintf("kvm run failed %s\n", strerror(-ret
));
618 kvm_flush_coalesced_mmio_buffer();
620 ret
= 0; /* exit loop */
621 switch (run
->exit_reason
) {
623 dprintf("handle_io\n");
624 ret
= kvm_handle_io(run
->io
.port
,
625 (uint8_t *)run
+ run
->io
.data_offset
,
631 dprintf("handle_mmio\n");
632 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
638 case KVM_EXIT_IRQ_WINDOW_OPEN
:
639 dprintf("irq_window_open\n");
641 case KVM_EXIT_SHUTDOWN
:
642 dprintf("shutdown\n");
643 qemu_system_reset_request();
646 case KVM_EXIT_UNKNOWN
:
647 dprintf("kvm_exit_unknown\n");
649 case KVM_EXIT_FAIL_ENTRY
:
650 dprintf("kvm_exit_fail_entry\n");
652 case KVM_EXIT_EXCEPTION
:
653 dprintf("kvm_exit_exception\n");
656 dprintf("kvm_exit_debug\n");
657 #ifdef KVM_CAP_SET_GUEST_DEBUG
658 if (kvm_arch_debug(&run
->debug
.arch
)) {
659 gdb_set_stop_cpu(env
);
661 env
->exception_index
= EXCP_DEBUG
;
664 /* re-enter, this exception was guest-internal */
666 #endif /* KVM_CAP_SET_GUEST_DEBUG */
669 dprintf("kvm_arch_handle_exit\n");
670 ret
= kvm_arch_handle_exit(env
, run
);
675 if (env
->exit_request
) {
676 env
->exit_request
= 0;
677 env
->exception_index
= EXCP_INTERRUPT
;
683 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
685 ram_addr_t phys_offset
)
687 KVMState
*s
= kvm_state
;
688 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
692 if (start_addr
& ~TARGET_PAGE_MASK
) {
693 if (flags
>= IO_MEM_UNASSIGNED
) {
694 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
695 start_addr
+ size
)) {
698 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
700 fprintf(stderr
, "Only page-aligned memory slots supported\n");
705 /* KVM does not support read-only slots */
706 phys_offset
&= ~IO_MEM_ROM
;
709 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
714 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
715 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
716 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
717 /* The new slot fits into the existing one and comes with
718 * identical parameters - nothing to be done. */
724 /* unregister the overlapping slot */
725 mem
->memory_size
= 0;
726 err
= kvm_set_user_memory_region(s
, mem
);
728 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
729 __func__
, strerror(-err
));
733 /* Workaround for older KVM versions: we can't join slots, even not by
734 * unregistering the previous ones and then registering the larger
735 * slot. We have to maintain the existing fragmentation. Sigh.
737 * This workaround assumes that the new slot starts at the same
738 * address as the first existing one. If not or if some overlapping
739 * slot comes around later, we will fail (not seen in practice so far)
740 * - and actually require a recent KVM version. */
741 if (s
->broken_set_mem_region
&&
742 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
743 flags
< IO_MEM_UNASSIGNED
) {
744 mem
= kvm_alloc_slot(s
);
745 mem
->memory_size
= old
.memory_size
;
746 mem
->start_addr
= old
.start_addr
;
747 mem
->phys_offset
= old
.phys_offset
;
750 err
= kvm_set_user_memory_region(s
, mem
);
752 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
757 start_addr
+= old
.memory_size
;
758 phys_offset
+= old
.memory_size
;
759 size
-= old
.memory_size
;
763 /* register prefix slot */
764 if (old
.start_addr
< start_addr
) {
765 mem
= kvm_alloc_slot(s
);
766 mem
->memory_size
= start_addr
- old
.start_addr
;
767 mem
->start_addr
= old
.start_addr
;
768 mem
->phys_offset
= old
.phys_offset
;
771 err
= kvm_set_user_memory_region(s
, mem
);
773 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
774 __func__
, strerror(-err
));
779 /* register suffix slot */
780 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
781 ram_addr_t size_delta
;
783 mem
= kvm_alloc_slot(s
);
784 mem
->start_addr
= start_addr
+ size
;
785 size_delta
= mem
->start_addr
- old
.start_addr
;
786 mem
->memory_size
= old
.memory_size
- size_delta
;
787 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
790 err
= kvm_set_user_memory_region(s
, mem
);
792 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
793 __func__
, strerror(-err
));
799 /* in case the KVM bug workaround already "consumed" the new slot */
803 /* KVM does not need to know about this memory */
804 if (flags
>= IO_MEM_UNASSIGNED
)
807 mem
= kvm_alloc_slot(s
);
808 mem
->memory_size
= size
;
809 mem
->start_addr
= start_addr
;
810 mem
->phys_offset
= phys_offset
;
813 err
= kvm_set_user_memory_region(s
, mem
);
815 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
821 int kvm_ioctl(KVMState
*s
, int type
, ...)
828 arg
= va_arg(ap
, void *);
831 ret
= ioctl(s
->fd
, type
, arg
);
838 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
845 arg
= va_arg(ap
, void *);
848 ret
= ioctl(s
->vmfd
, type
, arg
);
855 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
862 arg
= va_arg(ap
, void *);
865 ret
= ioctl(env
->kvm_fd
, type
, arg
);
872 int kvm_has_sync_mmu(void)
874 #ifdef KVM_CAP_SYNC_MMU
875 KVMState
*s
= kvm_state
;
877 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
883 int kvm_has_vcpu_events(void)
885 return kvm_state
->vcpu_events
;
888 void kvm_setup_guest_memory(void *start
, size_t size
)
890 if (!kvm_has_sync_mmu()) {
892 int ret
= madvise(start
, size
, MADV_DONTFORK
);
900 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
906 #ifdef KVM_CAP_SET_GUEST_DEBUG
907 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
909 #ifdef CONFIG_IOTHREAD
910 if (env
== cpu_single_env
) {
920 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
923 struct kvm_sw_breakpoint
*bp
;
925 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
932 int kvm_sw_breakpoints_active(CPUState
*env
)
934 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
937 struct kvm_set_guest_debug_data
{
938 struct kvm_guest_debug dbg
;
943 static void kvm_invoke_set_guest_debug(void *data
)
945 struct kvm_set_guest_debug_data
*dbg_data
= data
;
946 CPUState
*env
= dbg_data
->env
;
948 if (env
->kvm_vcpu_dirty
) {
949 kvm_arch_put_registers(env
);
950 env
->kvm_vcpu_dirty
= 0;
952 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
955 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
957 struct kvm_set_guest_debug_data data
;
959 data
.dbg
.control
= 0;
960 if (env
->singlestep_enabled
)
961 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
963 kvm_arch_update_guest_debug(env
, &data
.dbg
);
964 data
.dbg
.control
|= reinject_trap
;
967 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
971 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
972 target_ulong len
, int type
)
974 struct kvm_sw_breakpoint
*bp
;
978 if (type
== GDB_BREAKPOINT_SW
) {
979 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
985 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
991 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
997 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1000 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1005 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1006 err
= kvm_update_guest_debug(env
, 0);
1013 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1014 target_ulong len
, int type
)
1016 struct kvm_sw_breakpoint
*bp
;
1020 if (type
== GDB_BREAKPOINT_SW
) {
1021 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1025 if (bp
->use_count
> 1) {
1030 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1034 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1037 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1042 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1043 err
= kvm_update_guest_debug(env
, 0);
1050 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1052 struct kvm_sw_breakpoint
*bp
, *next
;
1053 KVMState
*s
= current_env
->kvm_state
;
1056 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1057 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1058 /* Try harder to find a CPU that currently sees the breakpoint. */
1059 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1060 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1065 kvm_arch_remove_all_hw_breakpoints();
1067 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1068 kvm_update_guest_debug(env
, 0);
1071 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1073 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1078 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1079 target_ulong len
, int type
)
1084 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1085 target_ulong len
, int type
)
1090 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1093 #endif /* !KVM_CAP_SET_GUEST_DEBUG */