2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <machine/profile.h>
56 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock
*tbs
;
76 static int code_gen_max_blocks
;
77 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
94 #define code_gen_section \
95 __attribute__((aligned (32)))
98 uint8_t code_gen_prologue
[1024] code_gen_section
;
99 static uint8_t *code_gen_buffer
;
100 static unsigned long code_gen_buffer_size
;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size
;
103 static uint8_t *code_gen_ptr
;
105 #if !defined(CONFIG_USER_ONLY)
107 static int in_migration
;
109 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
113 /* current CPU in the current thread. It is only valid inside
115 CPUState
*cpu_single_env
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
124 typedef struct PageDesc
{
125 /* list of TBs intersecting this ram page */
126 TranslationBlock
*first_tb
;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count
;
130 uint8_t *code_bitmap
;
131 #if defined(CONFIG_USER_ONLY)
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 /* Size of the L2 (and L3, etc) page tables. */
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
162 #define P_L1_BITS P_L1_BITS_REM
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
168 #define V_L1_BITS V_L1_BITS_REM
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size
;
178 unsigned long qemu_host_page_bits
;
179 unsigned long qemu_host_page_size
;
180 unsigned long qemu_host_page_mask
;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map
[V_L1_SIZE
];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc
{
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset
;
190 ram_addr_t region_offset
;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map
[P_L1_SIZE
];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
201 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
202 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
203 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
204 static int io_mem_watch
;
209 static const char *logfilename
= "qemu.log";
211 static const char *logfilename
= "/tmp/qemu.log";
215 static int log_append
= 0;
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count
;
221 static int tb_flush_count
;
222 static int tb_phys_invalidate_count
;
225 static void map_exec(void *addr
, long size
)
228 VirtualProtect(addr
, size
,
229 PAGE_EXECUTE_READWRITE
, &old_protect
);
233 static void map_exec(void *addr
, long size
)
235 unsigned long start
, end
, page_size
;
237 page_size
= getpagesize();
238 start
= (unsigned long)addr
;
239 start
&= ~(page_size
- 1);
241 end
= (unsigned long)addr
+ size
;
242 end
+= page_size
- 1;
243 end
&= ~(page_size
- 1);
245 mprotect((void *)start
, end
- start
,
246 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
256 SYSTEM_INFO system_info
;
258 GetSystemInfo(&system_info
);
259 qemu_real_host_page_size
= system_info
.dwPageSize
;
262 qemu_real_host_page_size
= getpagesize();
264 if (qemu_host_page_size
== 0)
265 qemu_host_page_size
= qemu_real_host_page_size
;
266 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
267 qemu_host_page_size
= TARGET_PAGE_SIZE
;
268 qemu_host_page_bits
= 0;
269 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
270 qemu_host_page_bits
++;
271 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry
*freep
;
279 freep
= kinfo_getvmmap(getpid(), &cnt
);
282 for (i
= 0; i
< cnt
; i
++) {
283 unsigned long startaddr
, endaddr
;
285 startaddr
= freep
[i
].kve_start
;
286 endaddr
= freep
[i
].kve_end
;
287 if (h2g_valid(startaddr
)) {
288 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
290 if (h2g_valid(endaddr
)) {
291 endaddr
= h2g(endaddr
);
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
296 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
307 last_brk
= (unsigned long)sbrk(0);
309 f
= fopen("/compat/linux/proc/self/maps", "r");
314 unsigned long startaddr
, endaddr
;
317 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
319 if (n
== 2 && h2g_valid(startaddr
)) {
320 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
322 if (h2g_valid(endaddr
)) {
323 endaddr
= h2g(endaddr
);
327 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
339 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
357 /* Level 1. Always allocated. */
358 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
361 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
368 ALLOC(p
, sizeof(void *) * L2_SIZE
);
372 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
380 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
386 return pd
+ (index
& (L2_SIZE
- 1));
389 static inline PageDesc
*page_find(tb_page_addr_t index
)
391 return page_find_alloc(index
, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
401 /* Level 1. Always allocated. */
402 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
405 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
411 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
413 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
424 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
426 for (i
= 0; i
< L2_SIZE
; i
++) {
427 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
428 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
432 return pd
+ (index
& (L2_SIZE
- 1));
435 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
437 return phys_page_find_alloc(index
, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr
);
441 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
457 __attribute__((aligned (CODE_GEN_ALIGN
)));
460 static void code_gen_alloc(unsigned long tb_size
)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer
= static_code_gen_buffer
;
464 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
465 map_exec(code_gen_buffer
, code_gen_buffer_size
);
467 code_gen_buffer_size
= tb_size
;
468 if (code_gen_buffer_size
== 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
473 /* XXX: needs adjustments */
474 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
477 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
478 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
486 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
487 #if defined(__x86_64__)
489 /* Cannot map more than that */
490 if (code_gen_buffer_size
> (800 * 1024 * 1024))
491 code_gen_buffer_size
= (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
495 start
= (void *) 0x60000000UL
;
496 if (code_gen_buffer_size
> (512 * 1024 * 1024))
497 code_gen_buffer_size
= (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
501 start
= (void *) 0x01000000UL
;
502 if (code_gen_buffer_size
> 16 * 1024 * 1024)
503 code_gen_buffer_size
= 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
510 start
= (void *)0x90000000UL
;
512 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
513 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
515 if (code_gen_buffer
== MAP_FAILED
) {
516 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
525 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
530 addr
= (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size
> (800 * 1024 * 1024))
533 code_gen_buffer_size
= (800 * 1024 * 1024);
535 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
536 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
538 if (code_gen_buffer
== MAP_FAILED
) {
539 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
544 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
545 map_exec(code_gen_buffer
, code_gen_buffer_size
);
547 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
548 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
549 code_gen_buffer_max_size
= code_gen_buffer_size
-
550 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
551 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
552 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
555 /* Must be called before using the QEMU cpus. 'tb_size' is the size
556 (in bytes) allocated to the translation buffer. Zero means default
558 void cpu_exec_init_all(unsigned long tb_size
)
561 code_gen_alloc(tb_size
);
562 code_gen_ptr
= code_gen_buffer
;
564 #if !defined(CONFIG_USER_ONLY)
567 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
568 /* There's no guest base to take into account, so go ahead and
569 initialize the prologue now. */
570 tcg_prologue_init(&tcg_ctx
);
574 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
576 static int cpu_common_post_load(void *opaque
, int version_id
)
578 CPUState
*env
= opaque
;
580 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
581 version_id is increased. */
582 env
->interrupt_request
&= ~0x01;
588 static const VMStateDescription vmstate_cpu_common
= {
589 .name
= "cpu_common",
591 .minimum_version_id
= 1,
592 .minimum_version_id_old
= 1,
593 .post_load
= cpu_common_post_load
,
594 .fields
= (VMStateField
[]) {
595 VMSTATE_UINT32(halted
, CPUState
),
596 VMSTATE_UINT32(interrupt_request
, CPUState
),
597 VMSTATE_END_OF_LIST()
602 CPUState
*qemu_get_cpu(int cpu
)
604 CPUState
*env
= first_cpu
;
607 if (env
->cpu_index
== cpu
)
615 void cpu_exec_init(CPUState
*env
)
620 #if defined(CONFIG_USER_ONLY)
623 env
->next_cpu
= NULL
;
626 while (*penv
!= NULL
) {
627 penv
= &(*penv
)->next_cpu
;
630 env
->cpu_index
= cpu_index
;
632 QTAILQ_INIT(&env
->breakpoints
);
633 QTAILQ_INIT(&env
->watchpoints
);
635 #if defined(CONFIG_USER_ONLY)
638 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
639 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
640 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
641 cpu_save
, cpu_load
, env
);
645 static inline void invalidate_page_bitmap(PageDesc
*p
)
647 if (p
->code_bitmap
) {
648 qemu_free(p
->code_bitmap
);
649 p
->code_bitmap
= NULL
;
651 p
->code_write_count
= 0;
654 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
656 static void page_flush_tb_1 (int level
, void **lp
)
665 for (i
= 0; i
< L2_SIZE
; ++i
) {
666 pd
[i
].first_tb
= NULL
;
667 invalidate_page_bitmap(pd
+ i
);
671 for (i
= 0; i
< L2_SIZE
; ++i
) {
672 page_flush_tb_1 (level
- 1, pp
+ i
);
677 static void page_flush_tb(void)
680 for (i
= 0; i
< V_L1_SIZE
; i
++) {
681 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
685 /* flush all the translation blocks */
686 /* XXX: tb_flush is currently not thread safe */
687 void tb_flush(CPUState
*env1
)
690 #if defined(DEBUG_FLUSH)
691 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
692 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
694 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
696 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
697 cpu_abort(env1
, "Internal error: code buffer overflow\n");
701 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
702 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
705 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
708 code_gen_ptr
= code_gen_buffer
;
709 /* XXX: flush processor icache at this point if cache flush is
714 #ifdef DEBUG_TB_CHECK
716 static void tb_invalidate_check(target_ulong address
)
718 TranslationBlock
*tb
;
720 address
&= TARGET_PAGE_MASK
;
721 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
722 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
723 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
724 address
>= tb
->pc
+ tb
->size
)) {
725 printf("ERROR invalidate: address=" TARGET_FMT_lx
726 " PC=%08lx size=%04x\n",
727 address
, (long)tb
->pc
, tb
->size
);
733 /* verify that all the pages have correct rights for code */
734 static void tb_page_check(void)
736 TranslationBlock
*tb
;
737 int i
, flags1
, flags2
;
739 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
740 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
741 flags1
= page_get_flags(tb
->pc
);
742 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
743 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
744 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
745 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
753 /* invalidate one TB */
754 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
757 TranslationBlock
*tb1
;
761 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
764 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
768 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
770 TranslationBlock
*tb1
;
776 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
778 *ptb
= tb1
->page_next
[n1
];
781 ptb
= &tb1
->page_next
[n1
];
785 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
787 TranslationBlock
*tb1
, **ptb
;
790 ptb
= &tb
->jmp_next
[n
];
793 /* find tb(n) in circular list */
797 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
798 if (n1
== n
&& tb1
== tb
)
801 ptb
= &tb1
->jmp_first
;
803 ptb
= &tb1
->jmp_next
[n1
];
806 /* now we can suppress tb(n) from the list */
807 *ptb
= tb
->jmp_next
[n
];
809 tb
->jmp_next
[n
] = NULL
;
813 /* reset the jump entry 'n' of a TB so that it is not chained to
815 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
817 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
820 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
825 tb_page_addr_t phys_pc
;
826 TranslationBlock
*tb1
, *tb2
;
828 /* remove the TB from the hash list */
829 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
830 h
= tb_phys_hash_func(phys_pc
);
831 tb_remove(&tb_phys_hash
[h
], tb
,
832 offsetof(TranslationBlock
, phys_hash_next
));
834 /* remove the TB from the page list */
835 if (tb
->page_addr
[0] != page_addr
) {
836 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
837 tb_page_remove(&p
->first_tb
, tb
);
838 invalidate_page_bitmap(p
);
840 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
841 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
842 tb_page_remove(&p
->first_tb
, tb
);
843 invalidate_page_bitmap(p
);
846 tb_invalidated_flag
= 1;
848 /* remove the TB from the hash list */
849 h
= tb_jmp_cache_hash_func(tb
->pc
);
850 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
851 if (env
->tb_jmp_cache
[h
] == tb
)
852 env
->tb_jmp_cache
[h
] = NULL
;
855 /* suppress this TB from the two jump lists */
856 tb_jmp_remove(tb
, 0);
857 tb_jmp_remove(tb
, 1);
859 /* suppress any remaining jumps to this TB */
865 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
866 tb2
= tb1
->jmp_next
[n1
];
867 tb_reset_jump(tb1
, n1
);
868 tb1
->jmp_next
[n1
] = NULL
;
871 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
873 tb_phys_invalidate_count
++;
876 static inline void set_bits(uint8_t *tab
, int start
, int len
)
882 mask
= 0xff << (start
& 7);
883 if ((start
& ~7) == (end
& ~7)) {
885 mask
&= ~(0xff << (end
& 7));
890 start
= (start
+ 8) & ~7;
892 while (start
< end1
) {
897 mask
= ~(0xff << (end
& 7));
903 static void build_page_bitmap(PageDesc
*p
)
905 int n
, tb_start
, tb_end
;
906 TranslationBlock
*tb
;
908 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
913 tb
= (TranslationBlock
*)((long)tb
& ~3);
914 /* NOTE: this is subtle as a TB may span two physical pages */
916 /* NOTE: tb_end may be after the end of the page, but
917 it is not a problem */
918 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
919 tb_end
= tb_start
+ tb
->size
;
920 if (tb_end
> TARGET_PAGE_SIZE
)
921 tb_end
= TARGET_PAGE_SIZE
;
924 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
926 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
927 tb
= tb
->page_next
[n
];
931 TranslationBlock
*tb_gen_code(CPUState
*env
,
932 target_ulong pc
, target_ulong cs_base
,
933 int flags
, int cflags
)
935 TranslationBlock
*tb
;
937 tb_page_addr_t phys_pc
, phys_page2
;
938 target_ulong virt_page2
;
941 phys_pc
= get_page_addr_code(env
, pc
);
944 /* flush must be done */
946 /* cannot fail at this point */
948 /* Don't forget to invalidate previous TB info. */
949 tb_invalidated_flag
= 1;
951 tc_ptr
= code_gen_ptr
;
953 tb
->cs_base
= cs_base
;
956 cpu_gen_code(env
, tb
, &code_gen_size
);
957 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
959 /* check next page if needed */
960 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
962 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
963 phys_page2
= get_page_addr_code(env
, virt_page2
);
965 tb_link_page(tb
, phys_pc
, phys_page2
);
969 /* invalidate all TBs which intersect with the target physical page
970 starting in range [start;end[. NOTE: start and end must refer to
971 the same physical page. 'is_cpu_write_access' should be true if called
972 from a real cpu write access: the virtual CPU will exit the current
973 TB if code is modified inside this TB. */
974 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
975 int is_cpu_write_access
)
977 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
978 CPUState
*env
= cpu_single_env
;
979 tb_page_addr_t tb_start
, tb_end
;
982 #ifdef TARGET_HAS_PRECISE_SMC
983 int current_tb_not_found
= is_cpu_write_access
;
984 TranslationBlock
*current_tb
= NULL
;
985 int current_tb_modified
= 0;
986 target_ulong current_pc
= 0;
987 target_ulong current_cs_base
= 0;
988 int current_flags
= 0;
989 #endif /* TARGET_HAS_PRECISE_SMC */
991 p
= page_find(start
>> TARGET_PAGE_BITS
);
994 if (!p
->code_bitmap
&&
995 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
996 is_cpu_write_access
) {
997 /* build code bitmap */
998 build_page_bitmap(p
);
1001 /* we remove all the TBs in the range [start, end[ */
1002 /* XXX: see if in some cases it could be faster to invalidate all the code */
1004 while (tb
!= NULL
) {
1006 tb
= (TranslationBlock
*)((long)tb
& ~3);
1007 tb_next
= tb
->page_next
[n
];
1008 /* NOTE: this is subtle as a TB may span two physical pages */
1010 /* NOTE: tb_end may be after the end of the page, but
1011 it is not a problem */
1012 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1013 tb_end
= tb_start
+ tb
->size
;
1015 tb_start
= tb
->page_addr
[1];
1016 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1018 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1019 #ifdef TARGET_HAS_PRECISE_SMC
1020 if (current_tb_not_found
) {
1021 current_tb_not_found
= 0;
1023 if (env
->mem_io_pc
) {
1024 /* now we have a real cpu fault */
1025 current_tb
= tb_find_pc(env
->mem_io_pc
);
1028 if (current_tb
== tb
&&
1029 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1030 /* If we are modifying the current TB, we must stop
1031 its execution. We could be more precise by checking
1032 that the modification is after the current PC, but it
1033 would require a specialized function to partially
1034 restore the CPU state */
1036 current_tb_modified
= 1;
1037 cpu_restore_state(current_tb
, env
,
1038 env
->mem_io_pc
, NULL
);
1039 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1042 #endif /* TARGET_HAS_PRECISE_SMC */
1043 /* we need to do that to handle the case where a signal
1044 occurs while doing tb_phys_invalidate() */
1047 saved_tb
= env
->current_tb
;
1048 env
->current_tb
= NULL
;
1050 tb_phys_invalidate(tb
, -1);
1052 env
->current_tb
= saved_tb
;
1053 if (env
->interrupt_request
&& env
->current_tb
)
1054 cpu_interrupt(env
, env
->interrupt_request
);
1059 #if !defined(CONFIG_USER_ONLY)
1060 /* if no code remaining, no need to continue to use slow writes */
1062 invalidate_page_bitmap(p
);
1063 if (is_cpu_write_access
) {
1064 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified
) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1073 env
->current_tb
= NULL
;
1074 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1075 cpu_resume_from_signal(env
, NULL
);
1080 /* len must be <= 8 and start must be a multiple of len */
1081 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1087 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1088 cpu_single_env
->mem_io_vaddr
, len
,
1089 cpu_single_env
->eip
,
1090 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1093 p
= page_find(start
>> TARGET_PAGE_BITS
);
1096 if (p
->code_bitmap
) {
1097 offset
= start
& ~TARGET_PAGE_MASK
;
1098 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1099 if (b
& ((1 << len
) - 1))
1103 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1107 #if !defined(CONFIG_SOFTMMU)
1108 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1109 unsigned long pc
, void *puc
)
1111 TranslationBlock
*tb
;
1114 #ifdef TARGET_HAS_PRECISE_SMC
1115 TranslationBlock
*current_tb
= NULL
;
1116 CPUState
*env
= cpu_single_env
;
1117 int current_tb_modified
= 0;
1118 target_ulong current_pc
= 0;
1119 target_ulong current_cs_base
= 0;
1120 int current_flags
= 0;
1123 addr
&= TARGET_PAGE_MASK
;
1124 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1128 #ifdef TARGET_HAS_PRECISE_SMC
1129 if (tb
&& pc
!= 0) {
1130 current_tb
= tb_find_pc(pc
);
1133 while (tb
!= NULL
) {
1135 tb
= (TranslationBlock
*)((long)tb
& ~3);
1136 #ifdef TARGET_HAS_PRECISE_SMC
1137 if (current_tb
== tb
&&
1138 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1139 /* If we are modifying the current TB, we must stop
1140 its execution. We could be more precise by checking
1141 that the modification is after the current PC, but it
1142 would require a specialized function to partially
1143 restore the CPU state */
1145 current_tb_modified
= 1;
1146 cpu_restore_state(current_tb
, env
, pc
, puc
);
1147 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1150 #endif /* TARGET_HAS_PRECISE_SMC */
1151 tb_phys_invalidate(tb
, addr
);
1152 tb
= tb
->page_next
[n
];
1155 #ifdef TARGET_HAS_PRECISE_SMC
1156 if (current_tb_modified
) {
1157 /* we generate a block containing just the instruction
1158 modifying the memory. It will ensure that it cannot modify
1160 env
->current_tb
= NULL
;
1161 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1162 cpu_resume_from_signal(env
, puc
);
1168 /* add the tb in the target page and protect it if necessary */
1169 static inline void tb_alloc_page(TranslationBlock
*tb
,
1170 unsigned int n
, tb_page_addr_t page_addr
)
1173 TranslationBlock
*last_first_tb
;
1175 tb
->page_addr
[n
] = page_addr
;
1176 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1177 tb
->page_next
[n
] = p
->first_tb
;
1178 last_first_tb
= p
->first_tb
;
1179 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1180 invalidate_page_bitmap(p
);
1182 #if defined(TARGET_HAS_SMC) || 1
1184 #if defined(CONFIG_USER_ONLY)
1185 if (p
->flags
& PAGE_WRITE
) {
1190 /* force the host page as non writable (writes will have a
1191 page fault + mprotect overhead) */
1192 page_addr
&= qemu_host_page_mask
;
1194 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1195 addr
+= TARGET_PAGE_SIZE
) {
1197 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1201 p2
->flags
&= ~PAGE_WRITE
;
1203 mprotect(g2h(page_addr
), qemu_host_page_size
,
1204 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1205 #ifdef DEBUG_TB_INVALIDATE
1206 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1211 /* if some code is already present, then the pages are already
1212 protected. So we handle the case where only the first TB is
1213 allocated in a physical page */
1214 if (!last_first_tb
) {
1215 tlb_protect_code(page_addr
);
1219 #endif /* TARGET_HAS_SMC */
1222 /* Allocate a new translation block. Flush the translation buffer if
1223 too many translation blocks or too much generated code. */
1224 TranslationBlock
*tb_alloc(target_ulong pc
)
1226 TranslationBlock
*tb
;
1228 if (nb_tbs
>= code_gen_max_blocks
||
1229 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1231 tb
= &tbs
[nb_tbs
++];
1237 void tb_free(TranslationBlock
*tb
)
1239 /* In practice this is mostly used for single use temporary TB
1240 Ignore the hard cases and just back up if this TB happens to
1241 be the last one generated. */
1242 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1243 code_gen_ptr
= tb
->tc_ptr
;
1248 /* add a new TB and link it to the physical page tables. phys_page2 is
1249 (-1) to indicate that only one page contains the TB. */
1250 void tb_link_page(TranslationBlock
*tb
,
1251 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1254 TranslationBlock
**ptb
;
1256 /* Grab the mmap lock to stop another thread invalidating this TB
1257 before we are done. */
1259 /* add in the physical hash table */
1260 h
= tb_phys_hash_func(phys_pc
);
1261 ptb
= &tb_phys_hash
[h
];
1262 tb
->phys_hash_next
= *ptb
;
1265 /* add in the page list */
1266 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1267 if (phys_page2
!= -1)
1268 tb_alloc_page(tb
, 1, phys_page2
);
1270 tb
->page_addr
[1] = -1;
1272 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1273 tb
->jmp_next
[0] = NULL
;
1274 tb
->jmp_next
[1] = NULL
;
1276 /* init original jump addresses */
1277 if (tb
->tb_next_offset
[0] != 0xffff)
1278 tb_reset_jump(tb
, 0);
1279 if (tb
->tb_next_offset
[1] != 0xffff)
1280 tb_reset_jump(tb
, 1);
1282 #ifdef DEBUG_TB_CHECK
1288 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1289 tb[1].tc_ptr. Return NULL if not found */
1290 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1292 int m_min
, m_max
, m
;
1294 TranslationBlock
*tb
;
1298 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1299 tc_ptr
>= (unsigned long)code_gen_ptr
)
1301 /* binary search (cf Knuth) */
1304 while (m_min
<= m_max
) {
1305 m
= (m_min
+ m_max
) >> 1;
1307 v
= (unsigned long)tb
->tc_ptr
;
1310 else if (tc_ptr
< v
) {
1319 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1321 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1323 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1326 tb1
= tb
->jmp_next
[n
];
1328 /* find head of list */
1331 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1334 tb1
= tb1
->jmp_next
[n1
];
1336 /* we are now sure now that tb jumps to tb1 */
1339 /* remove tb from the jmp_first list */
1340 ptb
= &tb_next
->jmp_first
;
1344 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1345 if (n1
== n
&& tb1
== tb
)
1347 ptb
= &tb1
->jmp_next
[n1
];
1349 *ptb
= tb
->jmp_next
[n
];
1350 tb
->jmp_next
[n
] = NULL
;
1352 /* suppress the jump to next tb in generated code */
1353 tb_reset_jump(tb
, n
);
1355 /* suppress jumps in the tb on which we could have jumped */
1356 tb_reset_jump_recursive(tb_next
);
1360 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1362 tb_reset_jump_recursive2(tb
, 0);
1363 tb_reset_jump_recursive2(tb
, 1);
1366 #if defined(TARGET_HAS_ICE)
1367 #if defined(CONFIG_USER_ONLY)
1368 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1370 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1373 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1375 target_phys_addr_t addr
;
1377 ram_addr_t ram_addr
;
1380 addr
= cpu_get_phys_page_debug(env
, pc
);
1381 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1383 pd
= IO_MEM_UNASSIGNED
;
1385 pd
= p
->phys_offset
;
1387 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1388 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1391 #endif /* TARGET_HAS_ICE */
1393 #if defined(CONFIG_USER_ONLY)
1394 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1399 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1400 int flags
, CPUWatchpoint
**watchpoint
)
1405 /* Add a watchpoint. */
1406 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1407 int flags
, CPUWatchpoint
**watchpoint
)
1409 target_ulong len_mask
= ~(len
- 1);
1412 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1413 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1414 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1415 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1418 wp
= qemu_malloc(sizeof(*wp
));
1421 wp
->len_mask
= len_mask
;
1424 /* keep all GDB-injected watchpoints in front */
1426 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1428 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1430 tlb_flush_page(env
, addr
);
1437 /* Remove a specific watchpoint. */
1438 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1441 target_ulong len_mask
= ~(len
- 1);
1444 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1445 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1446 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1447 cpu_watchpoint_remove_by_ref(env
, wp
);
1454 /* Remove a specific watchpoint by reference. */
1455 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1457 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1459 tlb_flush_page(env
, watchpoint
->vaddr
);
1461 qemu_free(watchpoint
);
1464 /* Remove all matching watchpoints. */
1465 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1467 CPUWatchpoint
*wp
, *next
;
1469 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1470 if (wp
->flags
& mask
)
1471 cpu_watchpoint_remove_by_ref(env
, wp
);
1476 /* Add a breakpoint. */
1477 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1478 CPUBreakpoint
**breakpoint
)
1480 #if defined(TARGET_HAS_ICE)
1483 bp
= qemu_malloc(sizeof(*bp
));
1488 /* keep all GDB-injected breakpoints in front */
1490 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1492 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1494 breakpoint_invalidate(env
, pc
);
1504 /* Remove a specific breakpoint. */
1505 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1507 #if defined(TARGET_HAS_ICE)
1510 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1511 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1512 cpu_breakpoint_remove_by_ref(env
, bp
);
1522 /* Remove a specific breakpoint by reference. */
1523 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1525 #if defined(TARGET_HAS_ICE)
1526 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1528 breakpoint_invalidate(env
, breakpoint
->pc
);
1530 qemu_free(breakpoint
);
1534 /* Remove all matching breakpoints. */
1535 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1537 #if defined(TARGET_HAS_ICE)
1538 CPUBreakpoint
*bp
, *next
;
1540 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1541 if (bp
->flags
& mask
)
1542 cpu_breakpoint_remove_by_ref(env
, bp
);
1547 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1548 CPU loop after each instruction */
1549 void cpu_single_step(CPUState
*env
, int enabled
)
1551 #if defined(TARGET_HAS_ICE)
1552 if (env
->singlestep_enabled
!= enabled
) {
1553 env
->singlestep_enabled
= enabled
;
1555 kvm_update_guest_debug(env
, 0);
1557 /* must flush all the translated code to avoid inconsistencies */
1558 /* XXX: only flush what is necessary */
1565 /* enable or disable low levels log */
1566 void cpu_set_log(int log_flags
)
1568 loglevel
= log_flags
;
1569 if (loglevel
&& !logfile
) {
1570 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1572 perror(logfilename
);
1575 #if !defined(CONFIG_SOFTMMU)
1576 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1578 static char logfile_buf
[4096];
1579 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1581 #elif !defined(_WIN32)
1582 /* Win32 doesn't support line-buffering and requires size >= 2 */
1583 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1587 if (!loglevel
&& logfile
) {
1593 void cpu_set_log_filename(const char *filename
)
1595 logfilename
= strdup(filename
);
1600 cpu_set_log(loglevel
);
1603 static void cpu_unlink_tb(CPUState
*env
)
1605 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1606 problem and hope the cpu will stop of its own accord. For userspace
1607 emulation this often isn't actually as bad as it sounds. Often
1608 signals are used primarily to interrupt blocking syscalls. */
1609 TranslationBlock
*tb
;
1610 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1612 spin_lock(&interrupt_lock
);
1613 tb
= env
->current_tb
;
1614 /* if the cpu is currently executing code, we must unlink it and
1615 all the potentially executing TB */
1617 env
->current_tb
= NULL
;
1618 tb_reset_jump_recursive(tb
);
1620 spin_unlock(&interrupt_lock
);
1623 /* mask must never be zero, except for A20 change call */
1624 void cpu_interrupt(CPUState
*env
, int mask
)
1628 old_mask
= env
->interrupt_request
;
1629 env
->interrupt_request
|= mask
;
1631 #ifndef CONFIG_USER_ONLY
1633 * If called from iothread context, wake the target cpu in
1636 if (!qemu_cpu_self(env
)) {
1643 env
->icount_decr
.u16
.high
= 0xffff;
1644 #ifndef CONFIG_USER_ONLY
1646 && (mask
& ~old_mask
) != 0) {
1647 cpu_abort(env
, "Raised interrupt while not in I/O function");
1655 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1657 env
->interrupt_request
&= ~mask
;
1660 void cpu_exit(CPUState
*env
)
1662 env
->exit_request
= 1;
1666 const CPULogItem cpu_log_items
[] = {
1667 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1668 "show generated host assembly code for each compiled TB" },
1669 { CPU_LOG_TB_IN_ASM
, "in_asm",
1670 "show target assembly code for each compiled TB" },
1671 { CPU_LOG_TB_OP
, "op",
1672 "show micro ops for each compiled TB" },
1673 { CPU_LOG_TB_OP_OPT
, "op_opt",
1676 "before eflags optimization and "
1678 "after liveness analysis" },
1679 { CPU_LOG_INT
, "int",
1680 "show interrupts/exceptions in short format" },
1681 { CPU_LOG_EXEC
, "exec",
1682 "show trace before each executed TB (lots of logs)" },
1683 { CPU_LOG_TB_CPU
, "cpu",
1684 "show CPU state before block translation" },
1686 { CPU_LOG_PCALL
, "pcall",
1687 "show protected mode far calls/returns/exceptions" },
1688 { CPU_LOG_RESET
, "cpu_reset",
1689 "show CPU state before CPU resets" },
1692 { CPU_LOG_IOPORT
, "ioport",
1693 "show all i/o ports accesses" },
1698 #ifndef CONFIG_USER_ONLY
1699 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1700 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1702 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1704 ram_addr_t phys_offset
)
1706 CPUPhysMemoryClient
*client
;
1707 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1708 client
->set_memory(client
, start_addr
, size
, phys_offset
);
1712 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1713 target_phys_addr_t end
)
1715 CPUPhysMemoryClient
*client
;
1716 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1717 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1724 static int cpu_notify_migration_log(int enable
)
1726 CPUPhysMemoryClient
*client
;
1727 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1728 int r
= client
->migration_log(client
, enable
);
1735 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1736 int level
, void **lp
)
1744 PhysPageDesc
*pd
= *lp
;
1745 for (i
= 0; i
< L2_SIZE
; ++i
) {
1746 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1747 client
->set_memory(client
, pd
[i
].region_offset
,
1748 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
);
1753 for (i
= 0; i
< L2_SIZE
; ++i
) {
1754 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1759 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1762 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1763 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1768 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1770 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1771 phys_page_for_each(client
);
1774 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1776 QLIST_REMOVE(client
, list
);
1780 static int cmp1(const char *s1
, int n
, const char *s2
)
1782 if (strlen(s2
) != n
)
1784 return memcmp(s1
, s2
, n
) == 0;
1787 /* takes a comma separated list of log masks. Return 0 if error. */
1788 int cpu_str_to_log_mask(const char *str
)
1790 const CPULogItem
*item
;
1797 p1
= strchr(p
, ',');
1800 if(cmp1(p
,p1
-p
,"all")) {
1801 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1805 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1806 if (cmp1(p
, p1
- p
, item
->name
))
1820 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1827 fprintf(stderr
, "qemu: fatal: ");
1828 vfprintf(stderr
, fmt
, ap
);
1829 fprintf(stderr
, "\n");
1831 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1833 cpu_dump_state(env
, stderr
, fprintf
, 0);
1835 if (qemu_log_enabled()) {
1836 qemu_log("qemu: fatal: ");
1837 qemu_log_vprintf(fmt
, ap2
);
1840 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1842 log_cpu_state(env
, 0);
1849 #if defined(CONFIG_USER_ONLY)
1851 struct sigaction act
;
1852 sigfillset(&act
.sa_mask
);
1853 act
.sa_handler
= SIG_DFL
;
1854 sigaction(SIGABRT
, &act
, NULL
);
1860 CPUState
*cpu_copy(CPUState
*env
)
1862 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1863 CPUState
*next_cpu
= new_env
->next_cpu
;
1864 int cpu_index
= new_env
->cpu_index
;
1865 #if defined(TARGET_HAS_ICE)
1870 memcpy(new_env
, env
, sizeof(CPUState
));
1872 /* Preserve chaining and index. */
1873 new_env
->next_cpu
= next_cpu
;
1874 new_env
->cpu_index
= cpu_index
;
1876 /* Clone all break/watchpoints.
1877 Note: Once we support ptrace with hw-debug register access, make sure
1878 BP_CPU break/watchpoints are handled correctly on clone. */
1879 QTAILQ_INIT(&env
->breakpoints
);
1880 QTAILQ_INIT(&env
->watchpoints
);
1881 #if defined(TARGET_HAS_ICE)
1882 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1883 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1885 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1886 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1894 #if !defined(CONFIG_USER_ONLY)
1896 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1900 /* Discard jump cache entries for any tb which might potentially
1901 overlap the flushed page. */
1902 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1903 memset (&env
->tb_jmp_cache
[i
], 0,
1904 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1906 i
= tb_jmp_cache_hash_page(addr
);
1907 memset (&env
->tb_jmp_cache
[i
], 0,
1908 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1911 static CPUTLBEntry s_cputlb_empty_entry
= {
1918 /* NOTE: if flush_global is true, also flush global entries (not
1920 void tlb_flush(CPUState
*env
, int flush_global
)
1924 #if defined(DEBUG_TLB)
1925 printf("tlb_flush:\n");
1927 /* must reset current TB so that interrupts cannot modify the
1928 links while we are modifying them */
1929 env
->current_tb
= NULL
;
1931 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1933 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1934 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1938 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1940 env
->tlb_flush_addr
= -1;
1941 env
->tlb_flush_mask
= 0;
1945 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1947 if (addr
== (tlb_entry
->addr_read
&
1948 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1949 addr
== (tlb_entry
->addr_write
&
1950 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1951 addr
== (tlb_entry
->addr_code
&
1952 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1953 *tlb_entry
= s_cputlb_empty_entry
;
1957 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1962 #if defined(DEBUG_TLB)
1963 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1965 /* Check if we need to flush due to large pages. */
1966 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: forced full flush ("
1969 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
1970 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
1975 /* must reset current TB so that interrupts cannot modify the
1976 links while we are modifying them */
1977 env
->current_tb
= NULL
;
1979 addr
&= TARGET_PAGE_MASK
;
1980 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1981 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1982 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1984 tlb_flush_jmp_cache(env
, addr
);
1987 /* update the TLBs so that writes to code in the virtual page 'addr'
1989 static void tlb_protect_code(ram_addr_t ram_addr
)
1991 cpu_physical_memory_reset_dirty(ram_addr
,
1992 ram_addr
+ TARGET_PAGE_SIZE
,
1996 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1997 tested for self modifying code */
1998 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2001 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2004 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2005 unsigned long start
, unsigned long length
)
2008 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2009 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2010 if ((addr
- start
) < length
) {
2011 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2016 /* Note: start and end must be within the same ram block. */
2017 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2021 unsigned long length
, start1
;
2024 start
&= TARGET_PAGE_MASK
;
2025 end
= TARGET_PAGE_ALIGN(end
);
2027 length
= end
- start
;
2030 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2032 /* we modify the TLB cache so that the dirty bit will be set again
2033 when accessing the range */
2034 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2035 /* Chek that we don't span multiple blocks - this breaks the
2036 address comparisons below. */
2037 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2038 != (end
- 1) - start
) {
2042 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2044 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2045 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2046 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2052 int cpu_physical_memory_set_dirty_tracking(int enable
)
2055 in_migration
= enable
;
2056 ret
= cpu_notify_migration_log(!!enable
);
2060 int cpu_physical_memory_get_dirty_tracking(void)
2062 return in_migration
;
2065 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2066 target_phys_addr_t end_addr
)
2070 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2074 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2076 ram_addr_t ram_addr
;
2079 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2080 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2081 + tlb_entry
->addend
);
2082 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2083 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2084 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2089 /* update the TLB according to the current state of the dirty bits */
2090 void cpu_tlb_update_dirty(CPUState
*env
)
2094 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2095 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2096 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2100 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2102 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2103 tlb_entry
->addr_write
= vaddr
;
2106 /* update the TLB corresponding to virtual page vaddr
2107 so that it is no longer dirty */
2108 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2113 vaddr
&= TARGET_PAGE_MASK
;
2114 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2115 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2116 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2119 /* Our TLB does not support large pages, so remember the area covered by
2120 large pages and trigger a full TLB flush if these are invalidated. */
2121 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2124 target_ulong mask
= ~(size
- 1);
2126 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2127 env
->tlb_flush_addr
= vaddr
& mask
;
2128 env
->tlb_flush_mask
= mask
;
2131 /* Extend the existing region to include the new page.
2132 This is a compromise between unnecessary flushes and the cost
2133 of maintaining a full variable size TLB. */
2134 mask
&= env
->tlb_flush_mask
;
2135 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2138 env
->tlb_flush_addr
&= mask
;
2139 env
->tlb_flush_mask
= mask
;
2142 /* Add a new TLB entry. At most one entry for a given virtual address
2143 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2144 supplied size is only used by tlb_flush_page. */
2145 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2146 target_phys_addr_t paddr
, int prot
,
2147 int mmu_idx
, target_ulong size
)
2152 target_ulong address
;
2153 target_ulong code_address
;
2154 unsigned long addend
;
2157 target_phys_addr_t iotlb
;
2159 assert(size
>= TARGET_PAGE_SIZE
);
2160 if (size
!= TARGET_PAGE_SIZE
) {
2161 tlb_add_large_page(env
, vaddr
, size
);
2163 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2165 pd
= IO_MEM_UNASSIGNED
;
2167 pd
= p
->phys_offset
;
2169 #if defined(DEBUG_TLB)
2170 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2171 " prot=%x idx=%d pd=0x%08lx\n",
2172 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2176 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2177 /* IO memory case (romd handled later) */
2178 address
|= TLB_MMIO
;
2180 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2181 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2183 iotlb
= pd
& TARGET_PAGE_MASK
;
2184 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2185 iotlb
|= IO_MEM_NOTDIRTY
;
2187 iotlb
|= IO_MEM_ROM
;
2189 /* IO handlers are currently passed a physical address.
2190 It would be nice to pass an offset from the base address
2191 of that region. This would avoid having to special case RAM,
2192 and avoid full address decoding in every device.
2193 We can't use the high bits of pd for this because
2194 IO_MEM_ROMD uses these as a ram address. */
2195 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2197 iotlb
+= p
->region_offset
;
2203 code_address
= address
;
2204 /* Make accesses to pages with watchpoints go via the
2205 watchpoint trap routines. */
2206 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2207 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2208 /* Avoid trapping reads of pages with a write breakpoint. */
2209 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2210 iotlb
= io_mem_watch
+ paddr
;
2211 address
|= TLB_MMIO
;
2217 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2218 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2219 te
= &env
->tlb_table
[mmu_idx
][index
];
2220 te
->addend
= addend
- vaddr
;
2221 if (prot
& PAGE_READ
) {
2222 te
->addr_read
= address
;
2227 if (prot
& PAGE_EXEC
) {
2228 te
->addr_code
= code_address
;
2232 if (prot
& PAGE_WRITE
) {
2233 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2234 (pd
& IO_MEM_ROMD
)) {
2235 /* Write access calls the I/O callback. */
2236 te
->addr_write
= address
| TLB_MMIO
;
2237 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2238 !cpu_physical_memory_is_dirty(pd
)) {
2239 te
->addr_write
= address
| TLB_NOTDIRTY
;
2241 te
->addr_write
= address
;
2244 te
->addr_write
= -1;
2250 void tlb_flush(CPUState
*env
, int flush_global
)
2254 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2259 * Walks guest process memory "regions" one by one
2260 * and calls callback function 'fn' for each region.
2263 struct walk_memory_regions_data
2265 walk_memory_regions_fn fn
;
2267 unsigned long start
;
2271 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2272 abi_ulong end
, int new_prot
)
2274 if (data
->start
!= -1ul) {
2275 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2281 data
->start
= (new_prot
? end
: -1ul);
2282 data
->prot
= new_prot
;
2287 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2288 abi_ulong base
, int level
, void **lp
)
2294 return walk_memory_regions_end(data
, base
, 0);
2299 for (i
= 0; i
< L2_SIZE
; ++i
) {
2300 int prot
= pd
[i
].flags
;
2302 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2303 if (prot
!= data
->prot
) {
2304 rc
= walk_memory_regions_end(data
, pa
, prot
);
2312 for (i
= 0; i
< L2_SIZE
; ++i
) {
2313 pa
= base
| ((abi_ulong
)i
<<
2314 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2315 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2325 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2327 struct walk_memory_regions_data data
;
2335 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2336 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2337 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2343 return walk_memory_regions_end(&data
, 0, 0);
2346 static int dump_region(void *priv
, abi_ulong start
,
2347 abi_ulong end
, unsigned long prot
)
2349 FILE *f
= (FILE *)priv
;
2351 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2352 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2353 start
, end
, end
- start
,
2354 ((prot
& PAGE_READ
) ? 'r' : '-'),
2355 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2356 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2361 /* dump memory mappings */
2362 void page_dump(FILE *f
)
2364 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2365 "start", "end", "size", "prot");
2366 walk_memory_regions(f
, dump_region
);
2369 int page_get_flags(target_ulong address
)
2373 p
= page_find(address
>> TARGET_PAGE_BITS
);
2379 /* Modify the flags of a page and invalidate the code if necessary.
2380 The flag PAGE_WRITE_ORG is positioned automatically depending
2381 on PAGE_WRITE. The mmap_lock should already be held. */
2382 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2384 target_ulong addr
, len
;
2386 /* This function should never be called with addresses outside the
2387 guest address space. If this assert fires, it probably indicates
2388 a missing call to h2g_valid. */
2389 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2390 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2392 assert(start
< end
);
2394 start
= start
& TARGET_PAGE_MASK
;
2395 end
= TARGET_PAGE_ALIGN(end
);
2397 if (flags
& PAGE_WRITE
) {
2398 flags
|= PAGE_WRITE_ORG
;
2401 for (addr
= start
, len
= end
- start
;
2403 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2404 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2406 /* If the write protection bit is set, then we invalidate
2408 if (!(p
->flags
& PAGE_WRITE
) &&
2409 (flags
& PAGE_WRITE
) &&
2411 tb_invalidate_phys_page(addr
, 0, NULL
);
2417 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2423 /* This function should never be called with addresses outside the
2424 guest address space. If this assert fires, it probably indicates
2425 a missing call to h2g_valid. */
2426 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2427 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2433 if (start
+ len
- 1 < start
) {
2434 /* We've wrapped around. */
2438 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2439 start
= start
& TARGET_PAGE_MASK
;
2441 for (addr
= start
, len
= end
- start
;
2443 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2444 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2447 if( !(p
->flags
& PAGE_VALID
) )
2450 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2452 if (flags
& PAGE_WRITE
) {
2453 if (!(p
->flags
& PAGE_WRITE_ORG
))
2455 /* unprotect the page if it was put read-only because it
2456 contains translated code */
2457 if (!(p
->flags
& PAGE_WRITE
)) {
2458 if (!page_unprotect(addr
, 0, NULL
))
2467 /* called from signal handler: invalidate the code and unprotect the
2468 page. Return TRUE if the fault was successfully handled. */
2469 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2473 target_ulong host_start
, host_end
, addr
;
2475 /* Technically this isn't safe inside a signal handler. However we
2476 know this only ever happens in a synchronous SEGV handler, so in
2477 practice it seems to be ok. */
2480 p
= page_find(address
>> TARGET_PAGE_BITS
);
2486 /* if the page was really writable, then we change its
2487 protection back to writable */
2488 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2489 host_start
= address
& qemu_host_page_mask
;
2490 host_end
= host_start
+ qemu_host_page_size
;
2493 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2494 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2495 p
->flags
|= PAGE_WRITE
;
2498 /* and since the content will be modified, we must invalidate
2499 the corresponding translated code. */
2500 tb_invalidate_phys_page(addr
, pc
, puc
);
2501 #ifdef DEBUG_TB_CHECK
2502 tb_invalidate_check(addr
);
2505 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2515 static inline void tlb_set_dirty(CPUState
*env
,
2516 unsigned long addr
, target_ulong vaddr
)
2519 #endif /* defined(CONFIG_USER_ONLY) */
2521 #if !defined(CONFIG_USER_ONLY)
2523 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2524 typedef struct subpage_t
{
2525 target_phys_addr_t base
;
2526 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2527 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2530 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2531 ram_addr_t memory
, ram_addr_t region_offset
);
2532 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2533 ram_addr_t orig_memory
,
2534 ram_addr_t region_offset
);
2535 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2538 if (addr > start_addr) \
2541 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2542 if (start_addr2 > 0) \
2546 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2547 end_addr2 = TARGET_PAGE_SIZE - 1; \
2549 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2550 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2555 /* register physical memory.
2556 For RAM, 'size' must be a multiple of the target page size.
2557 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2558 io memory page. The address used when calling the IO function is
2559 the offset from the start of the region, plus region_offset. Both
2560 start_addr and region_offset are rounded down to a page boundary
2561 before calculating this offset. This should not be a problem unless
2562 the low bits of start_addr and region_offset differ. */
2563 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2565 ram_addr_t phys_offset
,
2566 ram_addr_t region_offset
)
2568 target_phys_addr_t addr
, end_addr
;
2571 ram_addr_t orig_size
= size
;
2574 cpu_notify_set_memory(start_addr
, size
, phys_offset
);
2576 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2577 region_offset
= start_addr
;
2579 region_offset
&= TARGET_PAGE_MASK
;
2580 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2581 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2582 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2583 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2584 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2585 ram_addr_t orig_memory
= p
->phys_offset
;
2586 target_phys_addr_t start_addr2
, end_addr2
;
2587 int need_subpage
= 0;
2589 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2592 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2593 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2594 &p
->phys_offset
, orig_memory
,
2597 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2600 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2602 p
->region_offset
= 0;
2604 p
->phys_offset
= phys_offset
;
2605 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2606 (phys_offset
& IO_MEM_ROMD
))
2607 phys_offset
+= TARGET_PAGE_SIZE
;
2610 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2611 p
->phys_offset
= phys_offset
;
2612 p
->region_offset
= region_offset
;
2613 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2614 (phys_offset
& IO_MEM_ROMD
)) {
2615 phys_offset
+= TARGET_PAGE_SIZE
;
2617 target_phys_addr_t start_addr2
, end_addr2
;
2618 int need_subpage
= 0;
2620 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2621 end_addr2
, need_subpage
);
2624 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2625 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2626 addr
& TARGET_PAGE_MASK
);
2627 subpage_register(subpage
, start_addr2
, end_addr2
,
2628 phys_offset
, region_offset
);
2629 p
->region_offset
= 0;
2633 region_offset
+= TARGET_PAGE_SIZE
;
2636 /* since each CPU stores ram addresses in its TLB cache, we must
2637 reset the modified entries */
2639 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2644 /* XXX: temporary until new memory mapping API */
2645 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2649 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2651 return IO_MEM_UNASSIGNED
;
2652 return p
->phys_offset
;
2655 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2658 kvm_coalesce_mmio_region(addr
, size
);
2661 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2664 kvm_uncoalesce_mmio_region(addr
, size
);
2667 void qemu_flush_coalesced_mmio_buffer(void)
2670 kvm_flush_coalesced_mmio_buffer();
2673 #if defined(__linux__) && !defined(TARGET_S390X)
2675 #include <sys/vfs.h>
2677 #define HUGETLBFS_MAGIC 0x958458f6
2679 static long gethugepagesize(const char *path
)
2685 ret
= statfs(path
, &fs
);
2686 } while (ret
!= 0 && errno
== EINTR
);
2693 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2694 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2699 static void *file_ram_alloc(RAMBlock
*block
,
2709 unsigned long hpagesize
;
2711 hpagesize
= gethugepagesize(path
);
2716 if (memory
< hpagesize
) {
2720 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2721 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2725 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2729 fd
= mkstemp(filename
);
2731 perror("unable to create backing store for hugepages");
2738 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2741 * ftruncate is not supported by hugetlbfs in older
2742 * hosts, so don't bother bailing out on errors.
2743 * If anything goes wrong with it under other filesystems,
2746 if (ftruncate(fd
, memory
))
2747 perror("ftruncate");
2750 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2751 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2752 * to sidestep this quirk.
2754 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2755 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2757 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2759 if (area
== MAP_FAILED
) {
2760 perror("file_ram_alloc: can't mmap RAM pages");
2769 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2771 RAMBlock
*block
, *next_block
;
2772 ram_addr_t offset
= 0, mingap
= ULONG_MAX
;
2774 if (QLIST_EMPTY(&ram_list
.blocks
))
2777 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2778 ram_addr_t end
, next
= ULONG_MAX
;
2780 end
= block
->offset
+ block
->length
;
2782 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2783 if (next_block
->offset
>= end
) {
2784 next
= MIN(next
, next_block
->offset
);
2787 if (next
- end
>= size
&& next
- end
< mingap
) {
2789 mingap
= next
- end
;
2795 static ram_addr_t
last_ram_offset(void)
2798 ram_addr_t last
= 0;
2800 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2801 last
= MAX(last
, block
->offset
+ block
->length
);
2806 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2807 ram_addr_t size
, void *host
)
2809 RAMBlock
*new_block
, *block
;
2811 size
= TARGET_PAGE_ALIGN(size
);
2812 new_block
= qemu_mallocz(sizeof(*new_block
));
2814 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2815 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2817 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2821 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2823 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2824 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2825 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2832 new_block
->host
= host
;
2835 #if defined (__linux__) && !defined(TARGET_S390X)
2836 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2837 if (!new_block
->host
) {
2838 new_block
->host
= qemu_vmalloc(size
);
2839 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2842 fprintf(stderr
, "-mem-path option unsupported\n");
2846 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2847 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2848 new_block
->host
= mmap((void*)0x1000000, size
,
2849 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2850 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2852 new_block
->host
= qemu_vmalloc(size
);
2854 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2858 new_block
->offset
= find_ram_offset(size
);
2859 new_block
->length
= size
;
2861 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2863 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2864 last_ram_offset() >> TARGET_PAGE_BITS
);
2865 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2866 0xff, size
>> TARGET_PAGE_BITS
);
2869 kvm_setup_guest_memory(new_block
->host
, size
);
2871 return new_block
->offset
;
2874 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
)
2876 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
);
2879 void qemu_ram_free(ram_addr_t addr
)
2883 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2884 if (addr
== block
->offset
) {
2885 QLIST_REMOVE(block
, next
);
2887 #if defined (__linux__) && !defined(TARGET_S390X)
2889 munmap(block
->host
, block
->length
);
2892 qemu_vfree(block
->host
);
2896 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2897 munmap(block
->host
, block
->length
);
2899 qemu_vfree(block
->host
);
2909 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2910 With the exception of the softmmu code in this file, this should
2911 only be used for local memory (e.g. video ram) that the device owns,
2912 and knows it isn't going to access beyond the end of the block.
2914 It should not be used for general purpose DMA.
2915 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2917 void *qemu_get_ram_ptr(ram_addr_t addr
)
2921 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2922 if (addr
- block
->offset
< block
->length
) {
2923 QLIST_REMOVE(block
, next
);
2924 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
2925 return block
->host
+ (addr
- block
->offset
);
2929 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2935 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2936 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2938 void *qemu_safe_ram_ptr(ram_addr_t addr
)
2942 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2943 if (addr
- block
->offset
< block
->length
) {
2944 return block
->host
+ (addr
- block
->offset
);
2948 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2954 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2957 uint8_t *host
= ptr
;
2959 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2960 if (host
- block
->host
< block
->length
) {
2961 *ram_addr
= block
->offset
+ (host
- block
->host
);
2968 /* Some of the softmmu routines need to translate from a host pointer
2969 (typically a TLB entry) back to a ram offset. */
2970 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
2972 ram_addr_t ram_addr
;
2974 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
2975 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2981 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2983 #ifdef DEBUG_UNASSIGNED
2984 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2986 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2987 do_unassigned_access(addr
, 0, 0, 0, 1);
2992 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2994 #ifdef DEBUG_UNASSIGNED
2995 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2997 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2998 do_unassigned_access(addr
, 0, 0, 0, 2);
3003 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3005 #ifdef DEBUG_UNASSIGNED
3006 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3008 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3009 do_unassigned_access(addr
, 0, 0, 0, 4);
3014 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3016 #ifdef DEBUG_UNASSIGNED
3017 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3019 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3020 do_unassigned_access(addr
, 1, 0, 0, 1);
3024 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3026 #ifdef DEBUG_UNASSIGNED
3027 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3029 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3030 do_unassigned_access(addr
, 1, 0, 0, 2);
3034 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3036 #ifdef DEBUG_UNASSIGNED
3037 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3039 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3040 do_unassigned_access(addr
, 1, 0, 0, 4);
3044 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3045 unassigned_mem_readb
,
3046 unassigned_mem_readw
,
3047 unassigned_mem_readl
,
3050 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3051 unassigned_mem_writeb
,
3052 unassigned_mem_writew
,
3053 unassigned_mem_writel
,
3056 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3060 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3061 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3062 #if !defined(CONFIG_USER_ONLY)
3063 tb_invalidate_phys_page_fast(ram_addr
, 1);
3064 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3067 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3068 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3069 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3070 /* we remove the notdirty callback only if the code has been
3072 if (dirty_flags
== 0xff)
3073 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3076 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3080 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3081 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3082 #if !defined(CONFIG_USER_ONLY)
3083 tb_invalidate_phys_page_fast(ram_addr
, 2);
3084 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3087 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3088 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3089 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3090 /* we remove the notdirty callback only if the code has been
3092 if (dirty_flags
== 0xff)
3093 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3096 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3100 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3101 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3102 #if !defined(CONFIG_USER_ONLY)
3103 tb_invalidate_phys_page_fast(ram_addr
, 4);
3104 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3107 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3108 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3109 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3110 /* we remove the notdirty callback only if the code has been
3112 if (dirty_flags
== 0xff)
3113 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3116 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3117 NULL
, /* never used */
3118 NULL
, /* never used */
3119 NULL
, /* never used */
3122 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3123 notdirty_mem_writeb
,
3124 notdirty_mem_writew
,
3125 notdirty_mem_writel
,
3128 /* Generate a debug exception if a watchpoint has been hit. */
3129 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3131 CPUState
*env
= cpu_single_env
;
3132 target_ulong pc
, cs_base
;
3133 TranslationBlock
*tb
;
3138 if (env
->watchpoint_hit
) {
3139 /* We re-entered the check after replacing the TB. Now raise
3140 * the debug interrupt so that is will trigger after the
3141 * current instruction. */
3142 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3145 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3146 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3147 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3148 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3149 wp
->flags
|= BP_WATCHPOINT_HIT
;
3150 if (!env
->watchpoint_hit
) {
3151 env
->watchpoint_hit
= wp
;
3152 tb
= tb_find_pc(env
->mem_io_pc
);
3154 cpu_abort(env
, "check_watchpoint: could not find TB for "
3155 "pc=%p", (void *)env
->mem_io_pc
);
3157 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
3158 tb_phys_invalidate(tb
, -1);
3159 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3160 env
->exception_index
= EXCP_DEBUG
;
3162 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3163 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3165 cpu_resume_from_signal(env
, NULL
);
3168 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3173 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3174 so these check for a hit then pass through to the normal out-of-line
3176 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3178 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3179 return ldub_phys(addr
);
3182 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3184 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3185 return lduw_phys(addr
);
3188 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3190 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3191 return ldl_phys(addr
);
3194 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3197 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3198 stb_phys(addr
, val
);
3201 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3204 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3205 stw_phys(addr
, val
);
3208 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3211 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3212 stl_phys(addr
, val
);
3215 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3221 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3227 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3228 target_phys_addr_t addr
,
3231 unsigned int idx
= SUBPAGE_IDX(addr
);
3232 #if defined(DEBUG_SUBPAGE)
3233 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3234 mmio
, len
, addr
, idx
);
3237 addr
+= mmio
->region_offset
[idx
];
3238 idx
= mmio
->sub_io_index
[idx
];
3239 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3242 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3243 uint32_t value
, unsigned int len
)
3245 unsigned int idx
= SUBPAGE_IDX(addr
);
3246 #if defined(DEBUG_SUBPAGE)
3247 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3248 __func__
, mmio
, len
, addr
, idx
, value
);
3251 addr
+= mmio
->region_offset
[idx
];
3252 idx
= mmio
->sub_io_index
[idx
];
3253 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3256 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3258 return subpage_readlen(opaque
, addr
, 0);
3261 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3264 subpage_writelen(opaque
, addr
, value
, 0);
3267 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3269 return subpage_readlen(opaque
, addr
, 1);
3272 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3275 subpage_writelen(opaque
, addr
, value
, 1);
3278 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3280 return subpage_readlen(opaque
, addr
, 2);
3283 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3286 subpage_writelen(opaque
, addr
, value
, 2);
3289 static CPUReadMemoryFunc
* const subpage_read
[] = {
3295 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3301 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3302 ram_addr_t memory
, ram_addr_t region_offset
)
3306 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3308 idx
= SUBPAGE_IDX(start
);
3309 eidx
= SUBPAGE_IDX(end
);
3310 #if defined(DEBUG_SUBPAGE)
3311 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3312 mmio
, start
, end
, idx
, eidx
, memory
);
3314 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
3315 memory
= IO_MEM_UNASSIGNED
;
3316 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3317 for (; idx
<= eidx
; idx
++) {
3318 mmio
->sub_io_index
[idx
] = memory
;
3319 mmio
->region_offset
[idx
] = region_offset
;
3325 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3326 ram_addr_t orig_memory
,
3327 ram_addr_t region_offset
)
3332 mmio
= qemu_mallocz(sizeof(subpage_t
));
3335 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3336 DEVICE_NATIVE_ENDIAN
);
3337 #if defined(DEBUG_SUBPAGE)
3338 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3339 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3341 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3342 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3347 static int get_free_io_mem_idx(void)
3351 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3352 if (!io_mem_used
[i
]) {
3356 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3361 * Usually, devices operate in little endian mode. There are devices out
3362 * there that operate in big endian too. Each device gets byte swapped
3363 * mmio if plugged onto a CPU that does the other endianness.
3373 typedef struct SwapEndianContainer
{
3374 CPUReadMemoryFunc
*read
[3];
3375 CPUWriteMemoryFunc
*write
[3];
3377 } SwapEndianContainer
;
3379 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3382 SwapEndianContainer
*c
= opaque
;
3383 val
= c
->read
[0](c
->opaque
, addr
);
3387 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3390 SwapEndianContainer
*c
= opaque
;
3391 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3395 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3398 SwapEndianContainer
*c
= opaque
;
3399 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3403 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3404 swapendian_mem_readb
,
3405 swapendian_mem_readw
,
3406 swapendian_mem_readl
3409 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3412 SwapEndianContainer
*c
= opaque
;
3413 c
->write
[0](c
->opaque
, addr
, val
);
3416 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3419 SwapEndianContainer
*c
= opaque
;
3420 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3423 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3426 SwapEndianContainer
*c
= opaque
;
3427 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3430 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3431 swapendian_mem_writeb
,
3432 swapendian_mem_writew
,
3433 swapendian_mem_writel
3436 static void swapendian_init(int io_index
)
3438 SwapEndianContainer
*c
= qemu_malloc(sizeof(SwapEndianContainer
));
3441 /* Swap mmio for big endian targets */
3442 c
->opaque
= io_mem_opaque
[io_index
];
3443 for (i
= 0; i
< 3; i
++) {
3444 c
->read
[i
] = io_mem_read
[io_index
][i
];
3445 c
->write
[i
] = io_mem_write
[io_index
][i
];
3447 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3448 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3450 io_mem_opaque
[io_index
] = c
;
3453 static void swapendian_del(int io_index
)
3455 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3456 qemu_free(io_mem_opaque
[io_index
]);
3460 /* mem_read and mem_write are arrays of functions containing the
3461 function to access byte (index 0), word (index 1) and dword (index
3462 2). Functions can be omitted with a NULL function pointer.
3463 If io_index is non zero, the corresponding io zone is
3464 modified. If it is zero, a new io zone is allocated. The return
3465 value can be used with cpu_register_physical_memory(). (-1) is
3466 returned if error. */
3467 static int cpu_register_io_memory_fixed(int io_index
,
3468 CPUReadMemoryFunc
* const *mem_read
,
3469 CPUWriteMemoryFunc
* const *mem_write
,
3470 void *opaque
, enum device_endian endian
)
3474 if (io_index
<= 0) {
3475 io_index
= get_free_io_mem_idx();
3479 io_index
>>= IO_MEM_SHIFT
;
3480 if (io_index
>= IO_MEM_NB_ENTRIES
)
3484 for (i
= 0; i
< 3; ++i
) {
3485 io_mem_read
[io_index
][i
]
3486 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3488 for (i
= 0; i
< 3; ++i
) {
3489 io_mem_write
[io_index
][i
]
3490 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3492 io_mem_opaque
[io_index
] = opaque
;
3495 case DEVICE_BIG_ENDIAN
:
3496 #ifndef TARGET_WORDS_BIGENDIAN
3497 swapendian_init(io_index
);
3500 case DEVICE_LITTLE_ENDIAN
:
3501 #ifdef TARGET_WORDS_BIGENDIAN
3502 swapendian_init(io_index
);
3505 case DEVICE_NATIVE_ENDIAN
:
3510 return (io_index
<< IO_MEM_SHIFT
);
3513 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3514 CPUWriteMemoryFunc
* const *mem_write
,
3515 void *opaque
, enum device_endian endian
)
3517 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3520 void cpu_unregister_io_memory(int io_table_address
)
3523 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3525 swapendian_del(io_index
);
3527 for (i
=0;i
< 3; i
++) {
3528 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3529 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3531 io_mem_opaque
[io_index
] = NULL
;
3532 io_mem_used
[io_index
] = 0;
3535 static void io_mem_init(void)
3539 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3540 unassigned_mem_write
, NULL
,
3541 DEVICE_NATIVE_ENDIAN
);
3542 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3543 unassigned_mem_write
, NULL
,
3544 DEVICE_NATIVE_ENDIAN
);
3545 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3546 notdirty_mem_write
, NULL
,
3547 DEVICE_NATIVE_ENDIAN
);
3551 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3552 watch_mem_write
, NULL
,
3553 DEVICE_NATIVE_ENDIAN
);
3556 #endif /* !defined(CONFIG_USER_ONLY) */
3558 /* physical memory access (slow version, mainly for debug) */
3559 #if defined(CONFIG_USER_ONLY)
3560 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3561 uint8_t *buf
, int len
, int is_write
)
3568 page
= addr
& TARGET_PAGE_MASK
;
3569 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3572 flags
= page_get_flags(page
);
3573 if (!(flags
& PAGE_VALID
))
3576 if (!(flags
& PAGE_WRITE
))
3578 /* XXX: this code should not depend on lock_user */
3579 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3582 unlock_user(p
, addr
, l
);
3584 if (!(flags
& PAGE_READ
))
3586 /* XXX: this code should not depend on lock_user */
3587 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3590 unlock_user(p
, addr
, 0);
3600 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3601 int len
, int is_write
)
3606 target_phys_addr_t page
;
3611 page
= addr
& TARGET_PAGE_MASK
;
3612 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3615 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3617 pd
= IO_MEM_UNASSIGNED
;
3619 pd
= p
->phys_offset
;
3623 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3624 target_phys_addr_t addr1
= addr
;
3625 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3627 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3628 /* XXX: could force cpu_single_env to NULL to avoid
3630 if (l
>= 4 && ((addr1
& 3) == 0)) {
3631 /* 32 bit write access */
3633 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3635 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3636 /* 16 bit write access */
3638 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3641 /* 8 bit write access */
3643 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3647 unsigned long addr1
;
3648 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3650 ptr
= qemu_get_ram_ptr(addr1
);
3651 memcpy(ptr
, buf
, l
);
3652 if (!cpu_physical_memory_is_dirty(addr1
)) {
3653 /* invalidate code */
3654 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3656 cpu_physical_memory_set_dirty_flags(
3657 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3661 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3662 !(pd
& IO_MEM_ROMD
)) {
3663 target_phys_addr_t addr1
= addr
;
3665 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3667 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3668 if (l
>= 4 && ((addr1
& 3) == 0)) {
3669 /* 32 bit read access */
3670 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3673 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3674 /* 16 bit read access */
3675 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3679 /* 8 bit read access */
3680 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3686 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3687 (addr
& ~TARGET_PAGE_MASK
);
3688 memcpy(buf
, ptr
, l
);
3697 /* used for ROM loading : can write in RAM and ROM */
3698 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3699 const uint8_t *buf
, int len
)
3703 target_phys_addr_t page
;
3708 page
= addr
& TARGET_PAGE_MASK
;
3709 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3712 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3714 pd
= IO_MEM_UNASSIGNED
;
3716 pd
= p
->phys_offset
;
3719 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3720 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3721 !(pd
& IO_MEM_ROMD
)) {
3724 unsigned long addr1
;
3725 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3727 ptr
= qemu_get_ram_ptr(addr1
);
3728 memcpy(ptr
, buf
, l
);
3738 target_phys_addr_t addr
;
3739 target_phys_addr_t len
;
3742 static BounceBuffer bounce
;
3744 typedef struct MapClient
{
3746 void (*callback
)(void *opaque
);
3747 QLIST_ENTRY(MapClient
) link
;
3750 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3751 = QLIST_HEAD_INITIALIZER(map_client_list
);
3753 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3755 MapClient
*client
= qemu_malloc(sizeof(*client
));
3757 client
->opaque
= opaque
;
3758 client
->callback
= callback
;
3759 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3763 void cpu_unregister_map_client(void *_client
)
3765 MapClient
*client
= (MapClient
*)_client
;
3767 QLIST_REMOVE(client
, link
);
3771 static void cpu_notify_map_clients(void)
3775 while (!QLIST_EMPTY(&map_client_list
)) {
3776 client
= QLIST_FIRST(&map_client_list
);
3777 client
->callback(client
->opaque
);
3778 cpu_unregister_map_client(client
);
3782 /* Map a physical memory region into a host virtual address.
3783 * May map a subset of the requested range, given by and returned in *plen.
3784 * May return NULL if resources needed to perform the mapping are exhausted.
3785 * Use only for reads OR writes - not for read-modify-write operations.
3786 * Use cpu_register_map_client() to know when retrying the map operation is
3787 * likely to succeed.
3789 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3790 target_phys_addr_t
*plen
,
3793 target_phys_addr_t len
= *plen
;
3794 target_phys_addr_t done
= 0;
3796 uint8_t *ret
= NULL
;
3798 target_phys_addr_t page
;
3801 unsigned long addr1
;
3804 page
= addr
& TARGET_PAGE_MASK
;
3805 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3808 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3810 pd
= IO_MEM_UNASSIGNED
;
3812 pd
= p
->phys_offset
;
3815 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3816 if (done
|| bounce
.buffer
) {
3819 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3823 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3825 ptr
= bounce
.buffer
;
3827 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3828 ptr
= qemu_get_ram_ptr(addr1
);
3832 } else if (ret
+ done
!= ptr
) {
3844 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3845 * Will also mark the memory as dirty if is_write == 1. access_len gives
3846 * the amount of memory that was actually read or written by the caller.
3848 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3849 int is_write
, target_phys_addr_t access_len
)
3851 if (buffer
!= bounce
.buffer
) {
3853 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3854 while (access_len
) {
3856 l
= TARGET_PAGE_SIZE
;
3859 if (!cpu_physical_memory_is_dirty(addr1
)) {
3860 /* invalidate code */
3861 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3863 cpu_physical_memory_set_dirty_flags(
3864 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3873 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3875 qemu_vfree(bounce
.buffer
);
3876 bounce
.buffer
= NULL
;
3877 cpu_notify_map_clients();
3880 /* warning: addr must be aligned */
3881 uint32_t ldl_phys(target_phys_addr_t addr
)
3889 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3891 pd
= IO_MEM_UNASSIGNED
;
3893 pd
= p
->phys_offset
;
3896 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3897 !(pd
& IO_MEM_ROMD
)) {
3899 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3901 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3902 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3905 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3906 (addr
& ~TARGET_PAGE_MASK
);
3912 /* warning: addr must be aligned */
3913 uint64_t ldq_phys(target_phys_addr_t addr
)
3921 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3923 pd
= IO_MEM_UNASSIGNED
;
3925 pd
= p
->phys_offset
;
3928 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3929 !(pd
& IO_MEM_ROMD
)) {
3931 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3933 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3934 #ifdef TARGET_WORDS_BIGENDIAN
3935 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3936 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3938 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3939 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3943 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3944 (addr
& ~TARGET_PAGE_MASK
);
3951 uint32_t ldub_phys(target_phys_addr_t addr
)
3954 cpu_physical_memory_read(addr
, &val
, 1);
3958 /* warning: addr must be aligned */
3959 uint32_t lduw_phys(target_phys_addr_t addr
)
3967 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3969 pd
= IO_MEM_UNASSIGNED
;
3971 pd
= p
->phys_offset
;
3974 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3975 !(pd
& IO_MEM_ROMD
)) {
3977 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3979 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3980 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
3983 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3984 (addr
& ~TARGET_PAGE_MASK
);
3990 /* warning: addr must be aligned. The ram page is not masked as dirty
3991 and the code inside is not invalidated. It is useful if the dirty
3992 bits are used to track modified PTEs */
3993 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4000 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4002 pd
= IO_MEM_UNASSIGNED
;
4004 pd
= p
->phys_offset
;
4007 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4008 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4010 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4011 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4013 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4014 ptr
= qemu_get_ram_ptr(addr1
);
4017 if (unlikely(in_migration
)) {
4018 if (!cpu_physical_memory_is_dirty(addr1
)) {
4019 /* invalidate code */
4020 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4022 cpu_physical_memory_set_dirty_flags(
4023 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4029 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4036 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4038 pd
= IO_MEM_UNASSIGNED
;
4040 pd
= p
->phys_offset
;
4043 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4044 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4046 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4047 #ifdef TARGET_WORDS_BIGENDIAN
4048 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4049 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4051 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4052 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4055 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4056 (addr
& ~TARGET_PAGE_MASK
);
4061 /* warning: addr must be aligned */
4062 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4069 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4071 pd
= IO_MEM_UNASSIGNED
;
4073 pd
= p
->phys_offset
;
4076 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4077 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4079 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4080 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4082 unsigned long addr1
;
4083 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4085 ptr
= qemu_get_ram_ptr(addr1
);
4087 if (!cpu_physical_memory_is_dirty(addr1
)) {
4088 /* invalidate code */
4089 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4091 cpu_physical_memory_set_dirty_flags(addr1
,
4092 (0xff & ~CODE_DIRTY_FLAG
));
4098 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4101 cpu_physical_memory_write(addr
, &v
, 1);
4104 /* warning: addr must be aligned */
4105 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4112 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4114 pd
= IO_MEM_UNASSIGNED
;
4116 pd
= p
->phys_offset
;
4119 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4120 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4122 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4123 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4125 unsigned long addr1
;
4126 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4128 ptr
= qemu_get_ram_ptr(addr1
);
4130 if (!cpu_physical_memory_is_dirty(addr1
)) {
4131 /* invalidate code */
4132 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4134 cpu_physical_memory_set_dirty_flags(addr1
,
4135 (0xff & ~CODE_DIRTY_FLAG
));
4141 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4144 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
4147 /* virtual memory access for debug (includes writing to ROM) */
4148 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4149 uint8_t *buf
, int len
, int is_write
)
4152 target_phys_addr_t phys_addr
;
4156 page
= addr
& TARGET_PAGE_MASK
;
4157 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4158 /* if no physical page mapped, return an error */
4159 if (phys_addr
== -1)
4161 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4164 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4166 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4168 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4177 /* in deterministic execution mode, instructions doing device I/Os
4178 must be at the end of the TB */
4179 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4181 TranslationBlock
*tb
;
4183 target_ulong pc
, cs_base
;
4186 tb
= tb_find_pc((unsigned long)retaddr
);
4188 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4191 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4192 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
4193 /* Calculate how many instructions had been executed before the fault
4195 n
= n
- env
->icount_decr
.u16
.low
;
4196 /* Generate a new TB ending on the I/O insn. */
4198 /* On MIPS and SH, delay slot instructions can only be restarted if
4199 they were already the first instruction in the TB. If this is not
4200 the first instruction in a TB then re-execute the preceding
4202 #if defined(TARGET_MIPS)
4203 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4204 env
->active_tc
.PC
-= 4;
4205 env
->icount_decr
.u16
.low
++;
4206 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4208 #elif defined(TARGET_SH4)
4209 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4212 env
->icount_decr
.u16
.low
++;
4213 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4216 /* This should never happen. */
4217 if (n
> CF_COUNT_MASK
)
4218 cpu_abort(env
, "TB too big during recompile");
4220 cflags
= n
| CF_LAST_IO
;
4222 cs_base
= tb
->cs_base
;
4224 tb_phys_invalidate(tb
, -1);
4225 /* FIXME: In theory this could raise an exception. In practice
4226 we have already translated the block once so it's probably ok. */
4227 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4228 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4229 the first in the TB) then we end up generating a whole new TB and
4230 repeating the fault, which is horribly inefficient.
4231 Better would be to execute just this insn uncached, or generate a
4233 cpu_resume_from_signal(env
, NULL
);
4236 #if !defined(CONFIG_USER_ONLY)
4238 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4240 int i
, target_code_size
, max_target_code_size
;
4241 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4242 TranslationBlock
*tb
;
4244 target_code_size
= 0;
4245 max_target_code_size
= 0;
4247 direct_jmp_count
= 0;
4248 direct_jmp2_count
= 0;
4249 for(i
= 0; i
< nb_tbs
; i
++) {
4251 target_code_size
+= tb
->size
;
4252 if (tb
->size
> max_target_code_size
)
4253 max_target_code_size
= tb
->size
;
4254 if (tb
->page_addr
[1] != -1)
4256 if (tb
->tb_next_offset
[0] != 0xffff) {
4258 if (tb
->tb_next_offset
[1] != 0xffff) {
4259 direct_jmp2_count
++;
4263 /* XXX: avoid using doubles ? */
4264 cpu_fprintf(f
, "Translation buffer state:\n");
4265 cpu_fprintf(f
, "gen code size %td/%ld\n",
4266 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4267 cpu_fprintf(f
, "TB count %d/%d\n",
4268 nb_tbs
, code_gen_max_blocks
);
4269 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4270 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4271 max_target_code_size
);
4272 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4273 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4274 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4275 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4277 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4278 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4280 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4282 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4283 cpu_fprintf(f
, "\nStatistics:\n");
4284 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4285 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4286 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4287 tcg_dump_info(f
, cpu_fprintf
);
4290 #define MMUSUFFIX _cmmu
4291 #define GETPC() NULL
4292 #define env cpu_single_env
4293 #define SOFTMMU_CODE_ACCESS
4296 #include "softmmu_template.h"
4299 #include "softmmu_template.h"
4302 #include "softmmu_template.h"
4305 #include "softmmu_template.h"