Merge remote branch 'spice/spice.v29.pull' into staging
[qemu/stefanha.git] / exec.c
blobe950df25c32a1f7fbef9415d4971f5bf7bcfdcb6
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
232 #else
233 static void map_exec(void *addr, long size)
235 unsigned long start, end, page_size;
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
248 #endif
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
256 SYSTEM_INFO system_info;
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
301 free(freep);
302 mmap_unlock();
304 #else
305 FILE *f;
307 last_brk = (unsigned long)sbrk(0);
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
329 } while (!feof(f));
331 fclose(f);
332 mmap_unlock();
334 #endif
336 #endif
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
341 PageDesc *pd;
342 void **lp;
343 int i;
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
384 #undef ALLOC
386 return pd + (index & (L2_SIZE - 1));
389 static inline PageDesc *page_find(tb_page_addr_t index)
391 return page_find_alloc(index, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
420 if (!alloc) {
421 return NULL;
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
432 return pd + (index & (L2_SIZE - 1));
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
437 return phys_page_find_alloc(index, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
460 static void code_gen_alloc(unsigned long tb_size)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
483 int flags;
484 void *start = NULL;
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
541 #endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
550 #else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553 #endif
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565 void cpu_exec_init_all(unsigned long tb_size)
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
570 page_init();
571 #if !defined(CONFIG_USER_ONLY)
572 io_mem_init();
573 #endif
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578 #endif
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque, int version_id)
585 CPUState *env = opaque;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
590 tlb_flush(env, 1);
592 return 0;
595 static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
607 #endif
609 CPUState *qemu_get_cpu(int cpu)
611 CPUState *env = first_cpu;
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
619 return env;
622 void cpu_exec_init(CPUState *env)
624 CPUState **penv;
625 int cpu_index;
627 #if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629 #endif
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
634 penv = &(*penv)->next_cpu;
635 cpu_index++;
637 env->cpu_index = cpu_index;
638 env->numa_node = 0;
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
641 *penv = env;
642 #if defined(CONFIG_USER_ONLY)
643 cpu_list_unlock();
644 #endif
645 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
646 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
647 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
648 cpu_save, cpu_load, env);
649 #endif
652 static inline void invalidate_page_bitmap(PageDesc *p)
654 if (p->code_bitmap) {
655 qemu_free(p->code_bitmap);
656 p->code_bitmap = NULL;
658 p->code_write_count = 0;
661 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
663 static void page_flush_tb_1 (int level, void **lp)
665 int i;
667 if (*lp == NULL) {
668 return;
670 if (level == 0) {
671 PageDesc *pd = *lp;
672 for (i = 0; i < L2_SIZE; ++i) {
673 pd[i].first_tb = NULL;
674 invalidate_page_bitmap(pd + i);
676 } else {
677 void **pp = *lp;
678 for (i = 0; i < L2_SIZE; ++i) {
679 page_flush_tb_1 (level - 1, pp + i);
684 static void page_flush_tb(void)
686 int i;
687 for (i = 0; i < V_L1_SIZE; i++) {
688 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
692 /* flush all the translation blocks */
693 /* XXX: tb_flush is currently not thread safe */
694 void tb_flush(CPUState *env1)
696 CPUState *env;
697 #if defined(DEBUG_FLUSH)
698 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
699 (unsigned long)(code_gen_ptr - code_gen_buffer),
700 nb_tbs, nb_tbs > 0 ?
701 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
702 #endif
703 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
704 cpu_abort(env1, "Internal error: code buffer overflow\n");
706 nb_tbs = 0;
708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
709 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
712 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
713 page_flush_tb();
715 code_gen_ptr = code_gen_buffer;
716 /* XXX: flush processor icache at this point if cache flush is
717 expensive */
718 tb_flush_count++;
721 #ifdef DEBUG_TB_CHECK
723 static void tb_invalidate_check(target_ulong address)
725 TranslationBlock *tb;
726 int i;
727 address &= TARGET_PAGE_MASK;
728 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
729 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
730 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
731 address >= tb->pc + tb->size)) {
732 printf("ERROR invalidate: address=" TARGET_FMT_lx
733 " PC=%08lx size=%04x\n",
734 address, (long)tb->pc, tb->size);
740 /* verify that all the pages have correct rights for code */
741 static void tb_page_check(void)
743 TranslationBlock *tb;
744 int i, flags1, flags2;
746 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
747 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
748 flags1 = page_get_flags(tb->pc);
749 flags2 = page_get_flags(tb->pc + tb->size - 1);
750 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
751 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
752 (long)tb->pc, tb->size, flags1, flags2);
758 #endif
760 /* invalidate one TB */
761 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
762 int next_offset)
764 TranslationBlock *tb1;
765 for(;;) {
766 tb1 = *ptb;
767 if (tb1 == tb) {
768 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
769 break;
771 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
775 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
777 TranslationBlock *tb1;
778 unsigned int n1;
780 for(;;) {
781 tb1 = *ptb;
782 n1 = (long)tb1 & 3;
783 tb1 = (TranslationBlock *)((long)tb1 & ~3);
784 if (tb1 == tb) {
785 *ptb = tb1->page_next[n1];
786 break;
788 ptb = &tb1->page_next[n1];
792 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
794 TranslationBlock *tb1, **ptb;
795 unsigned int n1;
797 ptb = &tb->jmp_next[n];
798 tb1 = *ptb;
799 if (tb1) {
800 /* find tb(n) in circular list */
801 for(;;) {
802 tb1 = *ptb;
803 n1 = (long)tb1 & 3;
804 tb1 = (TranslationBlock *)((long)tb1 & ~3);
805 if (n1 == n && tb1 == tb)
806 break;
807 if (n1 == 2) {
808 ptb = &tb1->jmp_first;
809 } else {
810 ptb = &tb1->jmp_next[n1];
813 /* now we can suppress tb(n) from the list */
814 *ptb = tb->jmp_next[n];
816 tb->jmp_next[n] = NULL;
820 /* reset the jump entry 'n' of a TB so that it is not chained to
821 another TB */
822 static inline void tb_reset_jump(TranslationBlock *tb, int n)
824 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
827 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
829 CPUState *env;
830 PageDesc *p;
831 unsigned int h, n1;
832 tb_page_addr_t phys_pc;
833 TranslationBlock *tb1, *tb2;
835 /* remove the TB from the hash list */
836 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
837 h = tb_phys_hash_func(phys_pc);
838 tb_remove(&tb_phys_hash[h], tb,
839 offsetof(TranslationBlock, phys_hash_next));
841 /* remove the TB from the page list */
842 if (tb->page_addr[0] != page_addr) {
843 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
844 tb_page_remove(&p->first_tb, tb);
845 invalidate_page_bitmap(p);
847 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
848 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
849 tb_page_remove(&p->first_tb, tb);
850 invalidate_page_bitmap(p);
853 tb_invalidated_flag = 1;
855 /* remove the TB from the hash list */
856 h = tb_jmp_cache_hash_func(tb->pc);
857 for(env = first_cpu; env != NULL; env = env->next_cpu) {
858 if (env->tb_jmp_cache[h] == tb)
859 env->tb_jmp_cache[h] = NULL;
862 /* suppress this TB from the two jump lists */
863 tb_jmp_remove(tb, 0);
864 tb_jmp_remove(tb, 1);
866 /* suppress any remaining jumps to this TB */
867 tb1 = tb->jmp_first;
868 for(;;) {
869 n1 = (long)tb1 & 3;
870 if (n1 == 2)
871 break;
872 tb1 = (TranslationBlock *)((long)tb1 & ~3);
873 tb2 = tb1->jmp_next[n1];
874 tb_reset_jump(tb1, n1);
875 tb1->jmp_next[n1] = NULL;
876 tb1 = tb2;
878 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
880 tb_phys_invalidate_count++;
883 static inline void set_bits(uint8_t *tab, int start, int len)
885 int end, mask, end1;
887 end = start + len;
888 tab += start >> 3;
889 mask = 0xff << (start & 7);
890 if ((start & ~7) == (end & ~7)) {
891 if (start < end) {
892 mask &= ~(0xff << (end & 7));
893 *tab |= mask;
895 } else {
896 *tab++ |= mask;
897 start = (start + 8) & ~7;
898 end1 = end & ~7;
899 while (start < end1) {
900 *tab++ = 0xff;
901 start += 8;
903 if (start < end) {
904 mask = ~(0xff << (end & 7));
905 *tab |= mask;
910 static void build_page_bitmap(PageDesc *p)
912 int n, tb_start, tb_end;
913 TranslationBlock *tb;
915 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
917 tb = p->first_tb;
918 while (tb != NULL) {
919 n = (long)tb & 3;
920 tb = (TranslationBlock *)((long)tb & ~3);
921 /* NOTE: this is subtle as a TB may span two physical pages */
922 if (n == 0) {
923 /* NOTE: tb_end may be after the end of the page, but
924 it is not a problem */
925 tb_start = tb->pc & ~TARGET_PAGE_MASK;
926 tb_end = tb_start + tb->size;
927 if (tb_end > TARGET_PAGE_SIZE)
928 tb_end = TARGET_PAGE_SIZE;
929 } else {
930 tb_start = 0;
931 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
933 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
934 tb = tb->page_next[n];
938 TranslationBlock *tb_gen_code(CPUState *env,
939 target_ulong pc, target_ulong cs_base,
940 int flags, int cflags)
942 TranslationBlock *tb;
943 uint8_t *tc_ptr;
944 tb_page_addr_t phys_pc, phys_page2;
945 target_ulong virt_page2;
946 int code_gen_size;
948 phys_pc = get_page_addr_code(env, pc);
949 tb = tb_alloc(pc);
950 if (!tb) {
951 /* flush must be done */
952 tb_flush(env);
953 /* cannot fail at this point */
954 tb = tb_alloc(pc);
955 /* Don't forget to invalidate previous TB info. */
956 tb_invalidated_flag = 1;
958 tc_ptr = code_gen_ptr;
959 tb->tc_ptr = tc_ptr;
960 tb->cs_base = cs_base;
961 tb->flags = flags;
962 tb->cflags = cflags;
963 cpu_gen_code(env, tb, &code_gen_size);
964 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
966 /* check next page if needed */
967 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
968 phys_page2 = -1;
969 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
970 phys_page2 = get_page_addr_code(env, virt_page2);
972 tb_link_page(tb, phys_pc, phys_page2);
973 return tb;
976 /* invalidate all TBs which intersect with the target physical page
977 starting in range [start;end[. NOTE: start and end must refer to
978 the same physical page. 'is_cpu_write_access' should be true if called
979 from a real cpu write access: the virtual CPU will exit the current
980 TB if code is modified inside this TB. */
981 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
982 int is_cpu_write_access)
984 TranslationBlock *tb, *tb_next, *saved_tb;
985 CPUState *env = cpu_single_env;
986 tb_page_addr_t tb_start, tb_end;
987 PageDesc *p;
988 int n;
989 #ifdef TARGET_HAS_PRECISE_SMC
990 int current_tb_not_found = is_cpu_write_access;
991 TranslationBlock *current_tb = NULL;
992 int current_tb_modified = 0;
993 target_ulong current_pc = 0;
994 target_ulong current_cs_base = 0;
995 int current_flags = 0;
996 #endif /* TARGET_HAS_PRECISE_SMC */
998 p = page_find(start >> TARGET_PAGE_BITS);
999 if (!p)
1000 return;
1001 if (!p->code_bitmap &&
1002 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1003 is_cpu_write_access) {
1004 /* build code bitmap */
1005 build_page_bitmap(p);
1008 /* we remove all the TBs in the range [start, end[ */
1009 /* XXX: see if in some cases it could be faster to invalidate all the code */
1010 tb = p->first_tb;
1011 while (tb != NULL) {
1012 n = (long)tb & 3;
1013 tb = (TranslationBlock *)((long)tb & ~3);
1014 tb_next = tb->page_next[n];
1015 /* NOTE: this is subtle as a TB may span two physical pages */
1016 if (n == 0) {
1017 /* NOTE: tb_end may be after the end of the page, but
1018 it is not a problem */
1019 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1020 tb_end = tb_start + tb->size;
1021 } else {
1022 tb_start = tb->page_addr[1];
1023 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1025 if (!(tb_end <= start || tb_start >= end)) {
1026 #ifdef TARGET_HAS_PRECISE_SMC
1027 if (current_tb_not_found) {
1028 current_tb_not_found = 0;
1029 current_tb = NULL;
1030 if (env->mem_io_pc) {
1031 /* now we have a real cpu fault */
1032 current_tb = tb_find_pc(env->mem_io_pc);
1035 if (current_tb == tb &&
1036 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1037 /* If we are modifying the current TB, we must stop
1038 its execution. We could be more precise by checking
1039 that the modification is after the current PC, but it
1040 would require a specialized function to partially
1041 restore the CPU state */
1043 current_tb_modified = 1;
1044 cpu_restore_state(current_tb, env,
1045 env->mem_io_pc, NULL);
1046 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1047 &current_flags);
1049 #endif /* TARGET_HAS_PRECISE_SMC */
1050 /* we need to do that to handle the case where a signal
1051 occurs while doing tb_phys_invalidate() */
1052 saved_tb = NULL;
1053 if (env) {
1054 saved_tb = env->current_tb;
1055 env->current_tb = NULL;
1057 tb_phys_invalidate(tb, -1);
1058 if (env) {
1059 env->current_tb = saved_tb;
1060 if (env->interrupt_request && env->current_tb)
1061 cpu_interrupt(env, env->interrupt_request);
1064 tb = tb_next;
1066 #if !defined(CONFIG_USER_ONLY)
1067 /* if no code remaining, no need to continue to use slow writes */
1068 if (!p->first_tb) {
1069 invalidate_page_bitmap(p);
1070 if (is_cpu_write_access) {
1071 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1074 #endif
1075 #ifdef TARGET_HAS_PRECISE_SMC
1076 if (current_tb_modified) {
1077 /* we generate a block containing just the instruction
1078 modifying the memory. It will ensure that it cannot modify
1079 itself */
1080 env->current_tb = NULL;
1081 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1082 cpu_resume_from_signal(env, NULL);
1084 #endif
1087 /* len must be <= 8 and start must be a multiple of len */
1088 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1090 PageDesc *p;
1091 int offset, b;
1092 #if 0
1093 if (1) {
1094 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1095 cpu_single_env->mem_io_vaddr, len,
1096 cpu_single_env->eip,
1097 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1099 #endif
1100 p = page_find(start >> TARGET_PAGE_BITS);
1101 if (!p)
1102 return;
1103 if (p->code_bitmap) {
1104 offset = start & ~TARGET_PAGE_MASK;
1105 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1106 if (b & ((1 << len) - 1))
1107 goto do_invalidate;
1108 } else {
1109 do_invalidate:
1110 tb_invalidate_phys_page_range(start, start + len, 1);
1114 #if !defined(CONFIG_SOFTMMU)
1115 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1116 unsigned long pc, void *puc)
1118 TranslationBlock *tb;
1119 PageDesc *p;
1120 int n;
1121 #ifdef TARGET_HAS_PRECISE_SMC
1122 TranslationBlock *current_tb = NULL;
1123 CPUState *env = cpu_single_env;
1124 int current_tb_modified = 0;
1125 target_ulong current_pc = 0;
1126 target_ulong current_cs_base = 0;
1127 int current_flags = 0;
1128 #endif
1130 addr &= TARGET_PAGE_MASK;
1131 p = page_find(addr >> TARGET_PAGE_BITS);
1132 if (!p)
1133 return;
1134 tb = p->first_tb;
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (tb && pc != 0) {
1137 current_tb = tb_find_pc(pc);
1139 #endif
1140 while (tb != NULL) {
1141 n = (long)tb & 3;
1142 tb = (TranslationBlock *)((long)tb & ~3);
1143 #ifdef TARGET_HAS_PRECISE_SMC
1144 if (current_tb == tb &&
1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
1152 current_tb_modified = 1;
1153 cpu_restore_state(current_tb, env, pc, puc);
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
1157 #endif /* TARGET_HAS_PRECISE_SMC */
1158 tb_phys_invalidate(tb, addr);
1159 tb = tb->page_next[n];
1161 p->first_tb = NULL;
1162 #ifdef TARGET_HAS_PRECISE_SMC
1163 if (current_tb_modified) {
1164 /* we generate a block containing just the instruction
1165 modifying the memory. It will ensure that it cannot modify
1166 itself */
1167 env->current_tb = NULL;
1168 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1169 cpu_resume_from_signal(env, puc);
1171 #endif
1173 #endif
1175 /* add the tb in the target page and protect it if necessary */
1176 static inline void tb_alloc_page(TranslationBlock *tb,
1177 unsigned int n, tb_page_addr_t page_addr)
1179 PageDesc *p;
1180 TranslationBlock *last_first_tb;
1182 tb->page_addr[n] = page_addr;
1183 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1184 tb->page_next[n] = p->first_tb;
1185 last_first_tb = p->first_tb;
1186 p->first_tb = (TranslationBlock *)((long)tb | n);
1187 invalidate_page_bitmap(p);
1189 #if defined(TARGET_HAS_SMC) || 1
1191 #if defined(CONFIG_USER_ONLY)
1192 if (p->flags & PAGE_WRITE) {
1193 target_ulong addr;
1194 PageDesc *p2;
1195 int prot;
1197 /* force the host page as non writable (writes will have a
1198 page fault + mprotect overhead) */
1199 page_addr &= qemu_host_page_mask;
1200 prot = 0;
1201 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1202 addr += TARGET_PAGE_SIZE) {
1204 p2 = page_find (addr >> TARGET_PAGE_BITS);
1205 if (!p2)
1206 continue;
1207 prot |= p2->flags;
1208 p2->flags &= ~PAGE_WRITE;
1210 mprotect(g2h(page_addr), qemu_host_page_size,
1211 (prot & PAGE_BITS) & ~PAGE_WRITE);
1212 #ifdef DEBUG_TB_INVALIDATE
1213 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1214 page_addr);
1215 #endif
1217 #else
1218 /* if some code is already present, then the pages are already
1219 protected. So we handle the case where only the first TB is
1220 allocated in a physical page */
1221 if (!last_first_tb) {
1222 tlb_protect_code(page_addr);
1224 #endif
1226 #endif /* TARGET_HAS_SMC */
1229 /* Allocate a new translation block. Flush the translation buffer if
1230 too many translation blocks or too much generated code. */
1231 TranslationBlock *tb_alloc(target_ulong pc)
1233 TranslationBlock *tb;
1235 if (nb_tbs >= code_gen_max_blocks ||
1236 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1237 return NULL;
1238 tb = &tbs[nb_tbs++];
1239 tb->pc = pc;
1240 tb->cflags = 0;
1241 return tb;
1244 void tb_free(TranslationBlock *tb)
1246 /* In practice this is mostly used for single use temporary TB
1247 Ignore the hard cases and just back up if this TB happens to
1248 be the last one generated. */
1249 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1250 code_gen_ptr = tb->tc_ptr;
1251 nb_tbs--;
1255 /* add a new TB and link it to the physical page tables. phys_page2 is
1256 (-1) to indicate that only one page contains the TB. */
1257 void tb_link_page(TranslationBlock *tb,
1258 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1260 unsigned int h;
1261 TranslationBlock **ptb;
1263 /* Grab the mmap lock to stop another thread invalidating this TB
1264 before we are done. */
1265 mmap_lock();
1266 /* add in the physical hash table */
1267 h = tb_phys_hash_func(phys_pc);
1268 ptb = &tb_phys_hash[h];
1269 tb->phys_hash_next = *ptb;
1270 *ptb = tb;
1272 /* add in the page list */
1273 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1274 if (phys_page2 != -1)
1275 tb_alloc_page(tb, 1, phys_page2);
1276 else
1277 tb->page_addr[1] = -1;
1279 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1280 tb->jmp_next[0] = NULL;
1281 tb->jmp_next[1] = NULL;
1283 /* init original jump addresses */
1284 if (tb->tb_next_offset[0] != 0xffff)
1285 tb_reset_jump(tb, 0);
1286 if (tb->tb_next_offset[1] != 0xffff)
1287 tb_reset_jump(tb, 1);
1289 #ifdef DEBUG_TB_CHECK
1290 tb_page_check();
1291 #endif
1292 mmap_unlock();
1295 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1296 tb[1].tc_ptr. Return NULL if not found */
1297 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1299 int m_min, m_max, m;
1300 unsigned long v;
1301 TranslationBlock *tb;
1303 if (nb_tbs <= 0)
1304 return NULL;
1305 if (tc_ptr < (unsigned long)code_gen_buffer ||
1306 tc_ptr >= (unsigned long)code_gen_ptr)
1307 return NULL;
1308 /* binary search (cf Knuth) */
1309 m_min = 0;
1310 m_max = nb_tbs - 1;
1311 while (m_min <= m_max) {
1312 m = (m_min + m_max) >> 1;
1313 tb = &tbs[m];
1314 v = (unsigned long)tb->tc_ptr;
1315 if (v == tc_ptr)
1316 return tb;
1317 else if (tc_ptr < v) {
1318 m_max = m - 1;
1319 } else {
1320 m_min = m + 1;
1323 return &tbs[m_max];
1326 static void tb_reset_jump_recursive(TranslationBlock *tb);
1328 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1330 TranslationBlock *tb1, *tb_next, **ptb;
1331 unsigned int n1;
1333 tb1 = tb->jmp_next[n];
1334 if (tb1 != NULL) {
1335 /* find head of list */
1336 for(;;) {
1337 n1 = (long)tb1 & 3;
1338 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1339 if (n1 == 2)
1340 break;
1341 tb1 = tb1->jmp_next[n1];
1343 /* we are now sure now that tb jumps to tb1 */
1344 tb_next = tb1;
1346 /* remove tb from the jmp_first list */
1347 ptb = &tb_next->jmp_first;
1348 for(;;) {
1349 tb1 = *ptb;
1350 n1 = (long)tb1 & 3;
1351 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1352 if (n1 == n && tb1 == tb)
1353 break;
1354 ptb = &tb1->jmp_next[n1];
1356 *ptb = tb->jmp_next[n];
1357 tb->jmp_next[n] = NULL;
1359 /* suppress the jump to next tb in generated code */
1360 tb_reset_jump(tb, n);
1362 /* suppress jumps in the tb on which we could have jumped */
1363 tb_reset_jump_recursive(tb_next);
1367 static void tb_reset_jump_recursive(TranslationBlock *tb)
1369 tb_reset_jump_recursive2(tb, 0);
1370 tb_reset_jump_recursive2(tb, 1);
1373 #if defined(TARGET_HAS_ICE)
1374 #if defined(CONFIG_USER_ONLY)
1375 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1377 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1379 #else
1380 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1382 target_phys_addr_t addr;
1383 target_ulong pd;
1384 ram_addr_t ram_addr;
1385 PhysPageDesc *p;
1387 addr = cpu_get_phys_page_debug(env, pc);
1388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1389 if (!p) {
1390 pd = IO_MEM_UNASSIGNED;
1391 } else {
1392 pd = p->phys_offset;
1394 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1395 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1397 #endif
1398 #endif /* TARGET_HAS_ICE */
1400 #if defined(CONFIG_USER_ONLY)
1401 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1407 int flags, CPUWatchpoint **watchpoint)
1409 return -ENOSYS;
1411 #else
1412 /* Add a watchpoint. */
1413 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1414 int flags, CPUWatchpoint **watchpoint)
1416 target_ulong len_mask = ~(len - 1);
1417 CPUWatchpoint *wp;
1419 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1420 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1421 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1422 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1423 return -EINVAL;
1425 wp = qemu_malloc(sizeof(*wp));
1427 wp->vaddr = addr;
1428 wp->len_mask = len_mask;
1429 wp->flags = flags;
1431 /* keep all GDB-injected watchpoints in front */
1432 if (flags & BP_GDB)
1433 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1434 else
1435 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1437 tlb_flush_page(env, addr);
1439 if (watchpoint)
1440 *watchpoint = wp;
1441 return 0;
1444 /* Remove a specific watchpoint. */
1445 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1446 int flags)
1448 target_ulong len_mask = ~(len - 1);
1449 CPUWatchpoint *wp;
1451 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1452 if (addr == wp->vaddr && len_mask == wp->len_mask
1453 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1454 cpu_watchpoint_remove_by_ref(env, wp);
1455 return 0;
1458 return -ENOENT;
1461 /* Remove a specific watchpoint by reference. */
1462 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1464 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1466 tlb_flush_page(env, watchpoint->vaddr);
1468 qemu_free(watchpoint);
1471 /* Remove all matching watchpoints. */
1472 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1474 CPUWatchpoint *wp, *next;
1476 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1477 if (wp->flags & mask)
1478 cpu_watchpoint_remove_by_ref(env, wp);
1481 #endif
1483 /* Add a breakpoint. */
1484 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1485 CPUBreakpoint **breakpoint)
1487 #if defined(TARGET_HAS_ICE)
1488 CPUBreakpoint *bp;
1490 bp = qemu_malloc(sizeof(*bp));
1492 bp->pc = pc;
1493 bp->flags = flags;
1495 /* keep all GDB-injected breakpoints in front */
1496 if (flags & BP_GDB)
1497 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1498 else
1499 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1501 breakpoint_invalidate(env, pc);
1503 if (breakpoint)
1504 *breakpoint = bp;
1505 return 0;
1506 #else
1507 return -ENOSYS;
1508 #endif
1511 /* Remove a specific breakpoint. */
1512 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1514 #if defined(TARGET_HAS_ICE)
1515 CPUBreakpoint *bp;
1517 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1518 if (bp->pc == pc && bp->flags == flags) {
1519 cpu_breakpoint_remove_by_ref(env, bp);
1520 return 0;
1523 return -ENOENT;
1524 #else
1525 return -ENOSYS;
1526 #endif
1529 /* Remove a specific breakpoint by reference. */
1530 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1532 #if defined(TARGET_HAS_ICE)
1533 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1535 breakpoint_invalidate(env, breakpoint->pc);
1537 qemu_free(breakpoint);
1538 #endif
1541 /* Remove all matching breakpoints. */
1542 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1544 #if defined(TARGET_HAS_ICE)
1545 CPUBreakpoint *bp, *next;
1547 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1548 if (bp->flags & mask)
1549 cpu_breakpoint_remove_by_ref(env, bp);
1551 #endif
1554 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1555 CPU loop after each instruction */
1556 void cpu_single_step(CPUState *env, int enabled)
1558 #if defined(TARGET_HAS_ICE)
1559 if (env->singlestep_enabled != enabled) {
1560 env->singlestep_enabled = enabled;
1561 if (kvm_enabled())
1562 kvm_update_guest_debug(env, 0);
1563 else {
1564 /* must flush all the translated code to avoid inconsistencies */
1565 /* XXX: only flush what is necessary */
1566 tb_flush(env);
1569 #endif
1572 /* enable or disable low levels log */
1573 void cpu_set_log(int log_flags)
1575 loglevel = log_flags;
1576 if (loglevel && !logfile) {
1577 logfile = fopen(logfilename, log_append ? "a" : "w");
1578 if (!logfile) {
1579 perror(logfilename);
1580 _exit(1);
1582 #if !defined(CONFIG_SOFTMMU)
1583 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1585 static char logfile_buf[4096];
1586 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1588 #elif !defined(_WIN32)
1589 /* Win32 doesn't support line-buffering and requires size >= 2 */
1590 setvbuf(logfile, NULL, _IOLBF, 0);
1591 #endif
1592 log_append = 1;
1594 if (!loglevel && logfile) {
1595 fclose(logfile);
1596 logfile = NULL;
1600 void cpu_set_log_filename(const char *filename)
1602 logfilename = strdup(filename);
1603 if (logfile) {
1604 fclose(logfile);
1605 logfile = NULL;
1607 cpu_set_log(loglevel);
1610 static void cpu_unlink_tb(CPUState *env)
1612 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1613 problem and hope the cpu will stop of its own accord. For userspace
1614 emulation this often isn't actually as bad as it sounds. Often
1615 signals are used primarily to interrupt blocking syscalls. */
1616 TranslationBlock *tb;
1617 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1619 spin_lock(&interrupt_lock);
1620 tb = env->current_tb;
1621 /* if the cpu is currently executing code, we must unlink it and
1622 all the potentially executing TB */
1623 if (tb) {
1624 env->current_tb = NULL;
1625 tb_reset_jump_recursive(tb);
1627 spin_unlock(&interrupt_lock);
1630 /* mask must never be zero, except for A20 change call */
1631 void cpu_interrupt(CPUState *env, int mask)
1633 int old_mask;
1635 old_mask = env->interrupt_request;
1636 env->interrupt_request |= mask;
1638 #ifndef CONFIG_USER_ONLY
1640 * If called from iothread context, wake the target cpu in
1641 * case its halted.
1643 if (!qemu_cpu_self(env)) {
1644 qemu_cpu_kick(env);
1645 return;
1647 #endif
1649 if (use_icount) {
1650 env->icount_decr.u16.high = 0xffff;
1651 #ifndef CONFIG_USER_ONLY
1652 if (!can_do_io(env)
1653 && (mask & ~old_mask) != 0) {
1654 cpu_abort(env, "Raised interrupt while not in I/O function");
1656 #endif
1657 } else {
1658 cpu_unlink_tb(env);
1662 void cpu_reset_interrupt(CPUState *env, int mask)
1664 env->interrupt_request &= ~mask;
1667 void cpu_exit(CPUState *env)
1669 env->exit_request = 1;
1670 cpu_unlink_tb(env);
1673 const CPULogItem cpu_log_items[] = {
1674 { CPU_LOG_TB_OUT_ASM, "out_asm",
1675 "show generated host assembly code for each compiled TB" },
1676 { CPU_LOG_TB_IN_ASM, "in_asm",
1677 "show target assembly code for each compiled TB" },
1678 { CPU_LOG_TB_OP, "op",
1679 "show micro ops for each compiled TB" },
1680 { CPU_LOG_TB_OP_OPT, "op_opt",
1681 "show micro ops "
1682 #ifdef TARGET_I386
1683 "before eflags optimization and "
1684 #endif
1685 "after liveness analysis" },
1686 { CPU_LOG_INT, "int",
1687 "show interrupts/exceptions in short format" },
1688 { CPU_LOG_EXEC, "exec",
1689 "show trace before each executed TB (lots of logs)" },
1690 { CPU_LOG_TB_CPU, "cpu",
1691 "show CPU state before block translation" },
1692 #ifdef TARGET_I386
1693 { CPU_LOG_PCALL, "pcall",
1694 "show protected mode far calls/returns/exceptions" },
1695 { CPU_LOG_RESET, "cpu_reset",
1696 "show CPU state before CPU resets" },
1697 #endif
1698 #ifdef DEBUG_IOPORT
1699 { CPU_LOG_IOPORT, "ioport",
1700 "show all i/o ports accesses" },
1701 #endif
1702 { 0, NULL, NULL },
1705 #ifndef CONFIG_USER_ONLY
1706 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1707 = QLIST_HEAD_INITIALIZER(memory_client_list);
1709 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1710 ram_addr_t size,
1711 ram_addr_t phys_offset)
1713 CPUPhysMemoryClient *client;
1714 QLIST_FOREACH(client, &memory_client_list, list) {
1715 client->set_memory(client, start_addr, size, phys_offset);
1719 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1720 target_phys_addr_t end)
1722 CPUPhysMemoryClient *client;
1723 QLIST_FOREACH(client, &memory_client_list, list) {
1724 int r = client->sync_dirty_bitmap(client, start, end);
1725 if (r < 0)
1726 return r;
1728 return 0;
1731 static int cpu_notify_migration_log(int enable)
1733 CPUPhysMemoryClient *client;
1734 QLIST_FOREACH(client, &memory_client_list, list) {
1735 int r = client->migration_log(client, enable);
1736 if (r < 0)
1737 return r;
1739 return 0;
1742 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1743 int level, void **lp)
1745 int i;
1747 if (*lp == NULL) {
1748 return;
1750 if (level == 0) {
1751 PhysPageDesc *pd = *lp;
1752 for (i = 0; i < L2_SIZE; ++i) {
1753 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1754 client->set_memory(client, pd[i].region_offset,
1755 TARGET_PAGE_SIZE, pd[i].phys_offset);
1758 } else {
1759 void **pp = *lp;
1760 for (i = 0; i < L2_SIZE; ++i) {
1761 phys_page_for_each_1(client, level - 1, pp + i);
1766 static void phys_page_for_each(CPUPhysMemoryClient *client)
1768 int i;
1769 for (i = 0; i < P_L1_SIZE; ++i) {
1770 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1771 l1_phys_map + 1);
1775 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1777 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1778 phys_page_for_each(client);
1781 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1783 QLIST_REMOVE(client, list);
1785 #endif
1787 static int cmp1(const char *s1, int n, const char *s2)
1789 if (strlen(s2) != n)
1790 return 0;
1791 return memcmp(s1, s2, n) == 0;
1794 /* takes a comma separated list of log masks. Return 0 if error. */
1795 int cpu_str_to_log_mask(const char *str)
1797 const CPULogItem *item;
1798 int mask;
1799 const char *p, *p1;
1801 p = str;
1802 mask = 0;
1803 for(;;) {
1804 p1 = strchr(p, ',');
1805 if (!p1)
1806 p1 = p + strlen(p);
1807 if(cmp1(p,p1-p,"all")) {
1808 for(item = cpu_log_items; item->mask != 0; item++) {
1809 mask |= item->mask;
1811 } else {
1812 for(item = cpu_log_items; item->mask != 0; item++) {
1813 if (cmp1(p, p1 - p, item->name))
1814 goto found;
1816 return 0;
1818 found:
1819 mask |= item->mask;
1820 if (*p1 != ',')
1821 break;
1822 p = p1 + 1;
1824 return mask;
1827 void cpu_abort(CPUState *env, const char *fmt, ...)
1829 va_list ap;
1830 va_list ap2;
1832 va_start(ap, fmt);
1833 va_copy(ap2, ap);
1834 fprintf(stderr, "qemu: fatal: ");
1835 vfprintf(stderr, fmt, ap);
1836 fprintf(stderr, "\n");
1837 #ifdef TARGET_I386
1838 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1839 #else
1840 cpu_dump_state(env, stderr, fprintf, 0);
1841 #endif
1842 if (qemu_log_enabled()) {
1843 qemu_log("qemu: fatal: ");
1844 qemu_log_vprintf(fmt, ap2);
1845 qemu_log("\n");
1846 #ifdef TARGET_I386
1847 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1848 #else
1849 log_cpu_state(env, 0);
1850 #endif
1851 qemu_log_flush();
1852 qemu_log_close();
1854 va_end(ap2);
1855 va_end(ap);
1856 #if defined(CONFIG_USER_ONLY)
1858 struct sigaction act;
1859 sigfillset(&act.sa_mask);
1860 act.sa_handler = SIG_DFL;
1861 sigaction(SIGABRT, &act, NULL);
1863 #endif
1864 abort();
1867 CPUState *cpu_copy(CPUState *env)
1869 CPUState *new_env = cpu_init(env->cpu_model_str);
1870 CPUState *next_cpu = new_env->next_cpu;
1871 int cpu_index = new_env->cpu_index;
1872 #if defined(TARGET_HAS_ICE)
1873 CPUBreakpoint *bp;
1874 CPUWatchpoint *wp;
1875 #endif
1877 memcpy(new_env, env, sizeof(CPUState));
1879 /* Preserve chaining and index. */
1880 new_env->next_cpu = next_cpu;
1881 new_env->cpu_index = cpu_index;
1883 /* Clone all break/watchpoints.
1884 Note: Once we support ptrace with hw-debug register access, make sure
1885 BP_CPU break/watchpoints are handled correctly on clone. */
1886 QTAILQ_INIT(&env->breakpoints);
1887 QTAILQ_INIT(&env->watchpoints);
1888 #if defined(TARGET_HAS_ICE)
1889 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1890 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1892 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1893 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1894 wp->flags, NULL);
1896 #endif
1898 return new_env;
1901 #if !defined(CONFIG_USER_ONLY)
1903 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1905 unsigned int i;
1907 /* Discard jump cache entries for any tb which might potentially
1908 overlap the flushed page. */
1909 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1910 memset (&env->tb_jmp_cache[i], 0,
1911 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1913 i = tb_jmp_cache_hash_page(addr);
1914 memset (&env->tb_jmp_cache[i], 0,
1915 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1918 static CPUTLBEntry s_cputlb_empty_entry = {
1919 .addr_read = -1,
1920 .addr_write = -1,
1921 .addr_code = -1,
1922 .addend = -1,
1925 /* NOTE: if flush_global is true, also flush global entries (not
1926 implemented yet) */
1927 void tlb_flush(CPUState *env, int flush_global)
1929 int i;
1931 #if defined(DEBUG_TLB)
1932 printf("tlb_flush:\n");
1933 #endif
1934 /* must reset current TB so that interrupts cannot modify the
1935 links while we are modifying them */
1936 env->current_tb = NULL;
1938 for(i = 0; i < CPU_TLB_SIZE; i++) {
1939 int mmu_idx;
1940 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1941 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1945 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1947 env->tlb_flush_addr = -1;
1948 env->tlb_flush_mask = 0;
1949 tlb_flush_count++;
1952 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1954 if (addr == (tlb_entry->addr_read &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_write &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1958 addr == (tlb_entry->addr_code &
1959 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1960 *tlb_entry = s_cputlb_empty_entry;
1964 void tlb_flush_page(CPUState *env, target_ulong addr)
1966 int i;
1967 int mmu_idx;
1969 #if defined(DEBUG_TLB)
1970 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1971 #endif
1972 /* Check if we need to flush due to large pages. */
1973 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1974 #if defined(DEBUG_TLB)
1975 printf("tlb_flush_page: forced full flush ("
1976 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1977 env->tlb_flush_addr, env->tlb_flush_mask);
1978 #endif
1979 tlb_flush(env, 1);
1980 return;
1982 /* must reset current TB so that interrupts cannot modify the
1983 links while we are modifying them */
1984 env->current_tb = NULL;
1986 addr &= TARGET_PAGE_MASK;
1987 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1988 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1989 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1991 tlb_flush_jmp_cache(env, addr);
1994 /* update the TLBs so that writes to code in the virtual page 'addr'
1995 can be detected */
1996 static void tlb_protect_code(ram_addr_t ram_addr)
1998 cpu_physical_memory_reset_dirty(ram_addr,
1999 ram_addr + TARGET_PAGE_SIZE,
2000 CODE_DIRTY_FLAG);
2003 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2004 tested for self modifying code */
2005 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2006 target_ulong vaddr)
2008 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2011 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2012 unsigned long start, unsigned long length)
2014 unsigned long addr;
2015 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2016 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2017 if ((addr - start) < length) {
2018 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2023 /* Note: start and end must be within the same ram block. */
2024 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2025 int dirty_flags)
2027 CPUState *env;
2028 unsigned long length, start1;
2029 int i;
2031 start &= TARGET_PAGE_MASK;
2032 end = TARGET_PAGE_ALIGN(end);
2034 length = end - start;
2035 if (length == 0)
2036 return;
2037 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2039 /* we modify the TLB cache so that the dirty bit will be set again
2040 when accessing the range */
2041 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2042 /* Chek that we don't span multiple blocks - this breaks the
2043 address comparisons below. */
2044 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2045 != (end - 1) - start) {
2046 abort();
2049 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2050 int mmu_idx;
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2052 for(i = 0; i < CPU_TLB_SIZE; i++)
2053 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2054 start1, length);
2059 int cpu_physical_memory_set_dirty_tracking(int enable)
2061 int ret = 0;
2062 in_migration = enable;
2063 ret = cpu_notify_migration_log(!!enable);
2064 return ret;
2067 int cpu_physical_memory_get_dirty_tracking(void)
2069 return in_migration;
2072 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2073 target_phys_addr_t end_addr)
2075 int ret;
2077 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2078 return ret;
2081 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2083 ram_addr_t ram_addr;
2084 void *p;
2086 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2087 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2088 + tlb_entry->addend);
2089 ram_addr = qemu_ram_addr_from_host_nofail(p);
2090 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2091 tlb_entry->addr_write |= TLB_NOTDIRTY;
2096 /* update the TLB according to the current state of the dirty bits */
2097 void cpu_tlb_update_dirty(CPUState *env)
2099 int i;
2100 int mmu_idx;
2101 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2102 for(i = 0; i < CPU_TLB_SIZE; i++)
2103 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2107 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2109 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2110 tlb_entry->addr_write = vaddr;
2113 /* update the TLB corresponding to virtual page vaddr
2114 so that it is no longer dirty */
2115 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2117 int i;
2118 int mmu_idx;
2120 vaddr &= TARGET_PAGE_MASK;
2121 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2122 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2123 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2126 /* Our TLB does not support large pages, so remember the area covered by
2127 large pages and trigger a full TLB flush if these are invalidated. */
2128 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2129 target_ulong size)
2131 target_ulong mask = ~(size - 1);
2133 if (env->tlb_flush_addr == (target_ulong)-1) {
2134 env->tlb_flush_addr = vaddr & mask;
2135 env->tlb_flush_mask = mask;
2136 return;
2138 /* Extend the existing region to include the new page.
2139 This is a compromise between unnecessary flushes and the cost
2140 of maintaining a full variable size TLB. */
2141 mask &= env->tlb_flush_mask;
2142 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2143 mask <<= 1;
2145 env->tlb_flush_addr &= mask;
2146 env->tlb_flush_mask = mask;
2149 /* Add a new TLB entry. At most one entry for a given virtual address
2150 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2151 supplied size is only used by tlb_flush_page. */
2152 void tlb_set_page(CPUState *env, target_ulong vaddr,
2153 target_phys_addr_t paddr, int prot,
2154 int mmu_idx, target_ulong size)
2156 PhysPageDesc *p;
2157 unsigned long pd;
2158 unsigned int index;
2159 target_ulong address;
2160 target_ulong code_address;
2161 unsigned long addend;
2162 CPUTLBEntry *te;
2163 CPUWatchpoint *wp;
2164 target_phys_addr_t iotlb;
2166 assert(size >= TARGET_PAGE_SIZE);
2167 if (size != TARGET_PAGE_SIZE) {
2168 tlb_add_large_page(env, vaddr, size);
2170 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2171 if (!p) {
2172 pd = IO_MEM_UNASSIGNED;
2173 } else {
2174 pd = p->phys_offset;
2176 #if defined(DEBUG_TLB)
2177 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2178 " prot=%x idx=%d pd=0x%08lx\n",
2179 vaddr, paddr, prot, mmu_idx, pd);
2180 #endif
2182 address = vaddr;
2183 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2184 /* IO memory case (romd handled later) */
2185 address |= TLB_MMIO;
2187 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2188 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2189 /* Normal RAM. */
2190 iotlb = pd & TARGET_PAGE_MASK;
2191 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2192 iotlb |= IO_MEM_NOTDIRTY;
2193 else
2194 iotlb |= IO_MEM_ROM;
2195 } else {
2196 /* IO handlers are currently passed a physical address.
2197 It would be nice to pass an offset from the base address
2198 of that region. This would avoid having to special case RAM,
2199 and avoid full address decoding in every device.
2200 We can't use the high bits of pd for this because
2201 IO_MEM_ROMD uses these as a ram address. */
2202 iotlb = (pd & ~TARGET_PAGE_MASK);
2203 if (p) {
2204 iotlb += p->region_offset;
2205 } else {
2206 iotlb += paddr;
2210 code_address = address;
2211 /* Make accesses to pages with watchpoints go via the
2212 watchpoint trap routines. */
2213 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2214 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2215 /* Avoid trapping reads of pages with a write breakpoint. */
2216 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2217 iotlb = io_mem_watch + paddr;
2218 address |= TLB_MMIO;
2219 break;
2224 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2225 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2226 te = &env->tlb_table[mmu_idx][index];
2227 te->addend = addend - vaddr;
2228 if (prot & PAGE_READ) {
2229 te->addr_read = address;
2230 } else {
2231 te->addr_read = -1;
2234 if (prot & PAGE_EXEC) {
2235 te->addr_code = code_address;
2236 } else {
2237 te->addr_code = -1;
2239 if (prot & PAGE_WRITE) {
2240 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2241 (pd & IO_MEM_ROMD)) {
2242 /* Write access calls the I/O callback. */
2243 te->addr_write = address | TLB_MMIO;
2244 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2245 !cpu_physical_memory_is_dirty(pd)) {
2246 te->addr_write = address | TLB_NOTDIRTY;
2247 } else {
2248 te->addr_write = address;
2250 } else {
2251 te->addr_write = -1;
2255 #else
2257 void tlb_flush(CPUState *env, int flush_global)
2261 void tlb_flush_page(CPUState *env, target_ulong addr)
2266 * Walks guest process memory "regions" one by one
2267 * and calls callback function 'fn' for each region.
2270 struct walk_memory_regions_data
2272 walk_memory_regions_fn fn;
2273 void *priv;
2274 unsigned long start;
2275 int prot;
2278 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2279 abi_ulong end, int new_prot)
2281 if (data->start != -1ul) {
2282 int rc = data->fn(data->priv, data->start, end, data->prot);
2283 if (rc != 0) {
2284 return rc;
2288 data->start = (new_prot ? end : -1ul);
2289 data->prot = new_prot;
2291 return 0;
2294 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2295 abi_ulong base, int level, void **lp)
2297 abi_ulong pa;
2298 int i, rc;
2300 if (*lp == NULL) {
2301 return walk_memory_regions_end(data, base, 0);
2304 if (level == 0) {
2305 PageDesc *pd = *lp;
2306 for (i = 0; i < L2_SIZE; ++i) {
2307 int prot = pd[i].flags;
2309 pa = base | (i << TARGET_PAGE_BITS);
2310 if (prot != data->prot) {
2311 rc = walk_memory_regions_end(data, pa, prot);
2312 if (rc != 0) {
2313 return rc;
2317 } else {
2318 void **pp = *lp;
2319 for (i = 0; i < L2_SIZE; ++i) {
2320 pa = base | ((abi_ulong)i <<
2321 (TARGET_PAGE_BITS + L2_BITS * level));
2322 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2323 if (rc != 0) {
2324 return rc;
2329 return 0;
2332 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2334 struct walk_memory_regions_data data;
2335 unsigned long i;
2337 data.fn = fn;
2338 data.priv = priv;
2339 data.start = -1ul;
2340 data.prot = 0;
2342 for (i = 0; i < V_L1_SIZE; i++) {
2343 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2344 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2345 if (rc != 0) {
2346 return rc;
2350 return walk_memory_regions_end(&data, 0, 0);
2353 static int dump_region(void *priv, abi_ulong start,
2354 abi_ulong end, unsigned long prot)
2356 FILE *f = (FILE *)priv;
2358 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2359 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2360 start, end, end - start,
2361 ((prot & PAGE_READ) ? 'r' : '-'),
2362 ((prot & PAGE_WRITE) ? 'w' : '-'),
2363 ((prot & PAGE_EXEC) ? 'x' : '-'));
2365 return (0);
2368 /* dump memory mappings */
2369 void page_dump(FILE *f)
2371 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2372 "start", "end", "size", "prot");
2373 walk_memory_regions(f, dump_region);
2376 int page_get_flags(target_ulong address)
2378 PageDesc *p;
2380 p = page_find(address >> TARGET_PAGE_BITS);
2381 if (!p)
2382 return 0;
2383 return p->flags;
2386 /* Modify the flags of a page and invalidate the code if necessary.
2387 The flag PAGE_WRITE_ORG is positioned automatically depending
2388 on PAGE_WRITE. The mmap_lock should already be held. */
2389 void page_set_flags(target_ulong start, target_ulong end, int flags)
2391 target_ulong addr, len;
2393 /* This function should never be called with addresses outside the
2394 guest address space. If this assert fires, it probably indicates
2395 a missing call to h2g_valid. */
2396 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2397 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2398 #endif
2399 assert(start < end);
2401 start = start & TARGET_PAGE_MASK;
2402 end = TARGET_PAGE_ALIGN(end);
2404 if (flags & PAGE_WRITE) {
2405 flags |= PAGE_WRITE_ORG;
2408 for (addr = start, len = end - start;
2409 len != 0;
2410 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2411 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2413 /* If the write protection bit is set, then we invalidate
2414 the code inside. */
2415 if (!(p->flags & PAGE_WRITE) &&
2416 (flags & PAGE_WRITE) &&
2417 p->first_tb) {
2418 tb_invalidate_phys_page(addr, 0, NULL);
2420 p->flags = flags;
2424 int page_check_range(target_ulong start, target_ulong len, int flags)
2426 PageDesc *p;
2427 target_ulong end;
2428 target_ulong addr;
2430 /* This function should never be called with addresses outside the
2431 guest address space. If this assert fires, it probably indicates
2432 a missing call to h2g_valid. */
2433 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2434 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2435 #endif
2437 if (len == 0) {
2438 return 0;
2440 if (start + len - 1 < start) {
2441 /* We've wrapped around. */
2442 return -1;
2445 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2446 start = start & TARGET_PAGE_MASK;
2448 for (addr = start, len = end - start;
2449 len != 0;
2450 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2451 p = page_find(addr >> TARGET_PAGE_BITS);
2452 if( !p )
2453 return -1;
2454 if( !(p->flags & PAGE_VALID) )
2455 return -1;
2457 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2458 return -1;
2459 if (flags & PAGE_WRITE) {
2460 if (!(p->flags & PAGE_WRITE_ORG))
2461 return -1;
2462 /* unprotect the page if it was put read-only because it
2463 contains translated code */
2464 if (!(p->flags & PAGE_WRITE)) {
2465 if (!page_unprotect(addr, 0, NULL))
2466 return -1;
2468 return 0;
2471 return 0;
2474 /* called from signal handler: invalidate the code and unprotect the
2475 page. Return TRUE if the fault was successfully handled. */
2476 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2478 unsigned int prot;
2479 PageDesc *p;
2480 target_ulong host_start, host_end, addr;
2482 /* Technically this isn't safe inside a signal handler. However we
2483 know this only ever happens in a synchronous SEGV handler, so in
2484 practice it seems to be ok. */
2485 mmap_lock();
2487 p = page_find(address >> TARGET_PAGE_BITS);
2488 if (!p) {
2489 mmap_unlock();
2490 return 0;
2493 /* if the page was really writable, then we change its
2494 protection back to writable */
2495 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2496 host_start = address & qemu_host_page_mask;
2497 host_end = host_start + qemu_host_page_size;
2499 prot = 0;
2500 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2501 p = page_find(addr >> TARGET_PAGE_BITS);
2502 p->flags |= PAGE_WRITE;
2503 prot |= p->flags;
2505 /* and since the content will be modified, we must invalidate
2506 the corresponding translated code. */
2507 tb_invalidate_phys_page(addr, pc, puc);
2508 #ifdef DEBUG_TB_CHECK
2509 tb_invalidate_check(addr);
2510 #endif
2512 mprotect((void *)g2h(host_start), qemu_host_page_size,
2513 prot & PAGE_BITS);
2515 mmap_unlock();
2516 return 1;
2518 mmap_unlock();
2519 return 0;
2522 static inline void tlb_set_dirty(CPUState *env,
2523 unsigned long addr, target_ulong vaddr)
2526 #endif /* defined(CONFIG_USER_ONLY) */
2528 #if !defined(CONFIG_USER_ONLY)
2530 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2531 typedef struct subpage_t {
2532 target_phys_addr_t base;
2533 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2534 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2535 } subpage_t;
2537 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2538 ram_addr_t memory, ram_addr_t region_offset);
2539 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2540 ram_addr_t orig_memory,
2541 ram_addr_t region_offset);
2542 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2543 need_subpage) \
2544 do { \
2545 if (addr > start_addr) \
2546 start_addr2 = 0; \
2547 else { \
2548 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2549 if (start_addr2 > 0) \
2550 need_subpage = 1; \
2553 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2554 end_addr2 = TARGET_PAGE_SIZE - 1; \
2555 else { \
2556 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2557 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2558 need_subpage = 1; \
2560 } while (0)
2562 /* register physical memory.
2563 For RAM, 'size' must be a multiple of the target page size.
2564 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2565 io memory page. The address used when calling the IO function is
2566 the offset from the start of the region, plus region_offset. Both
2567 start_addr and region_offset are rounded down to a page boundary
2568 before calculating this offset. This should not be a problem unless
2569 the low bits of start_addr and region_offset differ. */
2570 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2571 ram_addr_t size,
2572 ram_addr_t phys_offset,
2573 ram_addr_t region_offset)
2575 target_phys_addr_t addr, end_addr;
2576 PhysPageDesc *p;
2577 CPUState *env;
2578 ram_addr_t orig_size = size;
2579 subpage_t *subpage;
2581 cpu_notify_set_memory(start_addr, size, phys_offset);
2583 if (phys_offset == IO_MEM_UNASSIGNED) {
2584 region_offset = start_addr;
2586 region_offset &= TARGET_PAGE_MASK;
2587 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2588 end_addr = start_addr + (target_phys_addr_t)size;
2589 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2590 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2591 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2592 ram_addr_t orig_memory = p->phys_offset;
2593 target_phys_addr_t start_addr2, end_addr2;
2594 int need_subpage = 0;
2596 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2597 need_subpage);
2598 if (need_subpage) {
2599 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2600 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2601 &p->phys_offset, orig_memory,
2602 p->region_offset);
2603 } else {
2604 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2605 >> IO_MEM_SHIFT];
2607 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2608 region_offset);
2609 p->region_offset = 0;
2610 } else {
2611 p->phys_offset = phys_offset;
2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2613 (phys_offset & IO_MEM_ROMD))
2614 phys_offset += TARGET_PAGE_SIZE;
2616 } else {
2617 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2618 p->phys_offset = phys_offset;
2619 p->region_offset = region_offset;
2620 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2621 (phys_offset & IO_MEM_ROMD)) {
2622 phys_offset += TARGET_PAGE_SIZE;
2623 } else {
2624 target_phys_addr_t start_addr2, end_addr2;
2625 int need_subpage = 0;
2627 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2628 end_addr2, need_subpage);
2630 if (need_subpage) {
2631 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2632 &p->phys_offset, IO_MEM_UNASSIGNED,
2633 addr & TARGET_PAGE_MASK);
2634 subpage_register(subpage, start_addr2, end_addr2,
2635 phys_offset, region_offset);
2636 p->region_offset = 0;
2640 region_offset += TARGET_PAGE_SIZE;
2643 /* since each CPU stores ram addresses in its TLB cache, we must
2644 reset the modified entries */
2645 /* XXX: slow ! */
2646 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2647 tlb_flush(env, 1);
2651 /* XXX: temporary until new memory mapping API */
2652 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2654 PhysPageDesc *p;
2656 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2657 if (!p)
2658 return IO_MEM_UNASSIGNED;
2659 return p->phys_offset;
2662 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2664 if (kvm_enabled())
2665 kvm_coalesce_mmio_region(addr, size);
2668 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2670 if (kvm_enabled())
2671 kvm_uncoalesce_mmio_region(addr, size);
2674 void qemu_flush_coalesced_mmio_buffer(void)
2676 if (kvm_enabled())
2677 kvm_flush_coalesced_mmio_buffer();
2680 #if defined(__linux__) && !defined(TARGET_S390X)
2682 #include <sys/vfs.h>
2684 #define HUGETLBFS_MAGIC 0x958458f6
2686 static long gethugepagesize(const char *path)
2688 struct statfs fs;
2689 int ret;
2691 do {
2692 ret = statfs(path, &fs);
2693 } while (ret != 0 && errno == EINTR);
2695 if (ret != 0) {
2696 perror(path);
2697 return 0;
2700 if (fs.f_type != HUGETLBFS_MAGIC)
2701 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2703 return fs.f_bsize;
2706 static void *file_ram_alloc(RAMBlock *block,
2707 ram_addr_t memory,
2708 const char *path)
2710 char *filename;
2711 void *area;
2712 int fd;
2713 #ifdef MAP_POPULATE
2714 int flags;
2715 #endif
2716 unsigned long hpagesize;
2718 hpagesize = gethugepagesize(path);
2719 if (!hpagesize) {
2720 return NULL;
2723 if (memory < hpagesize) {
2724 return NULL;
2727 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2728 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2729 return NULL;
2732 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2733 return NULL;
2736 fd = mkstemp(filename);
2737 if (fd < 0) {
2738 perror("unable to create backing store for hugepages");
2739 free(filename);
2740 return NULL;
2742 unlink(filename);
2743 free(filename);
2745 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2748 * ftruncate is not supported by hugetlbfs in older
2749 * hosts, so don't bother bailing out on errors.
2750 * If anything goes wrong with it under other filesystems,
2751 * mmap will fail.
2753 if (ftruncate(fd, memory))
2754 perror("ftruncate");
2756 #ifdef MAP_POPULATE
2757 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2758 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2759 * to sidestep this quirk.
2761 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2762 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2763 #else
2764 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2765 #endif
2766 if (area == MAP_FAILED) {
2767 perror("file_ram_alloc: can't mmap RAM pages");
2768 close(fd);
2769 return (NULL);
2771 block->fd = fd;
2772 return area;
2774 #endif
2776 static ram_addr_t find_ram_offset(ram_addr_t size)
2778 RAMBlock *block, *next_block;
2779 ram_addr_t offset = 0, mingap = ULONG_MAX;
2781 if (QLIST_EMPTY(&ram_list.blocks))
2782 return 0;
2784 QLIST_FOREACH(block, &ram_list.blocks, next) {
2785 ram_addr_t end, next = ULONG_MAX;
2787 end = block->offset + block->length;
2789 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2790 if (next_block->offset >= end) {
2791 next = MIN(next, next_block->offset);
2794 if (next - end >= size && next - end < mingap) {
2795 offset = end;
2796 mingap = next - end;
2799 return offset;
2802 static ram_addr_t last_ram_offset(void)
2804 RAMBlock *block;
2805 ram_addr_t last = 0;
2807 QLIST_FOREACH(block, &ram_list.blocks, next)
2808 last = MAX(last, block->offset + block->length);
2810 return last;
2813 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2814 ram_addr_t size, void *host)
2816 RAMBlock *new_block, *block;
2818 size = TARGET_PAGE_ALIGN(size);
2819 new_block = qemu_mallocz(sizeof(*new_block));
2821 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2822 char *id = dev->parent_bus->info->get_dev_path(dev);
2823 if (id) {
2824 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2825 qemu_free(id);
2828 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2830 QLIST_FOREACH(block, &ram_list.blocks, next) {
2831 if (!strcmp(block->idstr, new_block->idstr)) {
2832 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2833 new_block->idstr);
2834 abort();
2838 if (host) {
2839 new_block->host = host;
2840 } else {
2841 if (mem_path) {
2842 #if defined (__linux__) && !defined(TARGET_S390X)
2843 new_block->host = file_ram_alloc(new_block, size, mem_path);
2844 if (!new_block->host) {
2845 new_block->host = qemu_vmalloc(size);
2846 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2848 #else
2849 fprintf(stderr, "-mem-path option unsupported\n");
2850 exit(1);
2851 #endif
2852 } else {
2853 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2854 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2855 new_block->host = mmap((void*)0x1000000, size,
2856 PROT_EXEC|PROT_READ|PROT_WRITE,
2857 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2858 #else
2859 new_block->host = qemu_vmalloc(size);
2860 #endif
2861 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2865 new_block->offset = find_ram_offset(size);
2866 new_block->length = size;
2868 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2870 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2871 last_ram_offset() >> TARGET_PAGE_BITS);
2872 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2873 0xff, size >> TARGET_PAGE_BITS);
2875 if (kvm_enabled())
2876 kvm_setup_guest_memory(new_block->host, size);
2878 return new_block->offset;
2881 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2883 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2886 void qemu_ram_free(ram_addr_t addr)
2888 RAMBlock *block;
2890 QLIST_FOREACH(block, &ram_list.blocks, next) {
2891 if (addr == block->offset) {
2892 QLIST_REMOVE(block, next);
2893 if (mem_path) {
2894 #if defined (__linux__) && !defined(TARGET_S390X)
2895 if (block->fd) {
2896 munmap(block->host, block->length);
2897 close(block->fd);
2898 } else {
2899 qemu_vfree(block->host);
2901 #endif
2902 } else {
2903 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2904 munmap(block->host, block->length);
2905 #else
2906 qemu_vfree(block->host);
2907 #endif
2909 qemu_free(block);
2910 return;
2916 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2917 With the exception of the softmmu code in this file, this should
2918 only be used for local memory (e.g. video ram) that the device owns,
2919 and knows it isn't going to access beyond the end of the block.
2921 It should not be used for general purpose DMA.
2922 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2924 void *qemu_get_ram_ptr(ram_addr_t addr)
2926 RAMBlock *block;
2928 QLIST_FOREACH(block, &ram_list.blocks, next) {
2929 if (addr - block->offset < block->length) {
2930 QLIST_REMOVE(block, next);
2931 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2932 return block->host + (addr - block->offset);
2936 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2937 abort();
2939 return NULL;
2942 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2943 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2945 void *qemu_safe_ram_ptr(ram_addr_t addr)
2947 RAMBlock *block;
2949 QLIST_FOREACH(block, &ram_list.blocks, next) {
2950 if (addr - block->offset < block->length) {
2951 return block->host + (addr - block->offset);
2955 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2956 abort();
2958 return NULL;
2961 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2963 RAMBlock *block;
2964 uint8_t *host = ptr;
2966 QLIST_FOREACH(block, &ram_list.blocks, next) {
2967 if (host - block->host < block->length) {
2968 *ram_addr = block->offset + (host - block->host);
2969 return 0;
2972 return -1;
2975 /* Some of the softmmu routines need to translate from a host pointer
2976 (typically a TLB entry) back to a ram offset. */
2977 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2979 ram_addr_t ram_addr;
2981 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2982 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2983 abort();
2985 return ram_addr;
2988 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2990 #ifdef DEBUG_UNASSIGNED
2991 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2992 #endif
2993 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2994 do_unassigned_access(addr, 0, 0, 0, 1);
2995 #endif
2996 return 0;
2999 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3001 #ifdef DEBUG_UNASSIGNED
3002 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3003 #endif
3004 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3005 do_unassigned_access(addr, 0, 0, 0, 2);
3006 #endif
3007 return 0;
3010 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3012 #ifdef DEBUG_UNASSIGNED
3013 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3014 #endif
3015 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3016 do_unassigned_access(addr, 0, 0, 0, 4);
3017 #endif
3018 return 0;
3021 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3023 #ifdef DEBUG_UNASSIGNED
3024 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3025 #endif
3026 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3027 do_unassigned_access(addr, 1, 0, 0, 1);
3028 #endif
3031 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3033 #ifdef DEBUG_UNASSIGNED
3034 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3035 #endif
3036 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3037 do_unassigned_access(addr, 1, 0, 0, 2);
3038 #endif
3041 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3043 #ifdef DEBUG_UNASSIGNED
3044 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3045 #endif
3046 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3047 do_unassigned_access(addr, 1, 0, 0, 4);
3048 #endif
3051 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3052 unassigned_mem_readb,
3053 unassigned_mem_readw,
3054 unassigned_mem_readl,
3057 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3058 unassigned_mem_writeb,
3059 unassigned_mem_writew,
3060 unassigned_mem_writel,
3063 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3064 uint32_t val)
3066 int dirty_flags;
3067 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3068 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3069 #if !defined(CONFIG_USER_ONLY)
3070 tb_invalidate_phys_page_fast(ram_addr, 1);
3071 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3072 #endif
3074 stb_p(qemu_get_ram_ptr(ram_addr), val);
3075 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3076 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3077 /* we remove the notdirty callback only if the code has been
3078 flushed */
3079 if (dirty_flags == 0xff)
3080 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3083 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3084 uint32_t val)
3086 int dirty_flags;
3087 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3088 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3089 #if !defined(CONFIG_USER_ONLY)
3090 tb_invalidate_phys_page_fast(ram_addr, 2);
3091 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3092 #endif
3094 stw_p(qemu_get_ram_ptr(ram_addr), val);
3095 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3096 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3097 /* we remove the notdirty callback only if the code has been
3098 flushed */
3099 if (dirty_flags == 0xff)
3100 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3103 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3104 uint32_t val)
3106 int dirty_flags;
3107 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3108 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3109 #if !defined(CONFIG_USER_ONLY)
3110 tb_invalidate_phys_page_fast(ram_addr, 4);
3111 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3112 #endif
3114 stl_p(qemu_get_ram_ptr(ram_addr), val);
3115 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3116 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3117 /* we remove the notdirty callback only if the code has been
3118 flushed */
3119 if (dirty_flags == 0xff)
3120 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3123 static CPUReadMemoryFunc * const error_mem_read[3] = {
3124 NULL, /* never used */
3125 NULL, /* never used */
3126 NULL, /* never used */
3129 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3130 notdirty_mem_writeb,
3131 notdirty_mem_writew,
3132 notdirty_mem_writel,
3135 /* Generate a debug exception if a watchpoint has been hit. */
3136 static void check_watchpoint(int offset, int len_mask, int flags)
3138 CPUState *env = cpu_single_env;
3139 target_ulong pc, cs_base;
3140 TranslationBlock *tb;
3141 target_ulong vaddr;
3142 CPUWatchpoint *wp;
3143 int cpu_flags;
3145 if (env->watchpoint_hit) {
3146 /* We re-entered the check after replacing the TB. Now raise
3147 * the debug interrupt so that is will trigger after the
3148 * current instruction. */
3149 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3150 return;
3152 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3153 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3154 if ((vaddr == (wp->vaddr & len_mask) ||
3155 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3156 wp->flags |= BP_WATCHPOINT_HIT;
3157 if (!env->watchpoint_hit) {
3158 env->watchpoint_hit = wp;
3159 tb = tb_find_pc(env->mem_io_pc);
3160 if (!tb) {
3161 cpu_abort(env, "check_watchpoint: could not find TB for "
3162 "pc=%p", (void *)env->mem_io_pc);
3164 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3165 tb_phys_invalidate(tb, -1);
3166 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3167 env->exception_index = EXCP_DEBUG;
3168 } else {
3169 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3170 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3172 cpu_resume_from_signal(env, NULL);
3174 } else {
3175 wp->flags &= ~BP_WATCHPOINT_HIT;
3180 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3181 so these check for a hit then pass through to the normal out-of-line
3182 phys routines. */
3183 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3185 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3186 return ldub_phys(addr);
3189 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3191 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3192 return lduw_phys(addr);
3195 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3197 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3198 return ldl_phys(addr);
3201 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3202 uint32_t val)
3204 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3205 stb_phys(addr, val);
3208 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3209 uint32_t val)
3211 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3212 stw_phys(addr, val);
3215 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3216 uint32_t val)
3218 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3219 stl_phys(addr, val);
3222 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3223 watch_mem_readb,
3224 watch_mem_readw,
3225 watch_mem_readl,
3228 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3229 watch_mem_writeb,
3230 watch_mem_writew,
3231 watch_mem_writel,
3234 static inline uint32_t subpage_readlen (subpage_t *mmio,
3235 target_phys_addr_t addr,
3236 unsigned int len)
3238 unsigned int idx = SUBPAGE_IDX(addr);
3239 #if defined(DEBUG_SUBPAGE)
3240 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3241 mmio, len, addr, idx);
3242 #endif
3244 addr += mmio->region_offset[idx];
3245 idx = mmio->sub_io_index[idx];
3246 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3249 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3250 uint32_t value, unsigned int len)
3252 unsigned int idx = SUBPAGE_IDX(addr);
3253 #if defined(DEBUG_SUBPAGE)
3254 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3255 __func__, mmio, len, addr, idx, value);
3256 #endif
3258 addr += mmio->region_offset[idx];
3259 idx = mmio->sub_io_index[idx];
3260 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3263 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3265 return subpage_readlen(opaque, addr, 0);
3268 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3269 uint32_t value)
3271 subpage_writelen(opaque, addr, value, 0);
3274 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3276 return subpage_readlen(opaque, addr, 1);
3279 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3280 uint32_t value)
3282 subpage_writelen(opaque, addr, value, 1);
3285 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3287 return subpage_readlen(opaque, addr, 2);
3290 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3291 uint32_t value)
3293 subpage_writelen(opaque, addr, value, 2);
3296 static CPUReadMemoryFunc * const subpage_read[] = {
3297 &subpage_readb,
3298 &subpage_readw,
3299 &subpage_readl,
3302 static CPUWriteMemoryFunc * const subpage_write[] = {
3303 &subpage_writeb,
3304 &subpage_writew,
3305 &subpage_writel,
3308 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3309 ram_addr_t memory, ram_addr_t region_offset)
3311 int idx, eidx;
3313 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3314 return -1;
3315 idx = SUBPAGE_IDX(start);
3316 eidx = SUBPAGE_IDX(end);
3317 #if defined(DEBUG_SUBPAGE)
3318 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3319 mmio, start, end, idx, eidx, memory);
3320 #endif
3321 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3322 memory = IO_MEM_UNASSIGNED;
3323 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3324 for (; idx <= eidx; idx++) {
3325 mmio->sub_io_index[idx] = memory;
3326 mmio->region_offset[idx] = region_offset;
3329 return 0;
3332 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3333 ram_addr_t orig_memory,
3334 ram_addr_t region_offset)
3336 subpage_t *mmio;
3337 int subpage_memory;
3339 mmio = qemu_mallocz(sizeof(subpage_t));
3341 mmio->base = base;
3342 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3343 DEVICE_NATIVE_ENDIAN);
3344 #if defined(DEBUG_SUBPAGE)
3345 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3346 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3347 #endif
3348 *phys = subpage_memory | IO_MEM_SUBPAGE;
3349 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3351 return mmio;
3354 static int get_free_io_mem_idx(void)
3356 int i;
3358 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3359 if (!io_mem_used[i]) {
3360 io_mem_used[i] = 1;
3361 return i;
3363 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3364 return -1;
3368 * Usually, devices operate in little endian mode. There are devices out
3369 * there that operate in big endian too. Each device gets byte swapped
3370 * mmio if plugged onto a CPU that does the other endianness.
3372 * CPU Device swap?
3374 * little little no
3375 * little big yes
3376 * big little yes
3377 * big big no
3380 typedef struct SwapEndianContainer {
3381 CPUReadMemoryFunc *read[3];
3382 CPUWriteMemoryFunc *write[3];
3383 void *opaque;
3384 } SwapEndianContainer;
3386 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3388 uint32_t val;
3389 SwapEndianContainer *c = opaque;
3390 val = c->read[0](c->opaque, addr);
3391 return val;
3394 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3396 uint32_t val;
3397 SwapEndianContainer *c = opaque;
3398 val = bswap16(c->read[1](c->opaque, addr));
3399 return val;
3402 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3404 uint32_t val;
3405 SwapEndianContainer *c = opaque;
3406 val = bswap32(c->read[2](c->opaque, addr));
3407 return val;
3410 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3411 swapendian_mem_readb,
3412 swapendian_mem_readw,
3413 swapendian_mem_readl
3416 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3417 uint32_t val)
3419 SwapEndianContainer *c = opaque;
3420 c->write[0](c->opaque, addr, val);
3423 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3424 uint32_t val)
3426 SwapEndianContainer *c = opaque;
3427 c->write[1](c->opaque, addr, bswap16(val));
3430 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3431 uint32_t val)
3433 SwapEndianContainer *c = opaque;
3434 c->write[2](c->opaque, addr, bswap32(val));
3437 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3438 swapendian_mem_writeb,
3439 swapendian_mem_writew,
3440 swapendian_mem_writel
3443 static void swapendian_init(int io_index)
3445 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3446 int i;
3448 /* Swap mmio for big endian targets */
3449 c->opaque = io_mem_opaque[io_index];
3450 for (i = 0; i < 3; i++) {
3451 c->read[i] = io_mem_read[io_index][i];
3452 c->write[i] = io_mem_write[io_index][i];
3454 io_mem_read[io_index][i] = swapendian_readfn[i];
3455 io_mem_write[io_index][i] = swapendian_writefn[i];
3457 io_mem_opaque[io_index] = c;
3460 static void swapendian_del(int io_index)
3462 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3463 qemu_free(io_mem_opaque[io_index]);
3467 /* mem_read and mem_write are arrays of functions containing the
3468 function to access byte (index 0), word (index 1) and dword (index
3469 2). Functions can be omitted with a NULL function pointer.
3470 If io_index is non zero, the corresponding io zone is
3471 modified. If it is zero, a new io zone is allocated. The return
3472 value can be used with cpu_register_physical_memory(). (-1) is
3473 returned if error. */
3474 static int cpu_register_io_memory_fixed(int io_index,
3475 CPUReadMemoryFunc * const *mem_read,
3476 CPUWriteMemoryFunc * const *mem_write,
3477 void *opaque, enum device_endian endian)
3479 int i;
3481 if (io_index <= 0) {
3482 io_index = get_free_io_mem_idx();
3483 if (io_index == -1)
3484 return io_index;
3485 } else {
3486 io_index >>= IO_MEM_SHIFT;
3487 if (io_index >= IO_MEM_NB_ENTRIES)
3488 return -1;
3491 for (i = 0; i < 3; ++i) {
3492 io_mem_read[io_index][i]
3493 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3495 for (i = 0; i < 3; ++i) {
3496 io_mem_write[io_index][i]
3497 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3499 io_mem_opaque[io_index] = opaque;
3501 switch (endian) {
3502 case DEVICE_BIG_ENDIAN:
3503 #ifndef TARGET_WORDS_BIGENDIAN
3504 swapendian_init(io_index);
3505 #endif
3506 break;
3507 case DEVICE_LITTLE_ENDIAN:
3508 #ifdef TARGET_WORDS_BIGENDIAN
3509 swapendian_init(io_index);
3510 #endif
3511 break;
3512 case DEVICE_NATIVE_ENDIAN:
3513 default:
3514 break;
3517 return (io_index << IO_MEM_SHIFT);
3520 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3521 CPUWriteMemoryFunc * const *mem_write,
3522 void *opaque, enum device_endian endian)
3524 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3527 void cpu_unregister_io_memory(int io_table_address)
3529 int i;
3530 int io_index = io_table_address >> IO_MEM_SHIFT;
3532 swapendian_del(io_index);
3534 for (i=0;i < 3; i++) {
3535 io_mem_read[io_index][i] = unassigned_mem_read[i];
3536 io_mem_write[io_index][i] = unassigned_mem_write[i];
3538 io_mem_opaque[io_index] = NULL;
3539 io_mem_used[io_index] = 0;
3542 static void io_mem_init(void)
3544 int i;
3546 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3547 unassigned_mem_write, NULL,
3548 DEVICE_NATIVE_ENDIAN);
3549 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3550 unassigned_mem_write, NULL,
3551 DEVICE_NATIVE_ENDIAN);
3552 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3553 notdirty_mem_write, NULL,
3554 DEVICE_NATIVE_ENDIAN);
3555 for (i=0; i<5; i++)
3556 io_mem_used[i] = 1;
3558 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3559 watch_mem_write, NULL,
3560 DEVICE_NATIVE_ENDIAN);
3563 #endif /* !defined(CONFIG_USER_ONLY) */
3565 /* physical memory access (slow version, mainly for debug) */
3566 #if defined(CONFIG_USER_ONLY)
3567 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3568 uint8_t *buf, int len, int is_write)
3570 int l, flags;
3571 target_ulong page;
3572 void * p;
3574 while (len > 0) {
3575 page = addr & TARGET_PAGE_MASK;
3576 l = (page + TARGET_PAGE_SIZE) - addr;
3577 if (l > len)
3578 l = len;
3579 flags = page_get_flags(page);
3580 if (!(flags & PAGE_VALID))
3581 return -1;
3582 if (is_write) {
3583 if (!(flags & PAGE_WRITE))
3584 return -1;
3585 /* XXX: this code should not depend on lock_user */
3586 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3587 return -1;
3588 memcpy(p, buf, l);
3589 unlock_user(p, addr, l);
3590 } else {
3591 if (!(flags & PAGE_READ))
3592 return -1;
3593 /* XXX: this code should not depend on lock_user */
3594 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3595 return -1;
3596 memcpy(buf, p, l);
3597 unlock_user(p, addr, 0);
3599 len -= l;
3600 buf += l;
3601 addr += l;
3603 return 0;
3606 #else
3607 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3608 int len, int is_write)
3610 int l, io_index;
3611 uint8_t *ptr;
3612 uint32_t val;
3613 target_phys_addr_t page;
3614 unsigned long pd;
3615 PhysPageDesc *p;
3617 while (len > 0) {
3618 page = addr & TARGET_PAGE_MASK;
3619 l = (page + TARGET_PAGE_SIZE) - addr;
3620 if (l > len)
3621 l = len;
3622 p = phys_page_find(page >> TARGET_PAGE_BITS);
3623 if (!p) {
3624 pd = IO_MEM_UNASSIGNED;
3625 } else {
3626 pd = p->phys_offset;
3629 if (is_write) {
3630 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3631 target_phys_addr_t addr1 = addr;
3632 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3633 if (p)
3634 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3635 /* XXX: could force cpu_single_env to NULL to avoid
3636 potential bugs */
3637 if (l >= 4 && ((addr1 & 3) == 0)) {
3638 /* 32 bit write access */
3639 val = ldl_p(buf);
3640 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3641 l = 4;
3642 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3643 /* 16 bit write access */
3644 val = lduw_p(buf);
3645 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3646 l = 2;
3647 } else {
3648 /* 8 bit write access */
3649 val = ldub_p(buf);
3650 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3651 l = 1;
3653 } else {
3654 unsigned long addr1;
3655 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3656 /* RAM case */
3657 ptr = qemu_get_ram_ptr(addr1);
3658 memcpy(ptr, buf, l);
3659 if (!cpu_physical_memory_is_dirty(addr1)) {
3660 /* invalidate code */
3661 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3662 /* set dirty bit */
3663 cpu_physical_memory_set_dirty_flags(
3664 addr1, (0xff & ~CODE_DIRTY_FLAG));
3667 } else {
3668 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3669 !(pd & IO_MEM_ROMD)) {
3670 target_phys_addr_t addr1 = addr;
3671 /* I/O case */
3672 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3673 if (p)
3674 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3675 if (l >= 4 && ((addr1 & 3) == 0)) {
3676 /* 32 bit read access */
3677 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3678 stl_p(buf, val);
3679 l = 4;
3680 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3681 /* 16 bit read access */
3682 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3683 stw_p(buf, val);
3684 l = 2;
3685 } else {
3686 /* 8 bit read access */
3687 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3688 stb_p(buf, val);
3689 l = 1;
3691 } else {
3692 /* RAM case */
3693 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3694 (addr & ~TARGET_PAGE_MASK);
3695 memcpy(buf, ptr, l);
3698 len -= l;
3699 buf += l;
3700 addr += l;
3704 /* used for ROM loading : can write in RAM and ROM */
3705 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3706 const uint8_t *buf, int len)
3708 int l;
3709 uint8_t *ptr;
3710 target_phys_addr_t page;
3711 unsigned long pd;
3712 PhysPageDesc *p;
3714 while (len > 0) {
3715 page = addr & TARGET_PAGE_MASK;
3716 l = (page + TARGET_PAGE_SIZE) - addr;
3717 if (l > len)
3718 l = len;
3719 p = phys_page_find(page >> TARGET_PAGE_BITS);
3720 if (!p) {
3721 pd = IO_MEM_UNASSIGNED;
3722 } else {
3723 pd = p->phys_offset;
3726 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3727 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3728 !(pd & IO_MEM_ROMD)) {
3729 /* do nothing */
3730 } else {
3731 unsigned long addr1;
3732 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3733 /* ROM/RAM case */
3734 ptr = qemu_get_ram_ptr(addr1);
3735 memcpy(ptr, buf, l);
3737 len -= l;
3738 buf += l;
3739 addr += l;
3743 typedef struct {
3744 void *buffer;
3745 target_phys_addr_t addr;
3746 target_phys_addr_t len;
3747 } BounceBuffer;
3749 static BounceBuffer bounce;
3751 typedef struct MapClient {
3752 void *opaque;
3753 void (*callback)(void *opaque);
3754 QLIST_ENTRY(MapClient) link;
3755 } MapClient;
3757 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3758 = QLIST_HEAD_INITIALIZER(map_client_list);
3760 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3762 MapClient *client = qemu_malloc(sizeof(*client));
3764 client->opaque = opaque;
3765 client->callback = callback;
3766 QLIST_INSERT_HEAD(&map_client_list, client, link);
3767 return client;
3770 void cpu_unregister_map_client(void *_client)
3772 MapClient *client = (MapClient *)_client;
3774 QLIST_REMOVE(client, link);
3775 qemu_free(client);
3778 static void cpu_notify_map_clients(void)
3780 MapClient *client;
3782 while (!QLIST_EMPTY(&map_client_list)) {
3783 client = QLIST_FIRST(&map_client_list);
3784 client->callback(client->opaque);
3785 cpu_unregister_map_client(client);
3789 /* Map a physical memory region into a host virtual address.
3790 * May map a subset of the requested range, given by and returned in *plen.
3791 * May return NULL if resources needed to perform the mapping are exhausted.
3792 * Use only for reads OR writes - not for read-modify-write operations.
3793 * Use cpu_register_map_client() to know when retrying the map operation is
3794 * likely to succeed.
3796 void *cpu_physical_memory_map(target_phys_addr_t addr,
3797 target_phys_addr_t *plen,
3798 int is_write)
3800 target_phys_addr_t len = *plen;
3801 target_phys_addr_t done = 0;
3802 int l;
3803 uint8_t *ret = NULL;
3804 uint8_t *ptr;
3805 target_phys_addr_t page;
3806 unsigned long pd;
3807 PhysPageDesc *p;
3808 unsigned long addr1;
3810 while (len > 0) {
3811 page = addr & TARGET_PAGE_MASK;
3812 l = (page + TARGET_PAGE_SIZE) - addr;
3813 if (l > len)
3814 l = len;
3815 p = phys_page_find(page >> TARGET_PAGE_BITS);
3816 if (!p) {
3817 pd = IO_MEM_UNASSIGNED;
3818 } else {
3819 pd = p->phys_offset;
3822 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3823 if (done || bounce.buffer) {
3824 break;
3826 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3827 bounce.addr = addr;
3828 bounce.len = l;
3829 if (!is_write) {
3830 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3832 ptr = bounce.buffer;
3833 } else {
3834 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3835 ptr = qemu_get_ram_ptr(addr1);
3837 if (!done) {
3838 ret = ptr;
3839 } else if (ret + done != ptr) {
3840 break;
3843 len -= l;
3844 addr += l;
3845 done += l;
3847 *plen = done;
3848 return ret;
3851 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3852 * Will also mark the memory as dirty if is_write == 1. access_len gives
3853 * the amount of memory that was actually read or written by the caller.
3855 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3856 int is_write, target_phys_addr_t access_len)
3858 if (buffer != bounce.buffer) {
3859 if (is_write) {
3860 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3861 while (access_len) {
3862 unsigned l;
3863 l = TARGET_PAGE_SIZE;
3864 if (l > access_len)
3865 l = access_len;
3866 if (!cpu_physical_memory_is_dirty(addr1)) {
3867 /* invalidate code */
3868 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3869 /* set dirty bit */
3870 cpu_physical_memory_set_dirty_flags(
3871 addr1, (0xff & ~CODE_DIRTY_FLAG));
3873 addr1 += l;
3874 access_len -= l;
3877 return;
3879 if (is_write) {
3880 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3882 qemu_vfree(bounce.buffer);
3883 bounce.buffer = NULL;
3884 cpu_notify_map_clients();
3887 /* warning: addr must be aligned */
3888 uint32_t ldl_phys(target_phys_addr_t addr)
3890 int io_index;
3891 uint8_t *ptr;
3892 uint32_t val;
3893 unsigned long pd;
3894 PhysPageDesc *p;
3896 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3897 if (!p) {
3898 pd = IO_MEM_UNASSIGNED;
3899 } else {
3900 pd = p->phys_offset;
3903 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3904 !(pd & IO_MEM_ROMD)) {
3905 /* I/O case */
3906 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3907 if (p)
3908 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3909 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3910 } else {
3911 /* RAM case */
3912 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3913 (addr & ~TARGET_PAGE_MASK);
3914 val = ldl_p(ptr);
3916 return val;
3919 /* warning: addr must be aligned */
3920 uint64_t ldq_phys(target_phys_addr_t addr)
3922 int io_index;
3923 uint8_t *ptr;
3924 uint64_t val;
3925 unsigned long pd;
3926 PhysPageDesc *p;
3928 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3929 if (!p) {
3930 pd = IO_MEM_UNASSIGNED;
3931 } else {
3932 pd = p->phys_offset;
3935 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3936 !(pd & IO_MEM_ROMD)) {
3937 /* I/O case */
3938 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3939 if (p)
3940 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3941 #ifdef TARGET_WORDS_BIGENDIAN
3942 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3943 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3944 #else
3945 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3946 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3947 #endif
3948 } else {
3949 /* RAM case */
3950 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3951 (addr & ~TARGET_PAGE_MASK);
3952 val = ldq_p(ptr);
3954 return val;
3957 /* XXX: optimize */
3958 uint32_t ldub_phys(target_phys_addr_t addr)
3960 uint8_t val;
3961 cpu_physical_memory_read(addr, &val, 1);
3962 return val;
3965 /* warning: addr must be aligned */
3966 uint32_t lduw_phys(target_phys_addr_t addr)
3968 int io_index;
3969 uint8_t *ptr;
3970 uint64_t val;
3971 unsigned long pd;
3972 PhysPageDesc *p;
3974 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3975 if (!p) {
3976 pd = IO_MEM_UNASSIGNED;
3977 } else {
3978 pd = p->phys_offset;
3981 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3982 !(pd & IO_MEM_ROMD)) {
3983 /* I/O case */
3984 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3985 if (p)
3986 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3987 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3988 } else {
3989 /* RAM case */
3990 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3991 (addr & ~TARGET_PAGE_MASK);
3992 val = lduw_p(ptr);
3994 return val;
3997 /* warning: addr must be aligned. The ram page is not masked as dirty
3998 and the code inside is not invalidated. It is useful if the dirty
3999 bits are used to track modified PTEs */
4000 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4002 int io_index;
4003 uint8_t *ptr;
4004 unsigned long pd;
4005 PhysPageDesc *p;
4007 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4008 if (!p) {
4009 pd = IO_MEM_UNASSIGNED;
4010 } else {
4011 pd = p->phys_offset;
4014 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4015 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4016 if (p)
4017 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4018 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4019 } else {
4020 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4021 ptr = qemu_get_ram_ptr(addr1);
4022 stl_p(ptr, val);
4024 if (unlikely(in_migration)) {
4025 if (!cpu_physical_memory_is_dirty(addr1)) {
4026 /* invalidate code */
4027 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4028 /* set dirty bit */
4029 cpu_physical_memory_set_dirty_flags(
4030 addr1, (0xff & ~CODE_DIRTY_FLAG));
4036 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4038 int io_index;
4039 uint8_t *ptr;
4040 unsigned long pd;
4041 PhysPageDesc *p;
4043 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4044 if (!p) {
4045 pd = IO_MEM_UNASSIGNED;
4046 } else {
4047 pd = p->phys_offset;
4050 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4051 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4052 if (p)
4053 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4054 #ifdef TARGET_WORDS_BIGENDIAN
4055 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4056 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4057 #else
4058 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4059 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4060 #endif
4061 } else {
4062 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4063 (addr & ~TARGET_PAGE_MASK);
4064 stq_p(ptr, val);
4068 /* warning: addr must be aligned */
4069 void stl_phys(target_phys_addr_t addr, uint32_t val)
4071 int io_index;
4072 uint8_t *ptr;
4073 unsigned long pd;
4074 PhysPageDesc *p;
4076 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4077 if (!p) {
4078 pd = IO_MEM_UNASSIGNED;
4079 } else {
4080 pd = p->phys_offset;
4083 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4084 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4085 if (p)
4086 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4087 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4088 } else {
4089 unsigned long addr1;
4090 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4091 /* RAM case */
4092 ptr = qemu_get_ram_ptr(addr1);
4093 stl_p(ptr, val);
4094 if (!cpu_physical_memory_is_dirty(addr1)) {
4095 /* invalidate code */
4096 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4097 /* set dirty bit */
4098 cpu_physical_memory_set_dirty_flags(addr1,
4099 (0xff & ~CODE_DIRTY_FLAG));
4104 /* XXX: optimize */
4105 void stb_phys(target_phys_addr_t addr, uint32_t val)
4107 uint8_t v = val;
4108 cpu_physical_memory_write(addr, &v, 1);
4111 /* warning: addr must be aligned */
4112 void stw_phys(target_phys_addr_t addr, uint32_t val)
4114 int io_index;
4115 uint8_t *ptr;
4116 unsigned long pd;
4117 PhysPageDesc *p;
4119 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4120 if (!p) {
4121 pd = IO_MEM_UNASSIGNED;
4122 } else {
4123 pd = p->phys_offset;
4126 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4127 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4128 if (p)
4129 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4130 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4131 } else {
4132 unsigned long addr1;
4133 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4134 /* RAM case */
4135 ptr = qemu_get_ram_ptr(addr1);
4136 stw_p(ptr, val);
4137 if (!cpu_physical_memory_is_dirty(addr1)) {
4138 /* invalidate code */
4139 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4140 /* set dirty bit */
4141 cpu_physical_memory_set_dirty_flags(addr1,
4142 (0xff & ~CODE_DIRTY_FLAG));
4147 /* XXX: optimize */
4148 void stq_phys(target_phys_addr_t addr, uint64_t val)
4150 val = tswap64(val);
4151 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4154 /* virtual memory access for debug (includes writing to ROM) */
4155 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4156 uint8_t *buf, int len, int is_write)
4158 int l;
4159 target_phys_addr_t phys_addr;
4160 target_ulong page;
4162 while (len > 0) {
4163 page = addr & TARGET_PAGE_MASK;
4164 phys_addr = cpu_get_phys_page_debug(env, page);
4165 /* if no physical page mapped, return an error */
4166 if (phys_addr == -1)
4167 return -1;
4168 l = (page + TARGET_PAGE_SIZE) - addr;
4169 if (l > len)
4170 l = len;
4171 phys_addr += (addr & ~TARGET_PAGE_MASK);
4172 if (is_write)
4173 cpu_physical_memory_write_rom(phys_addr, buf, l);
4174 else
4175 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4176 len -= l;
4177 buf += l;
4178 addr += l;
4180 return 0;
4182 #endif
4184 /* in deterministic execution mode, instructions doing device I/Os
4185 must be at the end of the TB */
4186 void cpu_io_recompile(CPUState *env, void *retaddr)
4188 TranslationBlock *tb;
4189 uint32_t n, cflags;
4190 target_ulong pc, cs_base;
4191 uint64_t flags;
4193 tb = tb_find_pc((unsigned long)retaddr);
4194 if (!tb) {
4195 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4196 retaddr);
4198 n = env->icount_decr.u16.low + tb->icount;
4199 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4200 /* Calculate how many instructions had been executed before the fault
4201 occurred. */
4202 n = n - env->icount_decr.u16.low;
4203 /* Generate a new TB ending on the I/O insn. */
4204 n++;
4205 /* On MIPS and SH, delay slot instructions can only be restarted if
4206 they were already the first instruction in the TB. If this is not
4207 the first instruction in a TB then re-execute the preceding
4208 branch. */
4209 #if defined(TARGET_MIPS)
4210 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4211 env->active_tc.PC -= 4;
4212 env->icount_decr.u16.low++;
4213 env->hflags &= ~MIPS_HFLAG_BMASK;
4215 #elif defined(TARGET_SH4)
4216 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4217 && n > 1) {
4218 env->pc -= 2;
4219 env->icount_decr.u16.low++;
4220 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4222 #endif
4223 /* This should never happen. */
4224 if (n > CF_COUNT_MASK)
4225 cpu_abort(env, "TB too big during recompile");
4227 cflags = n | CF_LAST_IO;
4228 pc = tb->pc;
4229 cs_base = tb->cs_base;
4230 flags = tb->flags;
4231 tb_phys_invalidate(tb, -1);
4232 /* FIXME: In theory this could raise an exception. In practice
4233 we have already translated the block once so it's probably ok. */
4234 tb_gen_code(env, pc, cs_base, flags, cflags);
4235 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4236 the first in the TB) then we end up generating a whole new TB and
4237 repeating the fault, which is horribly inefficient.
4238 Better would be to execute just this insn uncached, or generate a
4239 second new TB. */
4240 cpu_resume_from_signal(env, NULL);
4243 #if !defined(CONFIG_USER_ONLY)
4245 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4247 int i, target_code_size, max_target_code_size;
4248 int direct_jmp_count, direct_jmp2_count, cross_page;
4249 TranslationBlock *tb;
4251 target_code_size = 0;
4252 max_target_code_size = 0;
4253 cross_page = 0;
4254 direct_jmp_count = 0;
4255 direct_jmp2_count = 0;
4256 for(i = 0; i < nb_tbs; i++) {
4257 tb = &tbs[i];
4258 target_code_size += tb->size;
4259 if (tb->size > max_target_code_size)
4260 max_target_code_size = tb->size;
4261 if (tb->page_addr[1] != -1)
4262 cross_page++;
4263 if (tb->tb_next_offset[0] != 0xffff) {
4264 direct_jmp_count++;
4265 if (tb->tb_next_offset[1] != 0xffff) {
4266 direct_jmp2_count++;
4270 /* XXX: avoid using doubles ? */
4271 cpu_fprintf(f, "Translation buffer state:\n");
4272 cpu_fprintf(f, "gen code size %td/%ld\n",
4273 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4274 cpu_fprintf(f, "TB count %d/%d\n",
4275 nb_tbs, code_gen_max_blocks);
4276 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4277 nb_tbs ? target_code_size / nb_tbs : 0,
4278 max_target_code_size);
4279 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4280 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4281 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4282 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4283 cross_page,
4284 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4285 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4286 direct_jmp_count,
4287 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4288 direct_jmp2_count,
4289 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4290 cpu_fprintf(f, "\nStatistics:\n");
4291 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4292 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4293 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4294 tcg_dump_info(f, cpu_fprintf);
4297 #define MMUSUFFIX _cmmu
4298 #define GETPC() NULL
4299 #define env cpu_single_env
4300 #define SOFTMMU_CODE_ACCESS
4302 #define SHIFT 0
4303 #include "softmmu_template.h"
4305 #define SHIFT 1
4306 #include "softmmu_template.h"
4308 #define SHIFT 2
4309 #include "softmmu_template.h"
4311 #define SHIFT 3
4312 #include "softmmu_template.h"
4314 #undef env
4316 #endif