Refactor debug and vmstop request interface
[qemu/stefanha.git] / cpus.c
blob97a6d4f5b9312aeeb0add92c4ce3b695fecb9fb7
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "exec-all.h"
35 #include "cpus.h"
36 #include "compatfd.h"
38 #ifdef SIGRTMIN
39 #define SIG_IPI (SIGRTMIN+4)
40 #else
41 #define SIG_IPI SIGUSR1
42 #endif
44 #ifdef CONFIG_LINUX
46 #include <sys/prctl.h>
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
60 #endif /* CONFIG_LINUX */
62 static CPUState *next_cpu;
64 /***********************************************************/
65 void hw_error(const char *fmt, ...)
67 va_list ap;
68 CPUState *env;
70 va_start(ap, fmt);
71 fprintf(stderr, "qemu: hardware error: ");
72 vfprintf(stderr, fmt, ap);
73 fprintf(stderr, "\n");
74 for(env = first_cpu; env != NULL; env = env->next_cpu) {
75 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
76 #ifdef TARGET_I386
77 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
78 #else
79 cpu_dump_state(env, stderr, fprintf, 0);
80 #endif
82 va_end(ap);
83 abort();
86 void cpu_synchronize_all_states(void)
88 CPUState *cpu;
90 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
91 cpu_synchronize_state(cpu);
95 void cpu_synchronize_all_post_reset(void)
97 CPUState *cpu;
99 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
100 cpu_synchronize_post_reset(cpu);
104 void cpu_synchronize_all_post_init(void)
106 CPUState *cpu;
108 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
109 cpu_synchronize_post_init(cpu);
113 int cpu_is_stopped(CPUState *env)
115 return !vm_running || env->stopped;
118 static void do_vm_stop(int reason)
120 if (vm_running) {
121 cpu_disable_ticks();
122 vm_running = 0;
123 pause_all_vcpus();
124 vm_state_notify(0, reason);
125 qemu_aio_flush();
126 bdrv_flush_all();
127 monitor_protocol_event(QEVENT_STOP, NULL);
131 static int cpu_can_run(CPUState *env)
133 if (env->stop) {
134 return 0;
136 if (env->stopped || !vm_running) {
137 return 0;
139 return 1;
142 static bool cpu_thread_is_idle(CPUState *env)
144 if (env->stop || env->queued_work_first) {
145 return false;
147 if (env->stopped || !vm_running) {
148 return true;
150 if (!env->halted || qemu_cpu_has_work(env)) {
151 return false;
153 return true;
156 static bool all_cpu_threads_idle(void)
158 CPUState *env;
160 for (env = first_cpu; env != NULL; env = env->next_cpu) {
161 if (!cpu_thread_is_idle(env)) {
162 return false;
165 return true;
168 static void cpu_debug_handler(CPUState *env)
170 gdb_set_stop_cpu(env);
171 qemu_system_debug_request();
174 #ifdef CONFIG_LINUX
175 static void sigbus_reraise(void)
177 sigset_t set;
178 struct sigaction action;
180 memset(&action, 0, sizeof(action));
181 action.sa_handler = SIG_DFL;
182 if (!sigaction(SIGBUS, &action, NULL)) {
183 raise(SIGBUS);
184 sigemptyset(&set);
185 sigaddset(&set, SIGBUS);
186 sigprocmask(SIG_UNBLOCK, &set, NULL);
188 perror("Failed to re-raise SIGBUS!\n");
189 abort();
192 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
193 void *ctx)
195 if (kvm_on_sigbus(siginfo->ssi_code,
196 (void *)(intptr_t)siginfo->ssi_addr)) {
197 sigbus_reraise();
201 static void qemu_init_sigbus(void)
203 struct sigaction action;
205 memset(&action, 0, sizeof(action));
206 action.sa_flags = SA_SIGINFO;
207 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
208 sigaction(SIGBUS, &action, NULL);
210 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
213 #else /* !CONFIG_LINUX */
215 static void qemu_init_sigbus(void)
218 #endif /* !CONFIG_LINUX */
220 #ifndef _WIN32
221 static int io_thread_fd = -1;
223 static void qemu_event_increment(void)
225 /* Write 8 bytes to be compatible with eventfd. */
226 static const uint64_t val = 1;
227 ssize_t ret;
229 if (io_thread_fd == -1) {
230 return;
232 do {
233 ret = write(io_thread_fd, &val, sizeof(val));
234 } while (ret < 0 && errno == EINTR);
236 /* EAGAIN is fine, a read must be pending. */
237 if (ret < 0 && errno != EAGAIN) {
238 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
239 strerror(errno));
240 exit (1);
244 static void qemu_event_read(void *opaque)
246 int fd = (unsigned long)opaque;
247 ssize_t len;
248 char buffer[512];
250 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
251 do {
252 len = read(fd, buffer, sizeof(buffer));
253 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
256 static int qemu_event_init(void)
258 int err;
259 int fds[2];
261 err = qemu_eventfd(fds);
262 if (err == -1) {
263 return -errno;
265 err = fcntl_setfl(fds[0], O_NONBLOCK);
266 if (err < 0) {
267 goto fail;
269 err = fcntl_setfl(fds[1], O_NONBLOCK);
270 if (err < 0) {
271 goto fail;
273 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
274 (void *)(unsigned long)fds[0]);
276 io_thread_fd = fds[1];
277 return 0;
279 fail:
280 close(fds[0]);
281 close(fds[1]);
282 return err;
285 static void dummy_signal(int sig)
289 /* If we have signalfd, we mask out the signals we want to handle and then
290 * use signalfd to listen for them. We rely on whatever the current signal
291 * handler is to dispatch the signals when we receive them.
293 static void sigfd_handler(void *opaque)
295 int fd = (unsigned long) opaque;
296 struct qemu_signalfd_siginfo info;
297 struct sigaction action;
298 ssize_t len;
300 while (1) {
301 do {
302 len = read(fd, &info, sizeof(info));
303 } while (len == -1 && errno == EINTR);
305 if (len == -1 && errno == EAGAIN) {
306 break;
309 if (len != sizeof(info)) {
310 printf("read from sigfd returned %zd: %m\n", len);
311 return;
314 sigaction(info.ssi_signo, NULL, &action);
315 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
316 action.sa_sigaction(info.ssi_signo,
317 (siginfo_t *)&info, NULL);
318 } else if (action.sa_handler) {
319 action.sa_handler(info.ssi_signo);
324 static int qemu_signalfd_init(sigset_t mask)
326 int sigfd;
328 sigfd = qemu_signalfd(&mask);
329 if (sigfd == -1) {
330 fprintf(stderr, "failed to create signalfd\n");
331 return -errno;
334 fcntl_setfl(sigfd, O_NONBLOCK);
336 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
337 (void *)(unsigned long) sigfd);
339 return 0;
342 static void qemu_kvm_eat_signals(CPUState *env)
344 struct timespec ts = { 0, 0 };
345 siginfo_t siginfo;
346 sigset_t waitset;
347 sigset_t chkset;
348 int r;
350 sigemptyset(&waitset);
351 sigaddset(&waitset, SIG_IPI);
352 sigaddset(&waitset, SIGBUS);
354 do {
355 r = sigtimedwait(&waitset, &siginfo, &ts);
356 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
357 perror("sigtimedwait");
358 exit(1);
361 switch (r) {
362 case SIGBUS:
363 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
364 sigbus_reraise();
366 break;
367 default:
368 break;
371 r = sigpending(&chkset);
372 if (r == -1) {
373 perror("sigpending");
374 exit(1);
376 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
378 #ifndef CONFIG_IOTHREAD
379 if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
380 qemu_notify_event();
382 #endif
385 #else /* _WIN32 */
387 HANDLE qemu_event_handle;
389 static void dummy_event_handler(void *opaque)
393 static int qemu_event_init(void)
395 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
396 if (!qemu_event_handle) {
397 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
398 return -1;
400 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
401 return 0;
404 static void qemu_event_increment(void)
406 if (!SetEvent(qemu_event_handle)) {
407 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
408 GetLastError());
409 exit (1);
413 static void qemu_kvm_eat_signals(CPUState *env)
416 #endif /* _WIN32 */
418 #ifndef CONFIG_IOTHREAD
419 static void qemu_kvm_init_cpu_signals(CPUState *env)
421 #ifndef _WIN32
422 int r;
423 sigset_t set;
424 struct sigaction sigact;
426 memset(&sigact, 0, sizeof(sigact));
427 sigact.sa_handler = dummy_signal;
428 sigaction(SIG_IPI, &sigact, NULL);
430 sigemptyset(&set);
431 sigaddset(&set, SIG_IPI);
432 sigaddset(&set, SIGIO);
433 sigaddset(&set, SIGALRM);
434 pthread_sigmask(SIG_BLOCK, &set, NULL);
436 pthread_sigmask(SIG_BLOCK, NULL, &set);
437 sigdelset(&set, SIG_IPI);
438 sigdelset(&set, SIGBUS);
439 sigdelset(&set, SIGIO);
440 sigdelset(&set, SIGALRM);
441 r = kvm_set_signal_mask(env, &set);
442 if (r) {
443 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
444 exit(1);
446 #endif
449 #ifndef _WIN32
450 static sigset_t block_synchronous_signals(void)
452 sigset_t set;
454 sigemptyset(&set);
455 sigaddset(&set, SIGBUS);
456 if (kvm_enabled()) {
458 * We need to process timer signals synchronously to avoid a race
459 * between exit_request check and KVM vcpu entry.
461 sigaddset(&set, SIGIO);
462 sigaddset(&set, SIGALRM);
465 return set;
467 #endif
469 int qemu_init_main_loop(void)
471 #ifndef _WIN32
472 sigset_t blocked_signals;
473 int ret;
475 blocked_signals = block_synchronous_signals();
477 ret = qemu_signalfd_init(blocked_signals);
478 if (ret) {
479 return ret;
481 #endif
482 cpu_set_debug_excp_handler(cpu_debug_handler);
484 qemu_init_sigbus();
486 return qemu_event_init();
489 void qemu_main_loop_start(void)
493 void qemu_init_vcpu(void *_env)
495 CPUState *env = _env;
496 int r;
498 env->nr_cores = smp_cores;
499 env->nr_threads = smp_threads;
501 if (kvm_enabled()) {
502 r = kvm_init_vcpu(env);
503 if (r < 0) {
504 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
505 exit(1);
507 qemu_kvm_init_cpu_signals(env);
511 int qemu_cpu_self(void *env)
513 return 1;
516 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
518 func(data);
521 void resume_all_vcpus(void)
525 void pause_all_vcpus(void)
529 void qemu_cpu_kick(void *env)
533 void qemu_cpu_kick_self(void)
535 #ifndef _WIN32
536 assert(cpu_single_env);
538 raise(SIG_IPI);
539 #else
540 abort();
541 #endif
544 void qemu_notify_event(void)
546 CPUState *env = cpu_single_env;
548 qemu_event_increment ();
549 if (env) {
550 cpu_exit(env);
552 if (next_cpu && env != next_cpu) {
553 cpu_exit(next_cpu);
555 exit_request = 1;
558 void qemu_mutex_lock_iothread(void) {}
559 void qemu_mutex_unlock_iothread(void) {}
561 void cpu_stop_current(void)
565 void vm_stop(int reason)
567 do_vm_stop(reason);
570 #else /* CONFIG_IOTHREAD */
572 #include "qemu-thread.h"
574 QemuMutex qemu_global_mutex;
575 static QemuMutex qemu_fair_mutex;
577 static QemuThread io_thread;
579 static QemuThread *tcg_cpu_thread;
580 static QemuCond *tcg_halt_cond;
582 static int qemu_system_ready;
583 /* cpu creation */
584 static QemuCond qemu_cpu_cond;
585 /* system init */
586 static QemuCond qemu_system_cond;
587 static QemuCond qemu_pause_cond;
588 static QemuCond qemu_work_cond;
590 static void cpu_signal(int sig)
592 if (cpu_single_env) {
593 cpu_exit(cpu_single_env);
595 exit_request = 1;
598 static void qemu_kvm_init_cpu_signals(CPUState *env)
600 int r;
601 sigset_t set;
602 struct sigaction sigact;
604 memset(&sigact, 0, sizeof(sigact));
605 sigact.sa_handler = dummy_signal;
606 sigaction(SIG_IPI, &sigact, NULL);
608 pthread_sigmask(SIG_BLOCK, NULL, &set);
609 sigdelset(&set, SIG_IPI);
610 sigdelset(&set, SIGBUS);
611 r = kvm_set_signal_mask(env, &set);
612 if (r) {
613 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
614 exit(1);
618 static void qemu_tcg_init_cpu_signals(void)
620 sigset_t set;
621 struct sigaction sigact;
623 memset(&sigact, 0, sizeof(sigact));
624 sigact.sa_handler = cpu_signal;
625 sigaction(SIG_IPI, &sigact, NULL);
627 sigemptyset(&set);
628 sigaddset(&set, SIG_IPI);
629 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
632 static sigset_t block_io_signals(void)
634 sigset_t set;
636 /* SIGUSR2 used by posix-aio-compat.c */
637 sigemptyset(&set);
638 sigaddset(&set, SIGUSR2);
639 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
641 sigemptyset(&set);
642 sigaddset(&set, SIGIO);
643 sigaddset(&set, SIGALRM);
644 sigaddset(&set, SIG_IPI);
645 sigaddset(&set, SIGBUS);
646 pthread_sigmask(SIG_BLOCK, &set, NULL);
648 return set;
651 int qemu_init_main_loop(void)
653 int ret;
654 sigset_t blocked_signals;
656 cpu_set_debug_excp_handler(cpu_debug_handler);
658 qemu_init_sigbus();
660 blocked_signals = block_io_signals();
662 ret = qemu_signalfd_init(blocked_signals);
663 if (ret) {
664 return ret;
667 /* Note eventfd must be drained before signalfd handlers run */
668 ret = qemu_event_init();
669 if (ret) {
670 return ret;
673 qemu_cond_init(&qemu_pause_cond);
674 qemu_cond_init(&qemu_system_cond);
675 qemu_mutex_init(&qemu_fair_mutex);
676 qemu_mutex_init(&qemu_global_mutex);
677 qemu_mutex_lock(&qemu_global_mutex);
679 qemu_thread_self(&io_thread);
681 return 0;
684 void qemu_main_loop_start(void)
686 qemu_system_ready = 1;
687 qemu_cond_broadcast(&qemu_system_cond);
690 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
692 struct qemu_work_item wi;
694 if (qemu_cpu_self(env)) {
695 func(data);
696 return;
699 wi.func = func;
700 wi.data = data;
701 if (!env->queued_work_first) {
702 env->queued_work_first = &wi;
703 } else {
704 env->queued_work_last->next = &wi;
706 env->queued_work_last = &wi;
707 wi.next = NULL;
708 wi.done = false;
710 qemu_cpu_kick(env);
711 while (!wi.done) {
712 CPUState *self_env = cpu_single_env;
714 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
715 cpu_single_env = self_env;
719 static void flush_queued_work(CPUState *env)
721 struct qemu_work_item *wi;
723 if (!env->queued_work_first) {
724 return;
727 while ((wi = env->queued_work_first)) {
728 env->queued_work_first = wi->next;
729 wi->func(wi->data);
730 wi->done = true;
732 env->queued_work_last = NULL;
733 qemu_cond_broadcast(&qemu_work_cond);
736 static void qemu_wait_io_event_common(CPUState *env)
738 if (env->stop) {
739 env->stop = 0;
740 env->stopped = 1;
741 qemu_cond_signal(&qemu_pause_cond);
743 flush_queued_work(env);
744 env->thread_kicked = false;
747 static void qemu_tcg_wait_io_event(void)
749 CPUState *env;
751 while (all_cpu_threads_idle()) {
752 qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
755 qemu_mutex_unlock(&qemu_global_mutex);
758 * Users of qemu_global_mutex can be starved, having no chance
759 * to acquire it since this path will get to it first.
760 * So use another lock to provide fairness.
762 qemu_mutex_lock(&qemu_fair_mutex);
763 qemu_mutex_unlock(&qemu_fair_mutex);
765 qemu_mutex_lock(&qemu_global_mutex);
767 for (env = first_cpu; env != NULL; env = env->next_cpu) {
768 qemu_wait_io_event_common(env);
772 static void qemu_kvm_wait_io_event(CPUState *env)
774 while (cpu_thread_is_idle(env)) {
775 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
778 qemu_kvm_eat_signals(env);
779 qemu_wait_io_event_common(env);
782 static int qemu_cpu_exec(CPUState *env);
784 static void *qemu_kvm_cpu_thread_fn(void *arg)
786 CPUState *env = arg;
787 int r;
789 qemu_mutex_lock(&qemu_global_mutex);
790 qemu_thread_self(env->thread);
792 r = kvm_init_vcpu(env);
793 if (r < 0) {
794 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
795 exit(1);
798 qemu_kvm_init_cpu_signals(env);
800 /* signal CPU creation */
801 env->created = 1;
802 qemu_cond_signal(&qemu_cpu_cond);
804 /* and wait for machine initialization */
805 while (!qemu_system_ready) {
806 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
809 while (1) {
810 if (cpu_can_run(env)) {
811 qemu_cpu_exec(env);
813 qemu_kvm_wait_io_event(env);
816 return NULL;
819 static void *qemu_tcg_cpu_thread_fn(void *arg)
821 CPUState *env = arg;
823 qemu_tcg_init_cpu_signals();
824 qemu_thread_self(env->thread);
826 /* signal CPU creation */
827 qemu_mutex_lock(&qemu_global_mutex);
828 for (env = first_cpu; env != NULL; env = env->next_cpu) {
829 env->created = 1;
831 qemu_cond_signal(&qemu_cpu_cond);
833 /* and wait for machine initialization */
834 while (!qemu_system_ready) {
835 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
838 while (1) {
839 cpu_exec_all();
840 qemu_tcg_wait_io_event();
843 return NULL;
846 void qemu_cpu_kick(void *_env)
848 CPUState *env = _env;
850 qemu_cond_broadcast(env->halt_cond);
851 if (!env->thread_kicked) {
852 qemu_thread_signal(env->thread, SIG_IPI);
853 env->thread_kicked = true;
857 void qemu_cpu_kick_self(void)
859 assert(cpu_single_env);
861 if (!cpu_single_env->thread_kicked) {
862 qemu_thread_signal(cpu_single_env->thread, SIG_IPI);
863 cpu_single_env->thread_kicked = true;
867 int qemu_cpu_self(void *_env)
869 CPUState *env = _env;
870 QemuThread this;
872 qemu_thread_self(&this);
874 return qemu_thread_equal(&this, env->thread);
877 void qemu_mutex_lock_iothread(void)
879 if (kvm_enabled()) {
880 qemu_mutex_lock(&qemu_global_mutex);
881 } else {
882 qemu_mutex_lock(&qemu_fair_mutex);
883 if (qemu_mutex_trylock(&qemu_global_mutex)) {
884 qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
885 qemu_mutex_lock(&qemu_global_mutex);
887 qemu_mutex_unlock(&qemu_fair_mutex);
891 void qemu_mutex_unlock_iothread(void)
893 qemu_mutex_unlock(&qemu_global_mutex);
896 static int all_vcpus_paused(void)
898 CPUState *penv = first_cpu;
900 while (penv) {
901 if (!penv->stopped) {
902 return 0;
904 penv = (CPUState *)penv->next_cpu;
907 return 1;
910 void pause_all_vcpus(void)
912 CPUState *penv = first_cpu;
914 while (penv) {
915 penv->stop = 1;
916 qemu_cpu_kick(penv);
917 penv = (CPUState *)penv->next_cpu;
920 while (!all_vcpus_paused()) {
921 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
922 penv = first_cpu;
923 while (penv) {
924 qemu_cpu_kick(penv);
925 penv = (CPUState *)penv->next_cpu;
930 void resume_all_vcpus(void)
932 CPUState *penv = first_cpu;
934 while (penv) {
935 penv->stop = 0;
936 penv->stopped = 0;
937 qemu_cpu_kick(penv);
938 penv = (CPUState *)penv->next_cpu;
942 static void qemu_tcg_init_vcpu(void *_env)
944 CPUState *env = _env;
946 /* share a single thread for all cpus with TCG */
947 if (!tcg_cpu_thread) {
948 env->thread = qemu_mallocz(sizeof(QemuThread));
949 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
950 qemu_cond_init(env->halt_cond);
951 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
952 while (env->created == 0) {
953 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
955 tcg_cpu_thread = env->thread;
956 tcg_halt_cond = env->halt_cond;
957 } else {
958 env->thread = tcg_cpu_thread;
959 env->halt_cond = tcg_halt_cond;
963 static void qemu_kvm_start_vcpu(CPUState *env)
965 env->thread = qemu_mallocz(sizeof(QemuThread));
966 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
967 qemu_cond_init(env->halt_cond);
968 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
969 while (env->created == 0) {
970 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
974 void qemu_init_vcpu(void *_env)
976 CPUState *env = _env;
978 env->nr_cores = smp_cores;
979 env->nr_threads = smp_threads;
980 if (kvm_enabled()) {
981 qemu_kvm_start_vcpu(env);
982 } else {
983 qemu_tcg_init_vcpu(env);
987 void qemu_notify_event(void)
989 qemu_event_increment();
992 void cpu_stop_current(void)
994 if (cpu_single_env) {
995 cpu_single_env->stopped = 1;
996 cpu_exit(cpu_single_env);
1000 void vm_stop(int reason)
1002 QemuThread me;
1003 qemu_thread_self(&me);
1005 if (!qemu_thread_equal(&me, &io_thread)) {
1006 qemu_system_vmstop_request(reason);
1008 * FIXME: should not return to device code in case
1009 * vm_stop() has been requested.
1011 cpu_stop_current();
1012 return;
1014 do_vm_stop(reason);
1017 #endif
1019 static int qemu_cpu_exec(CPUState *env)
1021 int ret;
1022 #ifdef CONFIG_PROFILER
1023 int64_t ti;
1024 #endif
1026 #ifdef CONFIG_PROFILER
1027 ti = profile_getclock();
1028 #endif
1029 if (use_icount) {
1030 int64_t count;
1031 int decr;
1032 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1033 env->icount_decr.u16.low = 0;
1034 env->icount_extra = 0;
1035 count = qemu_icount_round (qemu_next_deadline());
1036 qemu_icount += count;
1037 decr = (count > 0xffff) ? 0xffff : count;
1038 count -= decr;
1039 env->icount_decr.u16.low = decr;
1040 env->icount_extra = count;
1042 ret = cpu_exec(env);
1043 #ifdef CONFIG_PROFILER
1044 qemu_time += profile_getclock() - ti;
1045 #endif
1046 if (use_icount) {
1047 /* Fold pending instructions back into the
1048 instruction counter, and clear the interrupt flag. */
1049 qemu_icount -= (env->icount_decr.u16.low
1050 + env->icount_extra);
1051 env->icount_decr.u32 = 0;
1052 env->icount_extra = 0;
1054 return ret;
1057 bool cpu_exec_all(void)
1059 int r;
1061 if (next_cpu == NULL) {
1062 next_cpu = first_cpu;
1064 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1065 CPUState *env = next_cpu;
1067 qemu_clock_enable(vm_clock,
1068 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1070 if (qemu_alarm_pending()) {
1071 break;
1073 if (cpu_can_run(env)) {
1074 r = qemu_cpu_exec(env);
1075 if (kvm_enabled()) {
1076 qemu_kvm_eat_signals(env);
1078 if (r == EXCP_DEBUG) {
1079 break;
1081 } else if (env->stop) {
1082 break;
1085 exit_request = 0;
1086 return !all_cpu_threads_idle();
1089 void set_numa_modes(void)
1091 CPUState *env;
1092 int i;
1094 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1095 for (i = 0; i < nb_numa_nodes; i++) {
1096 if (node_cpumask[i] & (1 << env->cpu_index)) {
1097 env->numa_node = i;
1103 void set_cpu_log(const char *optarg)
1105 int mask;
1106 const CPULogItem *item;
1108 mask = cpu_str_to_log_mask(optarg);
1109 if (!mask) {
1110 printf("Log items (comma separated):\n");
1111 for (item = cpu_log_items; item->mask != 0; item++) {
1112 printf("%-10s %s\n", item->name, item->help);
1114 exit(1);
1116 cpu_set_log(mask);
1119 /* Return the virtual CPU time, based on the instruction counter. */
1120 int64_t cpu_get_icount(void)
1122 int64_t icount;
1123 CPUState *env = cpu_single_env;;
1125 icount = qemu_icount;
1126 if (env) {
1127 if (!can_do_io(env)) {
1128 fprintf(stderr, "Bad clock read\n");
1130 icount -= (env->icount_decr.u16.low + env->icount_extra);
1132 return qemu_icount_bias + (icount << icount_time_shift);
1135 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1137 /* XXX: implement xxx_cpu_list for targets that still miss it */
1138 #if defined(cpu_list_id)
1139 cpu_list_id(f, cpu_fprintf, optarg);
1140 #elif defined(cpu_list)
1141 cpu_list(f, cpu_fprintf); /* deprecated */
1142 #endif