kvm: Drop CONFIG_KVM_PARA
[qemu/stefanha.git] / hw / etraxfs_dma.c
blobc205ec1b8f443f297f7232c0b8e34d9698c7c7a7
1 /*
2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
30 #include "etraxfs_dma.h"
32 #define D(x)
34 #define RW_DATA (0x0 / 4)
35 #define RW_SAVED_DATA (0x58 / 4)
36 #define RW_SAVED_DATA_BUF (0x5c / 4)
37 #define RW_GROUP (0x60 / 4)
38 #define RW_GROUP_DOWN (0x7c / 4)
39 #define RW_CMD (0x80 / 4)
40 #define RW_CFG (0x84 / 4)
41 #define RW_STAT (0x88 / 4)
42 #define RW_INTR_MASK (0x8c / 4)
43 #define RW_ACK_INTR (0x90 / 4)
44 #define R_INTR (0x94 / 4)
45 #define R_MASKED_INTR (0x98 / 4)
46 #define RW_STREAM_CMD (0x9c / 4)
48 #define DMA_REG_MAX (0x100 / 4)
50 /* descriptors */
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 uint32_t next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 uint32_t next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 uint32_t saved_data;
89 uint32_t saved_data_buf;
90 } dma_descr_context;
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 uint32_t next;
95 uint32_t buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 uint32_t after;
107 } dma_descr_data;
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
159 enum dma_ch_state
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
166 struct fs_dma_channel
168 qemu_irq irq;
169 struct etraxfs_dma_client *client;
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
175 unsigned int input : 1;
176 unsigned int eol : 1;
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
182 /* Controll registers. */
183 uint32_t regs[DMA_REG_MAX];
186 struct fs_dma_ctrl
188 int map;
189 int nr_channels;
190 struct fs_dma_channel *channels;
192 QEMUBH *bh;
195 static void DMA_run(void *opaque);
196 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
198 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
200 return ctrl->channels[c].regs[reg];
203 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
205 return channel_reg(ctrl, c, RW_CFG) & 2;
208 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
210 return (channel_reg(ctrl, c, RW_CFG) & 1)
211 && ctrl->channels[c].client;
214 static inline int fs_channel(target_phys_addr_t addr)
216 /* Every channel has a 0x2000 ctrl register map. */
217 return addr >> 13;
220 #ifdef USE_THIS_DEAD_CODE
221 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
223 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
225 /* Load and decode. FIXME: handle endianness. */
226 cpu_physical_memory_read (addr,
227 (void *) &ctrl->channels[c].current_g,
228 sizeof ctrl->channels[c].current_g);
231 static void dump_c(int ch, struct dma_descr_context *c)
233 printf("%s ch=%d\n", __func__, ch);
234 printf("next=%x\n", c->next);
235 printf("saved_data=%x\n", c->saved_data);
236 printf("saved_data_buf=%x\n", c->saved_data_buf);
237 printf("eol=%x\n", (uint32_t) c->eol);
240 static void dump_d(int ch, struct dma_descr_data *d)
242 printf("%s ch=%d\n", __func__, ch);
243 printf("next=%x\n", d->next);
244 printf("buf=%x\n", d->buf);
245 printf("after=%x\n", d->after);
246 printf("intr=%x\n", (uint32_t) d->intr);
247 printf("out_eop=%x\n", (uint32_t) d->out_eop);
248 printf("in_eop=%x\n", (uint32_t) d->in_eop);
249 printf("eol=%x\n", (uint32_t) d->eol);
251 #endif
253 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
255 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
257 /* Load and decode. FIXME: handle endianness. */
258 cpu_physical_memory_read (addr,
259 (void *) &ctrl->channels[c].current_c,
260 sizeof ctrl->channels[c].current_c);
262 D(dump_c(c, &ctrl->channels[c].current_c));
263 /* I guess this should update the current pos. */
264 ctrl->channels[c].regs[RW_SAVED_DATA] =
265 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
266 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
270 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
272 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
274 /* Load and decode. FIXME: handle endianness. */
275 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
276 cpu_physical_memory_read (addr,
277 (void *) &ctrl->channels[c].current_d,
278 sizeof ctrl->channels[c].current_d);
280 D(dump_d(c, &ctrl->channels[c].current_d));
281 ctrl->channels[c].regs[RW_DATA] = addr;
284 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
286 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
288 /* Encode and store. FIXME: handle endianness. */
289 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
290 D(dump_d(c, &ctrl->channels[c].current_d));
291 cpu_physical_memory_write (addr,
292 (void *) &ctrl->channels[c].current_c,
293 sizeof ctrl->channels[c].current_c);
296 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
298 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
300 /* Encode and store. FIXME: handle endianness. */
301 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
302 cpu_physical_memory_write (addr,
303 (void *) &ctrl->channels[c].current_d,
304 sizeof ctrl->channels[c].current_d);
307 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
309 /* FIXME: */
312 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
314 if (ctrl->channels[c].client)
316 ctrl->channels[c].eol = 0;
317 ctrl->channels[c].state = RUNNING;
318 if (!ctrl->channels[c].input)
319 channel_out_run(ctrl, c);
320 } else
321 printf("WARNING: starting DMA ch %d with no client\n", c);
323 qemu_bh_schedule_idle(ctrl->bh);
326 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
328 if (!channel_en(ctrl, c)
329 || channel_stopped(ctrl, c)
330 || ctrl->channels[c].state != RUNNING
331 /* Only reload the current data descriptor if it has eol set. */
332 || !ctrl->channels[c].current_d.eol) {
333 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
334 c, ctrl->channels[c].state,
335 channel_stopped(ctrl, c),
336 channel_en(ctrl,c),
337 ctrl->channels[c].eol));
338 D(dump_d(c, &ctrl->channels[c].current_d));
339 return;
342 /* Reload the current descriptor. */
343 channel_load_d(ctrl, c);
345 /* If the current descriptor cleared the eol flag and we had already
346 reached eol state, do the continue. */
347 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
348 D(printf("continue %d ok %x\n", c,
349 ctrl->channels[c].current_d.next));
350 ctrl->channels[c].regs[RW_SAVED_DATA] =
351 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
352 channel_load_d(ctrl, c);
353 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
354 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
356 channel_start(ctrl, c);
358 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
359 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
362 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
364 unsigned int cmd = v & ((1 << 10) - 1);
366 D(printf("%s ch=%d cmd=%x\n",
367 __func__, c, cmd));
368 if (cmd & regk_dma_load_d) {
369 channel_load_d(ctrl, c);
370 if (cmd & regk_dma_burst)
371 channel_start(ctrl, c);
374 if (cmd & regk_dma_load_c) {
375 channel_load_c(ctrl, c);
379 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
381 D(printf("%s %d\n", __func__, c));
382 ctrl->channels[c].regs[R_INTR] &=
383 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
385 ctrl->channels[c].regs[R_MASKED_INTR] =
386 ctrl->channels[c].regs[R_INTR]
387 & ctrl->channels[c].regs[RW_INTR_MASK];
389 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
391 ctrl->channels[c].regs[R_MASKED_INTR]));
393 qemu_set_irq(ctrl->channels[c].irq,
394 !!ctrl->channels[c].regs[R_MASKED_INTR]);
397 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
399 uint32_t len;
400 uint32_t saved_data_buf;
401 unsigned char buf[2 * 1024];
403 if (ctrl->channels[c].eol)
404 return 0;
406 do {
407 D(printf("ch=%d buf=%x after=%x\n",
409 (uint32_t)ctrl->channels[c].current_d.buf,
410 (uint32_t)ctrl->channels[c].current_d.after));
412 channel_load_d(ctrl, c);
413 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
414 len = (uint32_t)(unsigned long)
415 ctrl->channels[c].current_d.after;
416 len -= saved_data_buf;
418 if (len > sizeof buf)
419 len = sizeof buf;
420 cpu_physical_memory_read (saved_data_buf, buf, len);
422 D(printf("channel %d pushes %x %u bytes\n", c,
423 saved_data_buf, len));
425 if (ctrl->channels[c].client->client.push)
426 ctrl->channels[c].client->client.push(
427 ctrl->channels[c].client->client.opaque,
428 buf, len);
429 else
430 printf("WARNING: DMA ch%d dataloss,"
431 " no attached client.\n", c);
433 saved_data_buf += len;
435 if (saved_data_buf == (uint32_t)(unsigned long)
436 ctrl->channels[c].current_d.after) {
437 /* Done. Step to next. */
438 if (ctrl->channels[c].current_d.out_eop) {
439 /* TODO: signal eop to the client. */
440 D(printf("signal eop\n"));
442 if (ctrl->channels[c].current_d.intr) {
443 /* TODO: signal eop to the client. */
444 /* data intr. */
445 D(printf("signal intr %d eol=%d\n",
446 len, ctrl->channels[c].current_d.eol));
447 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
448 channel_update_irq(ctrl, c);
450 channel_store_d(ctrl, c);
451 if (ctrl->channels[c].current_d.eol) {
452 D(printf("channel %d EOL\n", c));
453 ctrl->channels[c].eol = 1;
455 /* Mark the context as disabled. */
456 ctrl->channels[c].current_c.dis = 1;
457 channel_store_c(ctrl, c);
459 channel_stop(ctrl, c);
460 } else {
461 ctrl->channels[c].regs[RW_SAVED_DATA] =
462 (uint32_t)(unsigned long)ctrl->
463 channels[c].current_d.next;
464 /* Load new descriptor. */
465 channel_load_d(ctrl, c);
466 saved_data_buf = (uint32_t)(unsigned long)
467 ctrl->channels[c].current_d.buf;
470 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
471 saved_data_buf;
472 D(dump_d(c, &ctrl->channels[c].current_d));
474 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
475 } while (!ctrl->channels[c].eol);
476 return 1;
479 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
480 unsigned char *buf, int buflen, int eop)
482 uint32_t len;
483 uint32_t saved_data_buf;
485 if (ctrl->channels[c].eol == 1)
486 return 0;
488 channel_load_d(ctrl, c);
489 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
490 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
491 len -= saved_data_buf;
493 if (len > buflen)
494 len = buflen;
496 cpu_physical_memory_write (saved_data_buf, buf, len);
497 saved_data_buf += len;
499 if (saved_data_buf ==
500 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
501 || eop) {
502 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
504 D(printf("in dscr end len=%d\n",
505 ctrl->channels[c].current_d.after
506 - ctrl->channels[c].current_d.buf));
507 ctrl->channels[c].current_d.after = saved_data_buf;
509 /* Done. Step to next. */
510 if (ctrl->channels[c].current_d.intr) {
511 /* TODO: signal eop to the client. */
512 /* data intr. */
513 ctrl->channels[c].regs[R_INTR] |= 3;
515 if (eop) {
516 ctrl->channels[c].current_d.in_eop = 1;
517 ctrl->channels[c].regs[R_INTR] |= 8;
519 if (r_intr != ctrl->channels[c].regs[R_INTR])
520 channel_update_irq(ctrl, c);
522 channel_store_d(ctrl, c);
523 D(dump_d(c, &ctrl->channels[c].current_d));
525 if (ctrl->channels[c].current_d.eol) {
526 D(printf("channel %d EOL\n", c));
527 ctrl->channels[c].eol = 1;
529 /* Mark the context as disabled. */
530 ctrl->channels[c].current_c.dis = 1;
531 channel_store_c(ctrl, c);
533 channel_stop(ctrl, c);
534 } else {
535 ctrl->channels[c].regs[RW_SAVED_DATA] =
536 (uint32_t)(unsigned long)ctrl->
537 channels[c].current_d.next;
538 /* Load new descriptor. */
539 channel_load_d(ctrl, c);
540 saved_data_buf = (uint32_t)(unsigned long)
541 ctrl->channels[c].current_d.buf;
545 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
546 return len;
549 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
551 if (ctrl->channels[c].client->client.pull) {
552 ctrl->channels[c].client->client.pull(
553 ctrl->channels[c].client->client.opaque);
554 return 1;
555 } else
556 return 0;
559 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
561 hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
562 return 0;
565 static uint32_t
566 dma_readl (void *opaque, target_phys_addr_t addr)
568 struct fs_dma_ctrl *ctrl = opaque;
569 int c;
570 uint32_t r = 0;
572 /* Make addr relative to this channel and bounded to nr regs. */
573 c = fs_channel(addr);
574 addr &= 0xff;
575 addr >>= 2;
576 switch (addr)
578 case RW_STAT:
579 r = ctrl->channels[c].state & 7;
580 r |= ctrl->channels[c].eol << 5;
581 r |= ctrl->channels[c].stream_cmd_src << 8;
582 break;
584 default:
585 r = ctrl->channels[c].regs[addr];
586 D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
587 __func__, c, addr));
588 break;
590 return r;
593 static void
594 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
596 hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
599 static void
600 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
602 if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
603 if (ctrl->channels[c].regs[RW_CFG] & 2)
604 ctrl->channels[c].state = STOPPED;
605 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
606 ctrl->channels[c].state = RST;
610 static void
611 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
613 struct fs_dma_ctrl *ctrl = opaque;
614 int c;
616 /* Make addr relative to this channel and bounded to nr regs. */
617 c = fs_channel(addr);
618 addr &= 0xff;
619 addr >>= 2;
620 switch (addr)
622 case RW_DATA:
623 ctrl->channels[c].regs[addr] = value;
624 break;
626 case RW_CFG:
627 ctrl->channels[c].regs[addr] = value;
628 dma_update_state(ctrl, c);
629 break;
630 case RW_CMD:
631 /* continue. */
632 if (value & ~1)
633 printf("Invalid store to ch=%d RW_CMD %x\n",
634 c, value);
635 ctrl->channels[c].regs[addr] = value;
636 channel_continue(ctrl, c);
637 break;
639 case RW_SAVED_DATA:
640 case RW_SAVED_DATA_BUF:
641 case RW_GROUP:
642 case RW_GROUP_DOWN:
643 ctrl->channels[c].regs[addr] = value;
644 break;
646 case RW_ACK_INTR:
647 case RW_INTR_MASK:
648 ctrl->channels[c].regs[addr] = value;
649 channel_update_irq(ctrl, c);
650 if (addr == RW_ACK_INTR)
651 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
652 break;
654 case RW_STREAM_CMD:
655 if (value & ~1023)
656 printf("Invalid store to ch=%d "
657 "RW_STREAMCMD %x\n",
658 c, value);
659 ctrl->channels[c].regs[addr] = value;
660 D(printf("stream_cmd ch=%d\n", c));
661 channel_stream_cmd(ctrl, c, value);
662 break;
664 default:
665 D(printf ("%s c=%d " TARGET_FMT_plx "\n",
666 __func__, c, addr));
667 break;
671 static CPUReadMemoryFunc * const dma_read[] = {
672 &dma_rinvalid,
673 &dma_rinvalid,
674 &dma_readl,
677 static CPUWriteMemoryFunc * const dma_write[] = {
678 &dma_winvalid,
679 &dma_winvalid,
680 &dma_writel,
683 static int etraxfs_dmac_run(void *opaque)
685 struct fs_dma_ctrl *ctrl = opaque;
686 int i;
687 int p = 0;
689 for (i = 0;
690 i < ctrl->nr_channels;
691 i++)
693 if (ctrl->channels[i].state == RUNNING)
695 if (ctrl->channels[i].input) {
696 p += channel_in_run(ctrl, i);
697 } else {
698 p += channel_out_run(ctrl, i);
702 return p;
705 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
706 void *buf, int len, int eop)
708 return channel_in_process(client->ctrl, client->channel,
709 buf, len, eop);
712 /* Connect an IRQ line with a channel. */
713 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
715 struct fs_dma_ctrl *ctrl = opaque;
716 ctrl->channels[c].irq = *line;
717 ctrl->channels[c].input = input;
720 void etraxfs_dmac_connect_client(void *opaque, int c,
721 struct etraxfs_dma_client *cl)
723 struct fs_dma_ctrl *ctrl = opaque;
724 cl->ctrl = ctrl;
725 cl->channel = c;
726 ctrl->channels[c].client = cl;
730 static void DMA_run(void *opaque)
732 struct fs_dma_ctrl *etraxfs_dmac = opaque;
733 int p = 1;
735 if (vm_running)
736 p = etraxfs_dmac_run(etraxfs_dmac);
738 if (p)
739 qemu_bh_schedule_idle(etraxfs_dmac->bh);
742 void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
744 struct fs_dma_ctrl *ctrl = NULL;
746 ctrl = qemu_mallocz(sizeof *ctrl);
748 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
750 ctrl->nr_channels = nr_channels;
751 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
753 ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl, DEVICE_NATIVE_ENDIAN);
754 cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
755 return ctrl;