block: Change bdrv_eject() not to drop the image
[qemu/stefanha.git] / hw / omap1.c
blobcf0d428692d93c38143aba53686a549c0c69801e
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
25 #include "soc_dma.h"
26 /* We use pc-style serial ports. */
27 #include "pc.h"
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
32 uint8_t ret;
34 OMAP_8B_REG(addr);
35 cpu_physical_memory_read(addr, (void *) &ret, 1);
36 return ret;
39 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
40 uint32_t value)
42 uint8_t val8 = value;
44 OMAP_8B_REG(addr);
45 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
50 uint16_t ret;
52 OMAP_16B_REG(addr);
53 cpu_physical_memory_read(addr, (void *) &ret, 2);
54 return ret;
57 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
58 uint32_t value)
60 uint16_t val16 = value;
62 OMAP_16B_REG(addr);
63 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
68 uint32_t ret;
70 OMAP_32B_REG(addr);
71 cpu_physical_memory_read(addr, (void *) &ret, 4);
72 return ret;
75 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
76 uint32_t value)
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_write(addr, (void *) &value, 4);
82 /* MPU OS timers */
83 struct omap_mpu_timer_s {
84 qemu_irq irq;
85 omap_clk clk;
86 uint32_t val;
87 int64_t time;
88 QEMUTimer *timer;
89 QEMUBH *tick;
90 int64_t rate;
91 int it_ena;
93 int enable;
94 int ptv;
95 int ar;
96 int st;
97 uint32_t reset_val;
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
104 if (timer->st && timer->enable && timer->rate)
105 return timer->val - muldiv64(distance >> (timer->ptv + 1),
106 timer->rate, get_ticks_per_sec());
107 else
108 return timer->val;
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 timer->val = omap_timer_read(timer);
114 timer->time = qemu_get_clock(vm_clock);
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 int64_t expires;
121 if (timer->enable && timer->st && timer->rate) {
122 timer->val = timer->reset_val; /* Should skip this on clk enable */
123 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124 get_ticks_per_sec(), timer->rate);
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
131 * ticks. */
132 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133 qemu_mod_timer(timer->timer, timer->time + expires);
134 else
135 qemu_bh_schedule(timer->tick);
136 } else
137 qemu_del_timer(timer->timer);
140 static void omap_timer_fire(void *opaque)
142 struct omap_mpu_timer_s *timer = opaque;
144 if (!timer->ar) {
145 timer->val = 0;
146 timer->st = 0;
149 if (timer->it_ena)
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer->irq);
154 static void omap_timer_tick(void *opaque)
156 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158 omap_timer_sync(timer);
159 omap_timer_fire(timer);
160 omap_timer_update(timer);
163 static void omap_timer_clk_update(void *opaque, int line, int on)
165 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 omap_timer_sync(timer);
168 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169 omap_timer_update(timer);
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 omap_clk_adduser(timer->clk,
175 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176 timer->rate = omap_clk_getrate(timer->clk);
179 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
181 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
183 switch (addr) {
184 case 0x00: /* CNTL_TIMER */
185 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
187 case 0x04: /* LOAD_TIM */
188 break;
190 case 0x08: /* READ_TIM */
191 return omap_timer_read(s);
194 OMAP_BAD_REG(addr);
195 return 0;
198 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
199 uint32_t value)
201 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
203 switch (addr) {
204 case 0x00: /* CNTL_TIMER */
205 omap_timer_sync(s);
206 s->enable = (value >> 5) & 1;
207 s->ptv = (value >> 2) & 7;
208 s->ar = (value >> 1) & 1;
209 s->st = value & 1;
210 omap_timer_update(s);
211 return;
213 case 0x04: /* LOAD_TIM */
214 s->reset_val = value;
215 return;
217 case 0x08: /* READ_TIM */
218 OMAP_RO_REG(addr);
219 break;
221 default:
222 OMAP_BAD_REG(addr);
226 static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
227 omap_badwidth_read32,
228 omap_badwidth_read32,
229 omap_mpu_timer_read,
232 static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
233 omap_badwidth_write32,
234 omap_badwidth_write32,
235 omap_mpu_timer_write,
238 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
240 qemu_del_timer(s->timer);
241 s->enable = 0;
242 s->reset_val = 31337;
243 s->val = 0;
244 s->ptv = 0;
245 s->ar = 0;
246 s->st = 0;
247 s->it_ena = 1;
250 static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
251 qemu_irq irq, omap_clk clk)
253 int iomemtype;
254 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
255 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
257 s->irq = irq;
258 s->clk = clk;
259 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
260 s->tick = qemu_bh_new(omap_timer_fire, s);
261 omap_mpu_timer_reset(s);
262 omap_timer_clk_setup(s);
264 iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
265 omap_mpu_timer_writefn, s);
266 cpu_register_physical_memory(base, 0x100, iomemtype);
268 return s;
271 /* Watchdog timer */
272 struct omap_watchdog_timer_s {
273 struct omap_mpu_timer_s timer;
274 uint8_t last_wr;
275 int mode;
276 int free;
277 int reset;
280 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
282 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
284 switch (addr) {
285 case 0x00: /* CNTL_TIMER */
286 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
287 (s->timer.st << 7) | (s->free << 1);
289 case 0x04: /* READ_TIMER */
290 return omap_timer_read(&s->timer);
292 case 0x08: /* TIMER_MODE */
293 return s->mode << 15;
296 OMAP_BAD_REG(addr);
297 return 0;
300 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
301 uint32_t value)
303 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
305 switch (addr) {
306 case 0x00: /* CNTL_TIMER */
307 omap_timer_sync(&s->timer);
308 s->timer.ptv = (value >> 9) & 7;
309 s->timer.ar = (value >> 8) & 1;
310 s->timer.st = (value >> 7) & 1;
311 s->free = (value >> 1) & 1;
312 omap_timer_update(&s->timer);
313 break;
315 case 0x04: /* LOAD_TIMER */
316 s->timer.reset_val = value & 0xffff;
317 break;
319 case 0x08: /* TIMER_MODE */
320 if (!s->mode && ((value >> 15) & 1))
321 omap_clk_get(s->timer.clk);
322 s->mode |= (value >> 15) & 1;
323 if (s->last_wr == 0xf5) {
324 if ((value & 0xff) == 0xa0) {
325 if (s->mode) {
326 s->mode = 0;
327 omap_clk_put(s->timer.clk);
329 } else {
330 /* XXX: on T|E hardware somehow this has no effect,
331 * on Zire 71 it works as specified. */
332 s->reset = 1;
333 qemu_system_reset_request();
336 s->last_wr = value & 0xff;
337 break;
339 default:
340 OMAP_BAD_REG(addr);
344 static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
345 omap_badwidth_read16,
346 omap_wd_timer_read,
347 omap_badwidth_read16,
350 static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
351 omap_badwidth_write16,
352 omap_wd_timer_write,
353 omap_badwidth_write16,
356 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
358 qemu_del_timer(s->timer.timer);
359 if (!s->mode)
360 omap_clk_get(s->timer.clk);
361 s->mode = 1;
362 s->free = 1;
363 s->reset = 0;
364 s->timer.enable = 1;
365 s->timer.it_ena = 1;
366 s->timer.reset_val = 0xffff;
367 s->timer.val = 0;
368 s->timer.st = 0;
369 s->timer.ptv = 0;
370 s->timer.ar = 0;
371 omap_timer_update(&s->timer);
374 static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
375 qemu_irq irq, omap_clk clk)
377 int iomemtype;
378 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
379 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
381 s->timer.irq = irq;
382 s->timer.clk = clk;
383 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
384 omap_wd_timer_reset(s);
385 omap_timer_clk_setup(&s->timer);
387 iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
388 omap_wd_timer_writefn, s);
389 cpu_register_physical_memory(base, 0x100, iomemtype);
391 return s;
394 /* 32-kHz timer */
395 struct omap_32khz_timer_s {
396 struct omap_mpu_timer_s timer;
399 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
401 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
402 int offset = addr & OMAP_MPUI_REG_MASK;
404 switch (offset) {
405 case 0x00: /* TVR */
406 return s->timer.reset_val;
408 case 0x04: /* TCR */
409 return omap_timer_read(&s->timer);
411 case 0x08: /* CR */
412 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
414 default:
415 break;
417 OMAP_BAD_REG(addr);
418 return 0;
421 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
422 uint32_t value)
424 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
425 int offset = addr & OMAP_MPUI_REG_MASK;
427 switch (offset) {
428 case 0x00: /* TVR */
429 s->timer.reset_val = value & 0x00ffffff;
430 break;
432 case 0x04: /* TCR */
433 OMAP_RO_REG(addr);
434 break;
436 case 0x08: /* CR */
437 s->timer.ar = (value >> 3) & 1;
438 s->timer.it_ena = (value >> 2) & 1;
439 if (s->timer.st != (value & 1) || (value & 2)) {
440 omap_timer_sync(&s->timer);
441 s->timer.enable = value & 1;
442 s->timer.st = value & 1;
443 omap_timer_update(&s->timer);
445 break;
447 default:
448 OMAP_BAD_REG(addr);
452 static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
453 omap_badwidth_read32,
454 omap_badwidth_read32,
455 omap_os_timer_read,
458 static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
459 omap_badwidth_write32,
460 omap_badwidth_write32,
461 omap_os_timer_write,
464 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
466 qemu_del_timer(s->timer.timer);
467 s->timer.enable = 0;
468 s->timer.it_ena = 0;
469 s->timer.reset_val = 0x00ffffff;
470 s->timer.val = 0;
471 s->timer.st = 0;
472 s->timer.ptv = 0;
473 s->timer.ar = 1;
476 static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
477 qemu_irq irq, omap_clk clk)
479 int iomemtype;
480 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
481 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
483 s->timer.irq = irq;
484 s->timer.clk = clk;
485 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
486 omap_os_timer_reset(s);
487 omap_timer_clk_setup(&s->timer);
489 iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
490 omap_os_timer_writefn, s);
491 cpu_register_physical_memory(base, 0x800, iomemtype);
493 return s;
496 /* Ultra Low-Power Device Module */
497 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
499 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
500 uint16_t ret;
502 switch (addr) {
503 case 0x14: /* IT_STATUS */
504 ret = s->ulpd_pm_regs[addr >> 2];
505 s->ulpd_pm_regs[addr >> 2] = 0;
506 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
507 return ret;
509 case 0x18: /* Reserved */
510 case 0x1c: /* Reserved */
511 case 0x20: /* Reserved */
512 case 0x28: /* Reserved */
513 case 0x2c: /* Reserved */
514 OMAP_BAD_REG(addr);
515 case 0x00: /* COUNTER_32_LSB */
516 case 0x04: /* COUNTER_32_MSB */
517 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
518 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
519 case 0x10: /* GAUGING_CTRL */
520 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
521 case 0x30: /* CLOCK_CTRL */
522 case 0x34: /* SOFT_REQ */
523 case 0x38: /* COUNTER_32_FIQ */
524 case 0x3c: /* DPLL_CTRL */
525 case 0x40: /* STATUS_REQ */
526 /* XXX: check clk::usecount state for every clock */
527 case 0x48: /* LOCL_TIME */
528 case 0x4c: /* APLL_CTRL */
529 case 0x50: /* POWER_CTRL */
530 return s->ulpd_pm_regs[addr >> 2];
533 OMAP_BAD_REG(addr);
534 return 0;
537 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
538 uint16_t diff, uint16_t value)
540 if (diff & (1 << 4)) /* USB_MCLK_EN */
541 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
542 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
543 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
546 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
547 uint16_t diff, uint16_t value)
549 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
550 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
551 if (diff & (1 << 1)) /* SOFT_COM_REQ */
552 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
553 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
554 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
555 if (diff & (1 << 3)) /* SOFT_USB_REQ */
556 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
559 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
560 uint32_t value)
562 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
563 int64_t now, ticks;
564 int div, mult;
565 static const int bypass_div[4] = { 1, 2, 4, 4 };
566 uint16_t diff;
568 switch (addr) {
569 case 0x00: /* COUNTER_32_LSB */
570 case 0x04: /* COUNTER_32_MSB */
571 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
572 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
573 case 0x14: /* IT_STATUS */
574 case 0x40: /* STATUS_REQ */
575 OMAP_RO_REG(addr);
576 break;
578 case 0x10: /* GAUGING_CTRL */
579 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
580 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
581 now = qemu_get_clock(vm_clock);
583 if (value & 1)
584 s->ulpd_gauge_start = now;
585 else {
586 now -= s->ulpd_gauge_start;
588 /* 32-kHz ticks */
589 ticks = muldiv64(now, 32768, get_ticks_per_sec());
590 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
591 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
592 if (ticks >> 32) /* OVERFLOW_32K */
593 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
595 /* High frequency ticks */
596 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
597 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
598 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
599 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
600 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
602 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
603 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
606 s->ulpd_pm_regs[addr >> 2] = value;
607 break;
609 case 0x18: /* Reserved */
610 case 0x1c: /* Reserved */
611 case 0x20: /* Reserved */
612 case 0x28: /* Reserved */
613 case 0x2c: /* Reserved */
614 OMAP_BAD_REG(addr);
615 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
616 case 0x38: /* COUNTER_32_FIQ */
617 case 0x48: /* LOCL_TIME */
618 case 0x50: /* POWER_CTRL */
619 s->ulpd_pm_regs[addr >> 2] = value;
620 break;
622 case 0x30: /* CLOCK_CTRL */
623 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
624 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
625 omap_ulpd_clk_update(s, diff, value);
626 break;
628 case 0x34: /* SOFT_REQ */
629 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
630 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
631 omap_ulpd_req_update(s, diff, value);
632 break;
634 case 0x3c: /* DPLL_CTRL */
635 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
636 * omitted altogether, probably a typo. */
637 /* This register has identical semantics with DPLL(1:3) control
638 * registers, see omap_dpll_write() */
639 diff = s->ulpd_pm_regs[addr >> 2] & value;
640 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
641 if (diff & (0x3ff << 2)) {
642 if (value & (1 << 4)) { /* PLL_ENABLE */
643 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
644 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
645 } else {
646 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
647 mult = 1;
649 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
652 /* Enter the desired mode. */
653 s->ulpd_pm_regs[addr >> 2] =
654 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
655 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
657 /* Act as if the lock is restored. */
658 s->ulpd_pm_regs[addr >> 2] |= 2;
659 break;
661 case 0x4c: /* APLL_CTRL */
662 diff = s->ulpd_pm_regs[addr >> 2] & value;
663 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
664 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
665 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
666 (value & (1 << 0)) ? "apll" : "dpll4"));
667 break;
669 default:
670 OMAP_BAD_REG(addr);
674 static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
675 omap_badwidth_read16,
676 omap_ulpd_pm_read,
677 omap_badwidth_read16,
680 static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
681 omap_badwidth_write16,
682 omap_ulpd_pm_write,
683 omap_badwidth_write16,
686 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
688 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
689 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
690 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
691 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
692 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
693 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
694 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
695 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
696 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
697 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
698 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
699 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
700 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
701 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
702 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
703 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
704 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
705 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
706 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
707 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
708 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
709 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
710 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
713 static void omap_ulpd_pm_init(target_phys_addr_t base,
714 struct omap_mpu_state_s *mpu)
716 int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
717 omap_ulpd_pm_writefn, mpu);
719 cpu_register_physical_memory(base, 0x800, iomemtype);
720 omap_ulpd_pm_reset(mpu);
723 /* OMAP Pin Configuration */
724 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
726 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
728 switch (addr) {
729 case 0x00: /* FUNC_MUX_CTRL_0 */
730 case 0x04: /* FUNC_MUX_CTRL_1 */
731 case 0x08: /* FUNC_MUX_CTRL_2 */
732 return s->func_mux_ctrl[addr >> 2];
734 case 0x0c: /* COMP_MODE_CTRL_0 */
735 return s->comp_mode_ctrl[0];
737 case 0x10: /* FUNC_MUX_CTRL_3 */
738 case 0x14: /* FUNC_MUX_CTRL_4 */
739 case 0x18: /* FUNC_MUX_CTRL_5 */
740 case 0x1c: /* FUNC_MUX_CTRL_6 */
741 case 0x20: /* FUNC_MUX_CTRL_7 */
742 case 0x24: /* FUNC_MUX_CTRL_8 */
743 case 0x28: /* FUNC_MUX_CTRL_9 */
744 case 0x2c: /* FUNC_MUX_CTRL_A */
745 case 0x30: /* FUNC_MUX_CTRL_B */
746 case 0x34: /* FUNC_MUX_CTRL_C */
747 case 0x38: /* FUNC_MUX_CTRL_D */
748 return s->func_mux_ctrl[(addr >> 2) - 1];
750 case 0x40: /* PULL_DWN_CTRL_0 */
751 case 0x44: /* PULL_DWN_CTRL_1 */
752 case 0x48: /* PULL_DWN_CTRL_2 */
753 case 0x4c: /* PULL_DWN_CTRL_3 */
754 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
756 case 0x50: /* GATE_INH_CTRL_0 */
757 return s->gate_inh_ctrl[0];
759 case 0x60: /* VOLTAGE_CTRL_0 */
760 return s->voltage_ctrl[0];
762 case 0x70: /* TEST_DBG_CTRL_0 */
763 return s->test_dbg_ctrl[0];
765 case 0x80: /* MOD_CONF_CTRL_0 */
766 return s->mod_conf_ctrl[0];
769 OMAP_BAD_REG(addr);
770 return 0;
773 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
774 uint32_t diff, uint32_t value)
776 if (s->compat1509) {
777 if (diff & (1 << 9)) /* BLUETOOTH */
778 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
779 (~value >> 9) & 1);
780 if (diff & (1 << 7)) /* USB.CLKO */
781 omap_clk_onoff(omap_findclk(s, "usb.clko"),
782 (value >> 7) & 1);
786 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
787 uint32_t diff, uint32_t value)
789 if (s->compat1509) {
790 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
791 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
792 (value >> 31) & 1);
793 if (diff & (1 << 1)) /* CLK32K */
794 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
795 (~value >> 1) & 1);
799 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
800 uint32_t diff, uint32_t value)
802 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
803 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
804 omap_findclk(s, ((value >> 31) & 1) ?
805 "ck_48m" : "armper_ck"));
806 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
807 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
808 omap_findclk(s, ((value >> 30) & 1) ?
809 "ck_48m" : "armper_ck"));
810 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
811 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
812 omap_findclk(s, ((value >> 29) & 1) ?
813 "ck_48m" : "armper_ck"));
814 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
815 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
816 omap_findclk(s, ((value >> 23) & 1) ?
817 "ck_48m" : "armper_ck"));
818 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
819 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
820 omap_findclk(s, ((value >> 12) & 1) ?
821 "ck_48m" : "armper_ck"));
822 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
823 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
826 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
827 uint32_t value)
829 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
830 uint32_t diff;
832 switch (addr) {
833 case 0x00: /* FUNC_MUX_CTRL_0 */
834 diff = s->func_mux_ctrl[addr >> 2] ^ value;
835 s->func_mux_ctrl[addr >> 2] = value;
836 omap_pin_funcmux0_update(s, diff, value);
837 return;
839 case 0x04: /* FUNC_MUX_CTRL_1 */
840 diff = s->func_mux_ctrl[addr >> 2] ^ value;
841 s->func_mux_ctrl[addr >> 2] = value;
842 omap_pin_funcmux1_update(s, diff, value);
843 return;
845 case 0x08: /* FUNC_MUX_CTRL_2 */
846 s->func_mux_ctrl[addr >> 2] = value;
847 return;
849 case 0x0c: /* COMP_MODE_CTRL_0 */
850 s->comp_mode_ctrl[0] = value;
851 s->compat1509 = (value != 0x0000eaef);
852 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
853 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
854 return;
856 case 0x10: /* FUNC_MUX_CTRL_3 */
857 case 0x14: /* FUNC_MUX_CTRL_4 */
858 case 0x18: /* FUNC_MUX_CTRL_5 */
859 case 0x1c: /* FUNC_MUX_CTRL_6 */
860 case 0x20: /* FUNC_MUX_CTRL_7 */
861 case 0x24: /* FUNC_MUX_CTRL_8 */
862 case 0x28: /* FUNC_MUX_CTRL_9 */
863 case 0x2c: /* FUNC_MUX_CTRL_A */
864 case 0x30: /* FUNC_MUX_CTRL_B */
865 case 0x34: /* FUNC_MUX_CTRL_C */
866 case 0x38: /* FUNC_MUX_CTRL_D */
867 s->func_mux_ctrl[(addr >> 2) - 1] = value;
868 return;
870 case 0x40: /* PULL_DWN_CTRL_0 */
871 case 0x44: /* PULL_DWN_CTRL_1 */
872 case 0x48: /* PULL_DWN_CTRL_2 */
873 case 0x4c: /* PULL_DWN_CTRL_3 */
874 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
875 return;
877 case 0x50: /* GATE_INH_CTRL_0 */
878 s->gate_inh_ctrl[0] = value;
879 return;
881 case 0x60: /* VOLTAGE_CTRL_0 */
882 s->voltage_ctrl[0] = value;
883 return;
885 case 0x70: /* TEST_DBG_CTRL_0 */
886 s->test_dbg_ctrl[0] = value;
887 return;
889 case 0x80: /* MOD_CONF_CTRL_0 */
890 diff = s->mod_conf_ctrl[0] ^ value;
891 s->mod_conf_ctrl[0] = value;
892 omap_pin_modconf1_update(s, diff, value);
893 return;
895 default:
896 OMAP_BAD_REG(addr);
900 static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
901 omap_badwidth_read32,
902 omap_badwidth_read32,
903 omap_pin_cfg_read,
906 static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
907 omap_badwidth_write32,
908 omap_badwidth_write32,
909 omap_pin_cfg_write,
912 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
914 /* Start in Compatibility Mode. */
915 mpu->compat1509 = 1;
916 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
917 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
918 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
919 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
920 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
921 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
922 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
923 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
924 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
925 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
928 static void omap_pin_cfg_init(target_phys_addr_t base,
929 struct omap_mpu_state_s *mpu)
931 int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
932 omap_pin_cfg_writefn, mpu);
934 cpu_register_physical_memory(base, 0x800, iomemtype);
935 omap_pin_cfg_reset(mpu);
938 /* Device Identification, Die Identification */
939 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
941 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
943 switch (addr) {
944 case 0xfffe1800: /* DIE_ID_LSB */
945 return 0xc9581f0e;
946 case 0xfffe1804: /* DIE_ID_MSB */
947 return 0xa8858bfa;
949 case 0xfffe2000: /* PRODUCT_ID_LSB */
950 return 0x00aaaafc;
951 case 0xfffe2004: /* PRODUCT_ID_MSB */
952 return 0xcafeb574;
954 case 0xfffed400: /* JTAG_ID_LSB */
955 switch (s->mpu_model) {
956 case omap310:
957 return 0x03310315;
958 case omap1510:
959 return 0x03310115;
960 default:
961 hw_error("%s: bad mpu model\n", __FUNCTION__);
963 break;
965 case 0xfffed404: /* JTAG_ID_MSB */
966 switch (s->mpu_model) {
967 case omap310:
968 return 0xfb57402f;
969 case omap1510:
970 return 0xfb47002f;
971 default:
972 hw_error("%s: bad mpu model\n", __FUNCTION__);
974 break;
977 OMAP_BAD_REG(addr);
978 return 0;
981 static void omap_id_write(void *opaque, target_phys_addr_t addr,
982 uint32_t value)
984 OMAP_BAD_REG(addr);
987 static CPUReadMemoryFunc * const omap_id_readfn[] = {
988 omap_badwidth_read32,
989 omap_badwidth_read32,
990 omap_id_read,
993 static CPUWriteMemoryFunc * const omap_id_writefn[] = {
994 omap_badwidth_write32,
995 omap_badwidth_write32,
996 omap_id_write,
999 static void omap_id_init(struct omap_mpu_state_s *mpu)
1001 int iomemtype = cpu_register_io_memory(omap_id_readfn,
1002 omap_id_writefn, mpu);
1003 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1004 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1005 if (!cpu_is_omap15xx(mpu))
1006 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1009 /* MPUI Control (Dummy) */
1010 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1012 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1014 switch (addr) {
1015 case 0x00: /* CTRL */
1016 return s->mpui_ctrl;
1017 case 0x04: /* DEBUG_ADDR */
1018 return 0x01ffffff;
1019 case 0x08: /* DEBUG_DATA */
1020 return 0xffffffff;
1021 case 0x0c: /* DEBUG_FLAG */
1022 return 0x00000800;
1023 case 0x10: /* STATUS */
1024 return 0x00000000;
1026 /* Not in OMAP310 */
1027 case 0x14: /* DSP_STATUS */
1028 case 0x18: /* DSP_BOOT_CONFIG */
1029 return 0x00000000;
1030 case 0x1c: /* DSP_MPUI_CONFIG */
1031 return 0x0000ffff;
1034 OMAP_BAD_REG(addr);
1035 return 0;
1038 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1039 uint32_t value)
1041 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1043 switch (addr) {
1044 case 0x00: /* CTRL */
1045 s->mpui_ctrl = value & 0x007fffff;
1046 break;
1048 case 0x04: /* DEBUG_ADDR */
1049 case 0x08: /* DEBUG_DATA */
1050 case 0x0c: /* DEBUG_FLAG */
1051 case 0x10: /* STATUS */
1052 /* Not in OMAP310 */
1053 case 0x14: /* DSP_STATUS */
1054 OMAP_RO_REG(addr);
1055 case 0x18: /* DSP_BOOT_CONFIG */
1056 case 0x1c: /* DSP_MPUI_CONFIG */
1057 break;
1059 default:
1060 OMAP_BAD_REG(addr);
1064 static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1065 omap_badwidth_read32,
1066 omap_badwidth_read32,
1067 omap_mpui_read,
1070 static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1071 omap_badwidth_write32,
1072 omap_badwidth_write32,
1073 omap_mpui_write,
1076 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1078 s->mpui_ctrl = 0x0003ff1b;
1081 static void omap_mpui_init(target_phys_addr_t base,
1082 struct omap_mpu_state_s *mpu)
1084 int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1085 omap_mpui_writefn, mpu);
1087 cpu_register_physical_memory(base, 0x100, iomemtype);
1089 omap_mpui_reset(mpu);
1092 /* TIPB Bridges */
1093 struct omap_tipb_bridge_s {
1094 qemu_irq abort;
1096 int width_intr;
1097 uint16_t control;
1098 uint16_t alloc;
1099 uint16_t buffer;
1100 uint16_t enh_control;
1103 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1105 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1107 switch (addr) {
1108 case 0x00: /* TIPB_CNTL */
1109 return s->control;
1110 case 0x04: /* TIPB_BUS_ALLOC */
1111 return s->alloc;
1112 case 0x08: /* MPU_TIPB_CNTL */
1113 return s->buffer;
1114 case 0x0c: /* ENHANCED_TIPB_CNTL */
1115 return s->enh_control;
1116 case 0x10: /* ADDRESS_DBG */
1117 case 0x14: /* DATA_DEBUG_LOW */
1118 case 0x18: /* DATA_DEBUG_HIGH */
1119 return 0xffff;
1120 case 0x1c: /* DEBUG_CNTR_SIG */
1121 return 0x00f8;
1124 OMAP_BAD_REG(addr);
1125 return 0;
1128 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1129 uint32_t value)
1131 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1133 switch (addr) {
1134 case 0x00: /* TIPB_CNTL */
1135 s->control = value & 0xffff;
1136 break;
1138 case 0x04: /* TIPB_BUS_ALLOC */
1139 s->alloc = value & 0x003f;
1140 break;
1142 case 0x08: /* MPU_TIPB_CNTL */
1143 s->buffer = value & 0x0003;
1144 break;
1146 case 0x0c: /* ENHANCED_TIPB_CNTL */
1147 s->width_intr = !(value & 2);
1148 s->enh_control = value & 0x000f;
1149 break;
1151 case 0x10: /* ADDRESS_DBG */
1152 case 0x14: /* DATA_DEBUG_LOW */
1153 case 0x18: /* DATA_DEBUG_HIGH */
1154 case 0x1c: /* DEBUG_CNTR_SIG */
1155 OMAP_RO_REG(addr);
1156 break;
1158 default:
1159 OMAP_BAD_REG(addr);
1163 static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1164 omap_badwidth_read16,
1165 omap_tipb_bridge_read,
1166 omap_tipb_bridge_read,
1169 static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1170 omap_badwidth_write16,
1171 omap_tipb_bridge_write,
1172 omap_tipb_bridge_write,
1175 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1177 s->control = 0xffff;
1178 s->alloc = 0x0009;
1179 s->buffer = 0x0000;
1180 s->enh_control = 0x000f;
1183 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1184 qemu_irq abort_irq, omap_clk clk)
1186 int iomemtype;
1187 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1188 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1190 s->abort = abort_irq;
1191 omap_tipb_bridge_reset(s);
1193 iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1194 omap_tipb_bridge_writefn, s);
1195 cpu_register_physical_memory(base, 0x100, iomemtype);
1197 return s;
1200 /* Dummy Traffic Controller's Memory Interface */
1201 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1203 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1204 uint32_t ret;
1206 switch (addr) {
1207 case 0x00: /* IMIF_PRIO */
1208 case 0x04: /* EMIFS_PRIO */
1209 case 0x08: /* EMIFF_PRIO */
1210 case 0x0c: /* EMIFS_CONFIG */
1211 case 0x10: /* EMIFS_CS0_CONFIG */
1212 case 0x14: /* EMIFS_CS1_CONFIG */
1213 case 0x18: /* EMIFS_CS2_CONFIG */
1214 case 0x1c: /* EMIFS_CS3_CONFIG */
1215 case 0x24: /* EMIFF_MRS */
1216 case 0x28: /* TIMEOUT1 */
1217 case 0x2c: /* TIMEOUT2 */
1218 case 0x30: /* TIMEOUT3 */
1219 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1220 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1221 return s->tcmi_regs[addr >> 2];
1223 case 0x20: /* EMIFF_SDRAM_CONFIG */
1224 ret = s->tcmi_regs[addr >> 2];
1225 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1226 /* XXX: We can try using the VGA_DIRTY flag for this */
1227 return ret;
1230 OMAP_BAD_REG(addr);
1231 return 0;
1234 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1235 uint32_t value)
1237 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1239 switch (addr) {
1240 case 0x00: /* IMIF_PRIO */
1241 case 0x04: /* EMIFS_PRIO */
1242 case 0x08: /* EMIFF_PRIO */
1243 case 0x10: /* EMIFS_CS0_CONFIG */
1244 case 0x14: /* EMIFS_CS1_CONFIG */
1245 case 0x18: /* EMIFS_CS2_CONFIG */
1246 case 0x1c: /* EMIFS_CS3_CONFIG */
1247 case 0x20: /* EMIFF_SDRAM_CONFIG */
1248 case 0x24: /* EMIFF_MRS */
1249 case 0x28: /* TIMEOUT1 */
1250 case 0x2c: /* TIMEOUT2 */
1251 case 0x30: /* TIMEOUT3 */
1252 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1253 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1254 s->tcmi_regs[addr >> 2] = value;
1255 break;
1256 case 0x0c: /* EMIFS_CONFIG */
1257 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1258 break;
1260 default:
1261 OMAP_BAD_REG(addr);
1265 static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1266 omap_badwidth_read32,
1267 omap_badwidth_read32,
1268 omap_tcmi_read,
1271 static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1272 omap_badwidth_write32,
1273 omap_badwidth_write32,
1274 omap_tcmi_write,
1277 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1279 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1280 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1281 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1282 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1283 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1284 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1285 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1286 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1287 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1288 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1289 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1290 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1291 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1292 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1293 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1296 static void omap_tcmi_init(target_phys_addr_t base,
1297 struct omap_mpu_state_s *mpu)
1299 int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1300 omap_tcmi_writefn, mpu);
1302 cpu_register_physical_memory(base, 0x100, iomemtype);
1303 omap_tcmi_reset(mpu);
1306 /* Digital phase-locked loops control */
1307 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1309 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1311 if (addr == 0x00) /* CTL_REG */
1312 return s->mode;
1314 OMAP_BAD_REG(addr);
1315 return 0;
1318 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1319 uint32_t value)
1321 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1322 uint16_t diff;
1323 static const int bypass_div[4] = { 1, 2, 4, 4 };
1324 int div, mult;
1326 if (addr == 0x00) { /* CTL_REG */
1327 /* See omap_ulpd_pm_write() too */
1328 diff = s->mode & value;
1329 s->mode = value & 0x2fff;
1330 if (diff & (0x3ff << 2)) {
1331 if (value & (1 << 4)) { /* PLL_ENABLE */
1332 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1333 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1334 } else {
1335 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1336 mult = 1;
1338 omap_clk_setrate(s->dpll, div, mult);
1341 /* Enter the desired mode. */
1342 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1344 /* Act as if the lock is restored. */
1345 s->mode |= 2;
1346 } else {
1347 OMAP_BAD_REG(addr);
1351 static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1352 omap_badwidth_read16,
1353 omap_dpll_read,
1354 omap_badwidth_read16,
1357 static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1358 omap_badwidth_write16,
1359 omap_dpll_write,
1360 omap_badwidth_write16,
1363 static void omap_dpll_reset(struct dpll_ctl_s *s)
1365 s->mode = 0x2002;
1366 omap_clk_setrate(s->dpll, 1, 1);
1369 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1370 omap_clk clk)
1372 int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1373 omap_dpll_writefn, s);
1375 s->dpll = clk;
1376 omap_dpll_reset(s);
1378 cpu_register_physical_memory(base, 0x100, iomemtype);
1381 /* MPU Clock/Reset/Power Mode Control */
1382 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1384 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1386 switch (addr) {
1387 case 0x00: /* ARM_CKCTL */
1388 return s->clkm.arm_ckctl;
1390 case 0x04: /* ARM_IDLECT1 */
1391 return s->clkm.arm_idlect1;
1393 case 0x08: /* ARM_IDLECT2 */
1394 return s->clkm.arm_idlect2;
1396 case 0x0c: /* ARM_EWUPCT */
1397 return s->clkm.arm_ewupct;
1399 case 0x10: /* ARM_RSTCT1 */
1400 return s->clkm.arm_rstct1;
1402 case 0x14: /* ARM_RSTCT2 */
1403 return s->clkm.arm_rstct2;
1405 case 0x18: /* ARM_SYSST */
1406 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1408 case 0x1c: /* ARM_CKOUT1 */
1409 return s->clkm.arm_ckout1;
1411 case 0x20: /* ARM_CKOUT2 */
1412 break;
1415 OMAP_BAD_REG(addr);
1416 return 0;
1419 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1420 uint16_t diff, uint16_t value)
1422 omap_clk clk;
1424 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1425 if (value & (1 << 14))
1426 /* Reserved */;
1427 else {
1428 clk = omap_findclk(s, "arminth_ck");
1429 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1432 if (diff & (1 << 12)) { /* ARM_TIMXO */
1433 clk = omap_findclk(s, "armtim_ck");
1434 if (value & (1 << 12))
1435 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1436 else
1437 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1439 /* XXX: en_dspck */
1440 if (diff & (3 << 10)) { /* DSPMMUDIV */
1441 clk = omap_findclk(s, "dspmmu_ck");
1442 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1444 if (diff & (3 << 8)) { /* TCDIV */
1445 clk = omap_findclk(s, "tc_ck");
1446 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1448 if (diff & (3 << 6)) { /* DSPDIV */
1449 clk = omap_findclk(s, "dsp_ck");
1450 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1452 if (diff & (3 << 4)) { /* ARMDIV */
1453 clk = omap_findclk(s, "arm_ck");
1454 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1456 if (diff & (3 << 2)) { /* LCDDIV */
1457 clk = omap_findclk(s, "lcd_ck");
1458 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1460 if (diff & (3 << 0)) { /* PERDIV */
1461 clk = omap_findclk(s, "armper_ck");
1462 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1466 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1467 uint16_t diff, uint16_t value)
1469 omap_clk clk;
1471 if (value & (1 << 11)) /* SETARM_IDLE */
1472 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1473 if (!(value & (1 << 10))) /* WKUP_MODE */
1474 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1476 #define SET_CANIDLE(clock, bit) \
1477 if (diff & (1 << bit)) { \
1478 clk = omap_findclk(s, clock); \
1479 omap_clk_canidle(clk, (value >> bit) & 1); \
1481 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1482 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1483 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1484 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1485 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1486 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1487 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1488 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1489 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1490 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1491 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1492 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1493 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1494 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1497 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1498 uint16_t diff, uint16_t value)
1500 omap_clk clk;
1502 #define SET_ONOFF(clock, bit) \
1503 if (diff & (1 << bit)) { \
1504 clk = omap_findclk(s, clock); \
1505 omap_clk_onoff(clk, (value >> bit) & 1); \
1507 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1508 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1509 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1510 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1511 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1512 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1513 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1514 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1515 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1516 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1517 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1520 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1521 uint16_t diff, uint16_t value)
1523 omap_clk clk;
1525 if (diff & (3 << 4)) { /* TCLKOUT */
1526 clk = omap_findclk(s, "tclk_out");
1527 switch ((value >> 4) & 3) {
1528 case 1:
1529 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1530 omap_clk_onoff(clk, 1);
1531 break;
1532 case 2:
1533 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1534 omap_clk_onoff(clk, 1);
1535 break;
1536 default:
1537 omap_clk_onoff(clk, 0);
1540 if (diff & (3 << 2)) { /* DCLKOUT */
1541 clk = omap_findclk(s, "dclk_out");
1542 switch ((value >> 2) & 3) {
1543 case 0:
1544 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1545 break;
1546 case 1:
1547 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1548 break;
1549 case 2:
1550 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1551 break;
1552 case 3:
1553 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1554 break;
1557 if (diff & (3 << 0)) { /* ACLKOUT */
1558 clk = omap_findclk(s, "aclk_out");
1559 switch ((value >> 0) & 3) {
1560 case 1:
1561 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1562 omap_clk_onoff(clk, 1);
1563 break;
1564 case 2:
1565 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1566 omap_clk_onoff(clk, 1);
1567 break;
1568 case 3:
1569 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1570 omap_clk_onoff(clk, 1);
1571 break;
1572 default:
1573 omap_clk_onoff(clk, 0);
1578 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1579 uint32_t value)
1581 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1582 uint16_t diff;
1583 omap_clk clk;
1584 static const char *clkschemename[8] = {
1585 "fully synchronous", "fully asynchronous", "synchronous scalable",
1586 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1589 switch (addr) {
1590 case 0x00: /* ARM_CKCTL */
1591 diff = s->clkm.arm_ckctl ^ value;
1592 s->clkm.arm_ckctl = value & 0x7fff;
1593 omap_clkm_ckctl_update(s, diff, value);
1594 return;
1596 case 0x04: /* ARM_IDLECT1 */
1597 diff = s->clkm.arm_idlect1 ^ value;
1598 s->clkm.arm_idlect1 = value & 0x0fff;
1599 omap_clkm_idlect1_update(s, diff, value);
1600 return;
1602 case 0x08: /* ARM_IDLECT2 */
1603 diff = s->clkm.arm_idlect2 ^ value;
1604 s->clkm.arm_idlect2 = value & 0x07ff;
1605 omap_clkm_idlect2_update(s, diff, value);
1606 return;
1608 case 0x0c: /* ARM_EWUPCT */
1609 s->clkm.arm_ewupct = value & 0x003f;
1610 return;
1612 case 0x10: /* ARM_RSTCT1 */
1613 diff = s->clkm.arm_rstct1 ^ value;
1614 s->clkm.arm_rstct1 = value & 0x0007;
1615 if (value & 9) {
1616 qemu_system_reset_request();
1617 s->clkm.cold_start = 0xa;
1619 if (diff & ~value & 4) { /* DSP_RST */
1620 omap_mpui_reset(s);
1621 omap_tipb_bridge_reset(s->private_tipb);
1622 omap_tipb_bridge_reset(s->public_tipb);
1624 if (diff & 2) { /* DSP_EN */
1625 clk = omap_findclk(s, "dsp_ck");
1626 omap_clk_canidle(clk, (~value >> 1) & 1);
1628 return;
1630 case 0x14: /* ARM_RSTCT2 */
1631 s->clkm.arm_rstct2 = value & 0x0001;
1632 return;
1634 case 0x18: /* ARM_SYSST */
1635 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1636 s->clkm.clocking_scheme = (value >> 11) & 7;
1637 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1638 clkschemename[s->clkm.clocking_scheme]);
1640 s->clkm.cold_start &= value & 0x3f;
1641 return;
1643 case 0x1c: /* ARM_CKOUT1 */
1644 diff = s->clkm.arm_ckout1 ^ value;
1645 s->clkm.arm_ckout1 = value & 0x003f;
1646 omap_clkm_ckout1_update(s, diff, value);
1647 return;
1649 case 0x20: /* ARM_CKOUT2 */
1650 default:
1651 OMAP_BAD_REG(addr);
1655 static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
1656 omap_badwidth_read16,
1657 omap_clkm_read,
1658 omap_badwidth_read16,
1661 static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
1662 omap_badwidth_write16,
1663 omap_clkm_write,
1664 omap_badwidth_write16,
1667 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
1669 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1671 switch (addr) {
1672 case 0x04: /* DSP_IDLECT1 */
1673 return s->clkm.dsp_idlect1;
1675 case 0x08: /* DSP_IDLECT2 */
1676 return s->clkm.dsp_idlect2;
1678 case 0x14: /* DSP_RSTCT2 */
1679 return s->clkm.dsp_rstct2;
1681 case 0x18: /* DSP_SYSST */
1682 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1683 (s->env->halted << 6); /* Quite useless... */
1686 OMAP_BAD_REG(addr);
1687 return 0;
1690 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1691 uint16_t diff, uint16_t value)
1693 omap_clk clk;
1695 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1698 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1699 uint16_t diff, uint16_t value)
1701 omap_clk clk;
1703 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1706 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
1707 uint32_t value)
1709 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1710 uint16_t diff;
1712 switch (addr) {
1713 case 0x04: /* DSP_IDLECT1 */
1714 diff = s->clkm.dsp_idlect1 ^ value;
1715 s->clkm.dsp_idlect1 = value & 0x01f7;
1716 omap_clkdsp_idlect1_update(s, diff, value);
1717 break;
1719 case 0x08: /* DSP_IDLECT2 */
1720 s->clkm.dsp_idlect2 = value & 0x0037;
1721 diff = s->clkm.dsp_idlect1 ^ value;
1722 omap_clkdsp_idlect2_update(s, diff, value);
1723 break;
1725 case 0x14: /* DSP_RSTCT2 */
1726 s->clkm.dsp_rstct2 = value & 0x0001;
1727 break;
1729 case 0x18: /* DSP_SYSST */
1730 s->clkm.cold_start &= value & 0x3f;
1731 break;
1733 default:
1734 OMAP_BAD_REG(addr);
1738 static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
1739 omap_badwidth_read16,
1740 omap_clkdsp_read,
1741 omap_badwidth_read16,
1744 static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
1745 omap_badwidth_write16,
1746 omap_clkdsp_write,
1747 omap_badwidth_write16,
1750 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1752 if (s->wdt && s->wdt->reset)
1753 s->clkm.cold_start = 0x6;
1754 s->clkm.clocking_scheme = 0;
1755 omap_clkm_ckctl_update(s, ~0, 0x3000);
1756 s->clkm.arm_ckctl = 0x3000;
1757 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1758 s->clkm.arm_idlect1 = 0x0400;
1759 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1760 s->clkm.arm_idlect2 = 0x0100;
1761 s->clkm.arm_ewupct = 0x003f;
1762 s->clkm.arm_rstct1 = 0x0000;
1763 s->clkm.arm_rstct2 = 0x0000;
1764 s->clkm.arm_ckout1 = 0x0015;
1765 s->clkm.dpll1_mode = 0x2002;
1766 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1767 s->clkm.dsp_idlect1 = 0x0040;
1768 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1769 s->clkm.dsp_idlect2 = 0x0000;
1770 s->clkm.dsp_rstct2 = 0x0000;
1773 static void omap_clkm_init(target_phys_addr_t mpu_base,
1774 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
1776 int iomemtype[2] = {
1777 cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s),
1778 cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s),
1781 s->clkm.arm_idlect1 = 0x03ff;
1782 s->clkm.arm_idlect2 = 0x0100;
1783 s->clkm.dsp_idlect1 = 0x0002;
1784 omap_clkm_reset(s);
1785 s->clkm.cold_start = 0x3a;
1787 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
1788 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
1791 /* MPU I/O */
1792 struct omap_mpuio_s {
1793 qemu_irq irq;
1794 qemu_irq kbd_irq;
1795 qemu_irq *in;
1796 qemu_irq handler[16];
1797 qemu_irq wakeup;
1799 uint16_t inputs;
1800 uint16_t outputs;
1801 uint16_t dir;
1802 uint16_t edge;
1803 uint16_t mask;
1804 uint16_t ints;
1806 uint16_t debounce;
1807 uint16_t latch;
1808 uint8_t event;
1810 uint8_t buttons[5];
1811 uint8_t row_latch;
1812 uint8_t cols;
1813 int kbd_mask;
1814 int clk;
1817 static void omap_mpuio_set(void *opaque, int line, int level)
1819 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1820 uint16_t prev = s->inputs;
1822 if (level)
1823 s->inputs |= 1 << line;
1824 else
1825 s->inputs &= ~(1 << line);
1827 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1828 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1829 s->ints |= 1 << line;
1830 qemu_irq_raise(s->irq);
1831 /* TODO: wakeup */
1833 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1834 (s->event >> 1) == line) /* PIN_SELECT */
1835 s->latch = s->inputs;
1839 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1841 int i;
1842 uint8_t *row, rows = 0, cols = ~s->cols;
1844 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1845 if (*row & cols)
1846 rows |= i;
1848 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1849 s->row_latch = ~rows;
1852 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
1854 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1855 int offset = addr & OMAP_MPUI_REG_MASK;
1856 uint16_t ret;
1858 switch (offset) {
1859 case 0x00: /* INPUT_LATCH */
1860 return s->inputs;
1862 case 0x04: /* OUTPUT_REG */
1863 return s->outputs;
1865 case 0x08: /* IO_CNTL */
1866 return s->dir;
1868 case 0x10: /* KBR_LATCH */
1869 return s->row_latch;
1871 case 0x14: /* KBC_REG */
1872 return s->cols;
1874 case 0x18: /* GPIO_EVENT_MODE_REG */
1875 return s->event;
1877 case 0x1c: /* GPIO_INT_EDGE_REG */
1878 return s->edge;
1880 case 0x20: /* KBD_INT */
1881 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1883 case 0x24: /* GPIO_INT */
1884 ret = s->ints;
1885 s->ints &= s->mask;
1886 if (ret)
1887 qemu_irq_lower(s->irq);
1888 return ret;
1890 case 0x28: /* KBD_MASKIT */
1891 return s->kbd_mask;
1893 case 0x2c: /* GPIO_MASKIT */
1894 return s->mask;
1896 case 0x30: /* GPIO_DEBOUNCING_REG */
1897 return s->debounce;
1899 case 0x34: /* GPIO_LATCH_REG */
1900 return s->latch;
1903 OMAP_BAD_REG(addr);
1904 return 0;
1907 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
1908 uint32_t value)
1910 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1911 int offset = addr & OMAP_MPUI_REG_MASK;
1912 uint16_t diff;
1913 int ln;
1915 switch (offset) {
1916 case 0x04: /* OUTPUT_REG */
1917 diff = (s->outputs ^ value) & ~s->dir;
1918 s->outputs = value;
1919 while ((ln = ffs(diff))) {
1920 ln --;
1921 if (s->handler[ln])
1922 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1923 diff &= ~(1 << ln);
1925 break;
1927 case 0x08: /* IO_CNTL */
1928 diff = s->outputs & (s->dir ^ value);
1929 s->dir = value;
1931 value = s->outputs & ~s->dir;
1932 while ((ln = ffs(diff))) {
1933 ln --;
1934 if (s->handler[ln])
1935 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1936 diff &= ~(1 << ln);
1938 break;
1940 case 0x14: /* KBC_REG */
1941 s->cols = value;
1942 omap_mpuio_kbd_update(s);
1943 break;
1945 case 0x18: /* GPIO_EVENT_MODE_REG */
1946 s->event = value & 0x1f;
1947 break;
1949 case 0x1c: /* GPIO_INT_EDGE_REG */
1950 s->edge = value;
1951 break;
1953 case 0x28: /* KBD_MASKIT */
1954 s->kbd_mask = value & 1;
1955 omap_mpuio_kbd_update(s);
1956 break;
1958 case 0x2c: /* GPIO_MASKIT */
1959 s->mask = value;
1960 break;
1962 case 0x30: /* GPIO_DEBOUNCING_REG */
1963 s->debounce = value & 0x1ff;
1964 break;
1966 case 0x00: /* INPUT_LATCH */
1967 case 0x10: /* KBR_LATCH */
1968 case 0x20: /* KBD_INT */
1969 case 0x24: /* GPIO_INT */
1970 case 0x34: /* GPIO_LATCH_REG */
1971 OMAP_RO_REG(addr);
1972 return;
1974 default:
1975 OMAP_BAD_REG(addr);
1976 return;
1980 static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
1981 omap_badwidth_read16,
1982 omap_mpuio_read,
1983 omap_badwidth_read16,
1986 static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
1987 omap_badwidth_write16,
1988 omap_mpuio_write,
1989 omap_badwidth_write16,
1992 static void omap_mpuio_reset(struct omap_mpuio_s *s)
1994 s->inputs = 0;
1995 s->outputs = 0;
1996 s->dir = ~0;
1997 s->event = 0;
1998 s->edge = 0;
1999 s->kbd_mask = 0;
2000 s->mask = 0;
2001 s->debounce = 0;
2002 s->latch = 0;
2003 s->ints = 0;
2004 s->row_latch = 0x1f;
2005 s->clk = 1;
2008 static void omap_mpuio_onoff(void *opaque, int line, int on)
2010 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2012 s->clk = on;
2013 if (on)
2014 omap_mpuio_kbd_update(s);
2017 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2018 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2019 omap_clk clk)
2021 int iomemtype;
2022 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2023 qemu_mallocz(sizeof(struct omap_mpuio_s));
2025 s->irq = gpio_int;
2026 s->kbd_irq = kbd_int;
2027 s->wakeup = wakeup;
2028 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2029 omap_mpuio_reset(s);
2031 iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2032 omap_mpuio_writefn, s);
2033 cpu_register_physical_memory(base, 0x800, iomemtype);
2035 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2037 return s;
2040 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2042 return s->in;
2045 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2047 if (line >= 16 || line < 0)
2048 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2049 s->handler[line] = handler;
2052 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2054 if (row >= 5 || row < 0)
2055 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2057 if (down)
2058 s->buttons[row] |= 1 << col;
2059 else
2060 s->buttons[row] &= ~(1 << col);
2062 omap_mpuio_kbd_update(s);
2065 /* MicroWire Interface */
2066 struct omap_uwire_s {
2067 qemu_irq txirq;
2068 qemu_irq rxirq;
2069 qemu_irq txdrq;
2071 uint16_t txbuf;
2072 uint16_t rxbuf;
2073 uint16_t control;
2074 uint16_t setup[5];
2076 uWireSlave *chip[4];
2079 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2081 int chipselect = (s->control >> 10) & 3; /* INDEX */
2082 uWireSlave *slave = s->chip[chipselect];
2084 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2085 if (s->control & (1 << 12)) /* CS_CMD */
2086 if (slave && slave->send)
2087 slave->send(slave->opaque,
2088 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2089 s->control &= ~(1 << 14); /* CSRB */
2090 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2091 * a DRQ. When is the level IRQ supposed to be reset? */
2094 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2095 if (s->control & (1 << 12)) /* CS_CMD */
2096 if (slave && slave->receive)
2097 s->rxbuf = slave->receive(slave->opaque);
2098 s->control |= 1 << 15; /* RDRB */
2099 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2100 * a DRQ. When is the level IRQ supposed to be reset? */
2104 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2106 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2107 int offset = addr & OMAP_MPUI_REG_MASK;
2109 switch (offset) {
2110 case 0x00: /* RDR */
2111 s->control &= ~(1 << 15); /* RDRB */
2112 return s->rxbuf;
2114 case 0x04: /* CSR */
2115 return s->control;
2117 case 0x08: /* SR1 */
2118 return s->setup[0];
2119 case 0x0c: /* SR2 */
2120 return s->setup[1];
2121 case 0x10: /* SR3 */
2122 return s->setup[2];
2123 case 0x14: /* SR4 */
2124 return s->setup[3];
2125 case 0x18: /* SR5 */
2126 return s->setup[4];
2129 OMAP_BAD_REG(addr);
2130 return 0;
2133 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2134 uint32_t value)
2136 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2137 int offset = addr & OMAP_MPUI_REG_MASK;
2139 switch (offset) {
2140 case 0x00: /* TDR */
2141 s->txbuf = value; /* TD */
2142 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2143 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2144 (s->control & (1 << 12)))) { /* CS_CMD */
2145 s->control |= 1 << 14; /* CSRB */
2146 omap_uwire_transfer_start(s);
2148 break;
2150 case 0x04: /* CSR */
2151 s->control = value & 0x1fff;
2152 if (value & (1 << 13)) /* START */
2153 omap_uwire_transfer_start(s);
2154 break;
2156 case 0x08: /* SR1 */
2157 s->setup[0] = value & 0x003f;
2158 break;
2160 case 0x0c: /* SR2 */
2161 s->setup[1] = value & 0x0fc0;
2162 break;
2164 case 0x10: /* SR3 */
2165 s->setup[2] = value & 0x0003;
2166 break;
2168 case 0x14: /* SR4 */
2169 s->setup[3] = value & 0x0001;
2170 break;
2172 case 0x18: /* SR5 */
2173 s->setup[4] = value & 0x000f;
2174 break;
2176 default:
2177 OMAP_BAD_REG(addr);
2178 return;
2182 static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
2183 omap_badwidth_read16,
2184 omap_uwire_read,
2185 omap_badwidth_read16,
2188 static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
2189 omap_badwidth_write16,
2190 omap_uwire_write,
2191 omap_badwidth_write16,
2194 static void omap_uwire_reset(struct omap_uwire_s *s)
2196 s->control = 0;
2197 s->setup[0] = 0;
2198 s->setup[1] = 0;
2199 s->setup[2] = 0;
2200 s->setup[3] = 0;
2201 s->setup[4] = 0;
2204 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2205 qemu_irq *irq, qemu_irq dma, omap_clk clk)
2207 int iomemtype;
2208 struct omap_uwire_s *s = (struct omap_uwire_s *)
2209 qemu_mallocz(sizeof(struct omap_uwire_s));
2211 s->txirq = irq[0];
2212 s->rxirq = irq[1];
2213 s->txdrq = dma;
2214 omap_uwire_reset(s);
2216 iomemtype = cpu_register_io_memory(omap_uwire_readfn,
2217 omap_uwire_writefn, s);
2218 cpu_register_physical_memory(base, 0x800, iomemtype);
2220 return s;
2223 void omap_uwire_attach(struct omap_uwire_s *s,
2224 uWireSlave *slave, int chipselect)
2226 if (chipselect < 0 || chipselect > 3) {
2227 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2228 exit(-1);
2231 s->chip[chipselect] = slave;
2234 /* Pseudonoise Pulse-Width Light Modulator */
2235 static void omap_pwl_update(struct omap_mpu_state_s *s)
2237 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2239 if (output != s->pwl.output) {
2240 s->pwl.output = output;
2241 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2245 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2247 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2248 int offset = addr & OMAP_MPUI_REG_MASK;
2250 switch (offset) {
2251 case 0x00: /* PWL_LEVEL */
2252 return s->pwl.level;
2253 case 0x04: /* PWL_CTRL */
2254 return s->pwl.enable;
2256 OMAP_BAD_REG(addr);
2257 return 0;
2260 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2261 uint32_t value)
2263 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2264 int offset = addr & OMAP_MPUI_REG_MASK;
2266 switch (offset) {
2267 case 0x00: /* PWL_LEVEL */
2268 s->pwl.level = value;
2269 omap_pwl_update(s);
2270 break;
2271 case 0x04: /* PWL_CTRL */
2272 s->pwl.enable = value & 1;
2273 omap_pwl_update(s);
2274 break;
2275 default:
2276 OMAP_BAD_REG(addr);
2277 return;
2281 static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
2282 omap_pwl_read,
2283 omap_badwidth_read8,
2284 omap_badwidth_read8,
2287 static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
2288 omap_pwl_write,
2289 omap_badwidth_write8,
2290 omap_badwidth_write8,
2293 static void omap_pwl_reset(struct omap_mpu_state_s *s)
2295 s->pwl.output = 0;
2296 s->pwl.level = 0;
2297 s->pwl.enable = 0;
2298 s->pwl.clk = 1;
2299 omap_pwl_update(s);
2302 static void omap_pwl_clk_update(void *opaque, int line, int on)
2304 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2306 s->pwl.clk = on;
2307 omap_pwl_update(s);
2310 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2311 omap_clk clk)
2313 int iomemtype;
2315 omap_pwl_reset(s);
2317 iomemtype = cpu_register_io_memory(omap_pwl_readfn,
2318 omap_pwl_writefn, s);
2319 cpu_register_physical_memory(base, 0x800, iomemtype);
2321 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2324 /* Pulse-Width Tone module */
2325 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2327 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2328 int offset = addr & OMAP_MPUI_REG_MASK;
2330 switch (offset) {
2331 case 0x00: /* FRC */
2332 return s->pwt.frc;
2333 case 0x04: /* VCR */
2334 return s->pwt.vrc;
2335 case 0x08: /* GCR */
2336 return s->pwt.gcr;
2338 OMAP_BAD_REG(addr);
2339 return 0;
2342 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2343 uint32_t value)
2345 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2346 int offset = addr & OMAP_MPUI_REG_MASK;
2348 switch (offset) {
2349 case 0x00: /* FRC */
2350 s->pwt.frc = value & 0x3f;
2351 break;
2352 case 0x04: /* VRC */
2353 if ((value ^ s->pwt.vrc) & 1) {
2354 if (value & 1)
2355 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2356 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2357 ((omap_clk_getrate(s->pwt.clk) >> 3) /
2358 /* Pre-multiplexer divider */
2359 ((s->pwt.gcr & 2) ? 1 : 154) /
2360 /* Octave multiplexer */
2361 (2 << (value & 3)) *
2362 /* 101/107 divider */
2363 ((value & (1 << 2)) ? 101 : 107) *
2364 /* 49/55 divider */
2365 ((value & (1 << 3)) ? 49 : 55) *
2366 /* 50/63 divider */
2367 ((value & (1 << 4)) ? 50 : 63) *
2368 /* 80/127 divider */
2369 ((value & (1 << 5)) ? 80 : 127) /
2370 (107 * 55 * 63 * 127)));
2371 else
2372 printf("%s: silence!\n", __FUNCTION__);
2374 s->pwt.vrc = value & 0x7f;
2375 break;
2376 case 0x08: /* GCR */
2377 s->pwt.gcr = value & 3;
2378 break;
2379 default:
2380 OMAP_BAD_REG(addr);
2381 return;
2385 static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
2386 omap_pwt_read,
2387 omap_badwidth_read8,
2388 omap_badwidth_read8,
2391 static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
2392 omap_pwt_write,
2393 omap_badwidth_write8,
2394 omap_badwidth_write8,
2397 static void omap_pwt_reset(struct omap_mpu_state_s *s)
2399 s->pwt.frc = 0;
2400 s->pwt.vrc = 0;
2401 s->pwt.gcr = 0;
2404 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2405 omap_clk clk)
2407 int iomemtype;
2409 s->pwt.clk = clk;
2410 omap_pwt_reset(s);
2412 iomemtype = cpu_register_io_memory(omap_pwt_readfn,
2413 omap_pwt_writefn, s);
2414 cpu_register_physical_memory(base, 0x800, iomemtype);
2417 /* Real-time Clock module */
2418 struct omap_rtc_s {
2419 qemu_irq irq;
2420 qemu_irq alarm;
2421 QEMUTimer *clk;
2423 uint8_t interrupts;
2424 uint8_t status;
2425 int16_t comp_reg;
2426 int running;
2427 int pm_am;
2428 int auto_comp;
2429 int round;
2430 struct tm alarm_tm;
2431 time_t alarm_ti;
2433 struct tm current_tm;
2434 time_t ti;
2435 uint64_t tick;
2438 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2440 /* s->alarm is level-triggered */
2441 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2444 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2446 s->alarm_ti = mktimegm(&s->alarm_tm);
2447 if (s->alarm_ti == -1)
2448 printf("%s: conversion failed\n", __FUNCTION__);
2451 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
2453 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2454 int offset = addr & OMAP_MPUI_REG_MASK;
2455 uint8_t i;
2457 switch (offset) {
2458 case 0x00: /* SECONDS_REG */
2459 return to_bcd(s->current_tm.tm_sec);
2461 case 0x04: /* MINUTES_REG */
2462 return to_bcd(s->current_tm.tm_min);
2464 case 0x08: /* HOURS_REG */
2465 if (s->pm_am)
2466 return ((s->current_tm.tm_hour > 11) << 7) |
2467 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2468 else
2469 return to_bcd(s->current_tm.tm_hour);
2471 case 0x0c: /* DAYS_REG */
2472 return to_bcd(s->current_tm.tm_mday);
2474 case 0x10: /* MONTHS_REG */
2475 return to_bcd(s->current_tm.tm_mon + 1);
2477 case 0x14: /* YEARS_REG */
2478 return to_bcd(s->current_tm.tm_year % 100);
2480 case 0x18: /* WEEK_REG */
2481 return s->current_tm.tm_wday;
2483 case 0x20: /* ALARM_SECONDS_REG */
2484 return to_bcd(s->alarm_tm.tm_sec);
2486 case 0x24: /* ALARM_MINUTES_REG */
2487 return to_bcd(s->alarm_tm.tm_min);
2489 case 0x28: /* ALARM_HOURS_REG */
2490 if (s->pm_am)
2491 return ((s->alarm_tm.tm_hour > 11) << 7) |
2492 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2493 else
2494 return to_bcd(s->alarm_tm.tm_hour);
2496 case 0x2c: /* ALARM_DAYS_REG */
2497 return to_bcd(s->alarm_tm.tm_mday);
2499 case 0x30: /* ALARM_MONTHS_REG */
2500 return to_bcd(s->alarm_tm.tm_mon + 1);
2502 case 0x34: /* ALARM_YEARS_REG */
2503 return to_bcd(s->alarm_tm.tm_year % 100);
2505 case 0x40: /* RTC_CTRL_REG */
2506 return (s->pm_am << 3) | (s->auto_comp << 2) |
2507 (s->round << 1) | s->running;
2509 case 0x44: /* RTC_STATUS_REG */
2510 i = s->status;
2511 s->status &= ~0x3d;
2512 return i;
2514 case 0x48: /* RTC_INTERRUPTS_REG */
2515 return s->interrupts;
2517 case 0x4c: /* RTC_COMP_LSB_REG */
2518 return ((uint16_t) s->comp_reg) & 0xff;
2520 case 0x50: /* RTC_COMP_MSB_REG */
2521 return ((uint16_t) s->comp_reg) >> 8;
2524 OMAP_BAD_REG(addr);
2525 return 0;
2528 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
2529 uint32_t value)
2531 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2532 int offset = addr & OMAP_MPUI_REG_MASK;
2533 struct tm new_tm;
2534 time_t ti[2];
2536 switch (offset) {
2537 case 0x00: /* SECONDS_REG */
2538 #ifdef ALMDEBUG
2539 printf("RTC SEC_REG <-- %02x\n", value);
2540 #endif
2541 s->ti -= s->current_tm.tm_sec;
2542 s->ti += from_bcd(value);
2543 return;
2545 case 0x04: /* MINUTES_REG */
2546 #ifdef ALMDEBUG
2547 printf("RTC MIN_REG <-- %02x\n", value);
2548 #endif
2549 s->ti -= s->current_tm.tm_min * 60;
2550 s->ti += from_bcd(value) * 60;
2551 return;
2553 case 0x08: /* HOURS_REG */
2554 #ifdef ALMDEBUG
2555 printf("RTC HRS_REG <-- %02x\n", value);
2556 #endif
2557 s->ti -= s->current_tm.tm_hour * 3600;
2558 if (s->pm_am) {
2559 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2560 s->ti += ((value >> 7) & 1) * 43200;
2561 } else
2562 s->ti += from_bcd(value & 0x3f) * 3600;
2563 return;
2565 case 0x0c: /* DAYS_REG */
2566 #ifdef ALMDEBUG
2567 printf("RTC DAY_REG <-- %02x\n", value);
2568 #endif
2569 s->ti -= s->current_tm.tm_mday * 86400;
2570 s->ti += from_bcd(value) * 86400;
2571 return;
2573 case 0x10: /* MONTHS_REG */
2574 #ifdef ALMDEBUG
2575 printf("RTC MTH_REG <-- %02x\n", value);
2576 #endif
2577 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2578 new_tm.tm_mon = from_bcd(value);
2579 ti[0] = mktimegm(&s->current_tm);
2580 ti[1] = mktimegm(&new_tm);
2582 if (ti[0] != -1 && ti[1] != -1) {
2583 s->ti -= ti[0];
2584 s->ti += ti[1];
2585 } else {
2586 /* A less accurate version */
2587 s->ti -= s->current_tm.tm_mon * 2592000;
2588 s->ti += from_bcd(value) * 2592000;
2590 return;
2592 case 0x14: /* YEARS_REG */
2593 #ifdef ALMDEBUG
2594 printf("RTC YRS_REG <-- %02x\n", value);
2595 #endif
2596 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2597 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2598 ti[0] = mktimegm(&s->current_tm);
2599 ti[1] = mktimegm(&new_tm);
2601 if (ti[0] != -1 && ti[1] != -1) {
2602 s->ti -= ti[0];
2603 s->ti += ti[1];
2604 } else {
2605 /* A less accurate version */
2606 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2607 s->ti += from_bcd(value) * 31536000;
2609 return;
2611 case 0x18: /* WEEK_REG */
2612 return; /* Ignored */
2614 case 0x20: /* ALARM_SECONDS_REG */
2615 #ifdef ALMDEBUG
2616 printf("ALM SEC_REG <-- %02x\n", value);
2617 #endif
2618 s->alarm_tm.tm_sec = from_bcd(value);
2619 omap_rtc_alarm_update(s);
2620 return;
2622 case 0x24: /* ALARM_MINUTES_REG */
2623 #ifdef ALMDEBUG
2624 printf("ALM MIN_REG <-- %02x\n", value);
2625 #endif
2626 s->alarm_tm.tm_min = from_bcd(value);
2627 omap_rtc_alarm_update(s);
2628 return;
2630 case 0x28: /* ALARM_HOURS_REG */
2631 #ifdef ALMDEBUG
2632 printf("ALM HRS_REG <-- %02x\n", value);
2633 #endif
2634 if (s->pm_am)
2635 s->alarm_tm.tm_hour =
2636 ((from_bcd(value & 0x3f)) % 12) +
2637 ((value >> 7) & 1) * 12;
2638 else
2639 s->alarm_tm.tm_hour = from_bcd(value);
2640 omap_rtc_alarm_update(s);
2641 return;
2643 case 0x2c: /* ALARM_DAYS_REG */
2644 #ifdef ALMDEBUG
2645 printf("ALM DAY_REG <-- %02x\n", value);
2646 #endif
2647 s->alarm_tm.tm_mday = from_bcd(value);
2648 omap_rtc_alarm_update(s);
2649 return;
2651 case 0x30: /* ALARM_MONTHS_REG */
2652 #ifdef ALMDEBUG
2653 printf("ALM MON_REG <-- %02x\n", value);
2654 #endif
2655 s->alarm_tm.tm_mon = from_bcd(value);
2656 omap_rtc_alarm_update(s);
2657 return;
2659 case 0x34: /* ALARM_YEARS_REG */
2660 #ifdef ALMDEBUG
2661 printf("ALM YRS_REG <-- %02x\n", value);
2662 #endif
2663 s->alarm_tm.tm_year = from_bcd(value);
2664 omap_rtc_alarm_update(s);
2665 return;
2667 case 0x40: /* RTC_CTRL_REG */
2668 #ifdef ALMDEBUG
2669 printf("RTC CONTROL <-- %02x\n", value);
2670 #endif
2671 s->pm_am = (value >> 3) & 1;
2672 s->auto_comp = (value >> 2) & 1;
2673 s->round = (value >> 1) & 1;
2674 s->running = value & 1;
2675 s->status &= 0xfd;
2676 s->status |= s->running << 1;
2677 return;
2679 case 0x44: /* RTC_STATUS_REG */
2680 #ifdef ALMDEBUG
2681 printf("RTC STATUSL <-- %02x\n", value);
2682 #endif
2683 s->status &= ~((value & 0xc0) ^ 0x80);
2684 omap_rtc_interrupts_update(s);
2685 return;
2687 case 0x48: /* RTC_INTERRUPTS_REG */
2688 #ifdef ALMDEBUG
2689 printf("RTC INTRS <-- %02x\n", value);
2690 #endif
2691 s->interrupts = value;
2692 return;
2694 case 0x4c: /* RTC_COMP_LSB_REG */
2695 #ifdef ALMDEBUG
2696 printf("RTC COMPLSB <-- %02x\n", value);
2697 #endif
2698 s->comp_reg &= 0xff00;
2699 s->comp_reg |= 0x00ff & value;
2700 return;
2702 case 0x50: /* RTC_COMP_MSB_REG */
2703 #ifdef ALMDEBUG
2704 printf("RTC COMPMSB <-- %02x\n", value);
2705 #endif
2706 s->comp_reg &= 0x00ff;
2707 s->comp_reg |= 0xff00 & (value << 8);
2708 return;
2710 default:
2711 OMAP_BAD_REG(addr);
2712 return;
2716 static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
2717 omap_rtc_read,
2718 omap_badwidth_read8,
2719 omap_badwidth_read8,
2722 static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
2723 omap_rtc_write,
2724 omap_badwidth_write8,
2725 omap_badwidth_write8,
2728 static void omap_rtc_tick(void *opaque)
2730 struct omap_rtc_s *s = opaque;
2732 if (s->round) {
2733 /* Round to nearest full minute. */
2734 if (s->current_tm.tm_sec < 30)
2735 s->ti -= s->current_tm.tm_sec;
2736 else
2737 s->ti += 60 - s->current_tm.tm_sec;
2739 s->round = 0;
2742 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2744 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2745 s->status |= 0x40;
2746 omap_rtc_interrupts_update(s);
2749 if (s->interrupts & 0x04)
2750 switch (s->interrupts & 3) {
2751 case 0:
2752 s->status |= 0x04;
2753 qemu_irq_pulse(s->irq);
2754 break;
2755 case 1:
2756 if (s->current_tm.tm_sec)
2757 break;
2758 s->status |= 0x08;
2759 qemu_irq_pulse(s->irq);
2760 break;
2761 case 2:
2762 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2763 break;
2764 s->status |= 0x10;
2765 qemu_irq_pulse(s->irq);
2766 break;
2767 case 3:
2768 if (s->current_tm.tm_sec ||
2769 s->current_tm.tm_min || s->current_tm.tm_hour)
2770 break;
2771 s->status |= 0x20;
2772 qemu_irq_pulse(s->irq);
2773 break;
2776 /* Move on */
2777 if (s->running)
2778 s->ti ++;
2779 s->tick += 1000;
2782 * Every full hour add a rough approximation of the compensation
2783 * register to the 32kHz Timer (which drives the RTC) value.
2785 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2786 s->tick += s->comp_reg * 1000 / 32768;
2788 qemu_mod_timer(s->clk, s->tick);
2791 static void omap_rtc_reset(struct omap_rtc_s *s)
2793 struct tm tm;
2795 s->interrupts = 0;
2796 s->comp_reg = 0;
2797 s->running = 0;
2798 s->pm_am = 0;
2799 s->auto_comp = 0;
2800 s->round = 0;
2801 s->tick = qemu_get_clock(rt_clock);
2802 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2803 s->alarm_tm.tm_mday = 0x01;
2804 s->status = 1 << 7;
2805 qemu_get_timedate(&tm, 0);
2806 s->ti = mktimegm(&tm);
2808 omap_rtc_alarm_update(s);
2809 omap_rtc_tick(s);
2812 static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
2813 qemu_irq *irq, omap_clk clk)
2815 int iomemtype;
2816 struct omap_rtc_s *s = (struct omap_rtc_s *)
2817 qemu_mallocz(sizeof(struct omap_rtc_s));
2819 s->irq = irq[0];
2820 s->alarm = irq[1];
2821 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
2823 omap_rtc_reset(s);
2825 iomemtype = cpu_register_io_memory(omap_rtc_readfn,
2826 omap_rtc_writefn, s);
2827 cpu_register_physical_memory(base, 0x800, iomemtype);
2829 return s;
2832 /* Multi-channel Buffered Serial Port interfaces */
2833 struct omap_mcbsp_s {
2834 qemu_irq txirq;
2835 qemu_irq rxirq;
2836 qemu_irq txdrq;
2837 qemu_irq rxdrq;
2839 uint16_t spcr[2];
2840 uint16_t rcr[2];
2841 uint16_t xcr[2];
2842 uint16_t srgr[2];
2843 uint16_t mcr[2];
2844 uint16_t pcr;
2845 uint16_t rcer[8];
2846 uint16_t xcer[8];
2847 int tx_rate;
2848 int rx_rate;
2849 int tx_req;
2850 int rx_req;
2852 I2SCodec *codec;
2853 QEMUTimer *source_timer;
2854 QEMUTimer *sink_timer;
2857 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2859 int irq;
2861 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2862 case 0:
2863 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2864 break;
2865 case 3:
2866 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2867 break;
2868 default:
2869 irq = 0;
2870 break;
2873 if (irq)
2874 qemu_irq_pulse(s->rxirq);
2876 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2877 case 0:
2878 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2879 break;
2880 case 3:
2881 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2882 break;
2883 default:
2884 irq = 0;
2885 break;
2888 if (irq)
2889 qemu_irq_pulse(s->txirq);
2892 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2894 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2895 s->spcr[0] |= 1 << 2; /* RFULL */
2896 s->spcr[0] |= 1 << 1; /* RRDY */
2897 qemu_irq_raise(s->rxdrq);
2898 omap_mcbsp_intr_update(s);
2901 static void omap_mcbsp_source_tick(void *opaque)
2903 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2904 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2906 if (!s->rx_rate)
2907 return;
2908 if (s->rx_req)
2909 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
2911 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2913 omap_mcbsp_rx_newdata(s);
2914 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) +
2915 get_ticks_per_sec());
2918 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2920 if (!s->codec || !s->codec->rts)
2921 omap_mcbsp_source_tick(s);
2922 else if (s->codec->in.len) {
2923 s->rx_req = s->codec->in.len;
2924 omap_mcbsp_rx_newdata(s);
2928 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
2930 qemu_del_timer(s->source_timer);
2933 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
2935 s->spcr[0] &= ~(1 << 1); /* RRDY */
2936 qemu_irq_lower(s->rxdrq);
2937 omap_mcbsp_intr_update(s);
2940 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
2942 s->spcr[1] |= 1 << 1; /* XRDY */
2943 qemu_irq_raise(s->txdrq);
2944 omap_mcbsp_intr_update(s);
2947 static void omap_mcbsp_sink_tick(void *opaque)
2949 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2950 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2952 if (!s->tx_rate)
2953 return;
2954 if (s->tx_req)
2955 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
2957 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
2959 omap_mcbsp_tx_newdata(s);
2960 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) +
2961 get_ticks_per_sec());
2964 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
2966 if (!s->codec || !s->codec->cts)
2967 omap_mcbsp_sink_tick(s);
2968 else if (s->codec->out.size) {
2969 s->tx_req = s->codec->out.size;
2970 omap_mcbsp_tx_newdata(s);
2974 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
2976 s->spcr[1] &= ~(1 << 1); /* XRDY */
2977 qemu_irq_lower(s->txdrq);
2978 omap_mcbsp_intr_update(s);
2979 if (s->codec && s->codec->cts)
2980 s->codec->tx_swallow(s->codec->opaque);
2983 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
2985 s->tx_req = 0;
2986 omap_mcbsp_tx_done(s);
2987 qemu_del_timer(s->sink_timer);
2990 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
2992 int prev_rx_rate, prev_tx_rate;
2993 int rx_rate = 0, tx_rate = 0;
2994 int cpu_rate = 1500000; /* XXX */
2996 /* TODO: check CLKSTP bit */
2997 if (s->spcr[1] & (1 << 6)) { /* GRST */
2998 if (s->spcr[0] & (1 << 0)) { /* RRST */
2999 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3000 (s->pcr & (1 << 8))) { /* CLKRM */
3001 if (~s->pcr & (1 << 7)) /* SCLKME */
3002 rx_rate = cpu_rate /
3003 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3004 } else
3005 if (s->codec)
3006 rx_rate = s->codec->rx_rate;
3009 if (s->spcr[1] & (1 << 0)) { /* XRST */
3010 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3011 (s->pcr & (1 << 9))) { /* CLKXM */
3012 if (~s->pcr & (1 << 7)) /* SCLKME */
3013 tx_rate = cpu_rate /
3014 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3015 } else
3016 if (s->codec)
3017 tx_rate = s->codec->tx_rate;
3020 prev_tx_rate = s->tx_rate;
3021 prev_rx_rate = s->rx_rate;
3022 s->tx_rate = tx_rate;
3023 s->rx_rate = rx_rate;
3025 if (s->codec)
3026 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3028 if (!prev_tx_rate && tx_rate)
3029 omap_mcbsp_tx_start(s);
3030 else if (s->tx_rate && !tx_rate)
3031 omap_mcbsp_tx_stop(s);
3033 if (!prev_rx_rate && rx_rate)
3034 omap_mcbsp_rx_start(s);
3035 else if (prev_tx_rate && !tx_rate)
3036 omap_mcbsp_rx_stop(s);
3039 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3041 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3042 int offset = addr & OMAP_MPUI_REG_MASK;
3043 uint16_t ret;
3045 switch (offset) {
3046 case 0x00: /* DRR2 */
3047 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3048 return 0x0000;
3049 /* Fall through. */
3050 case 0x02: /* DRR1 */
3051 if (s->rx_req < 2) {
3052 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3053 omap_mcbsp_rx_done(s);
3054 } else {
3055 s->tx_req -= 2;
3056 if (s->codec && s->codec->in.len >= 2) {
3057 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3058 ret |= s->codec->in.fifo[s->codec->in.start ++];
3059 s->codec->in.len -= 2;
3060 } else
3061 ret = 0x0000;
3062 if (!s->tx_req)
3063 omap_mcbsp_rx_done(s);
3064 return ret;
3066 return 0x0000;
3068 case 0x04: /* DXR2 */
3069 case 0x06: /* DXR1 */
3070 return 0x0000;
3072 case 0x08: /* SPCR2 */
3073 return s->spcr[1];
3074 case 0x0a: /* SPCR1 */
3075 return s->spcr[0];
3076 case 0x0c: /* RCR2 */
3077 return s->rcr[1];
3078 case 0x0e: /* RCR1 */
3079 return s->rcr[0];
3080 case 0x10: /* XCR2 */
3081 return s->xcr[1];
3082 case 0x12: /* XCR1 */
3083 return s->xcr[0];
3084 case 0x14: /* SRGR2 */
3085 return s->srgr[1];
3086 case 0x16: /* SRGR1 */
3087 return s->srgr[0];
3088 case 0x18: /* MCR2 */
3089 return s->mcr[1];
3090 case 0x1a: /* MCR1 */
3091 return s->mcr[0];
3092 case 0x1c: /* RCERA */
3093 return s->rcer[0];
3094 case 0x1e: /* RCERB */
3095 return s->rcer[1];
3096 case 0x20: /* XCERA */
3097 return s->xcer[0];
3098 case 0x22: /* XCERB */
3099 return s->xcer[1];
3100 case 0x24: /* PCR0 */
3101 return s->pcr;
3102 case 0x26: /* RCERC */
3103 return s->rcer[2];
3104 case 0x28: /* RCERD */
3105 return s->rcer[3];
3106 case 0x2a: /* XCERC */
3107 return s->xcer[2];
3108 case 0x2c: /* XCERD */
3109 return s->xcer[3];
3110 case 0x2e: /* RCERE */
3111 return s->rcer[4];
3112 case 0x30: /* RCERF */
3113 return s->rcer[5];
3114 case 0x32: /* XCERE */
3115 return s->xcer[4];
3116 case 0x34: /* XCERF */
3117 return s->xcer[5];
3118 case 0x36: /* RCERG */
3119 return s->rcer[6];
3120 case 0x38: /* RCERH */
3121 return s->rcer[7];
3122 case 0x3a: /* XCERG */
3123 return s->xcer[6];
3124 case 0x3c: /* XCERH */
3125 return s->xcer[7];
3128 OMAP_BAD_REG(addr);
3129 return 0;
3132 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3133 uint32_t value)
3135 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3136 int offset = addr & OMAP_MPUI_REG_MASK;
3138 switch (offset) {
3139 case 0x00: /* DRR2 */
3140 case 0x02: /* DRR1 */
3141 OMAP_RO_REG(addr);
3142 return;
3144 case 0x04: /* DXR2 */
3145 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3146 return;
3147 /* Fall through. */
3148 case 0x06: /* DXR1 */
3149 if (s->tx_req > 1) {
3150 s->tx_req -= 2;
3151 if (s->codec && s->codec->cts) {
3152 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3153 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3155 if (s->tx_req < 2)
3156 omap_mcbsp_tx_done(s);
3157 } else
3158 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3159 return;
3161 case 0x08: /* SPCR2 */
3162 s->spcr[1] &= 0x0002;
3163 s->spcr[1] |= 0x03f9 & value;
3164 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3165 if (~value & 1) /* XRST */
3166 s->spcr[1] &= ~6;
3167 omap_mcbsp_req_update(s);
3168 return;
3169 case 0x0a: /* SPCR1 */
3170 s->spcr[0] &= 0x0006;
3171 s->spcr[0] |= 0xf8f9 & value;
3172 if (value & (1 << 15)) /* DLB */
3173 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3174 if (~value & 1) { /* RRST */
3175 s->spcr[0] &= ~6;
3176 s->rx_req = 0;
3177 omap_mcbsp_rx_done(s);
3179 omap_mcbsp_req_update(s);
3180 return;
3182 case 0x0c: /* RCR2 */
3183 s->rcr[1] = value & 0xffff;
3184 return;
3185 case 0x0e: /* RCR1 */
3186 s->rcr[0] = value & 0x7fe0;
3187 return;
3188 case 0x10: /* XCR2 */
3189 s->xcr[1] = value & 0xffff;
3190 return;
3191 case 0x12: /* XCR1 */
3192 s->xcr[0] = value & 0x7fe0;
3193 return;
3194 case 0x14: /* SRGR2 */
3195 s->srgr[1] = value & 0xffff;
3196 omap_mcbsp_req_update(s);
3197 return;
3198 case 0x16: /* SRGR1 */
3199 s->srgr[0] = value & 0xffff;
3200 omap_mcbsp_req_update(s);
3201 return;
3202 case 0x18: /* MCR2 */
3203 s->mcr[1] = value & 0x03e3;
3204 if (value & 3) /* XMCM */
3205 printf("%s: Tx channel selection mode enable attempt\n",
3206 __FUNCTION__);
3207 return;
3208 case 0x1a: /* MCR1 */
3209 s->mcr[0] = value & 0x03e1;
3210 if (value & 1) /* RMCM */
3211 printf("%s: Rx channel selection mode enable attempt\n",
3212 __FUNCTION__);
3213 return;
3214 case 0x1c: /* RCERA */
3215 s->rcer[0] = value & 0xffff;
3216 return;
3217 case 0x1e: /* RCERB */
3218 s->rcer[1] = value & 0xffff;
3219 return;
3220 case 0x20: /* XCERA */
3221 s->xcer[0] = value & 0xffff;
3222 return;
3223 case 0x22: /* XCERB */
3224 s->xcer[1] = value & 0xffff;
3225 return;
3226 case 0x24: /* PCR0 */
3227 s->pcr = value & 0x7faf;
3228 return;
3229 case 0x26: /* RCERC */
3230 s->rcer[2] = value & 0xffff;
3231 return;
3232 case 0x28: /* RCERD */
3233 s->rcer[3] = value & 0xffff;
3234 return;
3235 case 0x2a: /* XCERC */
3236 s->xcer[2] = value & 0xffff;
3237 return;
3238 case 0x2c: /* XCERD */
3239 s->xcer[3] = value & 0xffff;
3240 return;
3241 case 0x2e: /* RCERE */
3242 s->rcer[4] = value & 0xffff;
3243 return;
3244 case 0x30: /* RCERF */
3245 s->rcer[5] = value & 0xffff;
3246 return;
3247 case 0x32: /* XCERE */
3248 s->xcer[4] = value & 0xffff;
3249 return;
3250 case 0x34: /* XCERF */
3251 s->xcer[5] = value & 0xffff;
3252 return;
3253 case 0x36: /* RCERG */
3254 s->rcer[6] = value & 0xffff;
3255 return;
3256 case 0x38: /* RCERH */
3257 s->rcer[7] = value & 0xffff;
3258 return;
3259 case 0x3a: /* XCERG */
3260 s->xcer[6] = value & 0xffff;
3261 return;
3262 case 0x3c: /* XCERH */
3263 s->xcer[7] = value & 0xffff;
3264 return;
3267 OMAP_BAD_REG(addr);
3270 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3271 uint32_t value)
3273 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3274 int offset = addr & OMAP_MPUI_REG_MASK;
3276 if (offset == 0x04) { /* DXR */
3277 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3278 return;
3279 if (s->tx_req > 3) {
3280 s->tx_req -= 4;
3281 if (s->codec && s->codec->cts) {
3282 s->codec->out.fifo[s->codec->out.len ++] =
3283 (value >> 24) & 0xff;
3284 s->codec->out.fifo[s->codec->out.len ++] =
3285 (value >> 16) & 0xff;
3286 s->codec->out.fifo[s->codec->out.len ++] =
3287 (value >> 8) & 0xff;
3288 s->codec->out.fifo[s->codec->out.len ++] =
3289 (value >> 0) & 0xff;
3291 if (s->tx_req < 4)
3292 omap_mcbsp_tx_done(s);
3293 } else
3294 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3295 return;
3298 omap_badwidth_write16(opaque, addr, value);
3301 static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
3302 omap_badwidth_read16,
3303 omap_mcbsp_read,
3304 omap_badwidth_read16,
3307 static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
3308 omap_badwidth_write16,
3309 omap_mcbsp_writeh,
3310 omap_mcbsp_writew,
3313 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3315 memset(&s->spcr, 0, sizeof(s->spcr));
3316 memset(&s->rcr, 0, sizeof(s->rcr));
3317 memset(&s->xcr, 0, sizeof(s->xcr));
3318 s->srgr[0] = 0x0001;
3319 s->srgr[1] = 0x2000;
3320 memset(&s->mcr, 0, sizeof(s->mcr));
3321 memset(&s->pcr, 0, sizeof(s->pcr));
3322 memset(&s->rcer, 0, sizeof(s->rcer));
3323 memset(&s->xcer, 0, sizeof(s->xcer));
3324 s->tx_req = 0;
3325 s->rx_req = 0;
3326 s->tx_rate = 0;
3327 s->rx_rate = 0;
3328 qemu_del_timer(s->source_timer);
3329 qemu_del_timer(s->sink_timer);
3332 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3333 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3335 int iomemtype;
3336 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3337 qemu_mallocz(sizeof(struct omap_mcbsp_s));
3339 s->txirq = irq[0];
3340 s->rxirq = irq[1];
3341 s->txdrq = dma[0];
3342 s->rxdrq = dma[1];
3343 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
3344 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
3345 omap_mcbsp_reset(s);
3347 iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
3348 omap_mcbsp_writefn, s);
3349 cpu_register_physical_memory(base, 0x800, iomemtype);
3351 return s;
3354 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3356 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3358 if (s->rx_rate) {
3359 s->rx_req = s->codec->in.len;
3360 omap_mcbsp_rx_newdata(s);
3364 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3366 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3368 if (s->tx_rate) {
3369 s->tx_req = s->codec->out.size;
3370 omap_mcbsp_tx_newdata(s);
3374 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3376 s->codec = slave;
3377 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3378 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3381 /* LED Pulse Generators */
3382 struct omap_lpg_s {
3383 QEMUTimer *tm;
3385 uint8_t control;
3386 uint8_t power;
3387 int64_t on;
3388 int64_t period;
3389 int clk;
3390 int cycle;
3393 static void omap_lpg_tick(void *opaque)
3395 struct omap_lpg_s *s = opaque;
3397 if (s->cycle)
3398 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
3399 else
3400 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
3402 s->cycle = !s->cycle;
3403 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3406 static void omap_lpg_update(struct omap_lpg_s *s)
3408 int64_t on, period = 1, ticks = 1000;
3409 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3411 if (~s->control & (1 << 6)) /* LPGRES */
3412 on = 0;
3413 else if (s->control & (1 << 7)) /* PERM_ON */
3414 on = period;
3415 else {
3416 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3417 256 / 32);
3418 on = (s->clk && s->power) ? muldiv64(ticks,
3419 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3422 qemu_del_timer(s->tm);
3423 if (on == period && s->on < s->period)
3424 printf("%s: LED is on\n", __FUNCTION__);
3425 else if (on == 0 && s->on)
3426 printf("%s: LED is off\n", __FUNCTION__);
3427 else if (on && (on != s->on || period != s->period)) {
3428 s->cycle = 0;
3429 s->on = on;
3430 s->period = period;
3431 omap_lpg_tick(s);
3432 return;
3435 s->on = on;
3436 s->period = period;
3439 static void omap_lpg_reset(struct omap_lpg_s *s)
3441 s->control = 0x00;
3442 s->power = 0x00;
3443 s->clk = 1;
3444 omap_lpg_update(s);
3447 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
3449 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3450 int offset = addr & OMAP_MPUI_REG_MASK;
3452 switch (offset) {
3453 case 0x00: /* LCR */
3454 return s->control;
3456 case 0x04: /* PMR */
3457 return s->power;
3460 OMAP_BAD_REG(addr);
3461 return 0;
3464 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
3465 uint32_t value)
3467 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3468 int offset = addr & OMAP_MPUI_REG_MASK;
3470 switch (offset) {
3471 case 0x00: /* LCR */
3472 if (~value & (1 << 6)) /* LPGRES */
3473 omap_lpg_reset(s);
3474 s->control = value & 0xff;
3475 omap_lpg_update(s);
3476 return;
3478 case 0x04: /* PMR */
3479 s->power = value & 0x01;
3480 omap_lpg_update(s);
3481 return;
3483 default:
3484 OMAP_BAD_REG(addr);
3485 return;
3489 static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
3490 omap_lpg_read,
3491 omap_badwidth_read8,
3492 omap_badwidth_read8,
3495 static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
3496 omap_lpg_write,
3497 omap_badwidth_write8,
3498 omap_badwidth_write8,
3501 static void omap_lpg_clk_update(void *opaque, int line, int on)
3503 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3505 s->clk = on;
3506 omap_lpg_update(s);
3509 static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
3511 int iomemtype;
3512 struct omap_lpg_s *s = (struct omap_lpg_s *)
3513 qemu_mallocz(sizeof(struct omap_lpg_s));
3515 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
3517 omap_lpg_reset(s);
3519 iomemtype = cpu_register_io_memory(omap_lpg_readfn,
3520 omap_lpg_writefn, s);
3521 cpu_register_physical_memory(base, 0x800, iomemtype);
3523 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3525 return s;
3528 /* MPUI Peripheral Bridge configuration */
3529 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
3531 if (addr == OMAP_MPUI_BASE) /* CMR */
3532 return 0xfe4d;
3534 OMAP_BAD_REG(addr);
3535 return 0;
3538 static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
3539 omap_badwidth_read16,
3540 omap_mpui_io_read,
3541 omap_badwidth_read16,
3544 static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
3545 omap_badwidth_write16,
3546 omap_badwidth_write16,
3547 omap_badwidth_write16,
3550 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
3552 int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
3553 omap_mpui_io_writefn, mpu);
3554 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
3557 /* General chip reset */
3558 static void omap1_mpu_reset(void *opaque)
3560 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3562 omap_inth_reset(mpu->ih[0]);
3563 omap_inth_reset(mpu->ih[1]);
3564 omap_dma_reset(mpu->dma);
3565 omap_mpu_timer_reset(mpu->timer[0]);
3566 omap_mpu_timer_reset(mpu->timer[1]);
3567 omap_mpu_timer_reset(mpu->timer[2]);
3568 omap_wd_timer_reset(mpu->wdt);
3569 omap_os_timer_reset(mpu->os_timer);
3570 omap_lcdc_reset(mpu->lcd);
3571 omap_ulpd_pm_reset(mpu);
3572 omap_pin_cfg_reset(mpu);
3573 omap_mpui_reset(mpu);
3574 omap_tipb_bridge_reset(mpu->private_tipb);
3575 omap_tipb_bridge_reset(mpu->public_tipb);
3576 omap_dpll_reset(&mpu->dpll[0]);
3577 omap_dpll_reset(&mpu->dpll[1]);
3578 omap_dpll_reset(&mpu->dpll[2]);
3579 omap_uart_reset(mpu->uart[0]);
3580 omap_uart_reset(mpu->uart[1]);
3581 omap_uart_reset(mpu->uart[2]);
3582 omap_mmc_reset(mpu->mmc);
3583 omap_mpuio_reset(mpu->mpuio);
3584 omap_gpio_reset(mpu->gpio);
3585 omap_uwire_reset(mpu->microwire);
3586 omap_pwl_reset(mpu);
3587 omap_pwt_reset(mpu);
3588 omap_i2c_reset(mpu->i2c[0]);
3589 omap_rtc_reset(mpu->rtc);
3590 omap_mcbsp_reset(mpu->mcbsp1);
3591 omap_mcbsp_reset(mpu->mcbsp2);
3592 omap_mcbsp_reset(mpu->mcbsp3);
3593 omap_lpg_reset(mpu->led[0]);
3594 omap_lpg_reset(mpu->led[1]);
3595 omap_clkm_reset(mpu);
3596 cpu_reset(mpu->env);
3599 static const struct omap_map_s {
3600 target_phys_addr_t phys_dsp;
3601 target_phys_addr_t phys_mpu;
3602 uint32_t size;
3603 const char *name;
3604 } omap15xx_dsp_mm[] = {
3605 /* Strobe 0 */
3606 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3607 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3608 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3609 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3610 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3611 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3612 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3613 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3614 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3615 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3616 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3617 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3618 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3619 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3620 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3621 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3622 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3623 /* Strobe 1 */
3624 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3626 { 0 }
3629 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
3631 int io;
3633 for (; map->phys_dsp; map ++) {
3634 io = cpu_get_physical_page_desc(map->phys_mpu);
3636 cpu_register_physical_memory(map->phys_dsp, map->size, io);
3640 void omap_mpu_wakeup(void *opaque, int irq, int req)
3642 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3644 if (mpu->env->halted)
3645 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3648 static const struct dma_irq_map omap1_dma_irq_map[] = {
3649 { 0, OMAP_INT_DMA_CH0_6 },
3650 { 0, OMAP_INT_DMA_CH1_7 },
3651 { 0, OMAP_INT_DMA_CH2_8 },
3652 { 0, OMAP_INT_DMA_CH3 },
3653 { 0, OMAP_INT_DMA_CH4 },
3654 { 0, OMAP_INT_DMA_CH5 },
3655 { 1, OMAP_INT_1610_DMA_CH6 },
3656 { 1, OMAP_INT_1610_DMA_CH7 },
3657 { 1, OMAP_INT_1610_DMA_CH8 },
3658 { 1, OMAP_INT_1610_DMA_CH9 },
3659 { 1, OMAP_INT_1610_DMA_CH10 },
3660 { 1, OMAP_INT_1610_DMA_CH11 },
3661 { 1, OMAP_INT_1610_DMA_CH12 },
3662 { 1, OMAP_INT_1610_DMA_CH13 },
3663 { 1, OMAP_INT_1610_DMA_CH14 },
3664 { 1, OMAP_INT_1610_DMA_CH15 }
3667 /* DMA ports for OMAP1 */
3668 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3669 target_phys_addr_t addr)
3671 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
3674 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3675 target_phys_addr_t addr)
3677 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
3680 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3681 target_phys_addr_t addr)
3683 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
3686 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3687 target_phys_addr_t addr)
3689 return addr >= 0xfffb0000 && addr < 0xffff0000;
3692 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3693 target_phys_addr_t addr)
3695 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
3698 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3699 target_phys_addr_t addr)
3701 return addr >= 0xe1010000 && addr < 0xe1020004;
3704 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3705 const char *core)
3707 int i;
3708 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3709 qemu_mallocz(sizeof(struct omap_mpu_state_s));
3710 ram_addr_t imif_base, emiff_base;
3711 qemu_irq *cpu_irq;
3712 qemu_irq dma_irqs[6];
3713 DriveInfo *dinfo;
3715 if (!core)
3716 core = "ti925t";
3718 /* Core */
3719 s->mpu_model = omap310;
3720 s->env = cpu_init(core);
3721 if (!s->env) {
3722 fprintf(stderr, "Unable to find CPU definition\n");
3723 exit(1);
3725 s->sdram_size = sdram_size;
3726 s->sram_size = OMAP15XX_SRAM_SIZE;
3728 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3730 /* Clocks */
3731 omap_clk_init(s);
3733 /* Memory-mapped stuff */
3734 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3735 (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
3736 s->sdram_size)) | IO_MEM_RAM);
3737 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3738 (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
3739 s->sram_size)) | IO_MEM_RAM);
3741 omap_clkm_init(0xfffece00, 0xe1008000, s);
3743 cpu_irq = arm_pic_init_cpu(s->env);
3744 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
3745 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
3746 omap_findclk(s, "arminth_ck"));
3747 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
3748 omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
3749 NULL, omap_findclk(s, "arminth_ck"));
3751 for (i = 0; i < 6; i ++)
3752 dma_irqs[i] =
3753 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
3754 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
3755 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3757 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3758 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3759 s->port[imif ].addr_valid = omap_validate_imif_addr;
3760 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3761 s->port[local ].addr_valid = omap_validate_local_addr;
3762 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3764 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3765 soc_dma_port_add_mem_ram(s->dma,
3766 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
3767 soc_dma_port_add_mem_ram(s->dma,
3768 imif_base, OMAP_IMIF_BASE, s->sram_size);
3770 s->timer[0] = omap_mpu_timer_init(0xfffec500,
3771 s->irq[0][OMAP_INT_TIMER1],
3772 omap_findclk(s, "mputim_ck"));
3773 s->timer[1] = omap_mpu_timer_init(0xfffec600,
3774 s->irq[0][OMAP_INT_TIMER2],
3775 omap_findclk(s, "mputim_ck"));
3776 s->timer[2] = omap_mpu_timer_init(0xfffec700,
3777 s->irq[0][OMAP_INT_TIMER3],
3778 omap_findclk(s, "mputim_ck"));
3780 s->wdt = omap_wd_timer_init(0xfffec800,
3781 s->irq[0][OMAP_INT_WD_TIMER],
3782 omap_findclk(s, "armwdt_ck"));
3784 s->os_timer = omap_os_timer_init(0xfffb9000,
3785 s->irq[1][OMAP_INT_OS_TIMER],
3786 omap_findclk(s, "clk32-kHz"));
3788 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3789 omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
3790 omap_findclk(s, "lcd_ck"));
3792 omap_ulpd_pm_init(0xfffe0800, s);
3793 omap_pin_cfg_init(0xfffe1000, s);
3794 omap_id_init(s);
3796 omap_mpui_init(0xfffec900, s);
3798 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3799 s->irq[0][OMAP_INT_BRIDGE_PRIV],
3800 omap_findclk(s, "tipb_ck"));
3801 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3802 s->irq[0][OMAP_INT_BRIDGE_PUB],
3803 omap_findclk(s, "tipb_ck"));
3805 omap_tcmi_init(0xfffecc00, s);
3807 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3808 omap_findclk(s, "uart1_ck"),
3809 omap_findclk(s, "uart1_ck"),
3810 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3811 serial_hds[0]);
3812 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3813 omap_findclk(s, "uart2_ck"),
3814 omap_findclk(s, "uart2_ck"),
3815 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3816 serial_hds[0] ? serial_hds[1] : NULL);
3817 s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
3818 omap_findclk(s, "uart3_ck"),
3819 omap_findclk(s, "uart3_ck"),
3820 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3821 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3823 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3824 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3825 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3827 dinfo = drive_get(IF_SD, 0, 0);
3828 if (!dinfo) {
3829 fprintf(stderr, "qemu: missing SecureDigital device\n");
3830 exit(1);
3832 s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
3833 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
3834 omap_findclk(s, "mmc_ck"));
3836 s->mpuio = omap_mpuio_init(0xfffb5000,
3837 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3838 s->wakeup, omap_findclk(s, "clk32-kHz"));
3840 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3841 omap_findclk(s, "arm_gpio_ck"));
3843 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3844 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3846 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
3847 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
3849 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
3850 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
3852 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
3853 omap_findclk(s, "clk32-kHz"));
3855 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
3856 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
3857 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
3858 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
3859 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
3860 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
3862 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
3863 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
3865 /* Register mappings not currenlty implemented:
3866 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
3867 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
3868 * USB W2FC fffb4000 - fffb47ff
3869 * Camera Interface fffb6800 - fffb6fff
3870 * USB Host fffba000 - fffba7ff
3871 * FAC fffba800 - fffbafff
3872 * HDQ/1-Wire fffbc000 - fffbc7ff
3873 * TIPB switches fffbc800 - fffbcfff
3874 * Mailbox fffcf000 - fffcf7ff
3875 * Local bus IF fffec100 - fffec1ff
3876 * Local bus MMU fffec200 - fffec2ff
3877 * DSP MMU fffed200 - fffed2ff
3880 omap_setup_dsp_mapping(omap15xx_dsp_mm);
3881 omap_setup_mpui_io(s);
3883 qemu_register_reset(omap1_mpu_reset, s);
3885 return s;