4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 int broken_set_mem_region
;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
68 static KVMState
*kvm_state
;
70 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
74 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
75 /* KVM private memory slots */
78 if (s
->slots
[i
].memory_size
== 0)
82 fprintf(stderr
, "%s: no free slot available\n", __func__
);
86 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
87 target_phys_addr_t start_addr
,
88 target_phys_addr_t end_addr
)
92 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
93 KVMSlot
*mem
= &s
->slots
[i
];
95 if (start_addr
== mem
->start_addr
&&
96 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
105 * Find overlapping slot with lowest start address
107 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
108 target_phys_addr_t start_addr
,
109 target_phys_addr_t end_addr
)
111 KVMSlot
*found
= NULL
;
114 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
115 KVMSlot
*mem
= &s
->slots
[i
];
117 if (mem
->memory_size
== 0 ||
118 (found
&& found
->start_addr
< mem
->start_addr
)) {
122 if (end_addr
> mem
->start_addr
&&
123 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
131 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
133 struct kvm_userspace_memory_region mem
;
135 mem
.slot
= slot
->slot
;
136 mem
.guest_phys_addr
= slot
->start_addr
;
137 mem
.memory_size
= slot
->memory_size
;
138 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
139 mem
.flags
= slot
->flags
;
140 if (s
->migration_log
) {
141 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
143 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
146 static void kvm_reset_vcpu(void *opaque
)
148 CPUState
*env
= opaque
;
150 if (kvm_arch_put_registers(env
)) {
151 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
156 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
158 if (env
== cpu_single_env
) {
165 int kvm_init_vcpu(CPUState
*env
)
167 KVMState
*s
= kvm_state
;
171 dprintf("kvm_init_vcpu\n");
173 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
175 dprintf("kvm_create_vcpu failed\n");
182 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
184 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
188 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
190 if (env
->kvm_run
== MAP_FAILED
) {
192 dprintf("mmap'ing vcpu state failed\n");
196 ret
= kvm_arch_init_vcpu(env
);
198 qemu_register_reset(kvm_reset_vcpu
, env
);
199 ret
= kvm_arch_put_registers(env
);
205 int kvm_put_mp_state(CPUState
*env
)
207 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
209 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
212 int kvm_get_mp_state(CPUState
*env
)
214 struct kvm_mp_state mp_state
;
217 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
221 env
->mp_state
= mp_state
.mp_state
;
226 * dirty pages logging control
228 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
229 ram_addr_t size
, int flags
, int mask
)
231 KVMState
*s
= kvm_state
;
232 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
236 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
237 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
238 (target_phys_addr_t
)(phys_addr
+ size
- 1));
242 old_flags
= mem
->flags
;
244 flags
= (mem
->flags
& ~mask
) | flags
;
247 /* If nothing changed effectively, no need to issue ioctl */
248 if (s
->migration_log
) {
249 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
251 if (flags
== old_flags
) {
255 return kvm_set_user_memory_region(s
, mem
);
258 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
260 return kvm_dirty_pages_log_change(phys_addr
, size
,
261 KVM_MEM_LOG_DIRTY_PAGES
,
262 KVM_MEM_LOG_DIRTY_PAGES
);
265 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
267 return kvm_dirty_pages_log_change(phys_addr
, size
,
269 KVM_MEM_LOG_DIRTY_PAGES
);
272 int kvm_set_migration_log(int enable
)
274 KVMState
*s
= kvm_state
;
278 s
->migration_log
= enable
;
280 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
283 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
286 err
= kvm_set_user_memory_region(s
, mem
);
295 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
296 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
297 * This means all bits are set to dirty.
299 * @start_add: start of logged region.
300 * @end_addr: end of logged region.
302 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
303 target_phys_addr_t end_addr
)
305 KVMState
*s
= kvm_state
;
306 unsigned long size
, allocated_size
= 0;
307 target_phys_addr_t phys_addr
;
314 d
.dirty_bitmap
= NULL
;
315 while (start_addr
< end_addr
) {
316 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
321 /* We didn't activate dirty logging? Don't care then. */
322 if(!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)) {
326 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
327 if (!d
.dirty_bitmap
) {
328 d
.dirty_bitmap
= qemu_malloc(size
);
329 } else if (size
> allocated_size
) {
330 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
332 allocated_size
= size
;
333 memset(d
.dirty_bitmap
, 0, allocated_size
);
337 r
= kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
);
339 dprintf("ioctl failed %d\n", errno
);
344 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
345 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
346 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
347 unsigned long *bitmap
= (unsigned long *)d
.dirty_bitmap
;
348 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
349 unsigned word
= nr
/ (sizeof(*bitmap
) * 8);
350 unsigned bit
= nr
% (sizeof(*bitmap
) * 8);
352 if ((bitmap
[word
] >> bit
) & 1) {
353 cpu_physical_memory_set_dirty(addr
);
355 /* When our KVM implementation doesn't know about dirty logging
356 * we can just assume it's always dirty and be fine. */
357 cpu_physical_memory_set_dirty(addr
);
360 start_addr
= phys_addr
;
362 qemu_free(d
.dirty_bitmap
);
367 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
370 #ifdef KVM_CAP_COALESCED_MMIO
371 KVMState
*s
= kvm_state
;
373 if (s
->coalesced_mmio
) {
374 struct kvm_coalesced_mmio_zone zone
;
379 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
386 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
389 #ifdef KVM_CAP_COALESCED_MMIO
390 KVMState
*s
= kvm_state
;
392 if (s
->coalesced_mmio
) {
393 struct kvm_coalesced_mmio_zone zone
;
398 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
405 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
409 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
417 int kvm_init(int smp_cpus
)
419 static const char upgrade_note
[] =
420 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
421 "(see http://sourceforge.net/projects/kvm).\n";
427 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
431 s
= qemu_mallocz(sizeof(KVMState
));
433 #ifdef KVM_CAP_SET_GUEST_DEBUG
434 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
436 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
437 s
->slots
[i
].slot
= i
;
440 s
->fd
= open("/dev/kvm", O_RDWR
);
442 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
447 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
448 if (ret
< KVM_API_VERSION
) {
451 fprintf(stderr
, "kvm version too old\n");
455 if (ret
> KVM_API_VERSION
) {
457 fprintf(stderr
, "kvm version not supported\n");
461 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
465 /* initially, KVM allocated its own memory and we had to jump through
466 * hooks to make phys_ram_base point to this. Modern versions of KVM
467 * just use a user allocated buffer so we can use regular pages
468 * unmodified. Make sure we have a sufficiently modern version of KVM.
470 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
472 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
477 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
478 * destroyed properly. Since we rely on this capability, refuse to work
479 * with any kernel without this capability. */
480 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
484 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
489 #ifdef KVM_CAP_COALESCED_MMIO
490 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
492 s
->coalesced_mmio
= 0;
495 s
->broken_set_mem_region
= 1;
496 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
497 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
499 s
->broken_set_mem_region
= 0;
503 ret
= kvm_arch_init(s
, smp_cpus
);
523 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
524 int direction
, int size
, uint32_t count
)
529 for (i
= 0; i
< count
; i
++) {
530 if (direction
== KVM_EXIT_IO_IN
) {
533 stb_p(ptr
, cpu_inb(env
, port
));
536 stw_p(ptr
, cpu_inw(env
, port
));
539 stl_p(ptr
, cpu_inl(env
, port
));
545 cpu_outb(env
, port
, ldub_p(ptr
));
548 cpu_outw(env
, port
, lduw_p(ptr
));
551 cpu_outl(env
, port
, ldl_p(ptr
));
562 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
564 #ifdef KVM_CAP_COALESCED_MMIO
565 KVMState
*s
= kvm_state
;
566 if (s
->coalesced_mmio
) {
567 struct kvm_coalesced_mmio_ring
*ring
;
569 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
570 while (ring
->first
!= ring
->last
) {
571 struct kvm_coalesced_mmio
*ent
;
573 ent
= &ring
->coalesced_mmio
[ring
->first
];
575 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
576 /* FIXME smp_wmb() */
577 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
583 int kvm_cpu_exec(CPUState
*env
)
585 struct kvm_run
*run
= env
->kvm_run
;
588 dprintf("kvm_cpu_exec()\n");
591 if (env
->exit_request
) {
592 dprintf("interrupt exit requested\n");
597 kvm_arch_pre_run(env
, run
);
598 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
599 kvm_arch_post_run(env
, run
);
601 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
602 dprintf("io window exit\n");
608 dprintf("kvm run failed %s\n", strerror(-ret
));
612 kvm_run_coalesced_mmio(env
, run
);
614 ret
= 0; /* exit loop */
615 switch (run
->exit_reason
) {
617 dprintf("handle_io\n");
618 ret
= kvm_handle_io(env
, run
->io
.port
,
619 (uint8_t *)run
+ run
->io
.data_offset
,
625 dprintf("handle_mmio\n");
626 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
632 case KVM_EXIT_IRQ_WINDOW_OPEN
:
633 dprintf("irq_window_open\n");
635 case KVM_EXIT_SHUTDOWN
:
636 dprintf("shutdown\n");
637 qemu_system_reset_request();
640 case KVM_EXIT_UNKNOWN
:
641 dprintf("kvm_exit_unknown\n");
643 case KVM_EXIT_FAIL_ENTRY
:
644 dprintf("kvm_exit_fail_entry\n");
646 case KVM_EXIT_EXCEPTION
:
647 dprintf("kvm_exit_exception\n");
650 dprintf("kvm_exit_debug\n");
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 if (kvm_arch_debug(&run
->debug
.arch
)) {
653 gdb_set_stop_cpu(env
);
655 env
->exception_index
= EXCP_DEBUG
;
658 /* re-enter, this exception was guest-internal */
660 #endif /* KVM_CAP_SET_GUEST_DEBUG */
663 dprintf("kvm_arch_handle_exit\n");
664 ret
= kvm_arch_handle_exit(env
, run
);
669 if (env
->exit_request
) {
670 env
->exit_request
= 0;
671 env
->exception_index
= EXCP_INTERRUPT
;
677 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
679 ram_addr_t phys_offset
)
681 KVMState
*s
= kvm_state
;
682 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
686 if (start_addr
& ~TARGET_PAGE_MASK
) {
687 if (flags
>= IO_MEM_UNASSIGNED
) {
688 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
689 start_addr
+ size
)) {
692 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
694 fprintf(stderr
, "Only page-aligned memory slots supported\n");
699 /* KVM does not support read-only slots */
700 phys_offset
&= ~IO_MEM_ROM
;
703 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
708 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
709 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
710 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
711 /* The new slot fits into the existing one and comes with
712 * identical parameters - nothing to be done. */
718 /* unregister the overlapping slot */
719 mem
->memory_size
= 0;
720 err
= kvm_set_user_memory_region(s
, mem
);
722 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
723 __func__
, strerror(-err
));
727 /* Workaround for older KVM versions: we can't join slots, even not by
728 * unregistering the previous ones and then registering the larger
729 * slot. We have to maintain the existing fragmentation. Sigh.
731 * This workaround assumes that the new slot starts at the same
732 * address as the first existing one. If not or if some overlapping
733 * slot comes around later, we will fail (not seen in practice so far)
734 * - and actually require a recent KVM version. */
735 if (s
->broken_set_mem_region
&&
736 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
737 flags
< IO_MEM_UNASSIGNED
) {
738 mem
= kvm_alloc_slot(s
);
739 mem
->memory_size
= old
.memory_size
;
740 mem
->start_addr
= old
.start_addr
;
741 mem
->phys_offset
= old
.phys_offset
;
744 err
= kvm_set_user_memory_region(s
, mem
);
746 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
751 start_addr
+= old
.memory_size
;
752 phys_offset
+= old
.memory_size
;
753 size
-= old
.memory_size
;
757 /* register prefix slot */
758 if (old
.start_addr
< start_addr
) {
759 mem
= kvm_alloc_slot(s
);
760 mem
->memory_size
= start_addr
- old
.start_addr
;
761 mem
->start_addr
= old
.start_addr
;
762 mem
->phys_offset
= old
.phys_offset
;
765 err
= kvm_set_user_memory_region(s
, mem
);
767 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
768 __func__
, strerror(-err
));
773 /* register suffix slot */
774 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
775 ram_addr_t size_delta
;
777 mem
= kvm_alloc_slot(s
);
778 mem
->start_addr
= start_addr
+ size
;
779 size_delta
= mem
->start_addr
- old
.start_addr
;
780 mem
->memory_size
= old
.memory_size
- size_delta
;
781 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
784 err
= kvm_set_user_memory_region(s
, mem
);
786 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
787 __func__
, strerror(-err
));
793 /* in case the KVM bug workaround already "consumed" the new slot */
797 /* KVM does not need to know about this memory */
798 if (flags
>= IO_MEM_UNASSIGNED
)
801 mem
= kvm_alloc_slot(s
);
802 mem
->memory_size
= size
;
803 mem
->start_addr
= start_addr
;
804 mem
->phys_offset
= phys_offset
;
807 err
= kvm_set_user_memory_region(s
, mem
);
809 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
815 int kvm_ioctl(KVMState
*s
, int type
, ...)
822 arg
= va_arg(ap
, void *);
825 ret
= ioctl(s
->fd
, type
, arg
);
832 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
839 arg
= va_arg(ap
, void *);
842 ret
= ioctl(s
->vmfd
, type
, arg
);
849 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
856 arg
= va_arg(ap
, void *);
859 ret
= ioctl(env
->kvm_fd
, type
, arg
);
866 int kvm_has_sync_mmu(void)
868 #ifdef KVM_CAP_SYNC_MMU
869 KVMState
*s
= kvm_state
;
871 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
877 void kvm_setup_guest_memory(void *start
, size_t size
)
879 if (!kvm_has_sync_mmu()) {
881 int ret
= madvise(start
, size
, MADV_DONTFORK
);
889 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
895 #ifdef KVM_CAP_SET_GUEST_DEBUG
896 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
899 struct kvm_sw_breakpoint
*bp
;
901 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
908 int kvm_sw_breakpoints_active(CPUState
*env
)
910 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
913 struct kvm_set_guest_debug_data
{
914 struct kvm_guest_debug dbg
;
919 static void kvm_invoke_set_guest_debug(void *data
)
921 struct kvm_set_guest_debug_data
*dbg_data
= data
;
922 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
925 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
927 struct kvm_set_guest_debug_data data
;
929 data
.dbg
.control
= 0;
930 if (env
->singlestep_enabled
)
931 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
933 kvm_arch_update_guest_debug(env
, &data
.dbg
);
934 data
.dbg
.control
|= reinject_trap
;
937 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
941 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
942 target_ulong len
, int type
)
944 struct kvm_sw_breakpoint
*bp
;
948 if (type
== GDB_BREAKPOINT_SW
) {
949 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
955 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
961 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
967 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
970 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
975 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
976 err
= kvm_update_guest_debug(env
, 0);
983 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
984 target_ulong len
, int type
)
986 struct kvm_sw_breakpoint
*bp
;
990 if (type
== GDB_BREAKPOINT_SW
) {
991 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
995 if (bp
->use_count
> 1) {
1000 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1004 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1007 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1012 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1013 err
= kvm_update_guest_debug(env
, 0);
1020 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1022 struct kvm_sw_breakpoint
*bp
, *next
;
1023 KVMState
*s
= current_env
->kvm_state
;
1026 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1027 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1028 /* Try harder to find a CPU that currently sees the breakpoint. */
1029 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1030 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1035 kvm_arch_remove_all_hw_breakpoints();
1037 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1038 kvm_update_guest_debug(env
, 0);
1041 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1043 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1048 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1049 target_ulong len
, int type
)
1054 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1055 target_ulong len
, int type
)
1060 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1063 #endif /* !KVM_CAP_SET_GUEST_DEBUG */