tcg: Use fprintf_function (format checking)
[qemu/stefanha.git] / hw / stellaris.c
blobccad1348a9d7a6302b31d63d84246693d89d501c
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "arm-misc.h"
13 #include "devices.h"
14 #include "qemu-timer.h"
15 #include "i2c.h"
16 #include "net.h"
17 #include "sysemu.h"
18 #include "boards.h"
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
28 #define BP_OLED_I2C 0x01
29 #define BP_OLED_SSI 0x02
30 #define BP_GAMEPAD 0x04
32 typedef const struct {
33 const char *name;
34 uint32_t did0;
35 uint32_t did1;
36 uint32_t dc0;
37 uint32_t dc1;
38 uint32_t dc2;
39 uint32_t dc3;
40 uint32_t dc4;
41 uint32_t peripherals;
42 } stellaris_board_info;
44 /* General purpose timer module. */
46 typedef struct gptm_state {
47 SysBusDevice busdev;
48 uint32_t config;
49 uint32_t mode[2];
50 uint32_t control;
51 uint32_t state;
52 uint32_t mask;
53 uint32_t load[2];
54 uint32_t match[2];
55 uint32_t prescale[2];
56 uint32_t match_prescale[2];
57 uint32_t rtc;
58 int64_t tick[2];
59 struct gptm_state *opaque[2];
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64 } gptm_state;
66 static void gptm_update_irq(gptm_state *s)
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
73 static void gptm_stop(gptm_state *s, int n)
75 qemu_del_timer(s->timer[n]);
78 static void gptm_reload(gptm_state *s, int n, int reset)
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
90 tick += (int64_t)count * system_clock_scale;
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += get_ticks_per_sec();
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99 s->tick[n] = tick;
100 qemu_mod_timer(s->timer[n], tick);
103 static void gptm_tick(void *opaque)
105 gptm_state **p = (gptm_state **)opaque;
106 gptm_state *s;
107 int n;
109 s = *p;
110 n = p - s->opaque;
111 if (s->config == 0) {
112 s->state |= 1;
113 if ((s->control & 0x20)) {
114 /* Output trigger. */
115 qemu_irq_pulse(s->trigger);
117 if (s->mode[0] & 1) {
118 /* One-shot. */
119 s->control &= ~1;
120 } else {
121 /* Periodic. */
122 gptm_reload(s, 0, 0);
124 } else if (s->config == 1) {
125 /* RTC. */
126 uint32_t match;
127 s->rtc++;
128 match = s->match[0] | (s->match[1] << 16);
129 if (s->rtc > match)
130 s->rtc = 0;
131 if (s->rtc == 0) {
132 s->state |= 8;
134 gptm_reload(s, 0, 0);
135 } else if (s->mode[n] == 0xa) {
136 /* PWM mode. Not implemented. */
137 } else {
138 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140 gptm_update_irq(s);
143 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
145 gptm_state *s = (gptm_state *)opaque;
147 switch (offset) {
148 case 0x00: /* CFG */
149 return s->config;
150 case 0x04: /* TAMR */
151 return s->mode[0];
152 case 0x08: /* TBMR */
153 return s->mode[1];
154 case 0x0c: /* CTL */
155 return s->control;
156 case 0x18: /* IMR */
157 return s->mask;
158 case 0x1c: /* RIS */
159 return s->state;
160 case 0x20: /* MIS */
161 return s->state & s->mask;
162 case 0x24: /* CR */
163 return 0;
164 case 0x28: /* TAILR */
165 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
166 case 0x2c: /* TBILR */
167 return s->load[1];
168 case 0x30: /* TAMARCHR */
169 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
170 case 0x34: /* TBMATCHR */
171 return s->match[1];
172 case 0x38: /* TAPR */
173 return s->prescale[0];
174 case 0x3c: /* TBPR */
175 return s->prescale[1];
176 case 0x40: /* TAPMR */
177 return s->match_prescale[0];
178 case 0x44: /* TBPMR */
179 return s->match_prescale[1];
180 case 0x48: /* TAR */
181 if (s->control == 1)
182 return s->rtc;
183 case 0x4c: /* TBR */
184 hw_error("TODO: Timer value read\n");
185 default:
186 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
187 return 0;
191 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
193 gptm_state *s = (gptm_state *)opaque;
194 uint32_t oldval;
196 /* The timers should be disabled before changing the configuration.
197 We take advantage of this and defer everything until the timer
198 is enabled. */
199 switch (offset) {
200 case 0x00: /* CFG */
201 s->config = value;
202 break;
203 case 0x04: /* TAMR */
204 s->mode[0] = value;
205 break;
206 case 0x08: /* TBMR */
207 s->mode[1] = value;
208 break;
209 case 0x0c: /* CTL */
210 oldval = s->control;
211 s->control = value;
212 /* TODO: Implement pause. */
213 if ((oldval ^ value) & 1) {
214 if (value & 1) {
215 gptm_reload(s, 0, 1);
216 } else {
217 gptm_stop(s, 0);
220 if (((oldval ^ value) & 0x100) && s->config >= 4) {
221 if (value & 0x100) {
222 gptm_reload(s, 1, 1);
223 } else {
224 gptm_stop(s, 1);
227 break;
228 case 0x18: /* IMR */
229 s->mask = value & 0x77;
230 gptm_update_irq(s);
231 break;
232 case 0x24: /* CR */
233 s->state &= ~value;
234 break;
235 case 0x28: /* TAILR */
236 s->load[0] = value & 0xffff;
237 if (s->config < 4) {
238 s->load[1] = value >> 16;
240 break;
241 case 0x2c: /* TBILR */
242 s->load[1] = value & 0xffff;
243 break;
244 case 0x30: /* TAMARCHR */
245 s->match[0] = value & 0xffff;
246 if (s->config < 4) {
247 s->match[1] = value >> 16;
249 break;
250 case 0x34: /* TBMATCHR */
251 s->match[1] = value >> 16;
252 break;
253 case 0x38: /* TAPR */
254 s->prescale[0] = value;
255 break;
256 case 0x3c: /* TBPR */
257 s->prescale[1] = value;
258 break;
259 case 0x40: /* TAPMR */
260 s->match_prescale[0] = value;
261 break;
262 case 0x44: /* TBPMR */
263 s->match_prescale[0] = value;
264 break;
265 default:
266 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
268 gptm_update_irq(s);
271 static CPUReadMemoryFunc * const gptm_readfn[] = {
272 gptm_read,
273 gptm_read,
274 gptm_read
277 static CPUWriteMemoryFunc * const gptm_writefn[] = {
278 gptm_write,
279 gptm_write,
280 gptm_write
283 static void gptm_save(QEMUFile *f, void *opaque)
285 gptm_state *s = (gptm_state *)opaque;
287 qemu_put_be32(f, s->config);
288 qemu_put_be32(f, s->mode[0]);
289 qemu_put_be32(f, s->mode[1]);
290 qemu_put_be32(f, s->control);
291 qemu_put_be32(f, s->state);
292 qemu_put_be32(f, s->mask);
293 qemu_put_be32(f, s->mode[0]);
294 qemu_put_be32(f, s->mode[0]);
295 qemu_put_be32(f, s->load[0]);
296 qemu_put_be32(f, s->load[1]);
297 qemu_put_be32(f, s->match[0]);
298 qemu_put_be32(f, s->match[1]);
299 qemu_put_be32(f, s->prescale[0]);
300 qemu_put_be32(f, s->prescale[1]);
301 qemu_put_be32(f, s->match_prescale[0]);
302 qemu_put_be32(f, s->match_prescale[1]);
303 qemu_put_be32(f, s->rtc);
304 qemu_put_be64(f, s->tick[0]);
305 qemu_put_be64(f, s->tick[1]);
306 qemu_put_timer(f, s->timer[0]);
307 qemu_put_timer(f, s->timer[1]);
310 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
312 gptm_state *s = (gptm_state *)opaque;
314 if (version_id != 1)
315 return -EINVAL;
317 s->config = qemu_get_be32(f);
318 s->mode[0] = qemu_get_be32(f);
319 s->mode[1] = qemu_get_be32(f);
320 s->control = qemu_get_be32(f);
321 s->state = qemu_get_be32(f);
322 s->mask = qemu_get_be32(f);
323 s->mode[0] = qemu_get_be32(f);
324 s->mode[0] = qemu_get_be32(f);
325 s->load[0] = qemu_get_be32(f);
326 s->load[1] = qemu_get_be32(f);
327 s->match[0] = qemu_get_be32(f);
328 s->match[1] = qemu_get_be32(f);
329 s->prescale[0] = qemu_get_be32(f);
330 s->prescale[1] = qemu_get_be32(f);
331 s->match_prescale[0] = qemu_get_be32(f);
332 s->match_prescale[1] = qemu_get_be32(f);
333 s->rtc = qemu_get_be32(f);
334 s->tick[0] = qemu_get_be64(f);
335 s->tick[1] = qemu_get_be64(f);
336 qemu_get_timer(f, s->timer[0]);
337 qemu_get_timer(f, s->timer[1]);
339 return 0;
342 static int stellaris_gptm_init(SysBusDevice *dev)
344 int iomemtype;
345 gptm_state *s = FROM_SYSBUS(gptm_state, dev);
347 sysbus_init_irq(dev, &s->irq);
348 qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
350 iomemtype = cpu_register_io_memory(gptm_readfn,
351 gptm_writefn, s);
352 sysbus_init_mmio(dev, 0x1000, iomemtype);
354 s->opaque[0] = s->opaque[1] = s;
355 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
356 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
357 register_savevm(&dev->qdev, "stellaris_gptm", -1, 1,
358 gptm_save, gptm_load, s);
359 return 0;
363 /* System controller. */
365 typedef struct {
366 uint32_t pborctl;
367 uint32_t ldopctl;
368 uint32_t int_status;
369 uint32_t int_mask;
370 uint32_t resc;
371 uint32_t rcc;
372 uint32_t rcgc[3];
373 uint32_t scgc[3];
374 uint32_t dcgc[3];
375 uint32_t clkvclr;
376 uint32_t ldoarst;
377 uint32_t user0;
378 uint32_t user1;
379 qemu_irq irq;
380 stellaris_board_info *board;
381 } ssys_state;
383 static void ssys_update(ssys_state *s)
385 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
388 static uint32_t pllcfg_sandstorm[16] = {
389 0x31c0, /* 1 Mhz */
390 0x1ae0, /* 1.8432 Mhz */
391 0x18c0, /* 2 Mhz */
392 0xd573, /* 2.4576 Mhz */
393 0x37a6, /* 3.57954 Mhz */
394 0x1ae2, /* 3.6864 Mhz */
395 0x0c40, /* 4 Mhz */
396 0x98bc, /* 4.906 Mhz */
397 0x935b, /* 4.9152 Mhz */
398 0x09c0, /* 5 Mhz */
399 0x4dee, /* 5.12 Mhz */
400 0x0c41, /* 6 Mhz */
401 0x75db, /* 6.144 Mhz */
402 0x1ae6, /* 7.3728 Mhz */
403 0x0600, /* 8 Mhz */
404 0x585b /* 8.192 Mhz */
407 static uint32_t pllcfg_fury[16] = {
408 0x3200, /* 1 Mhz */
409 0x1b20, /* 1.8432 Mhz */
410 0x1900, /* 2 Mhz */
411 0xf42b, /* 2.4576 Mhz */
412 0x37e3, /* 3.57954 Mhz */
413 0x1b21, /* 3.6864 Mhz */
414 0x0c80, /* 4 Mhz */
415 0x98ee, /* 4.906 Mhz */
416 0xd5b4, /* 4.9152 Mhz */
417 0x0a00, /* 5 Mhz */
418 0x4e27, /* 5.12 Mhz */
419 0x1902, /* 6 Mhz */
420 0xec1c, /* 6.144 Mhz */
421 0x1b23, /* 7.3728 Mhz */
422 0x0640, /* 8 Mhz */
423 0xb11c /* 8.192 Mhz */
426 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
428 ssys_state *s = (ssys_state *)opaque;
430 switch (offset) {
431 case 0x000: /* DID0 */
432 return s->board->did0;
433 case 0x004: /* DID1 */
434 return s->board->did1;
435 case 0x008: /* DC0 */
436 return s->board->dc0;
437 case 0x010: /* DC1 */
438 return s->board->dc1;
439 case 0x014: /* DC2 */
440 return s->board->dc2;
441 case 0x018: /* DC3 */
442 return s->board->dc3;
443 case 0x01c: /* DC4 */
444 return s->board->dc4;
445 case 0x030: /* PBORCTL */
446 return s->pborctl;
447 case 0x034: /* LDOPCTL */
448 return s->ldopctl;
449 case 0x040: /* SRCR0 */
450 return 0;
451 case 0x044: /* SRCR1 */
452 return 0;
453 case 0x048: /* SRCR2 */
454 return 0;
455 case 0x050: /* RIS */
456 return s->int_status;
457 case 0x054: /* IMC */
458 return s->int_mask;
459 case 0x058: /* MISC */
460 return s->int_status & s->int_mask;
461 case 0x05c: /* RESC */
462 return s->resc;
463 case 0x060: /* RCC */
464 return s->rcc;
465 case 0x064: /* PLLCFG */
467 int xtal;
468 xtal = (s->rcc >> 6) & 0xf;
469 if (s->board->did0 & (1 << 16)) {
470 return pllcfg_fury[xtal];
471 } else {
472 return pllcfg_sandstorm[xtal];
475 case 0x100: /* RCGC0 */
476 return s->rcgc[0];
477 case 0x104: /* RCGC1 */
478 return s->rcgc[1];
479 case 0x108: /* RCGC2 */
480 return s->rcgc[2];
481 case 0x110: /* SCGC0 */
482 return s->scgc[0];
483 case 0x114: /* SCGC1 */
484 return s->scgc[1];
485 case 0x118: /* SCGC2 */
486 return s->scgc[2];
487 case 0x120: /* DCGC0 */
488 return s->dcgc[0];
489 case 0x124: /* DCGC1 */
490 return s->dcgc[1];
491 case 0x128: /* DCGC2 */
492 return s->dcgc[2];
493 case 0x150: /* CLKVCLR */
494 return s->clkvclr;
495 case 0x160: /* LDOARST */
496 return s->ldoarst;
497 case 0x1e0: /* USER0 */
498 return s->user0;
499 case 0x1e4: /* USER1 */
500 return s->user1;
501 default:
502 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
503 return 0;
507 static void ssys_calculate_system_clock(ssys_state *s)
509 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
512 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
514 ssys_state *s = (ssys_state *)opaque;
516 switch (offset) {
517 case 0x030: /* PBORCTL */
518 s->pborctl = value & 0xffff;
519 break;
520 case 0x034: /* LDOPCTL */
521 s->ldopctl = value & 0x1f;
522 break;
523 case 0x040: /* SRCR0 */
524 case 0x044: /* SRCR1 */
525 case 0x048: /* SRCR2 */
526 fprintf(stderr, "Peripheral reset not implemented\n");
527 break;
528 case 0x054: /* IMC */
529 s->int_mask = value & 0x7f;
530 break;
531 case 0x058: /* MISC */
532 s->int_status &= ~value;
533 break;
534 case 0x05c: /* RESC */
535 s->resc = value & 0x3f;
536 break;
537 case 0x060: /* RCC */
538 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
539 /* PLL enable. */
540 s->int_status |= (1 << 6);
542 s->rcc = value;
543 ssys_calculate_system_clock(s);
544 break;
545 case 0x100: /* RCGC0 */
546 s->rcgc[0] = value;
547 break;
548 case 0x104: /* RCGC1 */
549 s->rcgc[1] = value;
550 break;
551 case 0x108: /* RCGC2 */
552 s->rcgc[2] = value;
553 break;
554 case 0x110: /* SCGC0 */
555 s->scgc[0] = value;
556 break;
557 case 0x114: /* SCGC1 */
558 s->scgc[1] = value;
559 break;
560 case 0x118: /* SCGC2 */
561 s->scgc[2] = value;
562 break;
563 case 0x120: /* DCGC0 */
564 s->dcgc[0] = value;
565 break;
566 case 0x124: /* DCGC1 */
567 s->dcgc[1] = value;
568 break;
569 case 0x128: /* DCGC2 */
570 s->dcgc[2] = value;
571 break;
572 case 0x150: /* CLKVCLR */
573 s->clkvclr = value;
574 break;
575 case 0x160: /* LDOARST */
576 s->ldoarst = value;
577 break;
578 default:
579 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
581 ssys_update(s);
584 static CPUReadMemoryFunc * const ssys_readfn[] = {
585 ssys_read,
586 ssys_read,
587 ssys_read
590 static CPUWriteMemoryFunc * const ssys_writefn[] = {
591 ssys_write,
592 ssys_write,
593 ssys_write
596 static void ssys_reset(void *opaque)
598 ssys_state *s = (ssys_state *)opaque;
600 s->pborctl = 0x7ffd;
601 s->rcc = 0x078e3ac0;
602 s->rcgc[0] = 1;
603 s->scgc[0] = 1;
604 s->dcgc[0] = 1;
607 static void ssys_save(QEMUFile *f, void *opaque)
609 ssys_state *s = (ssys_state *)opaque;
611 qemu_put_be32(f, s->pborctl);
612 qemu_put_be32(f, s->ldopctl);
613 qemu_put_be32(f, s->int_mask);
614 qemu_put_be32(f, s->int_status);
615 qemu_put_be32(f, s->resc);
616 qemu_put_be32(f, s->rcc);
617 qemu_put_be32(f, s->rcgc[0]);
618 qemu_put_be32(f, s->rcgc[1]);
619 qemu_put_be32(f, s->rcgc[2]);
620 qemu_put_be32(f, s->scgc[0]);
621 qemu_put_be32(f, s->scgc[1]);
622 qemu_put_be32(f, s->scgc[2]);
623 qemu_put_be32(f, s->dcgc[0]);
624 qemu_put_be32(f, s->dcgc[1]);
625 qemu_put_be32(f, s->dcgc[2]);
626 qemu_put_be32(f, s->clkvclr);
627 qemu_put_be32(f, s->ldoarst);
630 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
632 ssys_state *s = (ssys_state *)opaque;
634 if (version_id != 1)
635 return -EINVAL;
637 s->pborctl = qemu_get_be32(f);
638 s->ldopctl = qemu_get_be32(f);
639 s->int_mask = qemu_get_be32(f);
640 s->int_status = qemu_get_be32(f);
641 s->resc = qemu_get_be32(f);
642 s->rcc = qemu_get_be32(f);
643 s->rcgc[0] = qemu_get_be32(f);
644 s->rcgc[1] = qemu_get_be32(f);
645 s->rcgc[2] = qemu_get_be32(f);
646 s->scgc[0] = qemu_get_be32(f);
647 s->scgc[1] = qemu_get_be32(f);
648 s->scgc[2] = qemu_get_be32(f);
649 s->dcgc[0] = qemu_get_be32(f);
650 s->dcgc[1] = qemu_get_be32(f);
651 s->dcgc[2] = qemu_get_be32(f);
652 s->clkvclr = qemu_get_be32(f);
653 s->ldoarst = qemu_get_be32(f);
654 ssys_calculate_system_clock(s);
656 return 0;
659 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
660 stellaris_board_info * board,
661 uint8_t *macaddr)
663 int iomemtype;
664 ssys_state *s;
666 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
667 s->irq = irq;
668 s->board = board;
669 /* Most devices come preprogrammed with a MAC address in the user data. */
670 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
671 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
673 iomemtype = cpu_register_io_memory(ssys_readfn,
674 ssys_writefn, s);
675 cpu_register_physical_memory(base, 0x00001000, iomemtype);
676 ssys_reset(s);
677 register_savevm(NULL, "stellaris_sys", -1, 1, ssys_save, ssys_load, s);
678 return 0;
682 /* I2C controller. */
684 typedef struct {
685 SysBusDevice busdev;
686 i2c_bus *bus;
687 qemu_irq irq;
688 uint32_t msa;
689 uint32_t mcs;
690 uint32_t mdr;
691 uint32_t mtpr;
692 uint32_t mimr;
693 uint32_t mris;
694 uint32_t mcr;
695 } stellaris_i2c_state;
697 #define STELLARIS_I2C_MCS_BUSY 0x01
698 #define STELLARIS_I2C_MCS_ERROR 0x02
699 #define STELLARIS_I2C_MCS_ADRACK 0x04
700 #define STELLARIS_I2C_MCS_DATACK 0x08
701 #define STELLARIS_I2C_MCS_ARBLST 0x10
702 #define STELLARIS_I2C_MCS_IDLE 0x20
703 #define STELLARIS_I2C_MCS_BUSBSY 0x40
705 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
707 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
709 switch (offset) {
710 case 0x00: /* MSA */
711 return s->msa;
712 case 0x04: /* MCS */
713 /* We don't emulate timing, so the controller is never busy. */
714 return s->mcs | STELLARIS_I2C_MCS_IDLE;
715 case 0x08: /* MDR */
716 return s->mdr;
717 case 0x0c: /* MTPR */
718 return s->mtpr;
719 case 0x10: /* MIMR */
720 return s->mimr;
721 case 0x14: /* MRIS */
722 return s->mris;
723 case 0x18: /* MMIS */
724 return s->mris & s->mimr;
725 case 0x20: /* MCR */
726 return s->mcr;
727 default:
728 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
729 return 0;
733 static void stellaris_i2c_update(stellaris_i2c_state *s)
735 int level;
737 level = (s->mris & s->mimr) != 0;
738 qemu_set_irq(s->irq, level);
741 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
742 uint32_t value)
744 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
746 switch (offset) {
747 case 0x00: /* MSA */
748 s->msa = value & 0xff;
749 break;
750 case 0x04: /* MCS */
751 if ((s->mcr & 0x10) == 0) {
752 /* Disabled. Do nothing. */
753 break;
755 /* Grab the bus if this is starting a transfer. */
756 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
757 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
758 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
759 } else {
760 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
761 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
764 /* If we don't have the bus then indicate an error. */
765 if (!i2c_bus_busy(s->bus)
766 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
767 s->mcs |= STELLARIS_I2C_MCS_ERROR;
768 break;
770 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
771 if (value & 1) {
772 /* Transfer a byte. */
773 /* TODO: Handle errors. */
774 if (s->msa & 1) {
775 /* Recv */
776 s->mdr = i2c_recv(s->bus) & 0xff;
777 } else {
778 /* Send */
779 i2c_send(s->bus, s->mdr);
781 /* Raise an interrupt. */
782 s->mris |= 1;
784 if (value & 4) {
785 /* Finish transfer. */
786 i2c_end_transfer(s->bus);
787 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
789 break;
790 case 0x08: /* MDR */
791 s->mdr = value & 0xff;
792 break;
793 case 0x0c: /* MTPR */
794 s->mtpr = value & 0xff;
795 break;
796 case 0x10: /* MIMR */
797 s->mimr = 1;
798 break;
799 case 0x1c: /* MICR */
800 s->mris &= ~value;
801 break;
802 case 0x20: /* MCR */
803 if (value & 1)
804 hw_error(
805 "stellaris_i2c_write: Loopback not implemented\n");
806 if (value & 0x20)
807 hw_error(
808 "stellaris_i2c_write: Slave mode not implemented\n");
809 s->mcr = value & 0x31;
810 break;
811 default:
812 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
813 (int)offset);
815 stellaris_i2c_update(s);
818 static void stellaris_i2c_reset(stellaris_i2c_state *s)
820 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
821 i2c_end_transfer(s->bus);
823 s->msa = 0;
824 s->mcs = 0;
825 s->mdr = 0;
826 s->mtpr = 1;
827 s->mimr = 0;
828 s->mris = 0;
829 s->mcr = 0;
830 stellaris_i2c_update(s);
833 static CPUReadMemoryFunc * const stellaris_i2c_readfn[] = {
834 stellaris_i2c_read,
835 stellaris_i2c_read,
836 stellaris_i2c_read
839 static CPUWriteMemoryFunc * const stellaris_i2c_writefn[] = {
840 stellaris_i2c_write,
841 stellaris_i2c_write,
842 stellaris_i2c_write
845 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
847 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
849 qemu_put_be32(f, s->msa);
850 qemu_put_be32(f, s->mcs);
851 qemu_put_be32(f, s->mdr);
852 qemu_put_be32(f, s->mtpr);
853 qemu_put_be32(f, s->mimr);
854 qemu_put_be32(f, s->mris);
855 qemu_put_be32(f, s->mcr);
858 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
860 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
862 if (version_id != 1)
863 return -EINVAL;
865 s->msa = qemu_get_be32(f);
866 s->mcs = qemu_get_be32(f);
867 s->mdr = qemu_get_be32(f);
868 s->mtpr = qemu_get_be32(f);
869 s->mimr = qemu_get_be32(f);
870 s->mris = qemu_get_be32(f);
871 s->mcr = qemu_get_be32(f);
873 return 0;
876 static int stellaris_i2c_init(SysBusDevice * dev)
878 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
879 i2c_bus *bus;
880 int iomemtype;
882 sysbus_init_irq(dev, &s->irq);
883 bus = i2c_init_bus(&dev->qdev, "i2c");
884 s->bus = bus;
886 iomemtype = cpu_register_io_memory(stellaris_i2c_readfn,
887 stellaris_i2c_writefn, s);
888 sysbus_init_mmio(dev, 0x1000, iomemtype);
889 /* ??? For now we only implement the master interface. */
890 stellaris_i2c_reset(s);
891 register_savevm(&dev->qdev, "stellaris_i2c", -1, 1,
892 stellaris_i2c_save, stellaris_i2c_load, s);
893 return 0;
896 /* Analogue to Digital Converter. This is only partially implemented,
897 enough for applications that use a combined ADC and timer tick. */
899 #define STELLARIS_ADC_EM_CONTROLLER 0
900 #define STELLARIS_ADC_EM_COMP 1
901 #define STELLARIS_ADC_EM_EXTERNAL 4
902 #define STELLARIS_ADC_EM_TIMER 5
903 #define STELLARIS_ADC_EM_PWM0 6
904 #define STELLARIS_ADC_EM_PWM1 7
905 #define STELLARIS_ADC_EM_PWM2 8
907 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
908 #define STELLARIS_ADC_FIFO_FULL 0x1000
910 typedef struct
912 SysBusDevice busdev;
913 uint32_t actss;
914 uint32_t ris;
915 uint32_t im;
916 uint32_t emux;
917 uint32_t ostat;
918 uint32_t ustat;
919 uint32_t sspri;
920 uint32_t sac;
921 struct {
922 uint32_t state;
923 uint32_t data[16];
924 } fifo[4];
925 uint32_t ssmux[4];
926 uint32_t ssctl[4];
927 uint32_t noise;
928 qemu_irq irq[4];
929 } stellaris_adc_state;
931 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
933 int tail;
935 tail = s->fifo[n].state & 0xf;
936 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
937 s->ustat |= 1 << n;
938 } else {
939 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
940 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
941 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
942 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
944 return s->fifo[n].data[tail];
947 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
948 uint32_t value)
950 int head;
952 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
953 FIFO fir each sequencer. */
954 head = (s->fifo[n].state >> 4) & 0xf;
955 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
956 s->ostat |= 1 << n;
957 return;
959 s->fifo[n].data[head] = value;
960 head = (head + 1) & 0xf;
961 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
962 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
963 if ((s->fifo[n].state & 0xf) == head)
964 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
967 static void stellaris_adc_update(stellaris_adc_state *s)
969 int level;
970 int n;
972 for (n = 0; n < 4; n++) {
973 level = (s->ris & s->im & (1 << n)) != 0;
974 qemu_set_irq(s->irq[n], level);
978 static void stellaris_adc_trigger(void *opaque, int irq, int level)
980 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
981 int n;
983 for (n = 0; n < 4; n++) {
984 if ((s->actss & (1 << n)) == 0) {
985 continue;
988 if (((s->emux >> (n * 4)) & 0xff) != 5) {
989 continue;
992 /* Some applications use the ADC as a random number source, so introduce
993 some variation into the signal. */
994 s->noise = s->noise * 314159 + 1;
995 /* ??? actual inputs not implemented. Return an arbitrary value. */
996 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
997 s->ris |= (1 << n);
998 stellaris_adc_update(s);
1002 static void stellaris_adc_reset(stellaris_adc_state *s)
1004 int n;
1006 for (n = 0; n < 4; n++) {
1007 s->ssmux[n] = 0;
1008 s->ssctl[n] = 0;
1009 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1013 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
1015 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1017 /* TODO: Implement this. */
1018 if (offset >= 0x40 && offset < 0xc0) {
1019 int n;
1020 n = (offset - 0x40) >> 5;
1021 switch (offset & 0x1f) {
1022 case 0x00: /* SSMUX */
1023 return s->ssmux[n];
1024 case 0x04: /* SSCTL */
1025 return s->ssctl[n];
1026 case 0x08: /* SSFIFO */
1027 return stellaris_adc_fifo_read(s, n);
1028 case 0x0c: /* SSFSTAT */
1029 return s->fifo[n].state;
1030 default:
1031 break;
1034 switch (offset) {
1035 case 0x00: /* ACTSS */
1036 return s->actss;
1037 case 0x04: /* RIS */
1038 return s->ris;
1039 case 0x08: /* IM */
1040 return s->im;
1041 case 0x0c: /* ISC */
1042 return s->ris & s->im;
1043 case 0x10: /* OSTAT */
1044 return s->ostat;
1045 case 0x14: /* EMUX */
1046 return s->emux;
1047 case 0x18: /* USTAT */
1048 return s->ustat;
1049 case 0x20: /* SSPRI */
1050 return s->sspri;
1051 case 0x30: /* SAC */
1052 return s->sac;
1053 default:
1054 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1055 (int)offset);
1056 return 0;
1060 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1061 uint32_t value)
1063 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1065 /* TODO: Implement this. */
1066 if (offset >= 0x40 && offset < 0xc0) {
1067 int n;
1068 n = (offset - 0x40) >> 5;
1069 switch (offset & 0x1f) {
1070 case 0x00: /* SSMUX */
1071 s->ssmux[n] = value & 0x33333333;
1072 return;
1073 case 0x04: /* SSCTL */
1074 if (value != 6) {
1075 hw_error("ADC: Unimplemented sequence %x\n",
1076 value);
1078 s->ssctl[n] = value;
1079 return;
1080 default:
1081 break;
1084 switch (offset) {
1085 case 0x00: /* ACTSS */
1086 s->actss = value & 0xf;
1087 break;
1088 case 0x08: /* IM */
1089 s->im = value;
1090 break;
1091 case 0x0c: /* ISC */
1092 s->ris &= ~value;
1093 break;
1094 case 0x10: /* OSTAT */
1095 s->ostat &= ~value;
1096 break;
1097 case 0x14: /* EMUX */
1098 s->emux = value;
1099 break;
1100 case 0x18: /* USTAT */
1101 s->ustat &= ~value;
1102 break;
1103 case 0x20: /* SSPRI */
1104 s->sspri = value;
1105 break;
1106 case 0x28: /* PSSI */
1107 hw_error("Not implemented: ADC sample initiate\n");
1108 break;
1109 case 0x30: /* SAC */
1110 s->sac = value;
1111 break;
1112 default:
1113 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1115 stellaris_adc_update(s);
1118 static CPUReadMemoryFunc * const stellaris_adc_readfn[] = {
1119 stellaris_adc_read,
1120 stellaris_adc_read,
1121 stellaris_adc_read
1124 static CPUWriteMemoryFunc * const stellaris_adc_writefn[] = {
1125 stellaris_adc_write,
1126 stellaris_adc_write,
1127 stellaris_adc_write
1130 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1132 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1133 int i;
1134 int j;
1136 qemu_put_be32(f, s->actss);
1137 qemu_put_be32(f, s->ris);
1138 qemu_put_be32(f, s->im);
1139 qemu_put_be32(f, s->emux);
1140 qemu_put_be32(f, s->ostat);
1141 qemu_put_be32(f, s->ustat);
1142 qemu_put_be32(f, s->sspri);
1143 qemu_put_be32(f, s->sac);
1144 for (i = 0; i < 4; i++) {
1145 qemu_put_be32(f, s->fifo[i].state);
1146 for (j = 0; j < 16; j++) {
1147 qemu_put_be32(f, s->fifo[i].data[j]);
1149 qemu_put_be32(f, s->ssmux[i]);
1150 qemu_put_be32(f, s->ssctl[i]);
1152 qemu_put_be32(f, s->noise);
1155 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1157 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1158 int i;
1159 int j;
1161 if (version_id != 1)
1162 return -EINVAL;
1164 s->actss = qemu_get_be32(f);
1165 s->ris = qemu_get_be32(f);
1166 s->im = qemu_get_be32(f);
1167 s->emux = qemu_get_be32(f);
1168 s->ostat = qemu_get_be32(f);
1169 s->ustat = qemu_get_be32(f);
1170 s->sspri = qemu_get_be32(f);
1171 s->sac = qemu_get_be32(f);
1172 for (i = 0; i < 4; i++) {
1173 s->fifo[i].state = qemu_get_be32(f);
1174 for (j = 0; j < 16; j++) {
1175 s->fifo[i].data[j] = qemu_get_be32(f);
1177 s->ssmux[i] = qemu_get_be32(f);
1178 s->ssctl[i] = qemu_get_be32(f);
1180 s->noise = qemu_get_be32(f);
1182 return 0;
1185 static int stellaris_adc_init(SysBusDevice *dev)
1187 stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1188 int iomemtype;
1189 int n;
1191 for (n = 0; n < 4; n++) {
1192 sysbus_init_irq(dev, &s->irq[n]);
1195 iomemtype = cpu_register_io_memory(stellaris_adc_readfn,
1196 stellaris_adc_writefn, s);
1197 sysbus_init_mmio(dev, 0x1000, iomemtype);
1198 stellaris_adc_reset(s);
1199 qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1200 register_savevm(&dev->qdev, "stellaris_adc", -1, 1,
1201 stellaris_adc_save, stellaris_adc_load, s);
1202 return 0;
1205 /* Some boards have both an OLED controller and SD card connected to
1206 the same SSI port, with the SD card chip select connected to a
1207 GPIO pin. Technically the OLED chip select is connected to the SSI
1208 Fss pin. We do not bother emulating that as both devices should
1209 never be selected simultaneously, and our OLED controller ignores stray
1210 0xff commands that occur when deselecting the SD card. */
1212 typedef struct {
1213 SSISlave ssidev;
1214 qemu_irq irq;
1215 int current_dev;
1216 SSIBus *bus[2];
1217 } stellaris_ssi_bus_state;
1219 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1221 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1223 s->current_dev = level;
1226 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1228 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1230 return ssi_transfer(s->bus[s->current_dev], val);
1233 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1235 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1237 qemu_put_be32(f, s->current_dev);
1240 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1242 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1244 if (version_id != 1)
1245 return -EINVAL;
1247 s->current_dev = qemu_get_be32(f);
1249 return 0;
1252 static int stellaris_ssi_bus_init(SSISlave *dev)
1254 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1256 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1257 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1258 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1260 register_savevm(&dev->qdev, "stellaris_ssi_bus", -1, 1,
1261 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1262 return 0;
1265 /* Board init. */
1266 static stellaris_board_info stellaris_boards[] = {
1267 { "LM3S811EVB",
1269 0x0032000e,
1270 0x001f001f, /* dc0 */
1271 0x001132bf,
1272 0x01071013,
1273 0x3f0f01ff,
1274 0x0000001f,
1275 BP_OLED_I2C
1277 { "LM3S6965EVB",
1278 0x10010002,
1279 0x1073402e,
1280 0x00ff007f, /* dc0 */
1281 0x001133ff,
1282 0x030f5317,
1283 0x0f0f87ff,
1284 0x5000007f,
1285 BP_OLED_SSI | BP_GAMEPAD
1289 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1290 stellaris_board_info *board)
1292 static const int uart_irq[] = {5, 6, 33, 34};
1293 static const int timer_irq[] = {19, 21, 23, 35};
1294 static const uint32_t gpio_addr[7] =
1295 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1296 0x40024000, 0x40025000, 0x40026000};
1297 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1299 qemu_irq *pic;
1300 DeviceState *gpio_dev[7];
1301 qemu_irq gpio_in[7][8];
1302 qemu_irq gpio_out[7][8];
1303 qemu_irq adc;
1304 int sram_size;
1305 int flash_size;
1306 i2c_bus *i2c;
1307 DeviceState *dev;
1308 int i;
1309 int j;
1311 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1312 sram_size = (board->dc0 >> 18) + 1;
1313 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1315 if (board->dc1 & (1 << 16)) {
1316 dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1317 pic[14], pic[15], pic[16], pic[17], NULL);
1318 adc = qdev_get_gpio_in(dev, 0);
1319 } else {
1320 adc = NULL;
1322 for (i = 0; i < 4; i++) {
1323 if (board->dc2 & (0x10000 << i)) {
1324 dev = sysbus_create_simple("stellaris-gptm",
1325 0x40030000 + i * 0x1000,
1326 pic[timer_irq[i]]);
1327 /* TODO: This is incorrect, but we get away with it because
1328 the ADC output is only ever pulsed. */
1329 qdev_connect_gpio_out(dev, 0, adc);
1333 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1335 for (i = 0; i < 7; i++) {
1336 if (board->dc4 & (1 << i)) {
1337 gpio_dev[i] = sysbus_create_simple("pl061", gpio_addr[i],
1338 pic[gpio_irq[i]]);
1339 for (j = 0; j < 8; j++) {
1340 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1341 gpio_out[i][j] = NULL;
1346 if (board->dc2 & (1 << 12)) {
1347 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1348 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1349 if (board->peripherals & BP_OLED_I2C) {
1350 i2c_create_slave(i2c, "ssd0303", 0x3d);
1354 for (i = 0; i < 4; i++) {
1355 if (board->dc2 & (1 << i)) {
1356 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1357 pic[uart_irq[i]]);
1360 if (board->dc2 & (1 << 4)) {
1361 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1362 if (board->peripherals & BP_OLED_SSI) {
1363 DeviceState *mux;
1364 void *bus;
1366 bus = qdev_get_child_bus(dev, "ssi");
1367 mux = ssi_create_slave(bus, "evb6965-ssi");
1368 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1370 bus = qdev_get_child_bus(mux, "ssi0");
1371 ssi_create_slave(bus, "ssi-sd");
1373 bus = qdev_get_child_bus(mux, "ssi1");
1374 dev = ssi_create_slave(bus, "ssd0323");
1375 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1377 /* Make sure the select pin is high. */
1378 qemu_irq_raise(gpio_out[GPIO_D][0]);
1381 if (board->dc4 & (1 << 28)) {
1382 DeviceState *enet;
1384 qemu_check_nic_model(&nd_table[0], "stellaris");
1386 enet = qdev_create(NULL, "stellaris_enet");
1387 qdev_set_nic_properties(enet, &nd_table[0]);
1388 qdev_init_nofail(enet);
1389 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1390 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1392 if (board->peripherals & BP_GAMEPAD) {
1393 qemu_irq gpad_irq[5];
1394 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1396 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1397 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1398 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1399 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1400 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1402 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1404 for (i = 0; i < 7; i++) {
1405 if (board->dc4 & (1 << i)) {
1406 for (j = 0; j < 8; j++) {
1407 if (gpio_out[i][j]) {
1408 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1415 /* FIXME: Figure out how to generate these from stellaris_boards. */
1416 static void lm3s811evb_init(ram_addr_t ram_size,
1417 const char *boot_device,
1418 const char *kernel_filename, const char *kernel_cmdline,
1419 const char *initrd_filename, const char *cpu_model)
1421 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1424 static void lm3s6965evb_init(ram_addr_t ram_size,
1425 const char *boot_device,
1426 const char *kernel_filename, const char *kernel_cmdline,
1427 const char *initrd_filename, const char *cpu_model)
1429 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1432 static QEMUMachine lm3s811evb_machine = {
1433 .name = "lm3s811evb",
1434 .desc = "Stellaris LM3S811EVB",
1435 .init = lm3s811evb_init,
1438 static QEMUMachine lm3s6965evb_machine = {
1439 .name = "lm3s6965evb",
1440 .desc = "Stellaris LM3S6965EVB",
1441 .init = lm3s6965evb_init,
1444 static void stellaris_machine_init(void)
1446 qemu_register_machine(&lm3s811evb_machine);
1447 qemu_register_machine(&lm3s6965evb_machine);
1450 machine_init(stellaris_machine_init);
1452 static SSISlaveInfo stellaris_ssi_bus_info = {
1453 .qdev.name = "evb6965-ssi",
1454 .qdev.size = sizeof(stellaris_ssi_bus_state),
1455 .init = stellaris_ssi_bus_init,
1456 .transfer = stellaris_ssi_bus_transfer
1459 static void stellaris_register_devices(void)
1461 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state),
1462 stellaris_i2c_init);
1463 sysbus_register_dev("stellaris-gptm", sizeof(gptm_state),
1464 stellaris_gptm_init);
1465 sysbus_register_dev("stellaris-adc", sizeof(stellaris_adc_state),
1466 stellaris_adc_init);
1467 ssi_register_slave(&stellaris_ssi_bus_info);
1470 device_init(stellaris_register_devices)