SharpSL scoop device - convert to qdev
[qemu/stefanha.git] / hw / pxa2xx.c
blob6e72a5c7531abda94942c2c8bb95d908473c5d08
1 /*
2 * Intel XScale PXA255/270 processor support.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licenced under the GPL.
8 */
10 #include "sysbus.h"
11 #include "pxa.h"
12 #include "sysemu.h"
13 #include "pc.h"
14 #include "i2c.h"
15 #include "ssi.h"
16 #include "qemu-timer.h"
17 #include "qemu-char.h"
18 #include "blockdev.h"
20 static struct {
21 target_phys_addr_t io_base;
22 int irqn;
23 } pxa255_serial[] = {
24 { 0x40100000, PXA2XX_PIC_FFUART },
25 { 0x40200000, PXA2XX_PIC_BTUART },
26 { 0x40700000, PXA2XX_PIC_STUART },
27 { 0x41600000, PXA25X_PIC_HWUART },
28 { 0, 0 }
29 }, pxa270_serial[] = {
30 { 0x40100000, PXA2XX_PIC_FFUART },
31 { 0x40200000, PXA2XX_PIC_BTUART },
32 { 0x40700000, PXA2XX_PIC_STUART },
33 { 0, 0 }
36 typedef struct PXASSPDef {
37 target_phys_addr_t io_base;
38 int irqn;
39 } PXASSPDef;
41 #if 0
42 static PXASSPDef pxa250_ssp[] = {
43 { 0x41000000, PXA2XX_PIC_SSP },
44 { 0, 0 }
46 #endif
48 static PXASSPDef pxa255_ssp[] = {
49 { 0x41000000, PXA2XX_PIC_SSP },
50 { 0x41400000, PXA25X_PIC_NSSP },
51 { 0, 0 }
54 #if 0
55 static PXASSPDef pxa26x_ssp[] = {
56 { 0x41000000, PXA2XX_PIC_SSP },
57 { 0x41400000, PXA25X_PIC_NSSP },
58 { 0x41500000, PXA26X_PIC_ASSP },
59 { 0, 0 }
61 #endif
63 static PXASSPDef pxa27x_ssp[] = {
64 { 0x41000000, PXA2XX_PIC_SSP },
65 { 0x41700000, PXA27X_PIC_SSP2 },
66 { 0x41900000, PXA2XX_PIC_SSP3 },
67 { 0, 0 }
70 #define PMCR 0x00 /* Power Manager Control register */
71 #define PSSR 0x04 /* Power Manager Sleep Status register */
72 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
73 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
74 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
75 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
76 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
77 #define PCFR 0x1c /* Power Manager General Configuration register */
78 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
79 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
80 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
81 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
82 #define RCSR 0x30 /* Reset Controller Status register */
83 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
84 #define PTSR 0x38 /* Power Manager Standby Configuration register */
85 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
86 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
87 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
88 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
89 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
90 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
92 static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
94 PXA2xxState *s = (PXA2xxState *) opaque;
96 switch (addr) {
97 case PMCR ... PCMD31:
98 if (addr & 3)
99 goto fail;
101 return s->pm_regs[addr >> 2];
102 default:
103 fail:
104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105 break;
107 return 0;
110 static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
111 uint32_t value)
113 PXA2xxState *s = (PXA2xxState *) opaque;
115 switch (addr) {
116 case PMCR:
117 s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
118 s->pm_regs[addr >> 2] |= value & 0x15;
119 break;
121 case PSSR: /* Read-clean registers */
122 case RCSR:
123 case PKSR:
124 s->pm_regs[addr >> 2] &= ~value;
125 break;
127 default: /* Read-write registers */
128 if (!(addr & 3)) {
129 s->pm_regs[addr >> 2] = value;
130 break;
133 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
134 break;
138 static CPUReadMemoryFunc * const pxa2xx_pm_readfn[] = {
139 pxa2xx_pm_read,
140 pxa2xx_pm_read,
141 pxa2xx_pm_read,
144 static CPUWriteMemoryFunc * const pxa2xx_pm_writefn[] = {
145 pxa2xx_pm_write,
146 pxa2xx_pm_write,
147 pxa2xx_pm_write,
150 static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
152 PXA2xxState *s = (PXA2xxState *) opaque;
153 int i;
155 for (i = 0; i < 0x40; i ++)
156 qemu_put_be32s(f, &s->pm_regs[i]);
159 static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
161 PXA2xxState *s = (PXA2xxState *) opaque;
162 int i;
164 for (i = 0; i < 0x40; i ++)
165 qemu_get_be32s(f, &s->pm_regs[i]);
167 return 0;
170 #define CCCR 0x00 /* Core Clock Configuration register */
171 #define CKEN 0x04 /* Clock Enable register */
172 #define OSCC 0x08 /* Oscillator Configuration register */
173 #define CCSR 0x0c /* Core Clock Status register */
175 static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
177 PXA2xxState *s = (PXA2xxState *) opaque;
179 switch (addr) {
180 case CCCR:
181 case CKEN:
182 case OSCC:
183 return s->cm_regs[addr >> 2];
185 case CCSR:
186 return s->cm_regs[CCCR >> 2] | (3 << 28);
188 default:
189 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
190 break;
192 return 0;
195 static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
196 uint32_t value)
198 PXA2xxState *s = (PXA2xxState *) opaque;
200 switch (addr) {
201 case CCCR:
202 case CKEN:
203 s->cm_regs[addr >> 2] = value;
204 break;
206 case OSCC:
207 s->cm_regs[addr >> 2] &= ~0x6c;
208 s->cm_regs[addr >> 2] |= value & 0x6e;
209 if ((value >> 1) & 1) /* OON */
210 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
211 break;
213 default:
214 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
215 break;
219 static CPUReadMemoryFunc * const pxa2xx_cm_readfn[] = {
220 pxa2xx_cm_read,
221 pxa2xx_cm_read,
222 pxa2xx_cm_read,
225 static CPUWriteMemoryFunc * const pxa2xx_cm_writefn[] = {
226 pxa2xx_cm_write,
227 pxa2xx_cm_write,
228 pxa2xx_cm_write,
231 static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
233 PXA2xxState *s = (PXA2xxState *) opaque;
234 int i;
236 for (i = 0; i < 4; i ++)
237 qemu_put_be32s(f, &s->cm_regs[i]);
238 qemu_put_be32s(f, &s->clkcfg);
239 qemu_put_be32s(f, &s->pmnc);
242 static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
244 PXA2xxState *s = (PXA2xxState *) opaque;
245 int i;
247 for (i = 0; i < 4; i ++)
248 qemu_get_be32s(f, &s->cm_regs[i]);
249 qemu_get_be32s(f, &s->clkcfg);
250 qemu_get_be32s(f, &s->pmnc);
252 return 0;
255 static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
257 PXA2xxState *s = (PXA2xxState *) opaque;
259 switch (reg) {
260 case 6: /* Clock Configuration register */
261 return s->clkcfg;
263 case 7: /* Power Mode register */
264 return 0;
266 default:
267 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
268 break;
270 return 0;
273 static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
274 uint32_t value)
276 PXA2xxState *s = (PXA2xxState *) opaque;
277 static const char *pwrmode[8] = {
278 "Normal", "Idle", "Deep-idle", "Standby",
279 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
282 switch (reg) {
283 case 6: /* Clock Configuration register */
284 s->clkcfg = value & 0xf;
285 if (value & 2)
286 printf("%s: CPU frequency change attempt\n", __FUNCTION__);
287 break;
289 case 7: /* Power Mode register */
290 if (value & 8)
291 printf("%s: CPU voltage change attempt\n", __FUNCTION__);
292 switch (value & 7) {
293 case 0:
294 /* Do nothing */
295 break;
297 case 1:
298 /* Idle */
299 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
300 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
301 break;
303 /* Fall through. */
305 case 2:
306 /* Deep-Idle */
307 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
308 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
309 goto message;
311 case 3:
312 s->env->uncached_cpsr =
313 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
314 s->env->cp15.c1_sys = 0;
315 s->env->cp15.c1_coproc = 0;
316 s->env->cp15.c2_base0 = 0;
317 s->env->cp15.c3 = 0;
318 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
319 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
322 * The scratch-pad register is almost universally used
323 * for storing the return address on suspend. For the
324 * lack of a resuming bootloader, perform a jump
325 * directly to that address.
327 memset(s->env->regs, 0, 4 * 15);
328 s->env->regs[15] = s->pm_regs[PSPR >> 2];
330 #if 0
331 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
332 cpu_physical_memory_write(0, &buffer, 4);
333 buffer = s->pm_regs[PSPR >> 2];
334 cpu_physical_memory_write(8, &buffer, 4);
335 #endif
337 /* Suspend */
338 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
340 goto message;
342 default:
343 message:
344 printf("%s: machine entered %s mode\n", __FUNCTION__,
345 pwrmode[value & 7]);
347 break;
349 default:
350 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
351 break;
355 /* Performace Monitoring Registers */
356 #define CPPMNC 0 /* Performance Monitor Control register */
357 #define CPCCNT 1 /* Clock Counter register */
358 #define CPINTEN 4 /* Interrupt Enable register */
359 #define CPFLAG 5 /* Overflow Flag register */
360 #define CPEVTSEL 8 /* Event Selection register */
362 #define CPPMN0 0 /* Performance Count register 0 */
363 #define CPPMN1 1 /* Performance Count register 1 */
364 #define CPPMN2 2 /* Performance Count register 2 */
365 #define CPPMN3 3 /* Performance Count register 3 */
367 static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
369 PXA2xxState *s = (PXA2xxState *) opaque;
371 switch (reg) {
372 case CPPMNC:
373 return s->pmnc;
374 case CPCCNT:
375 if (s->pmnc & 1)
376 return qemu_get_clock(vm_clock);
377 else
378 return 0;
379 case CPINTEN:
380 case CPFLAG:
381 case CPEVTSEL:
382 return 0;
384 default:
385 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
386 break;
388 return 0;
391 static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
392 uint32_t value)
394 PXA2xxState *s = (PXA2xxState *) opaque;
396 switch (reg) {
397 case CPPMNC:
398 s->pmnc = value;
399 break;
401 case CPCCNT:
402 case CPINTEN:
403 case CPFLAG:
404 case CPEVTSEL:
405 break;
407 default:
408 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
409 break;
413 static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
415 switch (crm) {
416 case 0:
417 return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
418 case 1:
419 return pxa2xx_perf_read(opaque, op2, reg, crm);
420 case 2:
421 switch (reg) {
422 case CPPMN0:
423 case CPPMN1:
424 case CPPMN2:
425 case CPPMN3:
426 return 0;
428 /* Fall through */
429 default:
430 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
431 break;
433 return 0;
436 static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
437 uint32_t value)
439 switch (crm) {
440 case 0:
441 pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
442 break;
443 case 1:
444 pxa2xx_perf_write(opaque, op2, reg, crm, value);
445 break;
446 case 2:
447 switch (reg) {
448 case CPPMN0:
449 case CPPMN1:
450 case CPPMN2:
451 case CPPMN3:
452 return;
454 /* Fall through */
455 default:
456 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
457 break;
461 #define MDCNFG 0x00 /* SDRAM Configuration register */
462 #define MDREFR 0x04 /* SDRAM Refresh Control register */
463 #define MSC0 0x08 /* Static Memory Control register 0 */
464 #define MSC1 0x0c /* Static Memory Control register 1 */
465 #define MSC2 0x10 /* Static Memory Control register 2 */
466 #define MECR 0x14 /* Expansion Memory Bus Config register */
467 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
468 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
469 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
470 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
471 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
472 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
473 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
474 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
475 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
476 #define ARB_CNTL 0x48 /* Arbiter Control register */
477 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
478 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
479 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
480 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
481 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
482 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
483 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
485 static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
487 PXA2xxState *s = (PXA2xxState *) opaque;
489 switch (addr) {
490 case MDCNFG ... SA1110:
491 if ((addr & 3) == 0)
492 return s->mm_regs[addr >> 2];
494 default:
495 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
496 break;
498 return 0;
501 static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
502 uint32_t value)
504 PXA2xxState *s = (PXA2xxState *) opaque;
506 switch (addr) {
507 case MDCNFG ... SA1110:
508 if ((addr & 3) == 0) {
509 s->mm_regs[addr >> 2] = value;
510 break;
513 default:
514 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
515 break;
519 static CPUReadMemoryFunc * const pxa2xx_mm_readfn[] = {
520 pxa2xx_mm_read,
521 pxa2xx_mm_read,
522 pxa2xx_mm_read,
525 static CPUWriteMemoryFunc * const pxa2xx_mm_writefn[] = {
526 pxa2xx_mm_write,
527 pxa2xx_mm_write,
528 pxa2xx_mm_write,
531 static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
533 PXA2xxState *s = (PXA2xxState *) opaque;
534 int i;
536 for (i = 0; i < 0x1a; i ++)
537 qemu_put_be32s(f, &s->mm_regs[i]);
540 static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
542 PXA2xxState *s = (PXA2xxState *) opaque;
543 int i;
545 for (i = 0; i < 0x1a; i ++)
546 qemu_get_be32s(f, &s->mm_regs[i]);
548 return 0;
551 /* Synchronous Serial Ports */
552 typedef struct {
553 SysBusDevice busdev;
554 qemu_irq irq;
555 int enable;
556 SSIBus *bus;
558 uint32_t sscr[2];
559 uint32_t sspsp;
560 uint32_t ssto;
561 uint32_t ssitr;
562 uint32_t sssr;
563 uint8_t sstsa;
564 uint8_t ssrsa;
565 uint8_t ssacd;
567 uint32_t rx_fifo[16];
568 int rx_level;
569 int rx_start;
570 } PXA2xxSSPState;
572 #define SSCR0 0x00 /* SSP Control register 0 */
573 #define SSCR1 0x04 /* SSP Control register 1 */
574 #define SSSR 0x08 /* SSP Status register */
575 #define SSITR 0x0c /* SSP Interrupt Test register */
576 #define SSDR 0x10 /* SSP Data register */
577 #define SSTO 0x28 /* SSP Time-Out register */
578 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
579 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
580 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
581 #define SSTSS 0x38 /* SSP Time Slot Status register */
582 #define SSACD 0x3c /* SSP Audio Clock Divider register */
584 /* Bitfields for above registers */
585 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
586 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
587 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
588 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
589 #define SSCR0_SSE (1 << 7)
590 #define SSCR0_RIM (1 << 22)
591 #define SSCR0_TIM (1 << 23)
592 #define SSCR0_MOD (1 << 31)
593 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
594 #define SSCR1_RIE (1 << 0)
595 #define SSCR1_TIE (1 << 1)
596 #define SSCR1_LBM (1 << 2)
597 #define SSCR1_MWDS (1 << 5)
598 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
599 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
600 #define SSCR1_EFWR (1 << 14)
601 #define SSCR1_PINTE (1 << 18)
602 #define SSCR1_TINTE (1 << 19)
603 #define SSCR1_RSRE (1 << 20)
604 #define SSCR1_TSRE (1 << 21)
605 #define SSCR1_EBCEI (1 << 29)
606 #define SSITR_INT (7 << 5)
607 #define SSSR_TNF (1 << 2)
608 #define SSSR_RNE (1 << 3)
609 #define SSSR_TFS (1 << 5)
610 #define SSSR_RFS (1 << 6)
611 #define SSSR_ROR (1 << 7)
612 #define SSSR_PINT (1 << 18)
613 #define SSSR_TINT (1 << 19)
614 #define SSSR_EOC (1 << 20)
615 #define SSSR_TUR (1 << 21)
616 #define SSSR_BCE (1 << 23)
617 #define SSSR_RW 0x00bc0080
619 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
621 int level = 0;
623 level |= s->ssitr & SSITR_INT;
624 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
625 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
626 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
627 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
628 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
629 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
630 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
631 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
632 qemu_set_irq(s->irq, !!level);
635 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
637 s->sssr &= ~(0xf << 12); /* Clear RFL */
638 s->sssr &= ~(0xf << 8); /* Clear TFL */
639 s->sssr &= ~SSSR_TFS;
640 s->sssr &= ~SSSR_TNF;
641 if (s->enable) {
642 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
643 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
644 s->sssr |= SSSR_RFS;
645 else
646 s->sssr &= ~SSSR_RFS;
647 if (s->rx_level)
648 s->sssr |= SSSR_RNE;
649 else
650 s->sssr &= ~SSSR_RNE;
651 /* TX FIFO is never filled, so it is always in underrun
652 condition if SSP is enabled */
653 s->sssr |= SSSR_TFS;
654 s->sssr |= SSSR_TNF;
657 pxa2xx_ssp_int_update(s);
660 static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
662 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
663 uint32_t retval;
665 switch (addr) {
666 case SSCR0:
667 return s->sscr[0];
668 case SSCR1:
669 return s->sscr[1];
670 case SSPSP:
671 return s->sspsp;
672 case SSTO:
673 return s->ssto;
674 case SSITR:
675 return s->ssitr;
676 case SSSR:
677 return s->sssr | s->ssitr;
678 case SSDR:
679 if (!s->enable)
680 return 0xffffffff;
681 if (s->rx_level < 1) {
682 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
683 return 0xffffffff;
685 s->rx_level --;
686 retval = s->rx_fifo[s->rx_start ++];
687 s->rx_start &= 0xf;
688 pxa2xx_ssp_fifo_update(s);
689 return retval;
690 case SSTSA:
691 return s->sstsa;
692 case SSRSA:
693 return s->ssrsa;
694 case SSTSS:
695 return 0;
696 case SSACD:
697 return s->ssacd;
698 default:
699 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
700 break;
702 return 0;
705 static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
706 uint32_t value)
708 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
710 switch (addr) {
711 case SSCR0:
712 s->sscr[0] = value & 0xc7ffffff;
713 s->enable = value & SSCR0_SSE;
714 if (value & SSCR0_MOD)
715 printf("%s: Attempt to use network mode\n", __FUNCTION__);
716 if (s->enable && SSCR0_DSS(value) < 4)
717 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
718 SSCR0_DSS(value));
719 if (!(value & SSCR0_SSE)) {
720 s->sssr = 0;
721 s->ssitr = 0;
722 s->rx_level = 0;
724 pxa2xx_ssp_fifo_update(s);
725 break;
727 case SSCR1:
728 s->sscr[1] = value;
729 if (value & (SSCR1_LBM | SSCR1_EFWR))
730 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
731 pxa2xx_ssp_fifo_update(s);
732 break;
734 case SSPSP:
735 s->sspsp = value;
736 break;
738 case SSTO:
739 s->ssto = value;
740 break;
742 case SSITR:
743 s->ssitr = value & SSITR_INT;
744 pxa2xx_ssp_int_update(s);
745 break;
747 case SSSR:
748 s->sssr &= ~(value & SSSR_RW);
749 pxa2xx_ssp_int_update(s);
750 break;
752 case SSDR:
753 if (SSCR0_UWIRE(s->sscr[0])) {
754 if (s->sscr[1] & SSCR1_MWDS)
755 value &= 0xffff;
756 else
757 value &= 0xff;
758 } else
759 /* Note how 32bits overflow does no harm here */
760 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
762 /* Data goes from here to the Tx FIFO and is shifted out from
763 * there directly to the slave, no need to buffer it.
765 if (s->enable) {
766 uint32_t readval;
767 readval = ssi_transfer(s->bus, value);
768 if (s->rx_level < 0x10) {
769 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
770 } else {
771 s->sssr |= SSSR_ROR;
774 pxa2xx_ssp_fifo_update(s);
775 break;
777 case SSTSA:
778 s->sstsa = value;
779 break;
781 case SSRSA:
782 s->ssrsa = value;
783 break;
785 case SSACD:
786 s->ssacd = value;
787 break;
789 default:
790 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
791 break;
795 static CPUReadMemoryFunc * const pxa2xx_ssp_readfn[] = {
796 pxa2xx_ssp_read,
797 pxa2xx_ssp_read,
798 pxa2xx_ssp_read,
801 static CPUWriteMemoryFunc * const pxa2xx_ssp_writefn[] = {
802 pxa2xx_ssp_write,
803 pxa2xx_ssp_write,
804 pxa2xx_ssp_write,
807 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
809 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
810 int i;
812 qemu_put_be32(f, s->enable);
814 qemu_put_be32s(f, &s->sscr[0]);
815 qemu_put_be32s(f, &s->sscr[1]);
816 qemu_put_be32s(f, &s->sspsp);
817 qemu_put_be32s(f, &s->ssto);
818 qemu_put_be32s(f, &s->ssitr);
819 qemu_put_be32s(f, &s->sssr);
820 qemu_put_8s(f, &s->sstsa);
821 qemu_put_8s(f, &s->ssrsa);
822 qemu_put_8s(f, &s->ssacd);
824 qemu_put_byte(f, s->rx_level);
825 for (i = 0; i < s->rx_level; i ++)
826 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
829 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
831 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
832 int i;
834 s->enable = qemu_get_be32(f);
836 qemu_get_be32s(f, &s->sscr[0]);
837 qemu_get_be32s(f, &s->sscr[1]);
838 qemu_get_be32s(f, &s->sspsp);
839 qemu_get_be32s(f, &s->ssto);
840 qemu_get_be32s(f, &s->ssitr);
841 qemu_get_be32s(f, &s->sssr);
842 qemu_get_8s(f, &s->sstsa);
843 qemu_get_8s(f, &s->ssrsa);
844 qemu_get_8s(f, &s->ssacd);
846 s->rx_level = qemu_get_byte(f);
847 s->rx_start = 0;
848 for (i = 0; i < s->rx_level; i ++)
849 s->rx_fifo[i] = qemu_get_byte(f);
851 return 0;
854 static int pxa2xx_ssp_init(SysBusDevice *dev)
856 int iomemtype;
857 PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
859 sysbus_init_irq(dev, &s->irq);
861 iomemtype = cpu_register_io_memory(pxa2xx_ssp_readfn,
862 pxa2xx_ssp_writefn, s,
863 DEVICE_NATIVE_ENDIAN);
864 sysbus_init_mmio(dev, 0x1000, iomemtype);
865 register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
866 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
868 s->bus = ssi_create_bus(&dev->qdev, "ssi");
869 return 0;
872 /* Real-Time Clock */
873 #define RCNR 0x00 /* RTC Counter register */
874 #define RTAR 0x04 /* RTC Alarm register */
875 #define RTSR 0x08 /* RTC Status register */
876 #define RTTR 0x0c /* RTC Timer Trim register */
877 #define RDCR 0x10 /* RTC Day Counter register */
878 #define RYCR 0x14 /* RTC Year Counter register */
879 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
880 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
881 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
882 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
883 #define SWCR 0x28 /* RTC Stopwatch Counter register */
884 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
885 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
886 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
887 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
889 static inline void pxa2xx_rtc_int_update(PXA2xxState *s)
891 qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
894 static void pxa2xx_rtc_hzupdate(PXA2xxState *s)
896 int64_t rt = qemu_get_clock(rt_clock);
897 s->last_rcnr += ((rt - s->last_hz) << 15) /
898 (1000 * ((s->rttr & 0xffff) + 1));
899 s->last_rdcr += ((rt - s->last_hz) << 15) /
900 (1000 * ((s->rttr & 0xffff) + 1));
901 s->last_hz = rt;
904 static void pxa2xx_rtc_swupdate(PXA2xxState *s)
906 int64_t rt = qemu_get_clock(rt_clock);
907 if (s->rtsr & (1 << 12))
908 s->last_swcr += (rt - s->last_sw) / 10;
909 s->last_sw = rt;
912 static void pxa2xx_rtc_piupdate(PXA2xxState *s)
914 int64_t rt = qemu_get_clock(rt_clock);
915 if (s->rtsr & (1 << 15))
916 s->last_swcr += rt - s->last_pi;
917 s->last_pi = rt;
920 static inline void pxa2xx_rtc_alarm_update(PXA2xxState *s,
921 uint32_t rtsr)
923 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
924 qemu_mod_timer(s->rtc_hz, s->last_hz +
925 (((s->rtar - s->last_rcnr) * 1000 *
926 ((s->rttr & 0xffff) + 1)) >> 15));
927 else
928 qemu_del_timer(s->rtc_hz);
930 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
931 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
932 (((s->rdar1 - s->last_rdcr) * 1000 *
933 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
934 else
935 qemu_del_timer(s->rtc_rdal1);
937 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
938 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
939 (((s->rdar2 - s->last_rdcr) * 1000 *
940 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
941 else
942 qemu_del_timer(s->rtc_rdal2);
944 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
945 qemu_mod_timer(s->rtc_swal1, s->last_sw +
946 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
947 else
948 qemu_del_timer(s->rtc_swal1);
950 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
951 qemu_mod_timer(s->rtc_swal2, s->last_sw +
952 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
953 else
954 qemu_del_timer(s->rtc_swal2);
956 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
957 qemu_mod_timer(s->rtc_pi, s->last_pi +
958 (s->piar & 0xffff) - s->last_rtcpicr);
959 else
960 qemu_del_timer(s->rtc_pi);
963 static inline void pxa2xx_rtc_hz_tick(void *opaque)
965 PXA2xxState *s = (PXA2xxState *) opaque;
966 s->rtsr |= (1 << 0);
967 pxa2xx_rtc_alarm_update(s, s->rtsr);
968 pxa2xx_rtc_int_update(s);
971 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
973 PXA2xxState *s = (PXA2xxState *) opaque;
974 s->rtsr |= (1 << 4);
975 pxa2xx_rtc_alarm_update(s, s->rtsr);
976 pxa2xx_rtc_int_update(s);
979 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
981 PXA2xxState *s = (PXA2xxState *) opaque;
982 s->rtsr |= (1 << 6);
983 pxa2xx_rtc_alarm_update(s, s->rtsr);
984 pxa2xx_rtc_int_update(s);
987 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
989 PXA2xxState *s = (PXA2xxState *) opaque;
990 s->rtsr |= (1 << 8);
991 pxa2xx_rtc_alarm_update(s, s->rtsr);
992 pxa2xx_rtc_int_update(s);
995 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
997 PXA2xxState *s = (PXA2xxState *) opaque;
998 s->rtsr |= (1 << 10);
999 pxa2xx_rtc_alarm_update(s, s->rtsr);
1000 pxa2xx_rtc_int_update(s);
1003 static inline void pxa2xx_rtc_pi_tick(void *opaque)
1005 PXA2xxState *s = (PXA2xxState *) opaque;
1006 s->rtsr |= (1 << 13);
1007 pxa2xx_rtc_piupdate(s);
1008 s->last_rtcpicr = 0;
1009 pxa2xx_rtc_alarm_update(s, s->rtsr);
1010 pxa2xx_rtc_int_update(s);
1013 static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1015 PXA2xxState *s = (PXA2xxState *) opaque;
1017 switch (addr) {
1018 case RTTR:
1019 return s->rttr;
1020 case RTSR:
1021 return s->rtsr;
1022 case RTAR:
1023 return s->rtar;
1024 case RDAR1:
1025 return s->rdar1;
1026 case RDAR2:
1027 return s->rdar2;
1028 case RYAR1:
1029 return s->ryar1;
1030 case RYAR2:
1031 return s->ryar2;
1032 case SWAR1:
1033 return s->swar1;
1034 case SWAR2:
1035 return s->swar2;
1036 case PIAR:
1037 return s->piar;
1038 case RCNR:
1039 return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1040 (1000 * ((s->rttr & 0xffff) + 1));
1041 case RDCR:
1042 return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1043 (1000 * ((s->rttr & 0xffff) + 1));
1044 case RYCR:
1045 return s->last_rycr;
1046 case SWCR:
1047 if (s->rtsr & (1 << 12))
1048 return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
1049 else
1050 return s->last_swcr;
1051 default:
1052 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1053 break;
1055 return 0;
1058 static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1059 uint32_t value)
1061 PXA2xxState *s = (PXA2xxState *) opaque;
1063 switch (addr) {
1064 case RTTR:
1065 if (!(s->rttr & (1 << 31))) {
1066 pxa2xx_rtc_hzupdate(s);
1067 s->rttr = value;
1068 pxa2xx_rtc_alarm_update(s, s->rtsr);
1070 break;
1072 case RTSR:
1073 if ((s->rtsr ^ value) & (1 << 15))
1074 pxa2xx_rtc_piupdate(s);
1076 if ((s->rtsr ^ value) & (1 << 12))
1077 pxa2xx_rtc_swupdate(s);
1079 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1080 pxa2xx_rtc_alarm_update(s, value);
1082 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1083 pxa2xx_rtc_int_update(s);
1084 break;
1086 case RTAR:
1087 s->rtar = value;
1088 pxa2xx_rtc_alarm_update(s, s->rtsr);
1089 break;
1091 case RDAR1:
1092 s->rdar1 = value;
1093 pxa2xx_rtc_alarm_update(s, s->rtsr);
1094 break;
1096 case RDAR2:
1097 s->rdar2 = value;
1098 pxa2xx_rtc_alarm_update(s, s->rtsr);
1099 break;
1101 case RYAR1:
1102 s->ryar1 = value;
1103 pxa2xx_rtc_alarm_update(s, s->rtsr);
1104 break;
1106 case RYAR2:
1107 s->ryar2 = value;
1108 pxa2xx_rtc_alarm_update(s, s->rtsr);
1109 break;
1111 case SWAR1:
1112 pxa2xx_rtc_swupdate(s);
1113 s->swar1 = value;
1114 s->last_swcr = 0;
1115 pxa2xx_rtc_alarm_update(s, s->rtsr);
1116 break;
1118 case SWAR2:
1119 s->swar2 = value;
1120 pxa2xx_rtc_alarm_update(s, s->rtsr);
1121 break;
1123 case PIAR:
1124 s->piar = value;
1125 pxa2xx_rtc_alarm_update(s, s->rtsr);
1126 break;
1128 case RCNR:
1129 pxa2xx_rtc_hzupdate(s);
1130 s->last_rcnr = value;
1131 pxa2xx_rtc_alarm_update(s, s->rtsr);
1132 break;
1134 case RDCR:
1135 pxa2xx_rtc_hzupdate(s);
1136 s->last_rdcr = value;
1137 pxa2xx_rtc_alarm_update(s, s->rtsr);
1138 break;
1140 case RYCR:
1141 s->last_rycr = value;
1142 break;
1144 case SWCR:
1145 pxa2xx_rtc_swupdate(s);
1146 s->last_swcr = value;
1147 pxa2xx_rtc_alarm_update(s, s->rtsr);
1148 break;
1150 case RTCPICR:
1151 pxa2xx_rtc_piupdate(s);
1152 s->last_rtcpicr = value & 0xffff;
1153 pxa2xx_rtc_alarm_update(s, s->rtsr);
1154 break;
1156 default:
1157 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1161 static CPUReadMemoryFunc * const pxa2xx_rtc_readfn[] = {
1162 pxa2xx_rtc_read,
1163 pxa2xx_rtc_read,
1164 pxa2xx_rtc_read,
1167 static CPUWriteMemoryFunc * const pxa2xx_rtc_writefn[] = {
1168 pxa2xx_rtc_write,
1169 pxa2xx_rtc_write,
1170 pxa2xx_rtc_write,
1173 static void pxa2xx_rtc_init(PXA2xxState *s)
1175 struct tm tm;
1176 int wom;
1178 s->rttr = 0x7fff;
1179 s->rtsr = 0;
1181 qemu_get_timedate(&tm, 0);
1182 wom = ((tm.tm_mday - 1) / 7) + 1;
1184 s->last_rcnr = (uint32_t) mktimegm(&tm);
1185 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1186 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1187 s->last_rycr = ((tm.tm_year + 1900) << 9) |
1188 ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1189 s->last_swcr = (tm.tm_hour << 19) |
1190 (tm.tm_min << 13) | (tm.tm_sec << 7);
1191 s->last_rtcpicr = 0;
1192 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1194 s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
1195 s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1196 s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1197 s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1198 s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1199 s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
1202 static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
1204 PXA2xxState *s = (PXA2xxState *) opaque;
1206 pxa2xx_rtc_hzupdate(s);
1207 pxa2xx_rtc_piupdate(s);
1208 pxa2xx_rtc_swupdate(s);
1210 qemu_put_be32s(f, &s->rttr);
1211 qemu_put_be32s(f, &s->rtsr);
1212 qemu_put_be32s(f, &s->rtar);
1213 qemu_put_be32s(f, &s->rdar1);
1214 qemu_put_be32s(f, &s->rdar2);
1215 qemu_put_be32s(f, &s->ryar1);
1216 qemu_put_be32s(f, &s->ryar2);
1217 qemu_put_be32s(f, &s->swar1);
1218 qemu_put_be32s(f, &s->swar2);
1219 qemu_put_be32s(f, &s->piar);
1220 qemu_put_be32s(f, &s->last_rcnr);
1221 qemu_put_be32s(f, &s->last_rdcr);
1222 qemu_put_be32s(f, &s->last_rycr);
1223 qemu_put_be32s(f, &s->last_swcr);
1224 qemu_put_be32s(f, &s->last_rtcpicr);
1225 qemu_put_sbe64s(f, &s->last_hz);
1226 qemu_put_sbe64s(f, &s->last_sw);
1227 qemu_put_sbe64s(f, &s->last_pi);
1230 static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
1232 PXA2xxState *s = (PXA2xxState *) opaque;
1234 qemu_get_be32s(f, &s->rttr);
1235 qemu_get_be32s(f, &s->rtsr);
1236 qemu_get_be32s(f, &s->rtar);
1237 qemu_get_be32s(f, &s->rdar1);
1238 qemu_get_be32s(f, &s->rdar2);
1239 qemu_get_be32s(f, &s->ryar1);
1240 qemu_get_be32s(f, &s->ryar2);
1241 qemu_get_be32s(f, &s->swar1);
1242 qemu_get_be32s(f, &s->swar2);
1243 qemu_get_be32s(f, &s->piar);
1244 qemu_get_be32s(f, &s->last_rcnr);
1245 qemu_get_be32s(f, &s->last_rdcr);
1246 qemu_get_be32s(f, &s->last_rycr);
1247 qemu_get_be32s(f, &s->last_swcr);
1248 qemu_get_be32s(f, &s->last_rtcpicr);
1249 qemu_get_sbe64s(f, &s->last_hz);
1250 qemu_get_sbe64s(f, &s->last_sw);
1251 qemu_get_sbe64s(f, &s->last_pi);
1253 pxa2xx_rtc_alarm_update(s, s->rtsr);
1255 return 0;
1258 /* I2C Interface */
1259 typedef struct {
1260 i2c_slave i2c;
1261 PXA2xxI2CState *host;
1262 } PXA2xxI2CSlaveState;
1264 struct PXA2xxI2CState {
1265 PXA2xxI2CSlaveState *slave;
1266 i2c_bus *bus;
1267 qemu_irq irq;
1268 target_phys_addr_t offset;
1270 uint16_t control;
1271 uint16_t status;
1272 uint8_t ibmr;
1273 uint8_t data;
1276 #define IBMR 0x80 /* I2C Bus Monitor register */
1277 #define IDBR 0x88 /* I2C Data Buffer register */
1278 #define ICR 0x90 /* I2C Control register */
1279 #define ISR 0x98 /* I2C Status register */
1280 #define ISAR 0xa0 /* I2C Slave Address register */
1282 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1284 uint16_t level = 0;
1285 level |= s->status & s->control & (1 << 10); /* BED */
1286 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1287 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1288 level |= s->status & (1 << 9); /* SAD */
1289 qemu_set_irq(s->irq, !!level);
1292 /* These are only stubs now. */
1293 static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1295 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1296 PXA2xxI2CState *s = slave->host;
1298 switch (event) {
1299 case I2C_START_SEND:
1300 s->status |= (1 << 9); /* set SAD */
1301 s->status &= ~(1 << 0); /* clear RWM */
1302 break;
1303 case I2C_START_RECV:
1304 s->status |= (1 << 9); /* set SAD */
1305 s->status |= 1 << 0; /* set RWM */
1306 break;
1307 case I2C_FINISH:
1308 s->status |= (1 << 4); /* set SSD */
1309 break;
1310 case I2C_NACK:
1311 s->status |= 1 << 1; /* set ACKNAK */
1312 break;
1314 pxa2xx_i2c_update(s);
1317 static int pxa2xx_i2c_rx(i2c_slave *i2c)
1319 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1320 PXA2xxI2CState *s = slave->host;
1321 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1322 return 0;
1324 if (s->status & (1 << 0)) { /* RWM */
1325 s->status |= 1 << 6; /* set ITE */
1327 pxa2xx_i2c_update(s);
1329 return s->data;
1332 static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1334 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1335 PXA2xxI2CState *s = slave->host;
1336 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1337 return 1;
1339 if (!(s->status & (1 << 0))) { /* RWM */
1340 s->status |= 1 << 7; /* set IRF */
1341 s->data = data;
1343 pxa2xx_i2c_update(s);
1345 return 1;
1348 static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1350 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1352 addr -= s->offset;
1353 switch (addr) {
1354 case ICR:
1355 return s->control;
1356 case ISR:
1357 return s->status | (i2c_bus_busy(s->bus) << 2);
1358 case ISAR:
1359 return s->slave->i2c.address;
1360 case IDBR:
1361 return s->data;
1362 case IBMR:
1363 if (s->status & (1 << 2))
1364 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1365 else
1366 s->ibmr = 0;
1367 return s->ibmr;
1368 default:
1369 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1370 break;
1372 return 0;
1375 static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1376 uint32_t value)
1378 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1379 int ack;
1381 addr -= s->offset;
1382 switch (addr) {
1383 case ICR:
1384 s->control = value & 0xfff7;
1385 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1386 /* TODO: slave mode */
1387 if (value & (1 << 0)) { /* START condition */
1388 if (s->data & 1)
1389 s->status |= 1 << 0; /* set RWM */
1390 else
1391 s->status &= ~(1 << 0); /* clear RWM */
1392 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1393 } else {
1394 if (s->status & (1 << 0)) { /* RWM */
1395 s->data = i2c_recv(s->bus);
1396 if (value & (1 << 2)) /* ACKNAK */
1397 i2c_nack(s->bus);
1398 ack = 1;
1399 } else
1400 ack = !i2c_send(s->bus, s->data);
1403 if (value & (1 << 1)) /* STOP condition */
1404 i2c_end_transfer(s->bus);
1406 if (ack) {
1407 if (value & (1 << 0)) /* START condition */
1408 s->status |= 1 << 6; /* set ITE */
1409 else
1410 if (s->status & (1 << 0)) /* RWM */
1411 s->status |= 1 << 7; /* set IRF */
1412 else
1413 s->status |= 1 << 6; /* set ITE */
1414 s->status &= ~(1 << 1); /* clear ACKNAK */
1415 } else {
1416 s->status |= 1 << 6; /* set ITE */
1417 s->status |= 1 << 10; /* set BED */
1418 s->status |= 1 << 1; /* set ACKNAK */
1421 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1422 if (value & (1 << 4)) /* MA */
1423 i2c_end_transfer(s->bus);
1424 pxa2xx_i2c_update(s);
1425 break;
1427 case ISR:
1428 s->status &= ~(value & 0x07f0);
1429 pxa2xx_i2c_update(s);
1430 break;
1432 case ISAR:
1433 i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1434 break;
1436 case IDBR:
1437 s->data = value & 0xff;
1438 break;
1440 default:
1441 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1445 static CPUReadMemoryFunc * const pxa2xx_i2c_readfn[] = {
1446 pxa2xx_i2c_read,
1447 pxa2xx_i2c_read,
1448 pxa2xx_i2c_read,
1451 static CPUWriteMemoryFunc * const pxa2xx_i2c_writefn[] = {
1452 pxa2xx_i2c_write,
1453 pxa2xx_i2c_write,
1454 pxa2xx_i2c_write,
1457 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1458 .name = "pxa2xx_i2c_slave",
1459 .version_id = 1,
1460 .minimum_version_id = 1,
1461 .minimum_version_id_old = 1,
1462 .fields = (VMStateField []) {
1463 VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1464 VMSTATE_END_OF_LIST()
1468 static const VMStateDescription vmstate_pxa2xx_i2c = {
1469 .name = "pxa2xx_i2c",
1470 .version_id = 1,
1471 .minimum_version_id = 1,
1472 .minimum_version_id_old = 1,
1473 .fields = (VMStateField []) {
1474 VMSTATE_UINT16(control, PXA2xxI2CState),
1475 VMSTATE_UINT16(status, PXA2xxI2CState),
1476 VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1477 VMSTATE_UINT8(data, PXA2xxI2CState),
1478 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1479 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1480 VMSTATE_END_OF_LIST()
1484 static int pxa2xx_i2c_slave_init(i2c_slave *i2c)
1486 /* Nothing to do. */
1487 return 0;
1490 static I2CSlaveInfo pxa2xx_i2c_slave_info = {
1491 .qdev.name = "pxa2xx-i2c-slave",
1492 .qdev.size = sizeof(PXA2xxI2CSlaveState),
1493 .init = pxa2xx_i2c_slave_init,
1494 .event = pxa2xx_i2c_event,
1495 .recv = pxa2xx_i2c_rx,
1496 .send = pxa2xx_i2c_tx
1499 PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1500 qemu_irq irq, uint32_t region_size)
1502 int iomemtype;
1503 DeviceState *dev;
1504 PXA2xxI2CState *s = qemu_mallocz(sizeof(PXA2xxI2CState));
1506 /* FIXME: Should the slave device really be on a separate bus? */
1507 dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1508 s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1509 s->slave->host = s;
1511 s->irq = irq;
1512 s->bus = i2c_init_bus(NULL, "i2c");
1513 s->offset = base - (base & (~region_size) & TARGET_PAGE_MASK);
1515 iomemtype = cpu_register_io_memory(pxa2xx_i2c_readfn,
1516 pxa2xx_i2c_writefn, s, DEVICE_NATIVE_ENDIAN);
1517 cpu_register_physical_memory(base & ~region_size,
1518 region_size + 1, iomemtype);
1520 vmstate_register(NULL, base, &vmstate_pxa2xx_i2c, s);
1522 return s;
1525 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1527 return s->bus;
1530 /* PXA Inter-IC Sound Controller */
1531 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1533 i2s->rx_len = 0;
1534 i2s->tx_len = 0;
1535 i2s->fifo_len = 0;
1536 i2s->clk = 0x1a;
1537 i2s->control[0] = 0x00;
1538 i2s->control[1] = 0x00;
1539 i2s->status = 0x00;
1540 i2s->mask = 0x00;
1543 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1544 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1545 #define SACR_DREC(val) (val & (1 << 3))
1546 #define SACR_DPRL(val) (val & (1 << 4))
1548 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1550 int rfs, tfs;
1551 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1552 !SACR_DREC(i2s->control[1]);
1553 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1554 i2s->enable && !SACR_DPRL(i2s->control[1]);
1556 pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1557 pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1559 i2s->status &= 0xe0;
1560 if (i2s->fifo_len < 16 || !i2s->enable)
1561 i2s->status |= 1 << 0; /* TNF */
1562 if (i2s->rx_len)
1563 i2s->status |= 1 << 1; /* RNE */
1564 if (i2s->enable)
1565 i2s->status |= 1 << 2; /* BSY */
1566 if (tfs)
1567 i2s->status |= 1 << 3; /* TFS */
1568 if (rfs)
1569 i2s->status |= 1 << 4; /* RFS */
1570 if (!(i2s->tx_len && i2s->enable))
1571 i2s->status |= i2s->fifo_len << 8; /* TFL */
1572 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1574 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1577 #define SACR0 0x00 /* Serial Audio Global Control register */
1578 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1579 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1580 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1581 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1582 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1583 #define SADR 0x80 /* Serial Audio Data register */
1585 static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1587 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1589 switch (addr) {
1590 case SACR0:
1591 return s->control[0];
1592 case SACR1:
1593 return s->control[1];
1594 case SASR0:
1595 return s->status;
1596 case SAIMR:
1597 return s->mask;
1598 case SAICR:
1599 return 0;
1600 case SADIV:
1601 return s->clk;
1602 case SADR:
1603 if (s->rx_len > 0) {
1604 s->rx_len --;
1605 pxa2xx_i2s_update(s);
1606 return s->codec_in(s->opaque);
1608 return 0;
1609 default:
1610 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1611 break;
1613 return 0;
1616 static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1617 uint32_t value)
1619 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1620 uint32_t *sample;
1622 switch (addr) {
1623 case SACR0:
1624 if (value & (1 << 3)) /* RST */
1625 pxa2xx_i2s_reset(s);
1626 s->control[0] = value & 0xff3d;
1627 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1628 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1629 s->codec_out(s->opaque, *sample);
1630 s->status &= ~(1 << 7); /* I2SOFF */
1632 if (value & (1 << 4)) /* EFWR */
1633 printf("%s: Attempt to use special function\n", __FUNCTION__);
1634 s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
1635 pxa2xx_i2s_update(s);
1636 break;
1637 case SACR1:
1638 s->control[1] = value & 0x0039;
1639 if (value & (1 << 5)) /* ENLBF */
1640 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1641 if (value & (1 << 4)) /* DPRL */
1642 s->fifo_len = 0;
1643 pxa2xx_i2s_update(s);
1644 break;
1645 case SAIMR:
1646 s->mask = value & 0x0078;
1647 pxa2xx_i2s_update(s);
1648 break;
1649 case SAICR:
1650 s->status &= ~(value & (3 << 5));
1651 pxa2xx_i2s_update(s);
1652 break;
1653 case SADIV:
1654 s->clk = value & 0x007f;
1655 break;
1656 case SADR:
1657 if (s->tx_len && s->enable) {
1658 s->tx_len --;
1659 pxa2xx_i2s_update(s);
1660 s->codec_out(s->opaque, value);
1661 } else if (s->fifo_len < 16) {
1662 s->fifo[s->fifo_len ++] = value;
1663 pxa2xx_i2s_update(s);
1665 break;
1666 default:
1667 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1671 static CPUReadMemoryFunc * const pxa2xx_i2s_readfn[] = {
1672 pxa2xx_i2s_read,
1673 pxa2xx_i2s_read,
1674 pxa2xx_i2s_read,
1677 static CPUWriteMemoryFunc * const pxa2xx_i2s_writefn[] = {
1678 pxa2xx_i2s_write,
1679 pxa2xx_i2s_write,
1680 pxa2xx_i2s_write,
1683 static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
1685 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1687 qemu_put_be32s(f, &s->control[0]);
1688 qemu_put_be32s(f, &s->control[1]);
1689 qemu_put_be32s(f, &s->status);
1690 qemu_put_be32s(f, &s->mask);
1691 qemu_put_be32s(f, &s->clk);
1693 qemu_put_be32(f, s->enable);
1694 qemu_put_be32(f, s->rx_len);
1695 qemu_put_be32(f, s->tx_len);
1696 qemu_put_be32(f, s->fifo_len);
1699 static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
1701 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1703 qemu_get_be32s(f, &s->control[0]);
1704 qemu_get_be32s(f, &s->control[1]);
1705 qemu_get_be32s(f, &s->status);
1706 qemu_get_be32s(f, &s->mask);
1707 qemu_get_be32s(f, &s->clk);
1709 s->enable = qemu_get_be32(f);
1710 s->rx_len = qemu_get_be32(f);
1711 s->tx_len = qemu_get_be32(f);
1712 s->fifo_len = qemu_get_be32(f);
1714 return 0;
1717 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1719 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1720 uint32_t *sample;
1722 /* Signal FIFO errors */
1723 if (s->enable && s->tx_len)
1724 s->status |= 1 << 5; /* TUR */
1725 if (s->enable && s->rx_len)
1726 s->status |= 1 << 6; /* ROR */
1728 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1729 * handle the cases where it makes a difference. */
1730 s->tx_len = tx - s->fifo_len;
1731 s->rx_len = rx;
1732 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1733 if (s->enable)
1734 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1735 s->codec_out(s->opaque, *sample);
1736 pxa2xx_i2s_update(s);
1739 static PXA2xxI2SState *pxa2xx_i2s_init(target_phys_addr_t base,
1740 qemu_irq irq, PXA2xxDMAState *dma)
1742 int iomemtype;
1743 PXA2xxI2SState *s = (PXA2xxI2SState *)
1744 qemu_mallocz(sizeof(PXA2xxI2SState));
1746 s->irq = irq;
1747 s->dma = dma;
1748 s->data_req = pxa2xx_i2s_data_req;
1750 pxa2xx_i2s_reset(s);
1752 iomemtype = cpu_register_io_memory(pxa2xx_i2s_readfn,
1753 pxa2xx_i2s_writefn, s, DEVICE_NATIVE_ENDIAN);
1754 cpu_register_physical_memory(base, 0x100000, iomemtype);
1756 register_savevm(NULL, "pxa2xx_i2s", base, 0,
1757 pxa2xx_i2s_save, pxa2xx_i2s_load, s);
1759 return s;
1762 /* PXA Fast Infra-red Communications Port */
1763 struct PXA2xxFIrState {
1764 qemu_irq irq;
1765 PXA2xxDMAState *dma;
1766 int enable;
1767 CharDriverState *chr;
1769 uint8_t control[3];
1770 uint8_t status[2];
1772 int rx_len;
1773 int rx_start;
1774 uint8_t rx_fifo[64];
1777 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1779 s->control[0] = 0x00;
1780 s->control[1] = 0x00;
1781 s->control[2] = 0x00;
1782 s->status[0] = 0x00;
1783 s->status[1] = 0x00;
1784 s->enable = 0;
1787 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1789 static const int tresh[4] = { 8, 16, 32, 0 };
1790 int intr = 0;
1791 if ((s->control[0] & (1 << 4)) && /* RXE */
1792 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1793 s->status[0] |= 1 << 4; /* RFS */
1794 else
1795 s->status[0] &= ~(1 << 4); /* RFS */
1796 if (s->control[0] & (1 << 3)) /* TXE */
1797 s->status[0] |= 1 << 3; /* TFS */
1798 else
1799 s->status[0] &= ~(1 << 3); /* TFS */
1800 if (s->rx_len)
1801 s->status[1] |= 1 << 2; /* RNE */
1802 else
1803 s->status[1] &= ~(1 << 2); /* RNE */
1804 if (s->control[0] & (1 << 4)) /* RXE */
1805 s->status[1] |= 1 << 0; /* RSY */
1806 else
1807 s->status[1] &= ~(1 << 0); /* RSY */
1809 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1810 (s->status[0] & (1 << 4)); /* RFS */
1811 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1812 (s->status[0] & (1 << 3)); /* TFS */
1813 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1814 (s->status[0] & (1 << 6)); /* EOC */
1815 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1816 (s->status[0] & (1 << 1)); /* TUR */
1817 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1819 pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1820 pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1822 qemu_set_irq(s->irq, intr && s->enable);
1825 #define ICCR0 0x00 /* FICP Control register 0 */
1826 #define ICCR1 0x04 /* FICP Control register 1 */
1827 #define ICCR2 0x08 /* FICP Control register 2 */
1828 #define ICDR 0x0c /* FICP Data register */
1829 #define ICSR0 0x14 /* FICP Status register 0 */
1830 #define ICSR1 0x18 /* FICP Status register 1 */
1831 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1833 static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1835 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1836 uint8_t ret;
1838 switch (addr) {
1839 case ICCR0:
1840 return s->control[0];
1841 case ICCR1:
1842 return s->control[1];
1843 case ICCR2:
1844 return s->control[2];
1845 case ICDR:
1846 s->status[0] &= ~0x01;
1847 s->status[1] &= ~0x72;
1848 if (s->rx_len) {
1849 s->rx_len --;
1850 ret = s->rx_fifo[s->rx_start ++];
1851 s->rx_start &= 63;
1852 pxa2xx_fir_update(s);
1853 return ret;
1855 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1856 break;
1857 case ICSR0:
1858 return s->status[0];
1859 case ICSR1:
1860 return s->status[1] | (1 << 3); /* TNF */
1861 case ICFOR:
1862 return s->rx_len;
1863 default:
1864 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1865 break;
1867 return 0;
1870 static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1871 uint32_t value)
1873 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1874 uint8_t ch;
1876 switch (addr) {
1877 case ICCR0:
1878 s->control[0] = value;
1879 if (!(value & (1 << 4))) /* RXE */
1880 s->rx_len = s->rx_start = 0;
1881 if (!(value & (1 << 3))) { /* TXE */
1882 /* Nop */
1884 s->enable = value & 1; /* ITR */
1885 if (!s->enable)
1886 s->status[0] = 0;
1887 pxa2xx_fir_update(s);
1888 break;
1889 case ICCR1:
1890 s->control[1] = value;
1891 break;
1892 case ICCR2:
1893 s->control[2] = value & 0x3f;
1894 pxa2xx_fir_update(s);
1895 break;
1896 case ICDR:
1897 if (s->control[2] & (1 << 2)) /* TXP */
1898 ch = value;
1899 else
1900 ch = ~value;
1901 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1902 qemu_chr_write(s->chr, &ch, 1);
1903 break;
1904 case ICSR0:
1905 s->status[0] &= ~(value & 0x66);
1906 pxa2xx_fir_update(s);
1907 break;
1908 case ICFOR:
1909 break;
1910 default:
1911 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1915 static CPUReadMemoryFunc * const pxa2xx_fir_readfn[] = {
1916 pxa2xx_fir_read,
1917 pxa2xx_fir_read,
1918 pxa2xx_fir_read,
1921 static CPUWriteMemoryFunc * const pxa2xx_fir_writefn[] = {
1922 pxa2xx_fir_write,
1923 pxa2xx_fir_write,
1924 pxa2xx_fir_write,
1927 static int pxa2xx_fir_is_empty(void *opaque)
1929 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1930 return (s->rx_len < 64);
1933 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1935 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1936 if (!(s->control[0] & (1 << 4))) /* RXE */
1937 return;
1939 while (size --) {
1940 s->status[1] |= 1 << 4; /* EOF */
1941 if (s->rx_len >= 64) {
1942 s->status[1] |= 1 << 6; /* ROR */
1943 break;
1946 if (s->control[2] & (1 << 3)) /* RXP */
1947 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1948 else
1949 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1952 pxa2xx_fir_update(s);
1955 static void pxa2xx_fir_event(void *opaque, int event)
1959 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1961 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1962 int i;
1964 qemu_put_be32(f, s->enable);
1966 qemu_put_8s(f, &s->control[0]);
1967 qemu_put_8s(f, &s->control[1]);
1968 qemu_put_8s(f, &s->control[2]);
1969 qemu_put_8s(f, &s->status[0]);
1970 qemu_put_8s(f, &s->status[1]);
1972 qemu_put_byte(f, s->rx_len);
1973 for (i = 0; i < s->rx_len; i ++)
1974 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1977 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1979 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1980 int i;
1982 s->enable = qemu_get_be32(f);
1984 qemu_get_8s(f, &s->control[0]);
1985 qemu_get_8s(f, &s->control[1]);
1986 qemu_get_8s(f, &s->control[2]);
1987 qemu_get_8s(f, &s->status[0]);
1988 qemu_get_8s(f, &s->status[1]);
1990 s->rx_len = qemu_get_byte(f);
1991 s->rx_start = 0;
1992 for (i = 0; i < s->rx_len; i ++)
1993 s->rx_fifo[i] = qemu_get_byte(f);
1995 return 0;
1998 static PXA2xxFIrState *pxa2xx_fir_init(target_phys_addr_t base,
1999 qemu_irq irq, PXA2xxDMAState *dma,
2000 CharDriverState *chr)
2002 int iomemtype;
2003 PXA2xxFIrState *s = (PXA2xxFIrState *)
2004 qemu_mallocz(sizeof(PXA2xxFIrState));
2006 s->irq = irq;
2007 s->dma = dma;
2008 s->chr = chr;
2010 pxa2xx_fir_reset(s);
2012 iomemtype = cpu_register_io_memory(pxa2xx_fir_readfn,
2013 pxa2xx_fir_writefn, s, DEVICE_NATIVE_ENDIAN);
2014 cpu_register_physical_memory(base, 0x1000, iomemtype);
2016 if (chr)
2017 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2018 pxa2xx_fir_rx, pxa2xx_fir_event, s);
2020 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2021 pxa2xx_fir_load, s);
2023 return s;
2026 static void pxa2xx_reset(void *opaque, int line, int level)
2028 PXA2xxState *s = (PXA2xxState *) opaque;
2030 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2031 cpu_reset(s->env);
2032 /* TODO: reset peripherals */
2036 /* Initialise a PXA270 integrated chip (ARM based core). */
2037 PXA2xxState *pxa270_init(unsigned int sdram_size, const char *revision)
2039 PXA2xxState *s;
2040 int iomemtype, i;
2041 DriveInfo *dinfo;
2042 s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2044 if (revision && strncmp(revision, "pxa27", 5)) {
2045 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2046 exit(1);
2048 if (!revision)
2049 revision = "pxa270";
2051 s->env = cpu_init(revision);
2052 if (!s->env) {
2053 fprintf(stderr, "Unable to find CPU definition\n");
2054 exit(1);
2056 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2058 /* SDRAM & Internal Memory Storage */
2059 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2060 sdram_size, qemu_ram_alloc(NULL, "pxa270.sdram",
2061 sdram_size) | IO_MEM_RAM);
2062 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2063 0x40000, qemu_ram_alloc(NULL, "pxa270.internal",
2064 0x40000) | IO_MEM_RAM);
2066 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2068 s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2070 pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
2071 s->pic[PXA27X_PIC_OST_4_11]);
2073 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2075 dinfo = drive_get(IF_SD, 0, 0);
2076 if (!dinfo) {
2077 fprintf(stderr, "qemu: missing SecureDigital device\n");
2078 exit(1);
2080 s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2081 s->pic[PXA2XX_PIC_MMC], s->dma);
2083 for (i = 0; pxa270_serial[i].io_base; i ++)
2084 if (serial_hds[i])
2085 #ifdef TARGET_WORDS_BIGENDIAN
2086 serial_mm_init(pxa270_serial[i].io_base, 2,
2087 s->pic[pxa270_serial[i].irqn], 14857000/16,
2088 serial_hds[i], 1, 1);
2089 #else
2090 serial_mm_init(pxa270_serial[i].io_base, 2,
2091 s->pic[pxa270_serial[i].irqn], 14857000/16,
2092 serial_hds[i], 1, 0);
2093 #endif
2094 else
2095 break;
2096 if (serial_hds[i])
2097 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2098 s->dma, serial_hds[i]);
2100 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
2102 s->cm_base = 0x41300000;
2103 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2104 s->clkcfg = 0x00000009; /* Turbo mode active */
2105 iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2106 pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2107 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2108 register_savevm(NULL, "pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2110 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2112 s->mm_base = 0x48000000;
2113 s->mm_regs[MDMRS >> 2] = 0x00020002;
2114 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2115 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2116 iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2117 pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2118 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2119 register_savevm(NULL, "pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2121 s->pm_base = 0x40f00000;
2122 iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2123 pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2124 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2125 register_savevm(NULL, "pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2127 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2128 s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2129 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2130 DeviceState *dev;
2131 dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2132 s->pic[pxa27x_ssp[i].irqn]);
2133 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2136 if (usb_enabled) {
2137 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2138 s->pic[PXA2XX_PIC_USBH1]);
2141 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2142 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2144 s->rtc_base = 0x40900000;
2145 iomemtype = cpu_register_io_memory(pxa2xx_rtc_readfn,
2146 pxa2xx_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
2147 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2148 pxa2xx_rtc_init(s);
2149 register_savevm(NULL, "pxa2xx_rtc", 0, 0, pxa2xx_rtc_save,
2150 pxa2xx_rtc_load, s);
2152 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2153 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2155 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2157 s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
2159 /* GPIO1 resets the processor */
2160 /* The handler can be overridden by board-specific code */
2161 pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2162 return s;
2165 /* Initialise a PXA255 integrated chip (ARM based core). */
2166 PXA2xxState *pxa255_init(unsigned int sdram_size)
2168 PXA2xxState *s;
2169 int iomemtype, i;
2170 DriveInfo *dinfo;
2172 s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2174 s->env = cpu_init("pxa255");
2175 if (!s->env) {
2176 fprintf(stderr, "Unable to find CPU definition\n");
2177 exit(1);
2179 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2181 /* SDRAM & Internal Memory Storage */
2182 cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2183 qemu_ram_alloc(NULL, "pxa255.sdram",
2184 sdram_size) | IO_MEM_RAM);
2185 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2186 qemu_ram_alloc(NULL, "pxa255.internal",
2187 PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2189 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2191 s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2193 pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
2195 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2197 dinfo = drive_get(IF_SD, 0, 0);
2198 if (!dinfo) {
2199 fprintf(stderr, "qemu: missing SecureDigital device\n");
2200 exit(1);
2202 s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2203 s->pic[PXA2XX_PIC_MMC], s->dma);
2205 for (i = 0; pxa255_serial[i].io_base; i ++)
2206 if (serial_hds[i]) {
2207 #ifdef TARGET_WORDS_BIGENDIAN
2208 serial_mm_init(pxa255_serial[i].io_base, 2,
2209 s->pic[pxa255_serial[i].irqn], 14745600/16,
2210 serial_hds[i], 1, 1);
2211 #else
2212 serial_mm_init(pxa255_serial[i].io_base, 2,
2213 s->pic[pxa255_serial[i].irqn], 14745600/16,
2214 serial_hds[i], 1, 0);
2215 #endif
2216 } else {
2217 break;
2219 if (serial_hds[i])
2220 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2221 s->dma, serial_hds[i]);
2223 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
2225 s->cm_base = 0x41300000;
2226 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2227 s->clkcfg = 0x00000009; /* Turbo mode active */
2228 iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2229 pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2230 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2231 register_savevm(NULL, "pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2233 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2235 s->mm_base = 0x48000000;
2236 s->mm_regs[MDMRS >> 2] = 0x00020002;
2237 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2238 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2239 iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2240 pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2241 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2242 register_savevm(NULL, "pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2244 s->pm_base = 0x40f00000;
2245 iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2246 pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2247 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2248 register_savevm(NULL, "pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2250 for (i = 0; pxa255_ssp[i].io_base; i ++);
2251 s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2252 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2253 DeviceState *dev;
2254 dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2255 s->pic[pxa255_ssp[i].irqn]);
2256 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2259 if (usb_enabled) {
2260 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2261 s->pic[PXA2XX_PIC_USBH1]);
2264 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2265 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2267 s->rtc_base = 0x40900000;
2268 iomemtype = cpu_register_io_memory(pxa2xx_rtc_readfn,
2269 pxa2xx_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
2270 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2271 pxa2xx_rtc_init(s);
2272 register_savevm(NULL, "pxa2xx_rtc", 0, 0, pxa2xx_rtc_save,
2273 pxa2xx_rtc_load, s);
2275 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2276 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2278 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2280 /* GPIO1 resets the processor */
2281 /* The handler can be overridden by board-specific code */
2282 pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2283 return s;
2286 static void pxa2xx_register_devices(void)
2288 i2c_register_slave(&pxa2xx_i2c_slave_info);
2289 sysbus_register_dev("pxa2xx-ssp", sizeof(PXA2xxSSPState), pxa2xx_ssp_init);
2292 device_init(pxa2xx_register_devices)