scsi: Generate BLOCK_IO_ERROR QMP event
[qemu/stefanha.git] / gdbstub.c
blob80477be6a64a87fb8935d7a7c2aba1777366f5f4
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
41 #include "kvm.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
215 #endif
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
226 static int gdb_signal_table[] = {
229 TARGET_SIGINT,
232 TARGET_SIGTRAP
234 #endif
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
245 #endif
247 static int gdb_signal_to_target (int sig)
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
255 //#define DEBUG_GDB
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
266 enum RSState {
267 RS_INACTIVE,
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
299 static GDBState *gdbserver_state;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
310 static int get_char(GDBState *s)
312 uint8_t ch;
313 int ret;
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
330 return ch;
332 #endif
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
336 static enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
365 #ifdef CONFIG_USER_ONLY
366 int ret;
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
383 static inline int fromhex(int v)
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
395 static inline int tohex(int v)
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
403 static void memtohex(char *buf, const uint8_t *mem, int len)
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
413 *q = '\0';
416 static void hextomem(uint8_t *mem, const char *buf, int len)
418 int i;
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
429 int csum, i;
430 uint8_t *p;
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
458 return 0;
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
468 return put_packet_binary(s, buf, strlen(buf));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
500 #if defined(TARGET_I386)
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
507 #else
508 #define gpr_map gpr_map32
509 #endif
510 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
523 if (n < CPU_NB_REGS) {
524 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
525 GET_REG64(env->regs[gpr_map[n]]);
526 } else if (n < CPU_NB_REGS32) {
527 GET_REG32(env->regs[gpr_map32[n]]);
529 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
533 #else
534 memset(mem_buf, 0, 10);
535 #endif
536 return 10;
537 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
538 n -= IDX_XMM_REGS;
539 if (n < CPU_NB_REGS32 ||
540 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
541 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
542 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
543 return 16;
545 } else {
546 switch (n) {
547 case IDX_IP_REG:
548 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
549 GET_REG64(env->eip);
550 } else {
551 GET_REG32(env->eip);
553 case IDX_FLAGS_REG: GET_REG32(env->eflags);
555 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
556 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
557 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
558 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
559 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
560 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
562 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
563 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
564 (env->fpstt & 0x7) << 11);
565 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
575 return 0;
578 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
580 uint16_t selector = ldl_p(mem_buf);
582 if (selector != env->segs[sreg].selector) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env, sreg, selector);
585 #else
586 unsigned int limit, flags;
587 target_ulong base;
589 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
590 base = selector << 4;
591 limit = 0xffff;
592 flags = 0;
593 } else {
594 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
595 return 4;
597 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
598 #endif
600 return 4;
603 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
605 uint32_t tmp;
607 if (n < CPU_NB_REGS) {
608 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
609 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
610 return sizeof(target_ulong);
611 } else if (n < CPU_NB_REGS32) {
612 n = gpr_map32[n];
613 env->regs[n] &= ~0xffffffffUL;
614 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
615 return 4;
617 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
621 #endif
622 return 10;
623 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
624 n -= IDX_XMM_REGS;
625 if (n < CPU_NB_REGS32 ||
626 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
627 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
628 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
629 return 16;
631 } else {
632 switch (n) {
633 case IDX_IP_REG:
634 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
635 env->eip = ldq_p(mem_buf);
636 return 8;
637 } else {
638 env->eip &= ~0xffffffffUL;
639 env->eip |= (uint32_t)ldl_p(mem_buf);
640 return 4;
642 case IDX_FLAGS_REG:
643 env->eflags = ldl_p(mem_buf);
644 return 4;
646 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
647 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
648 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
649 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
650 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
651 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
653 case IDX_FP_REGS + 8:
654 env->fpuc = ldl_p(mem_buf);
655 return 4;
656 case IDX_FP_REGS + 9:
657 tmp = ldl_p(mem_buf);
658 env->fpstt = (tmp >> 11) & 7;
659 env->fpus = tmp & ~0x3800;
660 return 4;
661 case IDX_FP_REGS + 10: /* ftag */ return 4;
662 case IDX_FP_REGS + 11: /* fiseg */ return 4;
663 case IDX_FP_REGS + 12: /* fioff */ return 4;
664 case IDX_FP_REGS + 13: /* foseg */ return 4;
665 case IDX_FP_REGS + 14: /* fooff */ return 4;
666 case IDX_FP_REGS + 15: /* fop */ return 4;
668 case IDX_MXCSR_REG:
669 env->mxcsr = ldl_p(mem_buf);
670 return 4;
673 /* Unrecognised register. */
674 return 0;
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
687 #else
688 #define GDB_CORE_XML "power-core.xml"
689 #endif
691 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
693 if (n < 32) {
694 /* gprs */
695 GET_REGL(env->gpr[n]);
696 } else if (n < 64) {
697 /* fprs */
698 if (gdb_has_xml)
699 return 0;
700 stfq_p(mem_buf, env->fpr[n-32]);
701 return 8;
702 } else {
703 switch (n) {
704 case 64: GET_REGL(env->nip);
705 case 65: GET_REGL(env->msr);
706 case 66:
708 uint32_t cr = 0;
709 int i;
710 for (i = 0; i < 8; i++)
711 cr |= env->crf[i] << (32 - ((i + 1) * 4));
712 GET_REG32(cr);
714 case 67: GET_REGL(env->lr);
715 case 68: GET_REGL(env->ctr);
716 case 69: GET_REGL(env->xer);
717 case 70:
719 if (gdb_has_xml)
720 return 0;
721 GET_REG32(0); /* fpscr */
725 return 0;
728 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
730 if (n < 32) {
731 /* gprs */
732 env->gpr[n] = ldtul_p(mem_buf);
733 return sizeof(target_ulong);
734 } else if (n < 64) {
735 /* fprs */
736 if (gdb_has_xml)
737 return 0;
738 env->fpr[n-32] = ldfq_p(mem_buf);
739 return 8;
740 } else {
741 switch (n) {
742 case 64:
743 env->nip = ldtul_p(mem_buf);
744 return sizeof(target_ulong);
745 case 65:
746 ppc_store_msr(env, ldtul_p(mem_buf));
747 return sizeof(target_ulong);
748 case 66:
750 uint32_t cr = ldl_p(mem_buf);
751 int i;
752 for (i = 0; i < 8; i++)
753 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
754 return 4;
756 case 67:
757 env->lr = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 68:
760 env->ctr = ldtul_p(mem_buf);
761 return sizeof(target_ulong);
762 case 69:
763 env->xer = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 70:
766 /* fpscr */
767 if (gdb_has_xml)
768 return 0;
769 return 4;
772 return 0;
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
779 #else
780 #define NUM_CORE_REGS 72
781 #endif
783 #ifdef TARGET_ABI32
784 #define GET_REGA(val) GET_REG32(val)
785 #else
786 #define GET_REGA(val) GET_REGL(val)
787 #endif
789 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
791 if (n < 8) {
792 /* g0..g7 */
793 GET_REGA(env->gregs[n]);
795 if (n < 32) {
796 /* register window */
797 GET_REGA(env->regwptr[n - 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
800 if (n < 64) {
801 /* fprs */
802 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
805 switch (n) {
806 case 64: GET_REGA(env->y);
807 case 65: GET_REGA(GET_PSR(env));
808 case 66: GET_REGA(env->wim);
809 case 67: GET_REGA(env->tbr);
810 case 68: GET_REGA(env->pc);
811 case 69: GET_REGA(env->npc);
812 case 70: GET_REGA(env->fsr);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
816 #else
817 if (n < 64) {
818 /* f0-f31 */
819 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
821 if (n < 80) {
822 /* f32-f62 (double width, even numbers only) */
823 uint64_t val;
825 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
826 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
827 GET_REG64(val);
829 switch (n) {
830 case 80: GET_REGL(env->pc);
831 case 81: GET_REGL(env->npc);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
833 ((env->asi & 0xff) << 24) |
834 ((env->pstate & 0xfff) << 8) |
835 GET_CWP64(env));
836 case 83: GET_REGL(env->fsr);
837 case 84: GET_REGL(env->fprs);
838 case 85: GET_REGL(env->y);
840 #endif
841 return 0;
844 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
846 #if defined(TARGET_ABI32)
847 abi_ulong tmp;
849 tmp = ldl_p(mem_buf);
850 #else
851 target_ulong tmp;
853 tmp = ldtul_p(mem_buf);
854 #endif
856 if (n < 8) {
857 /* g0..g7 */
858 env->gregs[n] = tmp;
859 } else if (n < 32) {
860 /* register window */
861 env->regwptr[n - 8] = tmp;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
864 else if (n < 64) {
865 /* fprs */
866 *((uint32_t *)&env->fpr[n - 32]) = tmp;
867 } else {
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
869 switch (n) {
870 case 64: env->y = tmp; break;
871 case 65: PUT_PSR(env, tmp); break;
872 case 66: env->wim = tmp; break;
873 case 67: env->tbr = tmp; break;
874 case 68: env->pc = tmp; break;
875 case 69: env->npc = tmp; break;
876 case 70: env->fsr = tmp; break;
877 default: return 0;
880 return 4;
881 #else
882 else if (n < 64) {
883 /* f0-f31 */
884 env->fpr[n] = ldfl_p(mem_buf);
885 return 4;
886 } else if (n < 80) {
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
890 } else {
891 switch (n) {
892 case 80: env->pc = tmp; break;
893 case 81: env->npc = tmp; break;
894 case 82:
895 PUT_CCR(env, tmp >> 32);
896 env->asi = (tmp >> 24) & 0xff;
897 env->pstate = (tmp >> 8) & 0xfff;
898 PUT_CWP64(env, tmp & 0xff);
899 break;
900 case 83: env->fsr = tmp; break;
901 case 84: env->fprs = tmp; break;
902 case 85: env->y = tmp; break;
903 default: return 0;
906 return 8;
907 #endif
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
915 newer gdb. */
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
921 if (n < 16) {
922 /* Core integer register. */
923 GET_REG32(env->regs[n]);
925 if (n < 24) {
926 /* FPA registers. */
927 if (gdb_has_xml)
928 return 0;
929 memset(mem_buf, 0, 12);
930 return 12;
932 switch (n) {
933 case 24:
934 /* FPA status register. */
935 if (gdb_has_xml)
936 return 0;
937 GET_REG32(0);
938 case 25:
939 /* CPSR */
940 GET_REG32(cpsr_read(env));
942 /* Unknown register. */
943 return 0;
946 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
948 uint32_t tmp;
950 tmp = ldl_p(mem_buf);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
954 if (n == 15)
955 tmp &= ~1;
957 if (n < 16) {
958 /* Core integer register. */
959 env->regs[n] = tmp;
960 return 4;
962 if (n < 24) { /* 16-23 */
963 /* FPA registers (ignored). */
964 if (gdb_has_xml)
965 return 0;
966 return 12;
968 switch (n) {
969 case 24:
970 /* FPA status register (ignored). */
971 if (gdb_has_xml)
972 return 0;
973 return 4;
974 case 25:
975 /* CPSR */
976 cpsr_write (env, tmp, 0xffffffff);
977 return 4;
979 /* Unknown register. */
980 return 0;
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
991 if (n < 8) {
992 /* D0-D7 */
993 GET_REG32(env->dregs[n]);
994 } else if (n < 16) {
995 /* A0-A7 */
996 GET_REG32(env->aregs[n - 8]);
997 } else {
998 switch (n) {
999 case 16: GET_REG32(env->sr);
1000 case 17: GET_REG32(env->pc);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1005 return 0;
1008 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1010 uint32_t tmp;
1012 tmp = ldl_p(mem_buf);
1014 if (n < 8) {
1015 /* D0-D7 */
1016 env->dregs[n] = tmp;
1017 } else if (n < 16) {
1018 /* A0-A7 */
1019 env->aregs[n - 8] = tmp;
1020 } else {
1021 switch (n) {
1022 case 16: env->sr = tmp; break;
1023 case 17: env->pc = tmp; break;
1024 default: return 0;
1027 return 4;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1035 if (n < 32) {
1036 GET_REGL(env->active_tc.gpr[n]);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1039 if (n >= 38 && n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 GET_REGL(env->active_fpu.fpr[n - 38].d);
1042 else
1043 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1045 switch (n) {
1046 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1047 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1050 switch (n) {
1051 case 32: GET_REGL((int32_t)env->CP0_Status);
1052 case 33: GET_REGL(env->active_tc.LO[0]);
1053 case 34: GET_REGL(env->active_tc.HI[0]);
1054 case 35: GET_REGL(env->CP0_BadVAddr);
1055 case 36: GET_REGL((int32_t)env->CP0_Cause);
1056 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env->CP0_PRid);
1060 if (n >= 73 && n <= 88) {
1061 /* 16 embedded regs. */
1062 GET_REGL(0);
1065 return 0;
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm[] =
1071 float_round_nearest_even,
1072 float_round_to_zero,
1073 float_round_up,
1074 float_round_down
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1081 target_ulong tmp;
1083 tmp = ldtul_p(mem_buf);
1085 if (n < 32) {
1086 env->active_tc.gpr[n] = tmp;
1087 return sizeof(target_ulong);
1089 if (env->CP0_Config1 & (1 << CP0C1_FP)
1090 && n >= 38 && n < 73) {
1091 if (n < 70) {
1092 if (env->CP0_Status & (1 << CP0St_FR))
1093 env->active_fpu.fpr[n - 38].d = tmp;
1094 else
1095 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1097 switch (n) {
1098 case 70:
1099 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1105 #endif
1106 break;
1107 case 71: env->active_fpu.fcr0 = tmp; break;
1109 return sizeof(target_ulong);
1111 switch (n) {
1112 case 32: env->CP0_Status = tmp; break;
1113 case 33: env->active_tc.LO[0] = tmp; break;
1114 case 34: env->active_tc.HI[0] = tmp; break;
1115 case 35: env->CP0_BadVAddr = tmp; break;
1116 case 36: env->CP0_Cause = tmp; break;
1117 case 37:
1118 env->active_tc.PC = tmp & ~(target_ulong)1;
1119 if (tmp & 1) {
1120 env->hflags |= MIPS_HFLAG_M16;
1121 } else {
1122 env->hflags &= ~(MIPS_HFLAG_M16);
1124 break;
1125 case 72: /* fp, ignored */ break;
1126 default:
1127 if (n > 89)
1128 return 0;
1129 /* Other registers are readonly. Ignore writes. */
1130 break;
1133 return sizeof(target_ulong);
1135 #elif defined (TARGET_SH4)
1137 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1138 /* FIXME: We should use XML for this. */
1140 #define NUM_CORE_REGS 59
1142 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1144 if (n < 8) {
1145 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1146 GET_REGL(env->gregs[n + 16]);
1147 } else {
1148 GET_REGL(env->gregs[n]);
1150 } else if (n < 16) {
1151 GET_REGL(env->gregs[n - 8]);
1152 } else if (n >= 25 && n < 41) {
1153 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1154 } else if (n >= 43 && n < 51) {
1155 GET_REGL(env->gregs[n - 43]);
1156 } else if (n >= 51 && n < 59) {
1157 GET_REGL(env->gregs[n - (51 - 16)]);
1159 switch (n) {
1160 case 16: GET_REGL(env->pc);
1161 case 17: GET_REGL(env->pr);
1162 case 18: GET_REGL(env->gbr);
1163 case 19: GET_REGL(env->vbr);
1164 case 20: GET_REGL(env->mach);
1165 case 21: GET_REGL(env->macl);
1166 case 22: GET_REGL(env->sr);
1167 case 23: GET_REGL(env->fpul);
1168 case 24: GET_REGL(env->fpscr);
1169 case 41: GET_REGL(env->ssr);
1170 case 42: GET_REGL(env->spc);
1173 return 0;
1176 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1178 uint32_t tmp;
1180 tmp = ldl_p(mem_buf);
1182 if (n < 8) {
1183 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1184 env->gregs[n + 16] = tmp;
1185 } else {
1186 env->gregs[n] = tmp;
1188 return 4;
1189 } else if (n < 16) {
1190 env->gregs[n - 8] = tmp;
1191 return 4;
1192 } else if (n >= 25 && n < 41) {
1193 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1194 } else if (n >= 43 && n < 51) {
1195 env->gregs[n - 43] = tmp;
1196 return 4;
1197 } else if (n >= 51 && n < 59) {
1198 env->gregs[n - (51 - 16)] = tmp;
1199 return 4;
1201 switch (n) {
1202 case 16: env->pc = tmp;
1203 case 17: env->pr = tmp;
1204 case 18: env->gbr = tmp;
1205 case 19: env->vbr = tmp;
1206 case 20: env->mach = tmp;
1207 case 21: env->macl = tmp;
1208 case 22: env->sr = tmp;
1209 case 23: env->fpul = tmp;
1210 case 24: env->fpscr = tmp;
1211 case 41: env->ssr = tmp;
1212 case 42: env->spc = tmp;
1213 default: return 0;
1216 return 4;
1218 #elif defined (TARGET_MICROBLAZE)
1220 #define NUM_CORE_REGS (32 + 5)
1222 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1224 if (n < 32) {
1225 GET_REG32(env->regs[n]);
1226 } else {
1227 GET_REG32(env->sregs[n - 32]);
1229 return 0;
1232 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1234 uint32_t tmp;
1236 if (n > NUM_CORE_REGS)
1237 return 0;
1239 tmp = ldl_p(mem_buf);
1241 if (n < 32) {
1242 env->regs[n] = tmp;
1243 } else {
1244 env->sregs[n - 32] = tmp;
1246 return 4;
1248 #elif defined (TARGET_CRIS)
1250 #define NUM_CORE_REGS 49
1252 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1254 uint8_t srs;
1256 srs = env->pregs[PR_SRS];
1257 if (n < 16) {
1258 GET_REG32(env->regs[n]);
1261 if (n >= 21 && n < 32) {
1262 GET_REG32(env->pregs[n - 16]);
1264 if (n >= 33 && n < 49) {
1265 GET_REG32(env->sregs[srs][n - 33]);
1267 switch (n) {
1268 case 16: GET_REG8(env->pregs[0]);
1269 case 17: GET_REG8(env->pregs[1]);
1270 case 18: GET_REG32(env->pregs[2]);
1271 case 19: GET_REG8(srs);
1272 case 20: GET_REG16(env->pregs[4]);
1273 case 32: GET_REG32(env->pc);
1276 return 0;
1279 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1281 uint32_t tmp;
1283 if (n > 49)
1284 return 0;
1286 tmp = ldl_p(mem_buf);
1288 if (n < 16) {
1289 env->regs[n] = tmp;
1292 if (n >= 21 && n < 32) {
1293 env->pregs[n - 16] = tmp;
1296 /* FIXME: Should support function regs be writable? */
1297 switch (n) {
1298 case 16: return 1;
1299 case 17: return 1;
1300 case 18: env->pregs[PR_PID] = tmp; break;
1301 case 19: return 1;
1302 case 20: return 2;
1303 case 32: env->pc = tmp; break;
1306 return 4;
1308 #elif defined (TARGET_ALPHA)
1310 #define NUM_CORE_REGS 65
1312 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1314 if (n < 31) {
1315 GET_REGL(env->ir[n]);
1317 else if (n == 31) {
1318 GET_REGL(0);
1320 else if (n<63) {
1321 uint64_t val;
1323 val = *((uint64_t *)&env->fir[n-32]);
1324 GET_REGL(val);
1326 else if (n==63) {
1327 GET_REGL(env->fpcr);
1329 else if (n==64) {
1330 GET_REGL(env->pc);
1332 else {
1333 GET_REGL(0);
1336 return 0;
1339 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1341 target_ulong tmp;
1342 tmp = ldtul_p(mem_buf);
1344 if (n < 31) {
1345 env->ir[n] = tmp;
1348 if (n > 31 && n < 63) {
1349 env->fir[n - 32] = ldfl_p(mem_buf);
1352 if (n == 64 ) {
1353 env->pc=tmp;
1356 return 8;
1358 #elif defined (TARGET_S390X)
1360 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1362 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1364 switch (n) {
1365 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1366 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1367 case S390_R0_REGNUM ... S390_R15_REGNUM:
1368 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1369 case S390_A0_REGNUM ... S390_A15_REGNUM:
1370 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1371 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1372 case S390_F0_REGNUM ... S390_F15_REGNUM:
1373 /* XXX */
1374 break;
1375 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1376 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1379 return 0;
1382 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1384 target_ulong tmpl;
1385 uint32_t tmp32;
1386 int r = 8;
1387 tmpl = ldtul_p(mem_buf);
1388 tmp32 = ldl_p(mem_buf);
1390 switch (n) {
1391 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1392 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1393 case S390_R0_REGNUM ... S390_R15_REGNUM:
1394 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1395 case S390_A0_REGNUM ... S390_A15_REGNUM:
1396 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1397 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1398 case S390_F0_REGNUM ... S390_F15_REGNUM:
1399 /* XXX */
1400 break;
1401 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1402 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1405 return r;
1407 #else
1409 #define NUM_CORE_REGS 0
1411 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1413 return 0;
1416 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1418 return 0;
1421 #endif
1423 static int num_g_regs = NUM_CORE_REGS;
1425 #ifdef GDB_CORE_XML
1426 /* Encode data using the encoding for 'x' packets. */
1427 static int memtox(char *buf, const char *mem, int len)
1429 char *p = buf;
1430 char c;
1432 while (len--) {
1433 c = *(mem++);
1434 switch (c) {
1435 case '#': case '$': case '*': case '}':
1436 *(p++) = '}';
1437 *(p++) = c ^ 0x20;
1438 break;
1439 default:
1440 *(p++) = c;
1441 break;
1444 return p - buf;
1447 static const char *get_feature_xml(const char *p, const char **newp)
1449 extern const char *const xml_builtin[][2];
1450 size_t len;
1451 int i;
1452 const char *name;
1453 static char target_xml[1024];
1455 len = 0;
1456 while (p[len] && p[len] != ':')
1457 len++;
1458 *newp = p + len;
1460 name = NULL;
1461 if (strncmp(p, "target.xml", len) == 0) {
1462 /* Generate the XML description for this CPU. */
1463 if (!target_xml[0]) {
1464 GDBRegisterState *r;
1466 snprintf(target_xml, sizeof(target_xml),
1467 "<?xml version=\"1.0\"?>"
1468 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1469 "<target>"
1470 "<xi:include href=\"%s\"/>",
1471 GDB_CORE_XML);
1473 for (r = first_cpu->gdb_regs; r; r = r->next) {
1474 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1475 pstrcat(target_xml, sizeof(target_xml), r->xml);
1476 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1478 pstrcat(target_xml, sizeof(target_xml), "</target>");
1480 return target_xml;
1482 for (i = 0; ; i++) {
1483 name = xml_builtin[i][0];
1484 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1485 break;
1487 return name ? xml_builtin[i][1] : NULL;
1489 #endif
1491 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1493 GDBRegisterState *r;
1495 if (reg < NUM_CORE_REGS)
1496 return cpu_gdb_read_register(env, mem_buf, reg);
1498 for (r = env->gdb_regs; r; r = r->next) {
1499 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1500 return r->get_reg(env, mem_buf, reg - r->base_reg);
1503 return 0;
1506 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1508 GDBRegisterState *r;
1510 if (reg < NUM_CORE_REGS)
1511 return cpu_gdb_write_register(env, mem_buf, reg);
1513 for (r = env->gdb_regs; r; r = r->next) {
1514 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1515 return r->set_reg(env, mem_buf, reg - r->base_reg);
1518 return 0;
1521 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1522 specifies the first register number and these registers are included in
1523 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1524 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1527 void gdb_register_coprocessor(CPUState * env,
1528 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1529 int num_regs, const char *xml, int g_pos)
1531 GDBRegisterState *s;
1532 GDBRegisterState **p;
1533 static int last_reg = NUM_CORE_REGS;
1535 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1536 s->base_reg = last_reg;
1537 s->num_regs = num_regs;
1538 s->get_reg = get_reg;
1539 s->set_reg = set_reg;
1540 s->xml = xml;
1541 p = &env->gdb_regs;
1542 while (*p) {
1543 /* Check for duplicates. */
1544 if (strcmp((*p)->xml, xml) == 0)
1545 return;
1546 p = &(*p)->next;
1548 /* Add to end of list. */
1549 last_reg += num_regs;
1550 *p = s;
1551 if (g_pos) {
1552 if (g_pos != s->base_reg) {
1553 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1554 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1555 } else {
1556 num_g_regs = last_reg;
1561 #ifndef CONFIG_USER_ONLY
1562 static const int xlat_gdb_type[] = {
1563 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1564 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1565 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1567 #endif
1569 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1571 CPUState *env;
1572 int err = 0;
1574 if (kvm_enabled())
1575 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1577 switch (type) {
1578 case GDB_BREAKPOINT_SW:
1579 case GDB_BREAKPOINT_HW:
1580 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1581 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1582 if (err)
1583 break;
1585 return err;
1586 #ifndef CONFIG_USER_ONLY
1587 case GDB_WATCHPOINT_WRITE:
1588 case GDB_WATCHPOINT_READ:
1589 case GDB_WATCHPOINT_ACCESS:
1590 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1591 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1592 NULL);
1593 if (err)
1594 break;
1596 return err;
1597 #endif
1598 default:
1599 return -ENOSYS;
1603 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1605 CPUState *env;
1606 int err = 0;
1608 if (kvm_enabled())
1609 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1611 switch (type) {
1612 case GDB_BREAKPOINT_SW:
1613 case GDB_BREAKPOINT_HW:
1614 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1615 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1616 if (err)
1617 break;
1619 return err;
1620 #ifndef CONFIG_USER_ONLY
1621 case GDB_WATCHPOINT_WRITE:
1622 case GDB_WATCHPOINT_READ:
1623 case GDB_WATCHPOINT_ACCESS:
1624 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1625 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1626 if (err)
1627 break;
1629 return err;
1630 #endif
1631 default:
1632 return -ENOSYS;
1636 static void gdb_breakpoint_remove_all(void)
1638 CPUState *env;
1640 if (kvm_enabled()) {
1641 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1642 return;
1645 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1646 cpu_breakpoint_remove_all(env, BP_GDB);
1647 #ifndef CONFIG_USER_ONLY
1648 cpu_watchpoint_remove_all(env, BP_GDB);
1649 #endif
1653 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1655 #if defined(TARGET_I386)
1656 cpu_synchronize_state(s->c_cpu);
1657 s->c_cpu->eip = pc;
1658 #elif defined (TARGET_PPC)
1659 s->c_cpu->nip = pc;
1660 #elif defined (TARGET_SPARC)
1661 s->c_cpu->pc = pc;
1662 s->c_cpu->npc = pc + 4;
1663 #elif defined (TARGET_ARM)
1664 s->c_cpu->regs[15] = pc;
1665 #elif defined (TARGET_SH4)
1666 s->c_cpu->pc = pc;
1667 #elif defined (TARGET_MIPS)
1668 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1669 if (pc & 1) {
1670 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1671 } else {
1672 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1674 #elif defined (TARGET_MICROBLAZE)
1675 s->c_cpu->sregs[SR_PC] = pc;
1676 #elif defined (TARGET_CRIS)
1677 s->c_cpu->pc = pc;
1678 #elif defined (TARGET_ALPHA)
1679 s->c_cpu->pc = pc;
1680 #elif defined (TARGET_S390X)
1681 cpu_synchronize_state(s->c_cpu);
1682 s->c_cpu->psw.addr = pc;
1683 #endif
1686 static inline int gdb_id(CPUState *env)
1688 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1689 return env->host_tid;
1690 #else
1691 return env->cpu_index + 1;
1692 #endif
1695 static CPUState *find_cpu(uint32_t thread_id)
1697 CPUState *env;
1699 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1700 if (gdb_id(env) == thread_id) {
1701 return env;
1705 return NULL;
1708 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1710 CPUState *env;
1711 const char *p;
1712 uint32_t thread;
1713 int ch, reg_size, type, res;
1714 char buf[MAX_PACKET_LENGTH];
1715 uint8_t mem_buf[MAX_PACKET_LENGTH];
1716 uint8_t *registers;
1717 target_ulong addr, len;
1719 #ifdef DEBUG_GDB
1720 printf("command='%s'\n", line_buf);
1721 #endif
1722 p = line_buf;
1723 ch = *p++;
1724 switch(ch) {
1725 case '?':
1726 /* TODO: Make this return the correct value for user-mode. */
1727 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1728 gdb_id(s->c_cpu));
1729 put_packet(s, buf);
1730 /* Remove all the breakpoints when this query is issued,
1731 * because gdb is doing and initial connect and the state
1732 * should be cleaned up.
1734 gdb_breakpoint_remove_all();
1735 break;
1736 case 'c':
1737 if (*p != '\0') {
1738 addr = strtoull(p, (char **)&p, 16);
1739 gdb_set_cpu_pc(s, addr);
1741 s->signal = 0;
1742 gdb_continue(s);
1743 return RS_IDLE;
1744 case 'C':
1745 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1746 if (s->signal == -1)
1747 s->signal = 0;
1748 gdb_continue(s);
1749 return RS_IDLE;
1750 case 'v':
1751 if (strncmp(p, "Cont", 4) == 0) {
1752 int res_signal, res_thread;
1754 p += 4;
1755 if (*p == '?') {
1756 put_packet(s, "vCont;c;C;s;S");
1757 break;
1759 res = 0;
1760 res_signal = 0;
1761 res_thread = 0;
1762 while (*p) {
1763 int action, signal;
1765 if (*p++ != ';') {
1766 res = 0;
1767 break;
1769 action = *p++;
1770 signal = 0;
1771 if (action == 'C' || action == 'S') {
1772 signal = strtoul(p, (char **)&p, 16);
1773 } else if (action != 'c' && action != 's') {
1774 res = 0;
1775 break;
1777 thread = 0;
1778 if (*p == ':') {
1779 thread = strtoull(p+1, (char **)&p, 16);
1781 action = tolower(action);
1782 if (res == 0 || (res == 'c' && action == 's')) {
1783 res = action;
1784 res_signal = signal;
1785 res_thread = thread;
1788 if (res) {
1789 if (res_thread != -1 && res_thread != 0) {
1790 env = find_cpu(res_thread);
1791 if (env == NULL) {
1792 put_packet(s, "E22");
1793 break;
1795 s->c_cpu = env;
1797 if (res == 's') {
1798 cpu_single_step(s->c_cpu, sstep_flags);
1800 s->signal = res_signal;
1801 gdb_continue(s);
1802 return RS_IDLE;
1804 break;
1805 } else {
1806 goto unknown_command;
1808 case 'k':
1809 /* Kill the target */
1810 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1811 exit(0);
1812 case 'D':
1813 /* Detach packet */
1814 gdb_breakpoint_remove_all();
1815 gdb_continue(s);
1816 put_packet(s, "OK");
1817 break;
1818 case 's':
1819 if (*p != '\0') {
1820 addr = strtoull(p, (char **)&p, 16);
1821 gdb_set_cpu_pc(s, addr);
1823 cpu_single_step(s->c_cpu, sstep_flags);
1824 gdb_continue(s);
1825 return RS_IDLE;
1826 case 'F':
1828 target_ulong ret;
1829 target_ulong err;
1831 ret = strtoull(p, (char **)&p, 16);
1832 if (*p == ',') {
1833 p++;
1834 err = strtoull(p, (char **)&p, 16);
1835 } else {
1836 err = 0;
1838 if (*p == ',')
1839 p++;
1840 type = *p;
1841 if (gdb_current_syscall_cb)
1842 gdb_current_syscall_cb(s->c_cpu, ret, err);
1843 if (type == 'C') {
1844 put_packet(s, "T02");
1845 } else {
1846 gdb_continue(s);
1849 break;
1850 case 'g':
1851 cpu_synchronize_state(s->g_cpu);
1852 len = 0;
1853 for (addr = 0; addr < num_g_regs; addr++) {
1854 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1855 len += reg_size;
1857 memtohex(buf, mem_buf, len);
1858 put_packet(s, buf);
1859 break;
1860 case 'G':
1861 cpu_synchronize_state(s->g_cpu);
1862 registers = mem_buf;
1863 len = strlen(p) / 2;
1864 hextomem((uint8_t *)registers, p, len);
1865 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1866 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1867 len -= reg_size;
1868 registers += reg_size;
1870 put_packet(s, "OK");
1871 break;
1872 case 'm':
1873 addr = strtoull(p, (char **)&p, 16);
1874 if (*p == ',')
1875 p++;
1876 len = strtoull(p, NULL, 16);
1877 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1878 put_packet (s, "E14");
1879 } else {
1880 memtohex(buf, mem_buf, len);
1881 put_packet(s, buf);
1883 break;
1884 case 'M':
1885 addr = strtoull(p, (char **)&p, 16);
1886 if (*p == ',')
1887 p++;
1888 len = strtoull(p, (char **)&p, 16);
1889 if (*p == ':')
1890 p++;
1891 hextomem(mem_buf, p, len);
1892 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1893 put_packet(s, "E14");
1894 else
1895 put_packet(s, "OK");
1896 break;
1897 case 'p':
1898 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1899 This works, but can be very slow. Anything new enough to
1900 understand XML also knows how to use this properly. */
1901 if (!gdb_has_xml)
1902 goto unknown_command;
1903 addr = strtoull(p, (char **)&p, 16);
1904 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1905 if (reg_size) {
1906 memtohex(buf, mem_buf, reg_size);
1907 put_packet(s, buf);
1908 } else {
1909 put_packet(s, "E14");
1911 break;
1912 case 'P':
1913 if (!gdb_has_xml)
1914 goto unknown_command;
1915 addr = strtoull(p, (char **)&p, 16);
1916 if (*p == '=')
1917 p++;
1918 reg_size = strlen(p) / 2;
1919 hextomem(mem_buf, p, reg_size);
1920 gdb_write_register(s->g_cpu, mem_buf, addr);
1921 put_packet(s, "OK");
1922 break;
1923 case 'Z':
1924 case 'z':
1925 type = strtoul(p, (char **)&p, 16);
1926 if (*p == ',')
1927 p++;
1928 addr = strtoull(p, (char **)&p, 16);
1929 if (*p == ',')
1930 p++;
1931 len = strtoull(p, (char **)&p, 16);
1932 if (ch == 'Z')
1933 res = gdb_breakpoint_insert(addr, len, type);
1934 else
1935 res = gdb_breakpoint_remove(addr, len, type);
1936 if (res >= 0)
1937 put_packet(s, "OK");
1938 else if (res == -ENOSYS)
1939 put_packet(s, "");
1940 else
1941 put_packet(s, "E22");
1942 break;
1943 case 'H':
1944 type = *p++;
1945 thread = strtoull(p, (char **)&p, 16);
1946 if (thread == -1 || thread == 0) {
1947 put_packet(s, "OK");
1948 break;
1950 env = find_cpu(thread);
1951 if (env == NULL) {
1952 put_packet(s, "E22");
1953 break;
1955 switch (type) {
1956 case 'c':
1957 s->c_cpu = env;
1958 put_packet(s, "OK");
1959 break;
1960 case 'g':
1961 s->g_cpu = env;
1962 put_packet(s, "OK");
1963 break;
1964 default:
1965 put_packet(s, "E22");
1966 break;
1968 break;
1969 case 'T':
1970 thread = strtoull(p, (char **)&p, 16);
1971 env = find_cpu(thread);
1973 if (env != NULL) {
1974 put_packet(s, "OK");
1975 } else {
1976 put_packet(s, "E22");
1978 break;
1979 case 'q':
1980 case 'Q':
1981 /* parse any 'q' packets here */
1982 if (!strcmp(p,"qemu.sstepbits")) {
1983 /* Query Breakpoint bit definitions */
1984 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1985 SSTEP_ENABLE,
1986 SSTEP_NOIRQ,
1987 SSTEP_NOTIMER);
1988 put_packet(s, buf);
1989 break;
1990 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1991 /* Display or change the sstep_flags */
1992 p += 10;
1993 if (*p != '=') {
1994 /* Display current setting */
1995 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1996 put_packet(s, buf);
1997 break;
1999 p++;
2000 type = strtoul(p, (char **)&p, 16);
2001 sstep_flags = type;
2002 put_packet(s, "OK");
2003 break;
2004 } else if (strcmp(p,"C") == 0) {
2005 /* "Current thread" remains vague in the spec, so always return
2006 * the first CPU (gdb returns the first thread). */
2007 put_packet(s, "QC1");
2008 break;
2009 } else if (strcmp(p,"fThreadInfo") == 0) {
2010 s->query_cpu = first_cpu;
2011 goto report_cpuinfo;
2012 } else if (strcmp(p,"sThreadInfo") == 0) {
2013 report_cpuinfo:
2014 if (s->query_cpu) {
2015 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2016 put_packet(s, buf);
2017 s->query_cpu = s->query_cpu->next_cpu;
2018 } else
2019 put_packet(s, "l");
2020 break;
2021 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2022 thread = strtoull(p+16, (char **)&p, 16);
2023 env = find_cpu(thread);
2024 if (env != NULL) {
2025 cpu_synchronize_state(env);
2026 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2027 "CPU#%d [%s]", env->cpu_index,
2028 env->halted ? "halted " : "running");
2029 memtohex(buf, mem_buf, len);
2030 put_packet(s, buf);
2032 break;
2034 #ifdef CONFIG_USER_ONLY
2035 else if (strncmp(p, "Offsets", 7) == 0) {
2036 TaskState *ts = s->c_cpu->opaque;
2038 snprintf(buf, sizeof(buf),
2039 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2040 ";Bss=" TARGET_ABI_FMT_lx,
2041 ts->info->code_offset,
2042 ts->info->data_offset,
2043 ts->info->data_offset);
2044 put_packet(s, buf);
2045 break;
2047 #else /* !CONFIG_USER_ONLY */
2048 else if (strncmp(p, "Rcmd,", 5) == 0) {
2049 int len = strlen(p + 5);
2051 if ((len % 2) != 0) {
2052 put_packet(s, "E01");
2053 break;
2055 hextomem(mem_buf, p + 5, len);
2056 len = len / 2;
2057 mem_buf[len++] = 0;
2058 qemu_chr_read(s->mon_chr, mem_buf, len);
2059 put_packet(s, "OK");
2060 break;
2062 #endif /* !CONFIG_USER_ONLY */
2063 if (strncmp(p, "Supported", 9) == 0) {
2064 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2065 #ifdef GDB_CORE_XML
2066 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2067 #endif
2068 put_packet(s, buf);
2069 break;
2071 #ifdef GDB_CORE_XML
2072 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2073 const char *xml;
2074 target_ulong total_len;
2076 gdb_has_xml = 1;
2077 p += 19;
2078 xml = get_feature_xml(p, &p);
2079 if (!xml) {
2080 snprintf(buf, sizeof(buf), "E00");
2081 put_packet(s, buf);
2082 break;
2085 if (*p == ':')
2086 p++;
2087 addr = strtoul(p, (char **)&p, 16);
2088 if (*p == ',')
2089 p++;
2090 len = strtoul(p, (char **)&p, 16);
2092 total_len = strlen(xml);
2093 if (addr > total_len) {
2094 snprintf(buf, sizeof(buf), "E00");
2095 put_packet(s, buf);
2096 break;
2098 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2099 len = (MAX_PACKET_LENGTH - 5) / 2;
2100 if (len < total_len - addr) {
2101 buf[0] = 'm';
2102 len = memtox(buf + 1, xml + addr, len);
2103 } else {
2104 buf[0] = 'l';
2105 len = memtox(buf + 1, xml + addr, total_len - addr);
2107 put_packet_binary(s, buf, len + 1);
2108 break;
2110 #endif
2111 /* Unrecognised 'q' command. */
2112 goto unknown_command;
2114 default:
2115 unknown_command:
2116 /* put empty packet */
2117 buf[0] = '\0';
2118 put_packet(s, buf);
2119 break;
2121 return RS_IDLE;
2124 void gdb_set_stop_cpu(CPUState *env)
2126 gdbserver_state->c_cpu = env;
2127 gdbserver_state->g_cpu = env;
2130 #ifndef CONFIG_USER_ONLY
2131 static void gdb_vm_state_change(void *opaque, int running, int reason)
2133 GDBState *s = gdbserver_state;
2134 CPUState *env = s->c_cpu;
2135 char buf[256];
2136 const char *type;
2137 int ret;
2139 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2140 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2141 return;
2143 /* disable single step if it was enable */
2144 cpu_single_step(env, 0);
2146 if (reason == EXCP_DEBUG) {
2147 if (env->watchpoint_hit) {
2148 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2149 case BP_MEM_READ:
2150 type = "r";
2151 break;
2152 case BP_MEM_ACCESS:
2153 type = "a";
2154 break;
2155 default:
2156 type = "";
2157 break;
2159 snprintf(buf, sizeof(buf),
2160 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2161 GDB_SIGNAL_TRAP, gdb_id(env), type,
2162 env->watchpoint_hit->vaddr);
2163 put_packet(s, buf);
2164 env->watchpoint_hit = NULL;
2165 return;
2167 tb_flush(env);
2168 ret = GDB_SIGNAL_TRAP;
2169 } else {
2170 ret = GDB_SIGNAL_INT;
2172 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2173 put_packet(s, buf);
2175 #endif
2177 /* Send a gdb syscall request.
2178 This accepts limited printf-style format specifiers, specifically:
2179 %x - target_ulong argument printed in hex.
2180 %lx - 64-bit argument printed in hex.
2181 %s - string pointer (target_ulong) and length (int) pair. */
2182 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2184 va_list va;
2185 char buf[256];
2186 char *p;
2187 target_ulong addr;
2188 uint64_t i64;
2189 GDBState *s;
2191 s = gdbserver_state;
2192 if (!s)
2193 return;
2194 gdb_current_syscall_cb = cb;
2195 s->state = RS_SYSCALL;
2196 #ifndef CONFIG_USER_ONLY
2197 vm_stop(EXCP_DEBUG);
2198 #endif
2199 s->state = RS_IDLE;
2200 va_start(va, fmt);
2201 p = buf;
2202 *(p++) = 'F';
2203 while (*fmt) {
2204 if (*fmt == '%') {
2205 fmt++;
2206 switch (*fmt++) {
2207 case 'x':
2208 addr = va_arg(va, target_ulong);
2209 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2210 break;
2211 case 'l':
2212 if (*(fmt++) != 'x')
2213 goto bad_format;
2214 i64 = va_arg(va, uint64_t);
2215 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2216 break;
2217 case 's':
2218 addr = va_arg(va, target_ulong);
2219 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2220 addr, va_arg(va, int));
2221 break;
2222 default:
2223 bad_format:
2224 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2225 fmt - 1);
2226 break;
2228 } else {
2229 *(p++) = *(fmt++);
2232 *p = 0;
2233 va_end(va);
2234 put_packet(s, buf);
2235 #ifdef CONFIG_USER_ONLY
2236 gdb_handlesig(s->c_cpu, 0);
2237 #else
2238 cpu_exit(s->c_cpu);
2239 #endif
2242 static void gdb_read_byte(GDBState *s, int ch)
2244 int i, csum;
2245 uint8_t reply;
2247 #ifndef CONFIG_USER_ONLY
2248 if (s->last_packet_len) {
2249 /* Waiting for a response to the last packet. If we see the start
2250 of a new command then abandon the previous response. */
2251 if (ch == '-') {
2252 #ifdef DEBUG_GDB
2253 printf("Got NACK, retransmitting\n");
2254 #endif
2255 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2257 #ifdef DEBUG_GDB
2258 else if (ch == '+')
2259 printf("Got ACK\n");
2260 else
2261 printf("Got '%c' when expecting ACK/NACK\n", ch);
2262 #endif
2263 if (ch == '+' || ch == '$')
2264 s->last_packet_len = 0;
2265 if (ch != '$')
2266 return;
2268 if (vm_running) {
2269 /* when the CPU is running, we cannot do anything except stop
2270 it when receiving a char */
2271 vm_stop(EXCP_INTERRUPT);
2272 } else
2273 #endif
2275 switch(s->state) {
2276 case RS_IDLE:
2277 if (ch == '$') {
2278 s->line_buf_index = 0;
2279 s->state = RS_GETLINE;
2281 break;
2282 case RS_GETLINE:
2283 if (ch == '#') {
2284 s->state = RS_CHKSUM1;
2285 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2286 s->state = RS_IDLE;
2287 } else {
2288 s->line_buf[s->line_buf_index++] = ch;
2290 break;
2291 case RS_CHKSUM1:
2292 s->line_buf[s->line_buf_index] = '\0';
2293 s->line_csum = fromhex(ch) << 4;
2294 s->state = RS_CHKSUM2;
2295 break;
2296 case RS_CHKSUM2:
2297 s->line_csum |= fromhex(ch);
2298 csum = 0;
2299 for(i = 0; i < s->line_buf_index; i++) {
2300 csum += s->line_buf[i];
2302 if (s->line_csum != (csum & 0xff)) {
2303 reply = '-';
2304 put_buffer(s, &reply, 1);
2305 s->state = RS_IDLE;
2306 } else {
2307 reply = '+';
2308 put_buffer(s, &reply, 1);
2309 s->state = gdb_handle_packet(s, s->line_buf);
2311 break;
2312 default:
2313 abort();
2318 #ifdef CONFIG_USER_ONLY
2320 gdb_queuesig (void)
2322 GDBState *s;
2324 s = gdbserver_state;
2326 if (gdbserver_fd < 0 || s->fd < 0)
2327 return 0;
2328 else
2329 return 1;
2333 gdb_handlesig (CPUState *env, int sig)
2335 GDBState *s;
2336 char buf[256];
2337 int n;
2339 s = gdbserver_state;
2340 if (gdbserver_fd < 0 || s->fd < 0)
2341 return sig;
2343 /* disable single step if it was enabled */
2344 cpu_single_step(env, 0);
2345 tb_flush(env);
2347 if (sig != 0)
2349 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2350 put_packet(s, buf);
2352 /* put_packet() might have detected that the peer terminated the
2353 connection. */
2354 if (s->fd < 0)
2355 return sig;
2357 sig = 0;
2358 s->state = RS_IDLE;
2359 s->running_state = 0;
2360 while (s->running_state == 0) {
2361 n = read (s->fd, buf, 256);
2362 if (n > 0)
2364 int i;
2366 for (i = 0; i < n; i++)
2367 gdb_read_byte (s, buf[i]);
2369 else if (n == 0 || errno != EAGAIN)
2371 /* XXX: Connection closed. Should probably wait for annother
2372 connection before continuing. */
2373 return sig;
2376 sig = s->signal;
2377 s->signal = 0;
2378 return sig;
2381 /* Tell the remote gdb that the process has exited. */
2382 void gdb_exit(CPUState *env, int code)
2384 GDBState *s;
2385 char buf[4];
2387 s = gdbserver_state;
2388 if (gdbserver_fd < 0 || s->fd < 0)
2389 return;
2391 snprintf(buf, sizeof(buf), "W%02x", code);
2392 put_packet(s, buf);
2395 /* Tell the remote gdb that the process has exited due to SIG. */
2396 void gdb_signalled(CPUState *env, int sig)
2398 GDBState *s;
2399 char buf[4];
2401 s = gdbserver_state;
2402 if (gdbserver_fd < 0 || s->fd < 0)
2403 return;
2405 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2406 put_packet(s, buf);
2409 static void gdb_accept(void)
2411 GDBState *s;
2412 struct sockaddr_in sockaddr;
2413 socklen_t len;
2414 int val, fd;
2416 for(;;) {
2417 len = sizeof(sockaddr);
2418 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2419 if (fd < 0 && errno != EINTR) {
2420 perror("accept");
2421 return;
2422 } else if (fd >= 0) {
2423 #ifndef _WIN32
2424 fcntl(fd, F_SETFD, FD_CLOEXEC);
2425 #endif
2426 break;
2430 /* set short latency */
2431 val = 1;
2432 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2434 s = qemu_mallocz(sizeof(GDBState));
2435 s->c_cpu = first_cpu;
2436 s->g_cpu = first_cpu;
2437 s->fd = fd;
2438 gdb_has_xml = 0;
2440 gdbserver_state = s;
2442 fcntl(fd, F_SETFL, O_NONBLOCK);
2445 static int gdbserver_open(int port)
2447 struct sockaddr_in sockaddr;
2448 int fd, val, ret;
2450 fd = socket(PF_INET, SOCK_STREAM, 0);
2451 if (fd < 0) {
2452 perror("socket");
2453 return -1;
2455 #ifndef _WIN32
2456 fcntl(fd, F_SETFD, FD_CLOEXEC);
2457 #endif
2459 /* allow fast reuse */
2460 val = 1;
2461 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2463 sockaddr.sin_family = AF_INET;
2464 sockaddr.sin_port = htons(port);
2465 sockaddr.sin_addr.s_addr = 0;
2466 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2467 if (ret < 0) {
2468 perror("bind");
2469 return -1;
2471 ret = listen(fd, 0);
2472 if (ret < 0) {
2473 perror("listen");
2474 return -1;
2476 return fd;
2479 int gdbserver_start(int port)
2481 gdbserver_fd = gdbserver_open(port);
2482 if (gdbserver_fd < 0)
2483 return -1;
2484 /* accept connections */
2485 gdb_accept();
2486 return 0;
2489 /* Disable gdb stub for child processes. */
2490 void gdbserver_fork(CPUState *env)
2492 GDBState *s = gdbserver_state;
2493 if (gdbserver_fd < 0 || s->fd < 0)
2494 return;
2495 close(s->fd);
2496 s->fd = -1;
2497 cpu_breakpoint_remove_all(env, BP_GDB);
2498 cpu_watchpoint_remove_all(env, BP_GDB);
2500 #else
2501 static int gdb_chr_can_receive(void *opaque)
2503 /* We can handle an arbitrarily large amount of data.
2504 Pick the maximum packet size, which is as good as anything. */
2505 return MAX_PACKET_LENGTH;
2508 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2510 int i;
2512 for (i = 0; i < size; i++) {
2513 gdb_read_byte(gdbserver_state, buf[i]);
2517 static void gdb_chr_event(void *opaque, int event)
2519 switch (event) {
2520 case CHR_EVENT_OPENED:
2521 vm_stop(EXCP_INTERRUPT);
2522 gdb_has_xml = 0;
2523 break;
2524 default:
2525 break;
2529 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2531 char buf[MAX_PACKET_LENGTH];
2533 buf[0] = 'O';
2534 if (len > (MAX_PACKET_LENGTH/2) - 1)
2535 len = (MAX_PACKET_LENGTH/2) - 1;
2536 memtohex(buf + 1, (uint8_t *)msg, len);
2537 put_packet(s, buf);
2540 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2542 const char *p = (const char *)buf;
2543 int max_sz;
2545 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2546 for (;;) {
2547 if (len <= max_sz) {
2548 gdb_monitor_output(gdbserver_state, p, len);
2549 break;
2551 gdb_monitor_output(gdbserver_state, p, max_sz);
2552 p += max_sz;
2553 len -= max_sz;
2555 return len;
2558 #ifndef _WIN32
2559 static void gdb_sigterm_handler(int signal)
2561 if (vm_running)
2562 vm_stop(EXCP_INTERRUPT);
2564 #endif
2566 int gdbserver_start(const char *device)
2568 GDBState *s;
2569 char gdbstub_device_name[128];
2570 CharDriverState *chr = NULL;
2571 CharDriverState *mon_chr;
2573 if (!device)
2574 return -1;
2575 if (strcmp(device, "none") != 0) {
2576 if (strstart(device, "tcp:", NULL)) {
2577 /* enforce required TCP attributes */
2578 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2579 "%s,nowait,nodelay,server", device);
2580 device = gdbstub_device_name;
2582 #ifndef _WIN32
2583 else if (strcmp(device, "stdio") == 0) {
2584 struct sigaction act;
2586 memset(&act, 0, sizeof(act));
2587 act.sa_handler = gdb_sigterm_handler;
2588 sigaction(SIGINT, &act, NULL);
2590 #endif
2591 chr = qemu_chr_open("gdb", device, NULL);
2592 if (!chr)
2593 return -1;
2595 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2596 gdb_chr_event, NULL);
2599 s = gdbserver_state;
2600 if (!s) {
2601 s = qemu_mallocz(sizeof(GDBState));
2602 gdbserver_state = s;
2604 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2606 /* Initialize a monitor terminal for gdb */
2607 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2608 mon_chr->chr_write = gdb_monitor_write;
2609 monitor_init(mon_chr, 0);
2610 } else {
2611 if (s->chr)
2612 qemu_chr_close(s->chr);
2613 mon_chr = s->mon_chr;
2614 memset(s, 0, sizeof(GDBState));
2616 s->c_cpu = first_cpu;
2617 s->g_cpu = first_cpu;
2618 s->chr = chr;
2619 s->state = chr ? RS_IDLE : RS_INACTIVE;
2620 s->mon_chr = mon_chr;
2622 return 0;
2624 #endif