2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 env
->current_tb
= NULL
;
60 longjmp(env
->jmp_env
, 1);
63 /* exit the current TB from a signal handler. The host registers are
64 restored in a state compatible with the CPU emulator
66 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
68 #if !defined(CONFIG_SOFTMMU)
70 struct ucontext
*uc
= puc
;
71 #elif defined(__OpenBSD__)
72 struct sigcontext
*uc
= puc
;
78 /* XXX: restore cpu registers saved in host registers */
80 #if !defined(CONFIG_SOFTMMU)
82 /* XXX: use siglongjmp ? */
84 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
85 #elif defined(__OpenBSD__)
86 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
90 env
->exception_index
= -1;
91 longjmp(env
->jmp_env
, 1);
94 /* Execute the code without caching the generated code. An interpreter
95 could be used if available. */
96 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
98 unsigned long next_tb
;
101 /* Should never happen.
102 We only end up here when an existing TB is too long. */
103 if (max_cycles
> CF_COUNT_MASK
)
104 max_cycles
= CF_COUNT_MASK
;
106 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
108 env
->current_tb
= tb
;
109 /* execute the generated code */
110 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
111 env
->current_tb
= NULL
;
113 if ((next_tb
& 3) == 2) {
114 /* Restore PC. This may happen if async event occurs before
115 the TB starts executing. */
116 cpu_pc_from_tb(env
, tb
);
118 tb_phys_invalidate(tb
, -1);
122 static TranslationBlock
*tb_find_slow(target_ulong pc
,
123 target_ulong cs_base
,
126 TranslationBlock
*tb
, **ptb1
;
128 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
130 tb_invalidated_flag
= 0;
132 /* find translated block using physical mappings */
133 phys_pc
= get_phys_addr_code(env
, pc
);
134 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
136 h
= tb_phys_hash_func(phys_pc
);
137 ptb1
= &tb_phys_hash
[h
];
143 tb
->page_addr
[0] == phys_page1
&&
144 tb
->cs_base
== cs_base
&&
145 tb
->flags
== flags
) {
146 /* check next page if needed */
147 if (tb
->page_addr
[1] != -1) {
148 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
150 phys_page2
= get_phys_addr_code(env
, virt_page2
);
151 if (tb
->page_addr
[1] == phys_page2
)
157 ptb1
= &tb
->phys_hash_next
;
160 /* if no translated code available, then translate it now */
161 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
164 /* we add the TB in the virtual pc hash table */
165 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
169 static inline TranslationBlock
*tb_find_fast(void)
171 TranslationBlock
*tb
;
172 target_ulong cs_base
, pc
;
175 /* we record a subset of the CPU state. It will
176 always be the same before a given translated block
178 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
179 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
180 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
181 tb
->flags
!= flags
)) {
182 tb
= tb_find_slow(pc
, cs_base
, flags
);
187 static CPUDebugExcpHandler
*debug_excp_handler
;
189 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
191 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
193 debug_excp_handler
= handler
;
197 static void cpu_handle_debug_exception(CPUState
*env
)
201 if (!env
->watchpoint_hit
)
202 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
203 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
205 if (debug_excp_handler
)
206 debug_excp_handler(env
);
209 /* main execution loop */
211 int cpu_exec(CPUState
*env1
)
213 #define DECLARE_HOST_REGS 1
214 #include "hostregs_helper.h"
215 int ret
, interrupt_request
;
216 TranslationBlock
*tb
;
218 unsigned long next_tb
;
220 if (cpu_halted(env1
) == EXCP_HALTED
)
223 cpu_single_env
= env1
;
225 /* first we save global registers */
226 #define SAVE_HOST_REGS 1
227 #include "hostregs_helper.h"
230 #if defined(TARGET_I386)
231 /* put eflags in CPU temporary format */
232 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
233 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
234 CC_OP
= CC_OP_EFLAGS
;
235 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
236 #elif defined(TARGET_SPARC)
237 #elif defined(TARGET_M68K)
238 env
->cc_op
= CC_OP_FLAGS
;
239 env
->cc_dest
= env
->sr
& 0xf;
240 env
->cc_x
= (env
->sr
>> 4) & 1;
241 #elif defined(TARGET_ALPHA)
242 #elif defined(TARGET_ARM)
243 #elif defined(TARGET_PPC)
244 #elif defined(TARGET_MICROBLAZE)
245 #elif defined(TARGET_MIPS)
246 #elif defined(TARGET_SH4)
247 #elif defined(TARGET_CRIS)
248 #elif defined(TARGET_S390X)
251 #error unsupported target CPU
253 env
->exception_index
= -1;
255 /* prepare setjmp context for exception handling */
257 if (setjmp(env
->jmp_env
) == 0) {
258 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
260 env
= cpu_single_env
;
261 #define env cpu_single_env
263 /* if an exception is pending, we execute it here */
264 if (env
->exception_index
>= 0) {
265 if (env
->exception_index
>= EXCP_INTERRUPT
) {
266 /* exit request from the cpu execution loop */
267 ret
= env
->exception_index
;
268 if (ret
== EXCP_DEBUG
)
269 cpu_handle_debug_exception(env
);
272 #if defined(CONFIG_USER_ONLY)
273 /* if user mode only, we simulate a fake exception
274 which will be handled outside the cpu execution
276 #if defined(TARGET_I386)
277 do_interrupt_user(env
->exception_index
,
278 env
->exception_is_int
,
280 env
->exception_next_eip
);
281 /* successfully delivered */
282 env
->old_exception
= -1;
284 ret
= env
->exception_index
;
287 #if defined(TARGET_I386)
288 /* simulate a real cpu exception. On i386, it can
289 trigger new exceptions, but we do not handle
290 double or triple faults yet. */
291 do_interrupt(env
->exception_index
,
292 env
->exception_is_int
,
294 env
->exception_next_eip
, 0);
295 /* successfully delivered */
296 env
->old_exception
= -1;
297 #elif defined(TARGET_PPC)
299 #elif defined(TARGET_MICROBLAZE)
301 #elif defined(TARGET_MIPS)
303 #elif defined(TARGET_SPARC)
305 #elif defined(TARGET_ARM)
307 #elif defined(TARGET_SH4)
309 #elif defined(TARGET_ALPHA)
311 #elif defined(TARGET_CRIS)
313 #elif defined(TARGET_M68K)
316 env
->exception_index
= -1;
323 longjmp(env
->jmp_env
, 1);
326 next_tb
= 0; /* force lookup of first TB */
328 interrupt_request
= env
->interrupt_request
;
329 if (unlikely(interrupt_request
)) {
330 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
331 /* Mask out external interrupts for this step. */
332 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
337 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
338 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
339 env
->exception_index
= EXCP_DEBUG
;
342 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
343 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
344 defined(TARGET_MICROBLAZE)
345 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
346 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
348 env
->exception_index
= EXCP_HLT
;
352 #if defined(TARGET_I386)
353 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
354 svm_check_intercept(SVM_EXIT_INIT
);
356 env
->exception_index
= EXCP_HALTED
;
358 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
360 } else if (env
->hflags2
& HF2_GIF_MASK
) {
361 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
362 !(env
->hflags
& HF_SMM_MASK
)) {
363 svm_check_intercept(SVM_EXIT_SMI
);
364 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
367 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
368 !(env
->hflags2
& HF2_NMI_MASK
)) {
369 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
370 env
->hflags2
|= HF2_NMI_MASK
;
371 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
373 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
374 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
375 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
377 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
378 (((env
->hflags2
& HF2_VINTR_MASK
) &&
379 (env
->hflags2
& HF2_HIF_MASK
)) ||
380 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
381 (env
->eflags
& IF_MASK
&&
382 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
384 svm_check_intercept(SVM_EXIT_INTR
);
385 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
386 intno
= cpu_get_pic_interrupt(env
);
387 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
388 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
390 env
= cpu_single_env
;
391 #define env cpu_single_env
393 do_interrupt(intno
, 0, 0, 0, 1);
394 /* ensure that no TB jump will be modified as
395 the program flow was changed */
397 #if !defined(CONFIG_USER_ONLY)
398 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
399 (env
->eflags
& IF_MASK
) &&
400 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
402 /* FIXME: this should respect TPR */
403 svm_check_intercept(SVM_EXIT_VINTR
);
404 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
405 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
406 do_interrupt(intno
, 0, 0, 0, 1);
407 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
412 #elif defined(TARGET_PPC)
414 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
418 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
419 ppc_hw_interrupt(env
);
420 if (env
->pending_interrupts
== 0)
421 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
424 #elif defined(TARGET_MICROBLAZE)
425 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
426 && (env
->sregs
[SR_MSR
] & MSR_IE
)
427 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
428 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
429 env
->exception_index
= EXCP_IRQ
;
433 #elif defined(TARGET_MIPS)
434 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
435 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
436 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
437 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
438 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
439 !(env
->hflags
& MIPS_HFLAG_DM
)) {
441 env
->exception_index
= EXCP_EXT_INTERRUPT
;
446 #elif defined(TARGET_SPARC)
447 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
448 if (cpu_interrupts_enabled(env
) &&
449 env
->interrupt_index
> 0) {
450 int pil
= env
->interrupt_index
& 0xf;
451 int type
= env
->interrupt_index
& 0xf0;
453 if (((type
== TT_EXTINT
) &&
454 cpu_pil_allowed(env
, pil
)) ||
456 env
->exception_index
= env
->interrupt_index
;
461 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
462 //do_interrupt(0, 0, 0, 0, 0);
463 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
465 #elif defined(TARGET_ARM)
466 if (interrupt_request
& CPU_INTERRUPT_FIQ
467 && !(env
->uncached_cpsr
& CPSR_F
)) {
468 env
->exception_index
= EXCP_FIQ
;
472 /* ARMv7-M interrupt return works by loading a magic value
473 into the PC. On real hardware the load causes the
474 return to occur. The qemu implementation performs the
475 jump normally, then does the exception return when the
476 CPU tries to execute code at the magic address.
477 This will cause the magic PC value to be pushed to
478 the stack if an interrupt occured at the wrong time.
479 We avoid this by disabling interrupts when
480 pc contains a magic address. */
481 if (interrupt_request
& CPU_INTERRUPT_HARD
482 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
483 || !(env
->uncached_cpsr
& CPSR_I
))) {
484 env
->exception_index
= EXCP_IRQ
;
488 #elif defined(TARGET_SH4)
489 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
493 #elif defined(TARGET_ALPHA)
494 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
498 #elif defined(TARGET_CRIS)
499 if (interrupt_request
& CPU_INTERRUPT_HARD
500 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
501 env
->exception_index
= EXCP_IRQ
;
505 if (interrupt_request
& CPU_INTERRUPT_NMI
506 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
507 env
->exception_index
= EXCP_NMI
;
511 #elif defined(TARGET_M68K)
512 if (interrupt_request
& CPU_INTERRUPT_HARD
513 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
514 < env
->pending_level
) {
515 /* Real hardware gets the interrupt vector via an
516 IACK cycle at this point. Current emulated
517 hardware doesn't rely on this, so we
518 provide/save the vector when the interrupt is
520 env
->exception_index
= env
->pending_vector
;
525 /* Don't use the cached interupt_request value,
526 do_interrupt may have updated the EXITTB flag. */
527 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
528 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
529 /* ensure that no TB jump will be modified as
530 the program flow was changed */
534 if (unlikely(env
->exit_request
)) {
535 env
->exit_request
= 0;
536 env
->exception_index
= EXCP_INTERRUPT
;
539 #ifdef CONFIG_DEBUG_EXEC
540 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
541 /* restore flags in standard format */
542 #if defined(TARGET_I386)
543 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
544 log_cpu_state(env
, X86_DUMP_CCOP
);
545 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
546 #elif defined(TARGET_ARM)
547 log_cpu_state(env
, 0);
548 #elif defined(TARGET_SPARC)
549 log_cpu_state(env
, 0);
550 #elif defined(TARGET_PPC)
551 log_cpu_state(env
, 0);
552 #elif defined(TARGET_M68K)
553 cpu_m68k_flush_flags(env
, env
->cc_op
);
554 env
->cc_op
= CC_OP_FLAGS
;
555 env
->sr
= (env
->sr
& 0xffe0)
556 | env
->cc_dest
| (env
->cc_x
<< 4);
557 log_cpu_state(env
, 0);
558 #elif defined(TARGET_MICROBLAZE)
559 log_cpu_state(env
, 0);
560 #elif defined(TARGET_MIPS)
561 log_cpu_state(env
, 0);
562 #elif defined(TARGET_SH4)
563 log_cpu_state(env
, 0);
564 #elif defined(TARGET_ALPHA)
565 log_cpu_state(env
, 0);
566 #elif defined(TARGET_CRIS)
567 log_cpu_state(env
, 0);
569 #error unsupported target CPU
575 /* Note: we do it here to avoid a gcc bug on Mac OS X when
576 doing it in tb_find_slow */
577 if (tb_invalidated_flag
) {
578 /* as some TB could have been invalidated because
579 of memory exceptions while generating the code, we
580 must recompute the hash index here */
582 tb_invalidated_flag
= 0;
584 #ifdef CONFIG_DEBUG_EXEC
585 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
586 (long)tb
->tc_ptr
, tb
->pc
,
587 lookup_symbol(tb
->pc
));
589 /* see if we can patch the calling TB. When the TB
590 spans two pages, we cannot safely do a direct
592 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
593 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
595 spin_unlock(&tb_lock
);
597 /* cpu_interrupt might be called while translating the
598 TB, but before it is linked into a potentially
599 infinite loop and becomes env->current_tb. Avoid
600 starting execution if there is a pending interrupt. */
601 if (!unlikely (env
->exit_request
)) {
602 env
->current_tb
= tb
;
604 /* execute the generated code */
605 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
607 env
= cpu_single_env
;
608 #define env cpu_single_env
610 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
611 env
->current_tb
= NULL
;
612 if ((next_tb
& 3) == 2) {
613 /* Instruction counter expired. */
615 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
617 cpu_pc_from_tb(env
, tb
);
618 insns_left
= env
->icount_decr
.u32
;
619 if (env
->icount_extra
&& insns_left
>= 0) {
620 /* Refill decrementer and continue execution. */
621 env
->icount_extra
+= insns_left
;
622 if (env
->icount_extra
> 0xffff) {
625 insns_left
= env
->icount_extra
;
627 env
->icount_extra
-= insns_left
;
628 env
->icount_decr
.u16
.low
= insns_left
;
630 if (insns_left
> 0) {
631 /* Execute remaining instructions. */
632 cpu_exec_nocache(insns_left
, tb
);
634 env
->exception_index
= EXCP_INTERRUPT
;
640 /* reset soft MMU for next block (it can currently
641 only be set by a memory fault) */
647 #if defined(TARGET_I386)
648 /* restore flags in standard format */
649 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
650 #elif defined(TARGET_ARM)
651 /* XXX: Save/restore host fpu exception state?. */
652 #elif defined(TARGET_SPARC)
653 #elif defined(TARGET_PPC)
654 #elif defined(TARGET_M68K)
655 cpu_m68k_flush_flags(env
, env
->cc_op
);
656 env
->cc_op
= CC_OP_FLAGS
;
657 env
->sr
= (env
->sr
& 0xffe0)
658 | env
->cc_dest
| (env
->cc_x
<< 4);
659 #elif defined(TARGET_MICROBLAZE)
660 #elif defined(TARGET_MIPS)
661 #elif defined(TARGET_SH4)
662 #elif defined(TARGET_ALPHA)
663 #elif defined(TARGET_CRIS)
664 #elif defined(TARGET_S390X)
667 #error unsupported target CPU
670 /* restore global registers */
671 #include "hostregs_helper.h"
673 /* fail safe : never use cpu_single_env outside cpu_exec() */
674 cpu_single_env
= NULL
;
678 /* must only be called from the generated code as an exception can be
680 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
682 /* XXX: cannot enable it yet because it yields to MMU exception
683 where NIP != read address on PowerPC */
685 target_ulong phys_addr
;
686 phys_addr
= get_phys_addr_code(env
, start
);
687 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
691 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
693 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
695 CPUX86State
*saved_env
;
699 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
701 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
702 (selector
<< 4), 0xffff, 0);
704 helper_load_seg(seg_reg
, selector
);
709 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
711 CPUX86State
*saved_env
;
716 helper_fsave(ptr
, data32
);
721 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
723 CPUX86State
*saved_env
;
728 helper_frstor(ptr
, data32
);
733 #endif /* TARGET_I386 */
735 #if !defined(CONFIG_SOFTMMU)
737 #if defined(TARGET_I386)
738 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
740 #define EXCEPTION_ACTION cpu_loop_exit()
743 /* 'pc' is the host PC at which the exception was raised. 'address' is
744 the effective address of the memory exception. 'is_write' is 1 if a
745 write caused the exception and otherwise 0'. 'old_set' is the
746 signal set which should be restored */
747 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
748 int is_write
, sigset_t
*old_set
,
751 TranslationBlock
*tb
;
755 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
756 #if defined(DEBUG_SIGNAL)
757 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
758 pc
, address
, is_write
, *(unsigned long *)old_set
);
760 /* XXX: locking issue */
761 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
765 /* see if it is an MMU fault */
766 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
768 return 0; /* not an MMU fault */
770 return 1; /* the MMU fault was handled without causing real CPU fault */
771 /* now we have a real cpu fault */
774 /* the PC is inside the translated code. It means that we have
775 a virtual CPU fault */
776 cpu_restore_state(tb
, env
, pc
, puc
);
779 /* we restore the process signal mask as the sigreturn should
780 do it (XXX: use sigsetjmp) */
781 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
784 /* never comes here */
788 #if defined(__i386__)
790 #if defined(__APPLE__)
791 # include <sys/ucontext.h>
793 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
794 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
795 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
796 # define MASK_sig(context) ((context)->uc_sigmask)
797 #elif defined (__NetBSD__)
798 # include <ucontext.h>
800 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
801 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
802 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
803 # define MASK_sig(context) ((context)->uc_sigmask)
804 #elif defined (__FreeBSD__) || defined(__DragonFly__)
805 # include <ucontext.h>
807 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
808 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
809 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
810 # define MASK_sig(context) ((context)->uc_sigmask)
811 #elif defined(__OpenBSD__)
812 # define EIP_sig(context) ((context)->sc_eip)
813 # define TRAP_sig(context) ((context)->sc_trapno)
814 # define ERROR_sig(context) ((context)->sc_err)
815 # define MASK_sig(context) ((context)->sc_mask)
817 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
818 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
819 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
820 # define MASK_sig(context) ((context)->uc_sigmask)
823 int cpu_signal_handler(int host_signum
, void *pinfo
,
826 siginfo_t
*info
= pinfo
;
827 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
828 ucontext_t
*uc
= puc
;
829 #elif defined(__OpenBSD__)
830 struct sigcontext
*uc
= puc
;
832 struct ucontext
*uc
= puc
;
841 #define REG_TRAPNO TRAPNO
844 trapno
= TRAP_sig(uc
);
845 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
847 (ERROR_sig(uc
) >> 1) & 1 : 0,
851 #elif defined(__x86_64__)
854 #define PC_sig(context) _UC_MACHINE_PC(context)
855 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
856 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
857 #define MASK_sig(context) ((context)->uc_sigmask)
858 #elif defined(__OpenBSD__)
859 #define PC_sig(context) ((context)->sc_rip)
860 #define TRAP_sig(context) ((context)->sc_trapno)
861 #define ERROR_sig(context) ((context)->sc_err)
862 #define MASK_sig(context) ((context)->sc_mask)
863 #elif defined (__FreeBSD__) || defined(__DragonFly__)
864 #include <ucontext.h>
866 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
867 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
868 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
869 #define MASK_sig(context) ((context)->uc_sigmask)
871 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
872 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
873 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
874 #define MASK_sig(context) ((context)->uc_sigmask)
877 int cpu_signal_handler(int host_signum
, void *pinfo
,
880 siginfo_t
*info
= pinfo
;
882 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
883 ucontext_t
*uc
= puc
;
884 #elif defined(__OpenBSD__)
885 struct sigcontext
*uc
= puc
;
887 struct ucontext
*uc
= puc
;
891 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
892 TRAP_sig(uc
) == 0xe ?
893 (ERROR_sig(uc
) >> 1) & 1 : 0,
897 #elif defined(_ARCH_PPC)
899 /***********************************************************************
900 * signal context platform-specific definitions
904 /* All Registers access - only for local access */
905 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
906 /* Gpr Registers access */
907 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
908 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
909 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
910 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
911 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
912 # define LR_sig(context) REG_sig(link, context) /* Link register */
913 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
914 /* Float Registers access */
915 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
916 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
917 /* Exception Registers access */
918 # define DAR_sig(context) REG_sig(dar, context)
919 # define DSISR_sig(context) REG_sig(dsisr, context)
920 # define TRAP_sig(context) REG_sig(trap, context)
924 # include <sys/ucontext.h>
925 typedef struct ucontext SIGCONTEXT
;
926 /* All Registers access - only for local access */
927 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
928 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
929 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
930 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
931 /* Gpr Registers access */
932 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
933 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
934 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
935 # define CTR_sig(context) REG_sig(ctr, context)
936 # define XER_sig(context) REG_sig(xer, context) /* Link register */
937 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
938 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
939 /* Float Registers access */
940 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
941 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
942 /* Exception Registers access */
943 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
944 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
945 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
946 #endif /* __APPLE__ */
948 int cpu_signal_handler(int host_signum
, void *pinfo
,
951 siginfo_t
*info
= pinfo
;
952 struct ucontext
*uc
= puc
;
960 if (DSISR_sig(uc
) & 0x00800000)
963 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
966 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
967 is_write
, &uc
->uc_sigmask
, puc
);
970 #elif defined(__alpha__)
972 int cpu_signal_handler(int host_signum
, void *pinfo
,
975 siginfo_t
*info
= pinfo
;
976 struct ucontext
*uc
= puc
;
977 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
981 /* XXX: need kernel patch to get write flag faster */
982 switch (insn
>> 26) {
997 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
998 is_write
, &uc
->uc_sigmask
, puc
);
1000 #elif defined(__sparc__)
1002 int cpu_signal_handler(int host_signum
, void *pinfo
,
1005 siginfo_t
*info
= pinfo
;
1008 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1009 uint32_t *regs
= (uint32_t *)(info
+ 1);
1010 void *sigmask
= (regs
+ 20);
1011 /* XXX: is there a standard glibc define ? */
1012 unsigned long pc
= regs
[1];
1015 struct sigcontext
*sc
= puc
;
1016 unsigned long pc
= sc
->sigc_regs
.tpc
;
1017 void *sigmask
= (void *)sc
->sigc_mask
;
1018 #elif defined(__OpenBSD__)
1019 struct sigcontext
*uc
= puc
;
1020 unsigned long pc
= uc
->sc_pc
;
1021 void *sigmask
= (void *)(long)uc
->sc_mask
;
1025 /* XXX: need kernel patch to get write flag faster */
1027 insn
= *(uint32_t *)pc
;
1028 if ((insn
>> 30) == 3) {
1029 switch((insn
>> 19) & 0x3f) {
1053 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1054 is_write
, sigmask
, NULL
);
1057 #elif defined(__arm__)
1059 int cpu_signal_handler(int host_signum
, void *pinfo
,
1062 siginfo_t
*info
= pinfo
;
1063 struct ucontext
*uc
= puc
;
1067 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1068 pc
= uc
->uc_mcontext
.gregs
[R15
];
1070 pc
= uc
->uc_mcontext
.arm_pc
;
1072 /* XXX: compute is_write */
1074 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1076 &uc
->uc_sigmask
, puc
);
1079 #elif defined(__mc68000)
1081 int cpu_signal_handler(int host_signum
, void *pinfo
,
1084 siginfo_t
*info
= pinfo
;
1085 struct ucontext
*uc
= puc
;
1089 pc
= uc
->uc_mcontext
.gregs
[16];
1090 /* XXX: compute is_write */
1092 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1094 &uc
->uc_sigmask
, puc
);
1097 #elif defined(__ia64)
1100 /* This ought to be in <bits/siginfo.h>... */
1101 # define __ISR_VALID 1
1104 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1106 siginfo_t
*info
= pinfo
;
1107 struct ucontext
*uc
= puc
;
1111 ip
= uc
->uc_mcontext
.sc_ip
;
1112 switch (host_signum
) {
1118 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1119 /* ISR.W (write-access) is bit 33: */
1120 is_write
= (info
->si_isr
>> 33) & 1;
1126 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1128 &uc
->uc_sigmask
, puc
);
1131 #elif defined(__s390__)
1133 int cpu_signal_handler(int host_signum
, void *pinfo
,
1136 siginfo_t
*info
= pinfo
;
1137 struct ucontext
*uc
= puc
;
1141 pc
= uc
->uc_mcontext
.psw
.addr
;
1142 /* XXX: compute is_write */
1144 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1145 is_write
, &uc
->uc_sigmask
, puc
);
1148 #elif defined(__mips__)
1150 int cpu_signal_handler(int host_signum
, void *pinfo
,
1153 siginfo_t
*info
= pinfo
;
1154 struct ucontext
*uc
= puc
;
1155 greg_t pc
= uc
->uc_mcontext
.pc
;
1158 /* XXX: compute is_write */
1160 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1161 is_write
, &uc
->uc_sigmask
, puc
);
1164 #elif defined(__hppa__)
1166 int cpu_signal_handler(int host_signum
, void *pinfo
,
1169 struct siginfo
*info
= pinfo
;
1170 struct ucontext
*uc
= puc
;
1174 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1175 /* FIXME: compute is_write */
1177 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1179 &uc
->uc_sigmask
, puc
);
1184 #error host CPU specific signal handler needed
1188 #endif /* !defined(CONFIG_SOFTMMU) */