kvm: x86: Clean up kvm_setup_mce
[qemu/stefanha.git] / target-i386 / kvm.c
blob9d71b20b809c0f7c532377808971fff072df0679
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66 static bool has_msr_async_pf_en;
67 #endif
68 static int lm_capable_kernel;
70 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
92 return cpuid;
95 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
108 for (i = 0; i < cpuid->nent; ++i) {
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
133 ret |= cpuid_1_edx & 0x183f7ff;
134 break;
136 break;
141 qemu_free(cpuid);
143 return ret;
146 #ifdef CONFIG_KVM_PARA
147 struct kvm_para_features {
148 int cap;
149 int feature;
150 } para_features[] = {
151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154 #ifdef KVM_CAP_ASYNC_PF
155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
156 #endif
157 { -1, -1 }
160 static int get_para_features(CPUState *env)
162 int i, features = 0;
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
169 #ifdef KVM_CAP_ASYNC_PF
170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171 #endif
172 return features;
174 #endif /* CONFIG_KVM_PARA */
176 #ifdef KVM_CAP_MCE
177 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
178 int *max_banks)
180 int r;
182 r = kvm_check_extension(s, KVM_CAP_MCE);
183 if (r > 0) {
184 *max_banks = r;
185 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187 return -ENOSYS;
190 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
192 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
193 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
194 uint64_t mcg_status = MCG_STATUS_MCIP;
196 if (code == BUS_MCEERR_AR) {
197 status |= MCI_STATUS_AR | 0x134;
198 mcg_status |= MCG_STATUS_EIPV;
199 } else {
200 status |= 0xc0;
201 mcg_status |= MCG_STATUS_RIPV;
203 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
204 (MCM_ADDR_PHYS << 6) | 0xc,
205 cpu_x86_support_mca_broadcast(env) ?
206 MCE_INJECT_BROADCAST : 0);
208 #endif /* KVM_CAP_MCE */
210 static void hardware_memory_error(void)
212 fprintf(stderr, "Hardware memory error!\n");
213 exit(1);
216 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
218 #ifdef KVM_CAP_MCE
219 ram_addr_t ram_addr;
220 target_phys_addr_t paddr;
222 if ((env->mcg_cap & MCG_SER_P) && addr
223 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
224 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
225 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
226 &paddr)) {
227 fprintf(stderr, "Hardware memory error for memory used by "
228 "QEMU itself instead of guest system!\n");
229 /* Hope we are lucky for AO MCE */
230 if (code == BUS_MCEERR_AO) {
231 return 0;
232 } else {
233 hardware_memory_error();
236 kvm_mce_inject(env, paddr, code);
237 } else
238 #endif /* KVM_CAP_MCE */
240 if (code == BUS_MCEERR_AO) {
241 return 0;
242 } else if (code == BUS_MCEERR_AR) {
243 hardware_memory_error();
244 } else {
245 return 1;
248 return 0;
251 int kvm_arch_on_sigbus(int code, void *addr)
253 #ifdef KVM_CAP_MCE
254 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
255 ram_addr_t ram_addr;
256 target_phys_addr_t paddr;
258 /* Hope we are lucky for AO MCE */
259 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
260 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
261 &paddr)) {
262 fprintf(stderr, "Hardware memory error for memory used by "
263 "QEMU itself instead of guest system!: %p\n", addr);
264 return 0;
266 kvm_mce_inject(first_cpu, paddr, code);
267 } else
268 #endif /* KVM_CAP_MCE */
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
278 return 0;
281 static int kvm_inject_mce_oldstyle(CPUState *env)
283 #ifdef KVM_CAP_MCE
284 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
285 unsigned int bank, bank_num = env->mcg_cap & 0xff;
286 struct kvm_x86_mce mce;
288 env->exception_injected = -1;
291 * There must be at least one bank in use if an MCE is pending.
292 * Find it and use its values for the event injection.
294 for (bank = 0; bank < bank_num; bank++) {
295 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
296 break;
299 assert(bank < bank_num);
301 mce.bank = bank;
302 mce.status = env->mce_banks[bank * 4 + 1];
303 mce.mcg_status = env->mcg_status;
304 mce.addr = env->mce_banks[bank * 4 + 2];
305 mce.misc = env->mce_banks[bank * 4 + 3];
307 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
309 #endif /* KVM_CAP_MCE */
310 return 0;
313 static void cpu_update_state(void *opaque, int running, int reason)
315 CPUState *env = opaque;
317 if (running) {
318 env->tsc_valid = false;
322 int kvm_arch_init_vcpu(CPUState *env)
324 struct {
325 struct kvm_cpuid2 cpuid;
326 struct kvm_cpuid_entry2 entries[100];
327 } __attribute__((packed)) cpuid_data;
328 uint32_t limit, i, j, cpuid_i;
329 uint32_t unused;
330 struct kvm_cpuid_entry2 *c;
331 #ifdef CONFIG_KVM_PARA
332 uint32_t signature[3];
333 #endif
335 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
337 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
338 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
339 env->cpuid_ext_features |= i;
341 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
342 0, R_EDX);
343 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
344 0, R_ECX);
345 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
346 0, R_EDX);
349 cpuid_i = 0;
351 #ifdef CONFIG_KVM_PARA
352 /* Paravirtualization CPUIDs */
353 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
354 c = &cpuid_data.entries[cpuid_i++];
355 memset(c, 0, sizeof(*c));
356 c->function = KVM_CPUID_SIGNATURE;
357 c->eax = 0;
358 c->ebx = signature[0];
359 c->ecx = signature[1];
360 c->edx = signature[2];
362 c = &cpuid_data.entries[cpuid_i++];
363 memset(c, 0, sizeof(*c));
364 c->function = KVM_CPUID_FEATURES;
365 c->eax = env->cpuid_kvm_features & get_para_features(env);
366 #endif
368 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
370 for (i = 0; i <= limit; i++) {
371 c = &cpuid_data.entries[cpuid_i++];
373 switch (i) {
374 case 2: {
375 /* Keep reading function 2 till all the input is received */
376 int times;
378 c->function = i;
379 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
380 KVM_CPUID_FLAG_STATE_READ_NEXT;
381 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
382 times = c->eax & 0xff;
384 for (j = 1; j < times; ++j) {
385 c = &cpuid_data.entries[cpuid_i++];
386 c->function = i;
387 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
388 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
390 break;
392 case 4:
393 case 0xb:
394 case 0xd:
395 for (j = 0; ; j++) {
396 c->function = i;
397 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
398 c->index = j;
399 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
401 if (i == 4 && c->eax == 0) {
402 break;
404 if (i == 0xb && !(c->ecx & 0xff00)) {
405 break;
407 if (i == 0xd && c->eax == 0) {
408 break;
410 c = &cpuid_data.entries[cpuid_i++];
412 break;
413 default:
414 c->function = i;
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 break;
420 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
422 for (i = 0x80000000; i <= limit; i++) {
423 c = &cpuid_data.entries[cpuid_i++];
425 c->function = i;
426 c->flags = 0;
427 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
430 cpuid_data.cpuid.nent = cpuid_i;
432 #ifdef KVM_CAP_MCE
433 if (((env->cpuid_version >> 8)&0xF) >= 6
434 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
435 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
436 uint64_t mcg_cap;
437 int banks;
438 int ret;
440 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
441 perror("kvm_get_mce_cap_supported FAILED");
442 } else {
443 if (banks > MCE_BANKS_DEF)
444 banks = MCE_BANKS_DEF;
445 mcg_cap &= MCE_CAP_DEF;
446 mcg_cap |= banks;
447 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
448 if (ret < 0) {
449 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
450 } else {
451 env->mcg_cap = mcg_cap;
455 #endif
457 qemu_add_vm_change_state_handler(cpu_update_state, env);
459 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
462 void kvm_arch_reset_vcpu(CPUState *env)
464 env->exception_injected = -1;
465 env->interrupt_injected = -1;
466 env->xcr0 = 1;
467 if (kvm_irqchip_in_kernel()) {
468 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
469 KVM_MP_STATE_UNINITIALIZED;
470 } else {
471 env->mp_state = KVM_MP_STATE_RUNNABLE;
475 static int kvm_get_supported_msrs(KVMState *s)
477 static int kvm_supported_msrs;
478 int ret = 0;
480 /* first time */
481 if (kvm_supported_msrs == 0) {
482 struct kvm_msr_list msr_list, *kvm_msr_list;
484 kvm_supported_msrs = -1;
486 /* Obtain MSR list from KVM. These are the MSRs that we must
487 * save/restore */
488 msr_list.nmsrs = 0;
489 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
490 if (ret < 0 && ret != -E2BIG) {
491 return ret;
493 /* Old kernel modules had a bug and could write beyond the provided
494 memory. Allocate at least a safe amount of 1K. */
495 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
496 msr_list.nmsrs *
497 sizeof(msr_list.indices[0])));
499 kvm_msr_list->nmsrs = msr_list.nmsrs;
500 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
501 if (ret >= 0) {
502 int i;
504 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
505 if (kvm_msr_list->indices[i] == MSR_STAR) {
506 has_msr_star = true;
507 continue;
509 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
510 has_msr_hsave_pa = true;
511 continue;
516 free(kvm_msr_list);
519 return ret;
522 int kvm_arch_init(KVMState *s)
524 uint64_t identity_base = 0xfffbc000;
525 int ret;
526 struct utsname utsname;
528 ret = kvm_get_supported_msrs(s);
529 if (ret < 0) {
530 return ret;
533 uname(&utsname);
534 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
537 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
538 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
539 * Since these must be part of guest physical memory, we need to allocate
540 * them, both by setting their start addresses in the kernel and by
541 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
543 * Older KVM versions may not support setting the identity map base. In
544 * that case we need to stick with the default, i.e. a 256K maximum BIOS
545 * size.
547 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
548 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
549 /* Allows up to 16M BIOSes. */
550 identity_base = 0xfeffc000;
552 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
553 if (ret < 0) {
554 return ret;
557 #endif
558 /* Set TSS base one page after EPT identity map. */
559 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
560 if (ret < 0) {
561 return ret;
564 /* Tell fw_cfg to notify the BIOS to reserve the range. */
565 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
566 if (ret < 0) {
567 fprintf(stderr, "e820_add_entry() table is full\n");
568 return ret;
571 return 0;
574 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
576 lhs->selector = rhs->selector;
577 lhs->base = rhs->base;
578 lhs->limit = rhs->limit;
579 lhs->type = 3;
580 lhs->present = 1;
581 lhs->dpl = 3;
582 lhs->db = 0;
583 lhs->s = 1;
584 lhs->l = 0;
585 lhs->g = 0;
586 lhs->avl = 0;
587 lhs->unusable = 0;
590 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
592 unsigned flags = rhs->flags;
593 lhs->selector = rhs->selector;
594 lhs->base = rhs->base;
595 lhs->limit = rhs->limit;
596 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
597 lhs->present = (flags & DESC_P_MASK) != 0;
598 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
599 lhs->db = (flags >> DESC_B_SHIFT) & 1;
600 lhs->s = (flags & DESC_S_MASK) != 0;
601 lhs->l = (flags >> DESC_L_SHIFT) & 1;
602 lhs->g = (flags & DESC_G_MASK) != 0;
603 lhs->avl = (flags & DESC_AVL_MASK) != 0;
604 lhs->unusable = 0;
607 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
609 lhs->selector = rhs->selector;
610 lhs->base = rhs->base;
611 lhs->limit = rhs->limit;
612 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
613 (rhs->present * DESC_P_MASK) |
614 (rhs->dpl << DESC_DPL_SHIFT) |
615 (rhs->db << DESC_B_SHIFT) |
616 (rhs->s * DESC_S_MASK) |
617 (rhs->l << DESC_L_SHIFT) |
618 (rhs->g * DESC_G_MASK) |
619 (rhs->avl * DESC_AVL_MASK);
622 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
624 if (set) {
625 *kvm_reg = *qemu_reg;
626 } else {
627 *qemu_reg = *kvm_reg;
631 static int kvm_getput_regs(CPUState *env, int set)
633 struct kvm_regs regs;
634 int ret = 0;
636 if (!set) {
637 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
638 if (ret < 0) {
639 return ret;
643 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
644 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
645 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
646 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
647 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
648 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
649 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
650 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
651 #ifdef TARGET_X86_64
652 kvm_getput_reg(&regs.r8, &env->regs[8], set);
653 kvm_getput_reg(&regs.r9, &env->regs[9], set);
654 kvm_getput_reg(&regs.r10, &env->regs[10], set);
655 kvm_getput_reg(&regs.r11, &env->regs[11], set);
656 kvm_getput_reg(&regs.r12, &env->regs[12], set);
657 kvm_getput_reg(&regs.r13, &env->regs[13], set);
658 kvm_getput_reg(&regs.r14, &env->regs[14], set);
659 kvm_getput_reg(&regs.r15, &env->regs[15], set);
660 #endif
662 kvm_getput_reg(&regs.rflags, &env->eflags, set);
663 kvm_getput_reg(&regs.rip, &env->eip, set);
665 if (set) {
666 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
669 return ret;
672 static int kvm_put_fpu(CPUState *env)
674 struct kvm_fpu fpu;
675 int i;
677 memset(&fpu, 0, sizeof fpu);
678 fpu.fsw = env->fpus & ~(7 << 11);
679 fpu.fsw |= (env->fpstt & 7) << 11;
680 fpu.fcw = env->fpuc;
681 for (i = 0; i < 8; ++i) {
682 fpu.ftwx |= (!env->fptags[i]) << i;
684 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
685 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
686 fpu.mxcsr = env->mxcsr;
688 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
691 #ifdef KVM_CAP_XSAVE
692 #define XSAVE_CWD_RIP 2
693 #define XSAVE_CWD_RDP 4
694 #define XSAVE_MXCSR 6
695 #define XSAVE_ST_SPACE 8
696 #define XSAVE_XMM_SPACE 40
697 #define XSAVE_XSTATE_BV 128
698 #define XSAVE_YMMH_SPACE 144
699 #endif
701 static int kvm_put_xsave(CPUState *env)
703 #ifdef KVM_CAP_XSAVE
704 int i, r;
705 struct kvm_xsave* xsave;
706 uint16_t cwd, swd, twd, fop;
708 if (!kvm_has_xsave()) {
709 return kvm_put_fpu(env);
712 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
713 memset(xsave, 0, sizeof(struct kvm_xsave));
714 cwd = swd = twd = fop = 0;
715 swd = env->fpus & ~(7 << 11);
716 swd |= (env->fpstt & 7) << 11;
717 cwd = env->fpuc;
718 for (i = 0; i < 8; ++i) {
719 twd |= (!env->fptags[i]) << i;
721 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
722 xsave->region[1] = (uint32_t)(fop << 16) + twd;
723 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
724 sizeof env->fpregs);
725 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
726 sizeof env->xmm_regs);
727 xsave->region[XSAVE_MXCSR] = env->mxcsr;
728 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
729 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
730 sizeof env->ymmh_regs);
731 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
732 qemu_free(xsave);
733 return r;
734 #else
735 return kvm_put_fpu(env);
736 #endif
739 static int kvm_put_xcrs(CPUState *env)
741 #ifdef KVM_CAP_XCRS
742 struct kvm_xcrs xcrs;
744 if (!kvm_has_xcrs()) {
745 return 0;
748 xcrs.nr_xcrs = 1;
749 xcrs.flags = 0;
750 xcrs.xcrs[0].xcr = 0;
751 xcrs.xcrs[0].value = env->xcr0;
752 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
753 #else
754 return 0;
755 #endif
758 static int kvm_put_sregs(CPUState *env)
760 struct kvm_sregs sregs;
762 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
763 if (env->interrupt_injected >= 0) {
764 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
765 (uint64_t)1 << (env->interrupt_injected % 64);
768 if ((env->eflags & VM_MASK)) {
769 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
770 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
771 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
772 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
773 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
774 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
775 } else {
776 set_seg(&sregs.cs, &env->segs[R_CS]);
777 set_seg(&sregs.ds, &env->segs[R_DS]);
778 set_seg(&sregs.es, &env->segs[R_ES]);
779 set_seg(&sregs.fs, &env->segs[R_FS]);
780 set_seg(&sregs.gs, &env->segs[R_GS]);
781 set_seg(&sregs.ss, &env->segs[R_SS]);
784 set_seg(&sregs.tr, &env->tr);
785 set_seg(&sregs.ldt, &env->ldt);
787 sregs.idt.limit = env->idt.limit;
788 sregs.idt.base = env->idt.base;
789 sregs.gdt.limit = env->gdt.limit;
790 sregs.gdt.base = env->gdt.base;
792 sregs.cr0 = env->cr[0];
793 sregs.cr2 = env->cr[2];
794 sregs.cr3 = env->cr[3];
795 sregs.cr4 = env->cr[4];
797 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798 sregs.apic_base = cpu_get_apic_base(env->apic_state);
800 sregs.efer = env->efer;
802 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
805 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806 uint32_t index, uint64_t value)
808 entry->index = index;
809 entry->data = value;
812 static int kvm_put_msrs(CPUState *env, int level)
814 struct {
815 struct kvm_msrs info;
816 struct kvm_msr_entry entries[100];
817 } msr_data;
818 struct kvm_msr_entry *msrs = msr_data.entries;
819 int n = 0;
821 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824 if (has_msr_star) {
825 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
827 if (has_msr_hsave_pa) {
828 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
830 #ifdef TARGET_X86_64
831 if (lm_capable_kernel) {
832 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
833 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
834 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
835 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
837 #endif
838 if (level == KVM_PUT_FULL_STATE) {
840 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
841 * writeback. Until this is fixed, we only write the offset to SMP
842 * guests after migration, desynchronizing the VCPUs, but avoiding
843 * huge jump-backs that would occur without any writeback at all.
845 if (smp_cpus == 1 || env->tsc != 0) {
846 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
850 * The following paravirtual MSRs have side effects on the guest or are
851 * too heavy for normal writeback. Limit them to reset or full state
852 * updates.
854 if (level >= KVM_PUT_RESET_STATE) {
855 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
856 env->system_time_msr);
857 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
858 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
859 if (has_msr_async_pf_en) {
860 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
861 env->async_pf_en_msr);
863 #endif
865 #ifdef KVM_CAP_MCE
866 if (env->mcg_cap) {
867 int i;
869 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
871 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
872 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
875 #endif
877 msr_data.info.nmsrs = n;
879 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
884 static int kvm_get_fpu(CPUState *env)
886 struct kvm_fpu fpu;
887 int i, ret;
889 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
890 if (ret < 0) {
891 return ret;
894 env->fpstt = (fpu.fsw >> 11) & 7;
895 env->fpus = fpu.fsw;
896 env->fpuc = fpu.fcw;
897 for (i = 0; i < 8; ++i) {
898 env->fptags[i] = !((fpu.ftwx >> i) & 1);
900 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
901 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
902 env->mxcsr = fpu.mxcsr;
904 return 0;
907 static int kvm_get_xsave(CPUState *env)
909 #ifdef KVM_CAP_XSAVE
910 struct kvm_xsave* xsave;
911 int ret, i;
912 uint16_t cwd, swd, twd, fop;
914 if (!kvm_has_xsave()) {
915 return kvm_get_fpu(env);
918 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
919 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
920 if (ret < 0) {
921 qemu_free(xsave);
922 return ret;
925 cwd = (uint16_t)xsave->region[0];
926 swd = (uint16_t)(xsave->region[0] >> 16);
927 twd = (uint16_t)xsave->region[1];
928 fop = (uint16_t)(xsave->region[1] >> 16);
929 env->fpstt = (swd >> 11) & 7;
930 env->fpus = swd;
931 env->fpuc = cwd;
932 for (i = 0; i < 8; ++i) {
933 env->fptags[i] = !((twd >> i) & 1);
935 env->mxcsr = xsave->region[XSAVE_MXCSR];
936 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
937 sizeof env->fpregs);
938 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
939 sizeof env->xmm_regs);
940 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
941 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
942 sizeof env->ymmh_regs);
943 qemu_free(xsave);
944 return 0;
945 #else
946 return kvm_get_fpu(env);
947 #endif
950 static int kvm_get_xcrs(CPUState *env)
952 #ifdef KVM_CAP_XCRS
953 int i, ret;
954 struct kvm_xcrs xcrs;
956 if (!kvm_has_xcrs()) {
957 return 0;
960 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
961 if (ret < 0) {
962 return ret;
965 for (i = 0; i < xcrs.nr_xcrs; i++) {
966 /* Only support xcr0 now */
967 if (xcrs.xcrs[0].xcr == 0) {
968 env->xcr0 = xcrs.xcrs[0].value;
969 break;
972 return 0;
973 #else
974 return 0;
975 #endif
978 static int kvm_get_sregs(CPUState *env)
980 struct kvm_sregs sregs;
981 uint32_t hflags;
982 int bit, i, ret;
984 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
985 if (ret < 0) {
986 return ret;
989 /* There can only be one pending IRQ set in the bitmap at a time, so try
990 to find it and save its number instead (-1 for none). */
991 env->interrupt_injected = -1;
992 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
993 if (sregs.interrupt_bitmap[i]) {
994 bit = ctz64(sregs.interrupt_bitmap[i]);
995 env->interrupt_injected = i * 64 + bit;
996 break;
1000 get_seg(&env->segs[R_CS], &sregs.cs);
1001 get_seg(&env->segs[R_DS], &sregs.ds);
1002 get_seg(&env->segs[R_ES], &sregs.es);
1003 get_seg(&env->segs[R_FS], &sregs.fs);
1004 get_seg(&env->segs[R_GS], &sregs.gs);
1005 get_seg(&env->segs[R_SS], &sregs.ss);
1007 get_seg(&env->tr, &sregs.tr);
1008 get_seg(&env->ldt, &sregs.ldt);
1010 env->idt.limit = sregs.idt.limit;
1011 env->idt.base = sregs.idt.base;
1012 env->gdt.limit = sregs.gdt.limit;
1013 env->gdt.base = sregs.gdt.base;
1015 env->cr[0] = sregs.cr0;
1016 env->cr[2] = sregs.cr2;
1017 env->cr[3] = sregs.cr3;
1018 env->cr[4] = sregs.cr4;
1020 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1022 env->efer = sregs.efer;
1023 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1025 #define HFLAG_COPY_MASK \
1026 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1027 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1028 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1029 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1031 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1032 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1033 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1034 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1035 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1036 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1037 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1039 if (env->efer & MSR_EFER_LMA) {
1040 hflags |= HF_LMA_MASK;
1043 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1044 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1045 } else {
1046 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1047 (DESC_B_SHIFT - HF_CS32_SHIFT);
1048 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1049 (DESC_B_SHIFT - HF_SS32_SHIFT);
1050 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1051 !(hflags & HF_CS32_MASK)) {
1052 hflags |= HF_ADDSEG_MASK;
1053 } else {
1054 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1055 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1058 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1060 return 0;
1063 static int kvm_get_msrs(CPUState *env)
1065 struct {
1066 struct kvm_msrs info;
1067 struct kvm_msr_entry entries[100];
1068 } msr_data;
1069 struct kvm_msr_entry *msrs = msr_data.entries;
1070 int ret, i, n;
1072 n = 0;
1073 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1074 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1075 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1076 if (has_msr_star) {
1077 msrs[n++].index = MSR_STAR;
1079 if (has_msr_hsave_pa) {
1080 msrs[n++].index = MSR_VM_HSAVE_PA;
1083 if (!env->tsc_valid) {
1084 msrs[n++].index = MSR_IA32_TSC;
1085 env->tsc_valid = !vm_running;
1088 #ifdef TARGET_X86_64
1089 if (lm_capable_kernel) {
1090 msrs[n++].index = MSR_CSTAR;
1091 msrs[n++].index = MSR_KERNELGSBASE;
1092 msrs[n++].index = MSR_FMASK;
1093 msrs[n++].index = MSR_LSTAR;
1095 #endif
1096 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1097 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1098 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1099 if (has_msr_async_pf_en) {
1100 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1102 #endif
1104 #ifdef KVM_CAP_MCE
1105 if (env->mcg_cap) {
1106 msrs[n++].index = MSR_MCG_STATUS;
1107 msrs[n++].index = MSR_MCG_CTL;
1108 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1109 msrs[n++].index = MSR_MC0_CTL + i;
1112 #endif
1114 msr_data.info.nmsrs = n;
1115 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1116 if (ret < 0) {
1117 return ret;
1120 for (i = 0; i < ret; i++) {
1121 switch (msrs[i].index) {
1122 case MSR_IA32_SYSENTER_CS:
1123 env->sysenter_cs = msrs[i].data;
1124 break;
1125 case MSR_IA32_SYSENTER_ESP:
1126 env->sysenter_esp = msrs[i].data;
1127 break;
1128 case MSR_IA32_SYSENTER_EIP:
1129 env->sysenter_eip = msrs[i].data;
1130 break;
1131 case MSR_STAR:
1132 env->star = msrs[i].data;
1133 break;
1134 #ifdef TARGET_X86_64
1135 case MSR_CSTAR:
1136 env->cstar = msrs[i].data;
1137 break;
1138 case MSR_KERNELGSBASE:
1139 env->kernelgsbase = msrs[i].data;
1140 break;
1141 case MSR_FMASK:
1142 env->fmask = msrs[i].data;
1143 break;
1144 case MSR_LSTAR:
1145 env->lstar = msrs[i].data;
1146 break;
1147 #endif
1148 case MSR_IA32_TSC:
1149 env->tsc = msrs[i].data;
1150 break;
1151 case MSR_VM_HSAVE_PA:
1152 env->vm_hsave = msrs[i].data;
1153 break;
1154 case MSR_KVM_SYSTEM_TIME:
1155 env->system_time_msr = msrs[i].data;
1156 break;
1157 case MSR_KVM_WALL_CLOCK:
1158 env->wall_clock_msr = msrs[i].data;
1159 break;
1160 #ifdef KVM_CAP_MCE
1161 case MSR_MCG_STATUS:
1162 env->mcg_status = msrs[i].data;
1163 break;
1164 case MSR_MCG_CTL:
1165 env->mcg_ctl = msrs[i].data;
1166 break;
1167 #endif
1168 default:
1169 #ifdef KVM_CAP_MCE
1170 if (msrs[i].index >= MSR_MC0_CTL &&
1171 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1172 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1174 #endif
1175 break;
1176 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1177 case MSR_KVM_ASYNC_PF_EN:
1178 env->async_pf_en_msr = msrs[i].data;
1179 break;
1180 #endif
1184 return 0;
1187 static int kvm_put_mp_state(CPUState *env)
1189 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1191 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1194 static int kvm_get_mp_state(CPUState *env)
1196 struct kvm_mp_state mp_state;
1197 int ret;
1199 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1200 if (ret < 0) {
1201 return ret;
1203 env->mp_state = mp_state.mp_state;
1204 if (kvm_irqchip_in_kernel()) {
1205 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1207 return 0;
1210 static int kvm_put_vcpu_events(CPUState *env, int level)
1212 #ifdef KVM_CAP_VCPU_EVENTS
1213 struct kvm_vcpu_events events;
1215 if (!kvm_has_vcpu_events()) {
1216 return 0;
1219 events.exception.injected = (env->exception_injected >= 0);
1220 events.exception.nr = env->exception_injected;
1221 events.exception.has_error_code = env->has_error_code;
1222 events.exception.error_code = env->error_code;
1224 events.interrupt.injected = (env->interrupt_injected >= 0);
1225 events.interrupt.nr = env->interrupt_injected;
1226 events.interrupt.soft = env->soft_interrupt;
1228 events.nmi.injected = env->nmi_injected;
1229 events.nmi.pending = env->nmi_pending;
1230 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1232 events.sipi_vector = env->sipi_vector;
1234 events.flags = 0;
1235 if (level >= KVM_PUT_RESET_STATE) {
1236 events.flags |=
1237 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1240 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1241 #else
1242 return 0;
1243 #endif
1246 static int kvm_get_vcpu_events(CPUState *env)
1248 #ifdef KVM_CAP_VCPU_EVENTS
1249 struct kvm_vcpu_events events;
1250 int ret;
1252 if (!kvm_has_vcpu_events()) {
1253 return 0;
1256 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1257 if (ret < 0) {
1258 return ret;
1260 env->exception_injected =
1261 events.exception.injected ? events.exception.nr : -1;
1262 env->has_error_code = events.exception.has_error_code;
1263 env->error_code = events.exception.error_code;
1265 env->interrupt_injected =
1266 events.interrupt.injected ? events.interrupt.nr : -1;
1267 env->soft_interrupt = events.interrupt.soft;
1269 env->nmi_injected = events.nmi.injected;
1270 env->nmi_pending = events.nmi.pending;
1271 if (events.nmi.masked) {
1272 env->hflags2 |= HF2_NMI_MASK;
1273 } else {
1274 env->hflags2 &= ~HF2_NMI_MASK;
1277 env->sipi_vector = events.sipi_vector;
1278 #endif
1280 return 0;
1283 static int kvm_guest_debug_workarounds(CPUState *env)
1285 int ret = 0;
1286 #ifdef KVM_CAP_SET_GUEST_DEBUG
1287 unsigned long reinject_trap = 0;
1289 if (!kvm_has_vcpu_events()) {
1290 if (env->exception_injected == 1) {
1291 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1292 } else if (env->exception_injected == 3) {
1293 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1295 env->exception_injected = -1;
1299 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1300 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1301 * by updating the debug state once again if single-stepping is on.
1302 * Another reason to call kvm_update_guest_debug here is a pending debug
1303 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1304 * reinject them via SET_GUEST_DEBUG.
1306 if (reinject_trap ||
1307 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1308 ret = kvm_update_guest_debug(env, reinject_trap);
1310 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1311 return ret;
1314 static int kvm_put_debugregs(CPUState *env)
1316 #ifdef KVM_CAP_DEBUGREGS
1317 struct kvm_debugregs dbgregs;
1318 int i;
1320 if (!kvm_has_debugregs()) {
1321 return 0;
1324 for (i = 0; i < 4; i++) {
1325 dbgregs.db[i] = env->dr[i];
1327 dbgregs.dr6 = env->dr[6];
1328 dbgregs.dr7 = env->dr[7];
1329 dbgregs.flags = 0;
1331 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1332 #else
1333 return 0;
1334 #endif
1337 static int kvm_get_debugregs(CPUState *env)
1339 #ifdef KVM_CAP_DEBUGREGS
1340 struct kvm_debugregs dbgregs;
1341 int i, ret;
1343 if (!kvm_has_debugregs()) {
1344 return 0;
1347 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1348 if (ret < 0) {
1349 return ret;
1351 for (i = 0; i < 4; i++) {
1352 env->dr[i] = dbgregs.db[i];
1354 env->dr[4] = env->dr[6] = dbgregs.dr6;
1355 env->dr[5] = env->dr[7] = dbgregs.dr7;
1356 #endif
1358 return 0;
1361 int kvm_arch_put_registers(CPUState *env, int level)
1363 int ret;
1365 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1367 ret = kvm_getput_regs(env, 1);
1368 if (ret < 0) {
1369 return ret;
1371 ret = kvm_put_xsave(env);
1372 if (ret < 0) {
1373 return ret;
1375 ret = kvm_put_xcrs(env);
1376 if (ret < 0) {
1377 return ret;
1379 ret = kvm_put_sregs(env);
1380 if (ret < 0) {
1381 return ret;
1383 /* must be before kvm_put_msrs */
1384 ret = kvm_inject_mce_oldstyle(env);
1385 if (ret < 0) {
1386 return ret;
1388 ret = kvm_put_msrs(env, level);
1389 if (ret < 0) {
1390 return ret;
1392 if (level >= KVM_PUT_RESET_STATE) {
1393 ret = kvm_put_mp_state(env);
1394 if (ret < 0) {
1395 return ret;
1398 ret = kvm_put_vcpu_events(env, level);
1399 if (ret < 0) {
1400 return ret;
1402 ret = kvm_put_debugregs(env);
1403 if (ret < 0) {
1404 return ret;
1406 /* must be last */
1407 ret = kvm_guest_debug_workarounds(env);
1408 if (ret < 0) {
1409 return ret;
1411 return 0;
1414 int kvm_arch_get_registers(CPUState *env)
1416 int ret;
1418 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1420 ret = kvm_getput_regs(env, 0);
1421 if (ret < 0) {
1422 return ret;
1424 ret = kvm_get_xsave(env);
1425 if (ret < 0) {
1426 return ret;
1428 ret = kvm_get_xcrs(env);
1429 if (ret < 0) {
1430 return ret;
1432 ret = kvm_get_sregs(env);
1433 if (ret < 0) {
1434 return ret;
1436 ret = kvm_get_msrs(env);
1437 if (ret < 0) {
1438 return ret;
1440 ret = kvm_get_mp_state(env);
1441 if (ret < 0) {
1442 return ret;
1444 ret = kvm_get_vcpu_events(env);
1445 if (ret < 0) {
1446 return ret;
1448 ret = kvm_get_debugregs(env);
1449 if (ret < 0) {
1450 return ret;
1452 return 0;
1455 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1457 int ret;
1459 /* Inject NMI */
1460 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1461 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1462 DPRINTF("injected NMI\n");
1463 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1464 if (ret < 0) {
1465 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1466 strerror(-ret));
1470 if (!kvm_irqchip_in_kernel()) {
1471 /* Force the VCPU out of its inner loop to process the INIT request */
1472 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1473 env->exit_request = 1;
1476 /* Try to inject an interrupt if the guest can accept it */
1477 if (run->ready_for_interrupt_injection &&
1478 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1479 (env->eflags & IF_MASK)) {
1480 int irq;
1482 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1483 irq = cpu_get_pic_interrupt(env);
1484 if (irq >= 0) {
1485 struct kvm_interrupt intr;
1487 intr.irq = irq;
1488 DPRINTF("injected interrupt %d\n", irq);
1489 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1490 if (ret < 0) {
1491 fprintf(stderr,
1492 "KVM: injection failed, interrupt lost (%s)\n",
1493 strerror(-ret));
1498 /* If we have an interrupt but the guest is not ready to receive an
1499 * interrupt, request an interrupt window exit. This will
1500 * cause a return to userspace as soon as the guest is ready to
1501 * receive interrupts. */
1502 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1503 run->request_interrupt_window = 1;
1504 } else {
1505 run->request_interrupt_window = 0;
1508 DPRINTF("setting tpr\n");
1509 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1513 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1515 if (run->if_flag) {
1516 env->eflags |= IF_MASK;
1517 } else {
1518 env->eflags &= ~IF_MASK;
1520 cpu_set_apic_tpr(env->apic_state, run->cr8);
1521 cpu_set_apic_base(env->apic_state, run->apic_base);
1524 int kvm_arch_process_async_events(CPUState *env)
1526 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1527 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1528 assert(env->mcg_cap);
1530 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1532 kvm_cpu_synchronize_state(env);
1534 if (env->exception_injected == EXCP08_DBLE) {
1535 /* this means triple fault */
1536 qemu_system_reset_request();
1537 env->exit_request = 1;
1538 return 0;
1540 env->exception_injected = EXCP12_MCHK;
1541 env->has_error_code = 0;
1543 env->halted = 0;
1544 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1545 env->mp_state = KVM_MP_STATE_RUNNABLE;
1549 if (kvm_irqchip_in_kernel()) {
1550 return 0;
1553 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1554 env->halted = 0;
1556 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1557 kvm_cpu_synchronize_state(env);
1558 do_cpu_init(env);
1560 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1561 kvm_cpu_synchronize_state(env);
1562 do_cpu_sipi(env);
1565 return env->halted;
1568 static int kvm_handle_halt(CPUState *env)
1570 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1571 (env->eflags & IF_MASK)) &&
1572 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1573 env->halted = 1;
1574 return 0;
1577 return 1;
1580 static bool host_supports_vmx(void)
1582 uint32_t ecx, unused;
1584 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1585 return ecx & CPUID_EXT_VMX;
1588 #define VMX_INVALID_GUEST_STATE 0x80000021
1590 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1592 uint64_t code;
1593 int ret = 0;
1595 switch (run->exit_reason) {
1596 case KVM_EXIT_HLT:
1597 DPRINTF("handle_hlt\n");
1598 ret = kvm_handle_halt(env);
1599 break;
1600 case KVM_EXIT_SET_TPR:
1601 ret = 1;
1602 break;
1603 case KVM_EXIT_FAIL_ENTRY:
1604 code = run->fail_entry.hardware_entry_failure_reason;
1605 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1606 code);
1607 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1608 fprintf(stderr,
1609 "\nIf you're runnning a guest on an Intel machine without "
1610 "unrestricted mode\n"
1611 "support, the failure can be most likely due to the guest "
1612 "entering an invalid\n"
1613 "state for Intel VT. For example, the guest maybe running "
1614 "in big real mode\n"
1615 "which is not supported on less recent Intel processors."
1616 "\n\n");
1618 ret = -1;
1619 break;
1620 case KVM_EXIT_EXCEPTION:
1621 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1622 run->ex.exception, run->ex.error_code);
1623 ret = -1;
1624 break;
1625 default:
1626 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1627 ret = -1;
1628 break;
1631 return ret;
1634 #ifdef KVM_CAP_SET_GUEST_DEBUG
1635 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1637 static const uint8_t int3 = 0xcc;
1639 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1640 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1641 return -EINVAL;
1643 return 0;
1646 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1648 uint8_t int3;
1650 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1651 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1652 return -EINVAL;
1654 return 0;
1657 static struct {
1658 target_ulong addr;
1659 int len;
1660 int type;
1661 } hw_breakpoint[4];
1663 static int nb_hw_breakpoint;
1665 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1667 int n;
1669 for (n = 0; n < nb_hw_breakpoint; n++) {
1670 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1671 (hw_breakpoint[n].len == len || len == -1)) {
1672 return n;
1675 return -1;
1678 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1679 target_ulong len, int type)
1681 switch (type) {
1682 case GDB_BREAKPOINT_HW:
1683 len = 1;
1684 break;
1685 case GDB_WATCHPOINT_WRITE:
1686 case GDB_WATCHPOINT_ACCESS:
1687 switch (len) {
1688 case 1:
1689 break;
1690 case 2:
1691 case 4:
1692 case 8:
1693 if (addr & (len - 1)) {
1694 return -EINVAL;
1696 break;
1697 default:
1698 return -EINVAL;
1700 break;
1701 default:
1702 return -ENOSYS;
1705 if (nb_hw_breakpoint == 4) {
1706 return -ENOBUFS;
1708 if (find_hw_breakpoint(addr, len, type) >= 0) {
1709 return -EEXIST;
1711 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1712 hw_breakpoint[nb_hw_breakpoint].len = len;
1713 hw_breakpoint[nb_hw_breakpoint].type = type;
1714 nb_hw_breakpoint++;
1716 return 0;
1719 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1720 target_ulong len, int type)
1722 int n;
1724 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1725 if (n < 0) {
1726 return -ENOENT;
1728 nb_hw_breakpoint--;
1729 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1731 return 0;
1734 void kvm_arch_remove_all_hw_breakpoints(void)
1736 nb_hw_breakpoint = 0;
1739 static CPUWatchpoint hw_watchpoint;
1741 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1743 int handle = 0;
1744 int n;
1746 if (arch_info->exception == 1) {
1747 if (arch_info->dr6 & (1 << 14)) {
1748 if (cpu_single_env->singlestep_enabled) {
1749 handle = 1;
1751 } else {
1752 for (n = 0; n < 4; n++) {
1753 if (arch_info->dr6 & (1 << n)) {
1754 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1755 case 0x0:
1756 handle = 1;
1757 break;
1758 case 0x1:
1759 handle = 1;
1760 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1761 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1762 hw_watchpoint.flags = BP_MEM_WRITE;
1763 break;
1764 case 0x3:
1765 handle = 1;
1766 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1767 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1768 hw_watchpoint.flags = BP_MEM_ACCESS;
1769 break;
1774 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1775 handle = 1;
1777 if (!handle) {
1778 cpu_synchronize_state(cpu_single_env);
1779 assert(cpu_single_env->exception_injected == -1);
1781 cpu_single_env->exception_injected = arch_info->exception;
1782 cpu_single_env->has_error_code = 0;
1785 return handle;
1788 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1790 const uint8_t type_code[] = {
1791 [GDB_BREAKPOINT_HW] = 0x0,
1792 [GDB_WATCHPOINT_WRITE] = 0x1,
1793 [GDB_WATCHPOINT_ACCESS] = 0x3
1795 const uint8_t len_code[] = {
1796 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1798 int n;
1800 if (kvm_sw_breakpoints_active(env)) {
1801 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1803 if (nb_hw_breakpoint > 0) {
1804 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1805 dbg->arch.debugreg[7] = 0x0600;
1806 for (n = 0; n < nb_hw_breakpoint; n++) {
1807 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1808 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1809 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1810 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1814 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1816 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1818 return !(env->cr[0] & CR0_PE_MASK) ||
1819 ((env->segs[R_CS].selector & 3) != 3);