2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState
*env
)
55 return cpu_has_work(env
);
58 void cpu_loop_exit(void)
60 env
->current_tb
= NULL
;
61 longjmp(env
->jmp_env
, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
69 #if !defined(CONFIG_SOFTMMU)
71 struct ucontext
*uc
= puc
;
72 #elif defined(__OpenBSD__)
73 struct sigcontext
*uc
= puc
;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
83 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, (sigset_t
*)&uc
->uc_sigmask
, NULL
);
88 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
95 env
->exception_index
= -1;
96 longjmp(env
->jmp_env
, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
103 unsigned long next_tb
;
104 TranslationBlock
*tb
;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles
> CF_COUNT_MASK
)
109 max_cycles
= CF_COUNT_MASK
;
111 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
113 env
->current_tb
= tb
;
114 /* execute the generated code */
115 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
116 env
->current_tb
= NULL
;
118 if ((next_tb
& 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env
, tb
);
123 tb_phys_invalidate(tb
, -1);
127 static TranslationBlock
*tb_find_slow(target_ulong pc
,
128 target_ulong cs_base
,
131 TranslationBlock
*tb
, **ptb1
;
133 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
134 target_ulong virt_page2
;
136 tb_invalidated_flag
= 0;
138 /* find translated block using physical mappings */
139 phys_pc
= get_page_addr_code(env
, pc
);
140 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
142 h
= tb_phys_hash_func(phys_pc
);
143 ptb1
= &tb_phys_hash
[h
];
149 tb
->page_addr
[0] == phys_page1
&&
150 tb
->cs_base
== cs_base
&&
151 tb
->flags
== flags
) {
152 /* check next page if needed */
153 if (tb
->page_addr
[1] != -1) {
154 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
156 phys_page2
= get_page_addr_code(env
, virt_page2
);
157 if (tb
->page_addr
[1] == phys_page2
)
163 ptb1
= &tb
->phys_hash_next
;
166 /* if no translated code available, then translate it now */
167 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
170 /* Move the last found TB to the head of the list */
172 *ptb1
= tb
->phys_hash_next
;
173 tb
->phys_hash_next
= tb_phys_hash
[h
];
174 tb_phys_hash
[h
] = tb
;
176 /* we add the TB in the virtual pc hash table */
177 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
181 static inline TranslationBlock
*tb_find_fast(void)
183 TranslationBlock
*tb
;
184 target_ulong cs_base
, pc
;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
190 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
191 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
192 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
193 tb
->flags
!= flags
)) {
194 tb
= tb_find_slow(pc
, cs_base
, flags
);
199 static CPUDebugExcpHandler
*debug_excp_handler
;
201 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
203 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
205 debug_excp_handler
= handler
;
209 static void cpu_handle_debug_exception(CPUState
*env
)
213 if (!env
->watchpoint_hit
) {
214 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
215 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
218 if (debug_excp_handler
) {
219 debug_excp_handler(env
);
223 /* main execution loop */
225 volatile sig_atomic_t exit_request
;
227 int cpu_exec(CPUState
*env1
)
229 volatile host_reg_t saved_env_reg
;
230 int ret
, interrupt_request
;
231 TranslationBlock
*tb
;
233 unsigned long next_tb
;
236 if (!cpu_has_work(env1
)) {
243 cpu_single_env
= env1
;
245 /* the access to env below is actually saving the global register's
246 value, so that files not including target-xyz/exec.h are free to
248 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
249 saved_env_reg
= (host_reg_t
) env
;
253 if (unlikely(exit_request
)) {
254 env
->exit_request
= 1;
257 #if defined(TARGET_I386)
258 /* put eflags in CPU temporary format */
259 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
260 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
261 CC_OP
= CC_OP_EFLAGS
;
262 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
263 #elif defined(TARGET_SPARC)
264 #elif defined(TARGET_M68K)
265 env
->cc_op
= CC_OP_FLAGS
;
266 env
->cc_dest
= env
->sr
& 0xf;
267 env
->cc_x
= (env
->sr
>> 4) & 1;
268 #elif defined(TARGET_ALPHA)
269 #elif defined(TARGET_ARM)
270 #elif defined(TARGET_UNICORE32)
271 #elif defined(TARGET_PPC)
272 #elif defined(TARGET_LM32)
273 #elif defined(TARGET_MICROBLAZE)
274 #elif defined(TARGET_MIPS)
275 #elif defined(TARGET_SH4)
276 #elif defined(TARGET_CRIS)
277 #elif defined(TARGET_S390X)
280 #error unsupported target CPU
282 env
->exception_index
= -1;
284 /* prepare setjmp context for exception handling */
286 if (setjmp(env
->jmp_env
) == 0) {
287 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
289 env
= cpu_single_env
;
290 #define env cpu_single_env
292 /* if an exception is pending, we execute it here */
293 if (env
->exception_index
>= 0) {
294 if (env
->exception_index
>= EXCP_INTERRUPT
) {
295 /* exit request from the cpu execution loop */
296 ret
= env
->exception_index
;
297 if (ret
== EXCP_DEBUG
) {
298 cpu_handle_debug_exception(env
);
302 #if defined(CONFIG_USER_ONLY)
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
306 #if defined(TARGET_I386)
307 do_interrupt_user(env
->exception_index
,
308 env
->exception_is_int
,
310 env
->exception_next_eip
);
311 /* successfully delivered */
312 env
->old_exception
= -1;
314 ret
= env
->exception_index
;
317 #if defined(TARGET_I386)
318 /* simulate a real cpu exception. On i386, it can
319 trigger new exceptions, but we do not handle
320 double or triple faults yet. */
321 do_interrupt(env
->exception_index
,
322 env
->exception_is_int
,
324 env
->exception_next_eip
, 0);
325 /* successfully delivered */
326 env
->old_exception
= -1;
327 #elif defined(TARGET_PPC)
329 #elif defined(TARGET_LM32)
331 #elif defined(TARGET_MICROBLAZE)
333 #elif defined(TARGET_MIPS)
335 #elif defined(TARGET_SPARC)
337 #elif defined(TARGET_ARM)
339 #elif defined(TARGET_UNICORE32)
341 #elif defined(TARGET_SH4)
343 #elif defined(TARGET_ALPHA)
345 #elif defined(TARGET_CRIS)
347 #elif defined(TARGET_M68K)
349 #elif defined(TARGET_S390X)
352 env
->exception_index
= -1;
357 next_tb
= 0; /* force lookup of first TB */
359 interrupt_request
= env
->interrupt_request
;
360 if (unlikely(interrupt_request
)) {
361 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
362 /* Mask out external interrupts for this step. */
363 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
365 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
366 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
367 env
->exception_index
= EXCP_DEBUG
;
370 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
371 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
372 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
373 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
374 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
376 env
->exception_index
= EXCP_HLT
;
380 #if defined(TARGET_I386)
381 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
382 svm_check_intercept(SVM_EXIT_INIT
);
384 env
->exception_index
= EXCP_HALTED
;
386 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
388 } else if (env
->hflags2
& HF2_GIF_MASK
) {
389 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
390 !(env
->hflags
& HF_SMM_MASK
)) {
391 svm_check_intercept(SVM_EXIT_SMI
);
392 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
395 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
396 !(env
->hflags2
& HF2_NMI_MASK
)) {
397 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
398 env
->hflags2
|= HF2_NMI_MASK
;
399 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
401 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
402 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
403 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
405 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
406 (((env
->hflags2
& HF2_VINTR_MASK
) &&
407 (env
->hflags2
& HF2_HIF_MASK
)) ||
408 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
409 (env
->eflags
& IF_MASK
&&
410 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
412 svm_check_intercept(SVM_EXIT_INTR
);
413 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
414 intno
= cpu_get_pic_interrupt(env
);
415 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
416 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
418 env
= cpu_single_env
;
419 #define env cpu_single_env
421 do_interrupt(intno
, 0, 0, 0, 1);
422 /* ensure that no TB jump will be modified as
423 the program flow was changed */
425 #if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
427 (env
->eflags
& IF_MASK
) &&
428 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
430 /* FIXME: this should respect TPR */
431 svm_check_intercept(SVM_EXIT_VINTR
);
432 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
433 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
434 do_interrupt(intno
, 0, 0, 0, 1);
435 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
440 #elif defined(TARGET_PPC)
442 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
446 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
447 ppc_hw_interrupt(env
);
448 if (env
->pending_interrupts
== 0)
449 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
452 #elif defined(TARGET_LM32)
453 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
454 && (env
->ie
& IE_IE
)) {
455 env
->exception_index
= EXCP_IRQ
;
459 #elif defined(TARGET_MICROBLAZE)
460 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
461 && (env
->sregs
[SR_MSR
] & MSR_IE
)
462 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
463 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
464 env
->exception_index
= EXCP_IRQ
;
468 #elif defined(TARGET_MIPS)
469 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
470 cpu_mips_hw_interrupts_pending(env
)) {
472 env
->exception_index
= EXCP_EXT_INTERRUPT
;
477 #elif defined(TARGET_SPARC)
478 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
479 if (cpu_interrupts_enabled(env
) &&
480 env
->interrupt_index
> 0) {
481 int pil
= env
->interrupt_index
& 0xf;
482 int type
= env
->interrupt_index
& 0xf0;
484 if (((type
== TT_EXTINT
) &&
485 cpu_pil_allowed(env
, pil
)) ||
487 env
->exception_index
= env
->interrupt_index
;
493 #elif defined(TARGET_ARM)
494 if (interrupt_request
& CPU_INTERRUPT_FIQ
495 && !(env
->uncached_cpsr
& CPSR_F
)) {
496 env
->exception_index
= EXCP_FIQ
;
500 /* ARMv7-M interrupt return works by loading a magic value
501 into the PC. On real hardware the load causes the
502 return to occur. The qemu implementation performs the
503 jump normally, then does the exception return when the
504 CPU tries to execute code at the magic address.
505 This will cause the magic PC value to be pushed to
506 the stack if an interrupt occured at the wrong time.
507 We avoid this by disabling interrupts when
508 pc contains a magic address. */
509 if (interrupt_request
& CPU_INTERRUPT_HARD
510 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
511 || !(env
->uncached_cpsr
& CPSR_I
))) {
512 env
->exception_index
= EXCP_IRQ
;
516 #elif defined(TARGET_UNICORE32)
517 if (interrupt_request
& CPU_INTERRUPT_HARD
518 && !(env
->uncached_asr
& ASR_I
)) {
522 #elif defined(TARGET_SH4)
523 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
527 #elif defined(TARGET_ALPHA)
528 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
532 #elif defined(TARGET_CRIS)
533 if (interrupt_request
& CPU_INTERRUPT_HARD
534 && (env
->pregs
[PR_CCS
] & I_FLAG
)
535 && !env
->locked_irq
) {
536 env
->exception_index
= EXCP_IRQ
;
540 if (interrupt_request
& CPU_INTERRUPT_NMI
541 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
542 env
->exception_index
= EXCP_NMI
;
546 #elif defined(TARGET_M68K)
547 if (interrupt_request
& CPU_INTERRUPT_HARD
548 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
549 < env
->pending_level
) {
550 /* Real hardware gets the interrupt vector via an
551 IACK cycle at this point. Current emulated
552 hardware doesn't rely on this, so we
553 provide/save the vector when the interrupt is
555 env
->exception_index
= env
->pending_vector
;
559 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
560 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
561 (env
->psw
.mask
& PSW_MASK_EXT
)) {
566 /* Don't use the cached interupt_request value,
567 do_interrupt may have updated the EXITTB flag. */
568 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
569 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
570 /* ensure that no TB jump will be modified as
571 the program flow was changed */
575 if (unlikely(env
->exit_request
)) {
576 env
->exit_request
= 0;
577 env
->exception_index
= EXCP_INTERRUPT
;
580 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
581 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
582 /* restore flags in standard format */
583 #if defined(TARGET_I386)
584 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
585 log_cpu_state(env
, X86_DUMP_CCOP
);
586 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
587 #elif defined(TARGET_M68K)
588 cpu_m68k_flush_flags(env
, env
->cc_op
);
589 env
->cc_op
= CC_OP_FLAGS
;
590 env
->sr
= (env
->sr
& 0xffe0)
591 | env
->cc_dest
| (env
->cc_x
<< 4);
592 log_cpu_state(env
, 0);
594 log_cpu_state(env
, 0);
597 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
600 /* Note: we do it here to avoid a gcc bug on Mac OS X when
601 doing it in tb_find_slow */
602 if (tb_invalidated_flag
) {
603 /* as some TB could have been invalidated because
604 of memory exceptions while generating the code, we
605 must recompute the hash index here */
607 tb_invalidated_flag
= 0;
609 #ifdef CONFIG_DEBUG_EXEC
610 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
611 (long)tb
->tc_ptr
, tb
->pc
,
612 lookup_symbol(tb
->pc
));
614 /* see if we can patch the calling TB. When the TB
615 spans two pages, we cannot safely do a direct
617 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
618 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
620 spin_unlock(&tb_lock
);
622 /* cpu_interrupt might be called while translating the
623 TB, but before it is linked into a potentially
624 infinite loop and becomes env->current_tb. Avoid
625 starting execution if there is a pending interrupt. */
626 env
->current_tb
= tb
;
628 if (likely(!env
->exit_request
)) {
630 /* execute the generated code */
631 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
633 env
= cpu_single_env
;
634 #define env cpu_single_env
636 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
637 if ((next_tb
& 3) == 2) {
638 /* Instruction counter expired. */
640 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
642 cpu_pc_from_tb(env
, tb
);
643 insns_left
= env
->icount_decr
.u32
;
644 if (env
->icount_extra
&& insns_left
>= 0) {
645 /* Refill decrementer and continue execution. */
646 env
->icount_extra
+= insns_left
;
647 if (env
->icount_extra
> 0xffff) {
650 insns_left
= env
->icount_extra
;
652 env
->icount_extra
-= insns_left
;
653 env
->icount_decr
.u16
.low
= insns_left
;
655 if (insns_left
> 0) {
656 /* Execute remaining instructions. */
657 cpu_exec_nocache(insns_left
, tb
);
659 env
->exception_index
= EXCP_INTERRUPT
;
665 env
->current_tb
= NULL
;
666 /* reset soft MMU for next block (it can currently
667 only be set by a memory fault) */
673 #if defined(TARGET_I386)
674 /* restore flags in standard format */
675 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
676 #elif defined(TARGET_ARM)
677 /* XXX: Save/restore host fpu exception state?. */
678 #elif defined(TARGET_UNICORE32)
679 #elif defined(TARGET_SPARC)
680 #elif defined(TARGET_PPC)
681 #elif defined(TARGET_LM32)
682 #elif defined(TARGET_M68K)
683 cpu_m68k_flush_flags(env
, env
->cc_op
);
684 env
->cc_op
= CC_OP_FLAGS
;
685 env
->sr
= (env
->sr
& 0xffe0)
686 | env
->cc_dest
| (env
->cc_x
<< 4);
687 #elif defined(TARGET_MICROBLAZE)
688 #elif defined(TARGET_MIPS)
689 #elif defined(TARGET_SH4)
690 #elif defined(TARGET_ALPHA)
691 #elif defined(TARGET_CRIS)
692 #elif defined(TARGET_S390X)
695 #error unsupported target CPU
698 /* restore global registers */
700 env
= (void *) saved_env_reg
;
702 /* fail safe : never use cpu_single_env outside cpu_exec() */
703 cpu_single_env
= NULL
;
707 /* must only be called from the generated code as an exception can be
709 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
711 /* XXX: cannot enable it yet because it yields to MMU exception
712 where NIP != read address on PowerPC */
714 target_ulong phys_addr
;
715 phys_addr
= get_phys_addr_code(env
, start
);
716 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
720 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
722 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
724 CPUX86State
*saved_env
;
728 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
730 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
731 (selector
<< 4), 0xffff, 0);
733 helper_load_seg(seg_reg
, selector
);
738 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
740 CPUX86State
*saved_env
;
745 helper_fsave(ptr
, data32
);
750 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
752 CPUX86State
*saved_env
;
757 helper_frstor(ptr
, data32
);
762 #endif /* TARGET_I386 */
764 #if !defined(CONFIG_SOFTMMU)
766 #if defined(TARGET_I386)
767 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
769 #define EXCEPTION_ACTION cpu_loop_exit()
772 /* 'pc' is the host PC at which the exception was raised. 'address' is
773 the effective address of the memory exception. 'is_write' is 1 if a
774 write caused the exception and otherwise 0'. 'old_set' is the
775 signal set which should be restored */
776 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
777 int is_write
, sigset_t
*old_set
,
780 TranslationBlock
*tb
;
784 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
785 #if defined(DEBUG_SIGNAL)
786 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
787 pc
, address
, is_write
, *(unsigned long *)old_set
);
789 /* XXX: locking issue */
790 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
794 /* see if it is an MMU fault */
795 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
797 return 0; /* not an MMU fault */
799 return 1; /* the MMU fault was handled without causing real CPU fault */
800 /* now we have a real cpu fault */
803 /* the PC is inside the translated code. It means that we have
804 a virtual CPU fault */
805 cpu_restore_state(tb
, env
, pc
);
808 /* we restore the process signal mask as the sigreturn should
809 do it (XXX: use sigsetjmp) */
810 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
813 /* never comes here */
817 #if defined(__i386__)
819 #if defined(__APPLE__)
820 # include <sys/ucontext.h>
822 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
823 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
824 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
825 # define MASK_sig(context) ((context)->uc_sigmask)
826 #elif defined (__NetBSD__)
827 # include <ucontext.h>
829 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
830 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
831 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
832 # define MASK_sig(context) ((context)->uc_sigmask)
833 #elif defined (__FreeBSD__) || defined(__DragonFly__)
834 # include <ucontext.h>
836 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
837 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
838 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
839 # define MASK_sig(context) ((context)->uc_sigmask)
840 #elif defined(__OpenBSD__)
841 # define EIP_sig(context) ((context)->sc_eip)
842 # define TRAP_sig(context) ((context)->sc_trapno)
843 # define ERROR_sig(context) ((context)->sc_err)
844 # define MASK_sig(context) ((context)->sc_mask)
846 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
847 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
848 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
849 # define MASK_sig(context) ((context)->uc_sigmask)
852 int cpu_signal_handler(int host_signum
, void *pinfo
,
855 siginfo_t
*info
= pinfo
;
856 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
857 ucontext_t
*uc
= puc
;
858 #elif defined(__OpenBSD__)
859 struct sigcontext
*uc
= puc
;
861 struct ucontext
*uc
= puc
;
870 #define REG_TRAPNO TRAPNO
873 trapno
= TRAP_sig(uc
);
874 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
876 (ERROR_sig(uc
) >> 1) & 1 : 0,
880 #elif defined(__x86_64__)
883 #define PC_sig(context) _UC_MACHINE_PC(context)
884 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
885 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
886 #define MASK_sig(context) ((context)->uc_sigmask)
887 #elif defined(__OpenBSD__)
888 #define PC_sig(context) ((context)->sc_rip)
889 #define TRAP_sig(context) ((context)->sc_trapno)
890 #define ERROR_sig(context) ((context)->sc_err)
891 #define MASK_sig(context) ((context)->sc_mask)
892 #elif defined (__FreeBSD__) || defined(__DragonFly__)
893 #include <ucontext.h>
895 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
896 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
897 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
898 #define MASK_sig(context) ((context)->uc_sigmask)
900 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
901 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
902 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
903 #define MASK_sig(context) ((context)->uc_sigmask)
906 int cpu_signal_handler(int host_signum
, void *pinfo
,
909 siginfo_t
*info
= pinfo
;
911 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
912 ucontext_t
*uc
= puc
;
913 #elif defined(__OpenBSD__)
914 struct sigcontext
*uc
= puc
;
916 struct ucontext
*uc
= puc
;
920 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
921 TRAP_sig(uc
) == 0xe ?
922 (ERROR_sig(uc
) >> 1) & 1 : 0,
926 #elif defined(_ARCH_PPC)
928 /***********************************************************************
929 * signal context platform-specific definitions
933 /* All Registers access - only for local access */
934 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
935 /* Gpr Registers access */
936 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
937 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
938 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
939 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
940 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
941 # define LR_sig(context) REG_sig(link, context) /* Link register */
942 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
943 /* Float Registers access */
944 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
945 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
946 /* Exception Registers access */
947 # define DAR_sig(context) REG_sig(dar, context)
948 # define DSISR_sig(context) REG_sig(dsisr, context)
949 # define TRAP_sig(context) REG_sig(trap, context)
952 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
953 #include <ucontext.h>
954 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
955 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
956 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
957 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
958 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
959 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
960 /* Exception Registers access */
961 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
962 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
963 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
964 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
967 # include <sys/ucontext.h>
968 typedef struct ucontext SIGCONTEXT
;
969 /* All Registers access - only for local access */
970 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
971 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
972 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
973 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
974 /* Gpr Registers access */
975 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
976 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
977 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
978 # define CTR_sig(context) REG_sig(ctr, context)
979 # define XER_sig(context) REG_sig(xer, context) /* Link register */
980 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
981 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
982 /* Float Registers access */
983 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
984 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
985 /* Exception Registers access */
986 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
987 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
988 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
989 #endif /* __APPLE__ */
991 int cpu_signal_handler(int host_signum
, void *pinfo
,
994 siginfo_t
*info
= pinfo
;
995 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
996 ucontext_t
*uc
= puc
;
998 struct ucontext
*uc
= puc
;
1007 if (DSISR_sig(uc
) & 0x00800000)
1010 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1013 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1014 is_write
, &uc
->uc_sigmask
, puc
);
1017 #elif defined(__alpha__)
1019 int cpu_signal_handler(int host_signum
, void *pinfo
,
1022 siginfo_t
*info
= pinfo
;
1023 struct ucontext
*uc
= puc
;
1024 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1025 uint32_t insn
= *pc
;
1028 /* XXX: need kernel patch to get write flag faster */
1029 switch (insn
>> 26) {
1044 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1045 is_write
, &uc
->uc_sigmask
, puc
);
1047 #elif defined(__sparc__)
1049 int cpu_signal_handler(int host_signum
, void *pinfo
,
1052 siginfo_t
*info
= pinfo
;
1055 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1056 uint32_t *regs
= (uint32_t *)(info
+ 1);
1057 void *sigmask
= (regs
+ 20);
1058 /* XXX: is there a standard glibc define ? */
1059 unsigned long pc
= regs
[1];
1062 struct sigcontext
*sc
= puc
;
1063 unsigned long pc
= sc
->sigc_regs
.tpc
;
1064 void *sigmask
= (void *)sc
->sigc_mask
;
1065 #elif defined(__OpenBSD__)
1066 struct sigcontext
*uc
= puc
;
1067 unsigned long pc
= uc
->sc_pc
;
1068 void *sigmask
= (void *)(long)uc
->sc_mask
;
1072 /* XXX: need kernel patch to get write flag faster */
1074 insn
= *(uint32_t *)pc
;
1075 if ((insn
>> 30) == 3) {
1076 switch((insn
>> 19) & 0x3f) {
1100 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1101 is_write
, sigmask
, NULL
);
1104 #elif defined(__arm__)
1106 int cpu_signal_handler(int host_signum
, void *pinfo
,
1109 siginfo_t
*info
= pinfo
;
1110 struct ucontext
*uc
= puc
;
1114 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1115 pc
= uc
->uc_mcontext
.gregs
[R15
];
1117 pc
= uc
->uc_mcontext
.arm_pc
;
1119 /* XXX: compute is_write */
1121 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1123 &uc
->uc_sigmask
, puc
);
1126 #elif defined(__mc68000)
1128 int cpu_signal_handler(int host_signum
, void *pinfo
,
1131 siginfo_t
*info
= pinfo
;
1132 struct ucontext
*uc
= puc
;
1136 pc
= uc
->uc_mcontext
.gregs
[16];
1137 /* XXX: compute is_write */
1139 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1141 &uc
->uc_sigmask
, puc
);
1144 #elif defined(__ia64)
1147 /* This ought to be in <bits/siginfo.h>... */
1148 # define __ISR_VALID 1
1151 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1153 siginfo_t
*info
= pinfo
;
1154 struct ucontext
*uc
= puc
;
1158 ip
= uc
->uc_mcontext
.sc_ip
;
1159 switch (host_signum
) {
1165 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1166 /* ISR.W (write-access) is bit 33: */
1167 is_write
= (info
->si_isr
>> 33) & 1;
1173 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1175 (sigset_t
*)&uc
->uc_sigmask
, puc
);
1178 #elif defined(__s390__)
1180 int cpu_signal_handler(int host_signum
, void *pinfo
,
1183 siginfo_t
*info
= pinfo
;
1184 struct ucontext
*uc
= puc
;
1189 pc
= uc
->uc_mcontext
.psw
.addr
;
1191 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1192 of the normal 2 arguments. The 3rd argument contains the "int_code"
1193 from the hardware which does in fact contain the is_write value.
1194 The rt signal handler, as far as I can tell, does not give this value
1195 at all. Not that we could get to it from here even if it were. */
1196 /* ??? This is not even close to complete, since it ignores all
1197 of the read-modify-write instructions. */
1198 pinsn
= (uint16_t *)pc
;
1199 switch (pinsn
[0] >> 8) {
1201 case 0x42: /* STC */
1202 case 0x40: /* STH */
1205 case 0xc4: /* RIL format insns */
1206 switch (pinsn
[0] & 0xf) {
1207 case 0xf: /* STRL */
1208 case 0xb: /* STGRL */
1209 case 0x7: /* STHRL */
1213 case 0xe3: /* RXY format insns */
1214 switch (pinsn
[2] & 0xff) {
1215 case 0x50: /* STY */
1216 case 0x24: /* STG */
1217 case 0x72: /* STCY */
1218 case 0x70: /* STHY */
1219 case 0x8e: /* STPQ */
1220 case 0x3f: /* STRVH */
1221 case 0x3e: /* STRV */
1222 case 0x2f: /* STRVG */
1227 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1228 is_write
, &uc
->uc_sigmask
, puc
);
1231 #elif defined(__mips__)
1233 int cpu_signal_handler(int host_signum
, void *pinfo
,
1236 siginfo_t
*info
= pinfo
;
1237 struct ucontext
*uc
= puc
;
1238 greg_t pc
= uc
->uc_mcontext
.pc
;
1241 /* XXX: compute is_write */
1243 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1244 is_write
, &uc
->uc_sigmask
, puc
);
1247 #elif defined(__hppa__)
1249 int cpu_signal_handler(int host_signum
, void *pinfo
,
1252 struct siginfo
*info
= pinfo
;
1253 struct ucontext
*uc
= puc
;
1254 unsigned long pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1255 uint32_t insn
= *(uint32_t *)pc
;
1258 /* XXX: need kernel patch to get write flag faster. */
1259 switch (insn
>> 26) {
1260 case 0x1a: /* STW */
1261 case 0x19: /* STH */
1262 case 0x18: /* STB */
1263 case 0x1b: /* STWM */
1267 case 0x09: /* CSTWX, FSTWX, FSTWS */
1268 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1269 /* Distinguish from coprocessor load ... */
1270 is_write
= (insn
>> 9) & 1;
1274 switch ((insn
>> 6) & 15) {
1275 case 0xa: /* STWS */
1276 case 0x9: /* STHS */
1277 case 0x8: /* STBS */
1278 case 0xe: /* STWAS */
1279 case 0xc: /* STBYS */
1285 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1286 is_write
, &uc
->uc_sigmask
, puc
);
1291 #error host CPU specific signal handler needed
1295 #endif /* !defined(CONFIG_SOFTMMU) */