switch chardev to QemuOpts: infrastructure, null device
[qemu/scottt.git] / vl.c
blob0446769868af31fc06eb46dc7e9ee71c85a8c760
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 return qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
163 #include "disas.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 #define QEMU_TIMER_BASE 1000000000LL
534 #ifdef WIN32
536 static int64_t clock_freq;
538 static void init_get_clock(void)
540 LARGE_INTEGER freq;
541 int ret;
542 ret = QueryPerformanceFrequency(&freq);
543 if (ret == 0) {
544 fprintf(stderr, "Could not calibrate ticks\n");
545 exit(1);
547 clock_freq = freq.QuadPart;
550 static int64_t get_clock(void)
552 LARGE_INTEGER ti;
553 QueryPerformanceCounter(&ti);
554 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 #else
559 static int use_rt_clock;
561 static void init_get_clock(void)
563 use_rt_clock = 0;
564 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
565 || defined(__DragonFly__)
567 struct timespec ts;
568 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
569 use_rt_clock = 1;
572 #endif
575 static int64_t get_clock(void)
577 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
578 || defined(__DragonFly__)
579 if (use_rt_clock) {
580 struct timespec ts;
581 clock_gettime(CLOCK_MONOTONIC, &ts);
582 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
583 } else
584 #endif
586 /* XXX: using gettimeofday leads to problems if the date
587 changes, so it should be avoided. */
588 struct timeval tv;
589 gettimeofday(&tv, NULL);
590 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 #endif
595 /* Return the virtual CPU time, based on the instruction counter. */
596 static int64_t cpu_get_icount(void)
598 int64_t icount;
599 CPUState *env = cpu_single_env;;
600 icount = qemu_icount;
601 if (env) {
602 if (!can_do_io(env))
603 fprintf(stderr, "Bad clock read\n");
604 icount -= (env->icount_decr.u16.low + env->icount_extra);
606 return qemu_icount_bias + (icount << icount_time_shift);
609 /***********************************************************/
610 /* guest cycle counter */
612 static int64_t cpu_ticks_prev;
613 static int64_t cpu_ticks_offset;
614 static int64_t cpu_clock_offset;
615 static int cpu_ticks_enabled;
617 /* return the host CPU cycle counter and handle stop/restart */
618 int64_t cpu_get_ticks(void)
620 if (use_icount) {
621 return cpu_get_icount();
623 if (!cpu_ticks_enabled) {
624 return cpu_ticks_offset;
625 } else {
626 int64_t ticks;
627 ticks = cpu_get_real_ticks();
628 if (cpu_ticks_prev > ticks) {
629 /* Note: non increasing ticks may happen if the host uses
630 software suspend */
631 cpu_ticks_offset += cpu_ticks_prev - ticks;
633 cpu_ticks_prev = ticks;
634 return ticks + cpu_ticks_offset;
638 /* return the host CPU monotonic timer and handle stop/restart */
639 static int64_t cpu_get_clock(void)
641 int64_t ti;
642 if (!cpu_ticks_enabled) {
643 return cpu_clock_offset;
644 } else {
645 ti = get_clock();
646 return ti + cpu_clock_offset;
650 /* enable cpu_get_ticks() */
651 void cpu_enable_ticks(void)
653 if (!cpu_ticks_enabled) {
654 cpu_ticks_offset -= cpu_get_real_ticks();
655 cpu_clock_offset -= get_clock();
656 cpu_ticks_enabled = 1;
660 /* disable cpu_get_ticks() : the clock is stopped. You must not call
661 cpu_get_ticks() after that. */
662 void cpu_disable_ticks(void)
664 if (cpu_ticks_enabled) {
665 cpu_ticks_offset = cpu_get_ticks();
666 cpu_clock_offset = cpu_get_clock();
667 cpu_ticks_enabled = 0;
671 /***********************************************************/
672 /* timers */
674 #define QEMU_TIMER_REALTIME 0
675 #define QEMU_TIMER_VIRTUAL 1
677 struct QEMUClock {
678 int type;
679 /* XXX: add frequency */
682 struct QEMUTimer {
683 QEMUClock *clock;
684 int64_t expire_time;
685 QEMUTimerCB *cb;
686 void *opaque;
687 struct QEMUTimer *next;
690 struct qemu_alarm_timer {
691 char const *name;
692 unsigned int flags;
694 int (*start)(struct qemu_alarm_timer *t);
695 void (*stop)(struct qemu_alarm_timer *t);
696 void (*rearm)(struct qemu_alarm_timer *t);
697 void *priv;
700 #define ALARM_FLAG_DYNTICKS 0x1
701 #define ALARM_FLAG_EXPIRED 0x2
703 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
705 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
710 if (!alarm_has_dynticks(t))
711 return;
713 t->rearm(t);
716 /* TODO: MIN_TIMER_REARM_US should be optimized */
717 #define MIN_TIMER_REARM_US 250
719 static struct qemu_alarm_timer *alarm_timer;
721 #ifdef _WIN32
723 struct qemu_alarm_win32 {
724 MMRESULT timerId;
725 unsigned int period;
726 } alarm_win32_data = {0, -1};
728 static int win32_start_timer(struct qemu_alarm_timer *t);
729 static void win32_stop_timer(struct qemu_alarm_timer *t);
730 static void win32_rearm_timer(struct qemu_alarm_timer *t);
732 #else
734 static int unix_start_timer(struct qemu_alarm_timer *t);
735 static void unix_stop_timer(struct qemu_alarm_timer *t);
737 #ifdef __linux__
739 static int dynticks_start_timer(struct qemu_alarm_timer *t);
740 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
741 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
743 static int hpet_start_timer(struct qemu_alarm_timer *t);
744 static void hpet_stop_timer(struct qemu_alarm_timer *t);
746 static int rtc_start_timer(struct qemu_alarm_timer *t);
747 static void rtc_stop_timer(struct qemu_alarm_timer *t);
749 #endif /* __linux__ */
751 #endif /* _WIN32 */
753 /* Correlation between real and virtual time is always going to be
754 fairly approximate, so ignore small variation.
755 When the guest is idle real and virtual time will be aligned in
756 the IO wait loop. */
757 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
759 static void icount_adjust(void)
761 int64_t cur_time;
762 int64_t cur_icount;
763 int64_t delta;
764 static int64_t last_delta;
765 /* If the VM is not running, then do nothing. */
766 if (!vm_running)
767 return;
769 cur_time = cpu_get_clock();
770 cur_icount = qemu_get_clock(vm_clock);
771 delta = cur_icount - cur_time;
772 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 if (delta > 0
774 && last_delta + ICOUNT_WOBBLE < delta * 2
775 && icount_time_shift > 0) {
776 /* The guest is getting too far ahead. Slow time down. */
777 icount_time_shift--;
779 if (delta < 0
780 && last_delta - ICOUNT_WOBBLE > delta * 2
781 && icount_time_shift < MAX_ICOUNT_SHIFT) {
782 /* The guest is getting too far behind. Speed time up. */
783 icount_time_shift++;
785 last_delta = delta;
786 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 static void icount_adjust_rt(void * opaque)
791 qemu_mod_timer(icount_rt_timer,
792 qemu_get_clock(rt_clock) + 1000);
793 icount_adjust();
796 static void icount_adjust_vm(void * opaque)
798 qemu_mod_timer(icount_vm_timer,
799 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
800 icount_adjust();
803 static void init_icount_adjust(void)
805 /* Have both realtime and virtual time triggers for speed adjustment.
806 The realtime trigger catches emulated time passing too slowly,
807 the virtual time trigger catches emulated time passing too fast.
808 Realtime triggers occur even when idle, so use them less frequently
809 than VM triggers. */
810 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
811 qemu_mod_timer(icount_rt_timer,
812 qemu_get_clock(rt_clock) + 1000);
813 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
814 qemu_mod_timer(icount_vm_timer,
815 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 static struct qemu_alarm_timer alarm_timers[] = {
819 #ifndef _WIN32
820 #ifdef __linux__
821 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
822 dynticks_stop_timer, dynticks_rearm_timer, NULL},
823 /* HPET - if available - is preferred */
824 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
825 /* ...otherwise try RTC */
826 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
827 #endif
828 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
829 #else
830 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
831 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
832 {"win32", 0, win32_start_timer,
833 win32_stop_timer, NULL, &alarm_win32_data},
834 #endif
835 {NULL, }
838 static void show_available_alarms(void)
840 int i;
842 printf("Available alarm timers, in order of precedence:\n");
843 for (i = 0; alarm_timers[i].name; i++)
844 printf("%s\n", alarm_timers[i].name);
847 static void configure_alarms(char const *opt)
849 int i;
850 int cur = 0;
851 int count = ARRAY_SIZE(alarm_timers) - 1;
852 char *arg;
853 char *name;
854 struct qemu_alarm_timer tmp;
856 if (!strcmp(opt, "?")) {
857 show_available_alarms();
858 exit(0);
861 arg = qemu_strdup(opt);
863 /* Reorder the array */
864 name = strtok(arg, ",");
865 while (name) {
866 for (i = 0; i < count && alarm_timers[i].name; i++) {
867 if (!strcmp(alarm_timers[i].name, name))
868 break;
871 if (i == count) {
872 fprintf(stderr, "Unknown clock %s\n", name);
873 goto next;
876 if (i < cur)
877 /* Ignore */
878 goto next;
880 /* Swap */
881 tmp = alarm_timers[i];
882 alarm_timers[i] = alarm_timers[cur];
883 alarm_timers[cur] = tmp;
885 cur++;
886 next:
887 name = strtok(NULL, ",");
890 qemu_free(arg);
892 if (cur) {
893 /* Disable remaining timers */
894 for (i = cur; i < count; i++)
895 alarm_timers[i].name = NULL;
896 } else {
897 show_available_alarms();
898 exit(1);
902 QEMUClock *rt_clock;
903 QEMUClock *vm_clock;
905 static QEMUTimer *active_timers[2];
907 static QEMUClock *qemu_new_clock(int type)
909 QEMUClock *clock;
910 clock = qemu_mallocz(sizeof(QEMUClock));
911 clock->type = type;
912 return clock;
915 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
917 QEMUTimer *ts;
919 ts = qemu_mallocz(sizeof(QEMUTimer));
920 ts->clock = clock;
921 ts->cb = cb;
922 ts->opaque = opaque;
923 return ts;
926 void qemu_free_timer(QEMUTimer *ts)
928 qemu_free(ts);
931 /* stop a timer, but do not dealloc it */
932 void qemu_del_timer(QEMUTimer *ts)
934 QEMUTimer **pt, *t;
936 /* NOTE: this code must be signal safe because
937 qemu_timer_expired() can be called from a signal. */
938 pt = &active_timers[ts->clock->type];
939 for(;;) {
940 t = *pt;
941 if (!t)
942 break;
943 if (t == ts) {
944 *pt = t->next;
945 break;
947 pt = &t->next;
951 /* modify the current timer so that it will be fired when current_time
952 >= expire_time. The corresponding callback will be called. */
953 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
955 QEMUTimer **pt, *t;
957 qemu_del_timer(ts);
959 /* add the timer in the sorted list */
960 /* NOTE: this code must be signal safe because
961 qemu_timer_expired() can be called from a signal. */
962 pt = &active_timers[ts->clock->type];
963 for(;;) {
964 t = *pt;
965 if (!t)
966 break;
967 if (t->expire_time > expire_time)
968 break;
969 pt = &t->next;
971 ts->expire_time = expire_time;
972 ts->next = *pt;
973 *pt = ts;
975 /* Rearm if necessary */
976 if (pt == &active_timers[ts->clock->type]) {
977 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
978 qemu_rearm_alarm_timer(alarm_timer);
980 /* Interrupt execution to force deadline recalculation. */
981 if (use_icount)
982 qemu_notify_event();
986 int qemu_timer_pending(QEMUTimer *ts)
988 QEMUTimer *t;
989 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
990 if (t == ts)
991 return 1;
993 return 0;
996 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
998 if (!timer_head)
999 return 0;
1000 return (timer_head->expire_time <= current_time);
1003 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1005 QEMUTimer *ts;
1007 for(;;) {
1008 ts = *ptimer_head;
1009 if (!ts || ts->expire_time > current_time)
1010 break;
1011 /* remove timer from the list before calling the callback */
1012 *ptimer_head = ts->next;
1013 ts->next = NULL;
1015 /* run the callback (the timer list can be modified) */
1016 ts->cb(ts->opaque);
1020 int64_t qemu_get_clock(QEMUClock *clock)
1022 switch(clock->type) {
1023 case QEMU_TIMER_REALTIME:
1024 return get_clock() / 1000000;
1025 default:
1026 case QEMU_TIMER_VIRTUAL:
1027 if (use_icount) {
1028 return cpu_get_icount();
1029 } else {
1030 return cpu_get_clock();
1035 static void init_timers(void)
1037 init_get_clock();
1038 ticks_per_sec = QEMU_TIMER_BASE;
1039 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1040 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1043 /* save a timer */
1044 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1046 uint64_t expire_time;
1048 if (qemu_timer_pending(ts)) {
1049 expire_time = ts->expire_time;
1050 } else {
1051 expire_time = -1;
1053 qemu_put_be64(f, expire_time);
1056 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1058 uint64_t expire_time;
1060 expire_time = qemu_get_be64(f);
1061 if (expire_time != -1) {
1062 qemu_mod_timer(ts, expire_time);
1063 } else {
1064 qemu_del_timer(ts);
1068 static void timer_save(QEMUFile *f, void *opaque)
1070 if (cpu_ticks_enabled) {
1071 hw_error("cannot save state if virtual timers are running");
1073 qemu_put_be64(f, cpu_ticks_offset);
1074 qemu_put_be64(f, ticks_per_sec);
1075 qemu_put_be64(f, cpu_clock_offset);
1078 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1080 if (version_id != 1 && version_id != 2)
1081 return -EINVAL;
1082 if (cpu_ticks_enabled) {
1083 return -EINVAL;
1085 cpu_ticks_offset=qemu_get_be64(f);
1086 ticks_per_sec=qemu_get_be64(f);
1087 if (version_id == 2) {
1088 cpu_clock_offset=qemu_get_be64(f);
1090 return 0;
1093 static void qemu_event_increment(void);
1095 #ifdef _WIN32
1096 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1097 DWORD_PTR dwUser, DWORD_PTR dw1,
1098 DWORD_PTR dw2)
1099 #else
1100 static void host_alarm_handler(int host_signum)
1101 #endif
1103 #if 0
1104 #define DISP_FREQ 1000
1106 static int64_t delta_min = INT64_MAX;
1107 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1108 static int count;
1109 ti = qemu_get_clock(vm_clock);
1110 if (last_clock != 0) {
1111 delta = ti - last_clock;
1112 if (delta < delta_min)
1113 delta_min = delta;
1114 if (delta > delta_max)
1115 delta_max = delta;
1116 delta_cum += delta;
1117 if (++count == DISP_FREQ) {
1118 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1119 muldiv64(delta_min, 1000000, ticks_per_sec),
1120 muldiv64(delta_max, 1000000, ticks_per_sec),
1121 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1122 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1123 count = 0;
1124 delta_min = INT64_MAX;
1125 delta_max = 0;
1126 delta_cum = 0;
1129 last_clock = ti;
1131 #endif
1132 if (alarm_has_dynticks(alarm_timer) ||
1133 (!use_icount &&
1134 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1135 qemu_get_clock(vm_clock))) ||
1136 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1137 qemu_get_clock(rt_clock))) {
1138 qemu_event_increment();
1139 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1141 #ifndef CONFIG_IOTHREAD
1142 if (next_cpu) {
1143 /* stop the currently executing cpu because a timer occured */
1144 cpu_exit(next_cpu);
1146 #endif
1147 timer_alarm_pending = 1;
1148 qemu_notify_event();
1152 static int64_t qemu_next_deadline(void)
1154 int64_t delta;
1156 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1157 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1158 qemu_get_clock(vm_clock);
1159 } else {
1160 /* To avoid problems with overflow limit this to 2^32. */
1161 delta = INT32_MAX;
1164 if (delta < 0)
1165 delta = 0;
1167 return delta;
1170 #if defined(__linux__) || defined(_WIN32)
1171 static uint64_t qemu_next_deadline_dyntick(void)
1173 int64_t delta;
1174 int64_t rtdelta;
1176 if (use_icount)
1177 delta = INT32_MAX;
1178 else
1179 delta = (qemu_next_deadline() + 999) / 1000;
1181 if (active_timers[QEMU_TIMER_REALTIME]) {
1182 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1183 qemu_get_clock(rt_clock))*1000;
1184 if (rtdelta < delta)
1185 delta = rtdelta;
1188 if (delta < MIN_TIMER_REARM_US)
1189 delta = MIN_TIMER_REARM_US;
1191 return delta;
1193 #endif
1195 #ifndef _WIN32
1197 /* Sets a specific flag */
1198 static int fcntl_setfl(int fd, int flag)
1200 int flags;
1202 flags = fcntl(fd, F_GETFL);
1203 if (flags == -1)
1204 return -errno;
1206 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1207 return -errno;
1209 return 0;
1212 #if defined(__linux__)
1214 #define RTC_FREQ 1024
1216 static void enable_sigio_timer(int fd)
1218 struct sigaction act;
1220 /* timer signal */
1221 sigfillset(&act.sa_mask);
1222 act.sa_flags = 0;
1223 act.sa_handler = host_alarm_handler;
1225 sigaction(SIGIO, &act, NULL);
1226 fcntl_setfl(fd, O_ASYNC);
1227 fcntl(fd, F_SETOWN, getpid());
1230 static int hpet_start_timer(struct qemu_alarm_timer *t)
1232 struct hpet_info info;
1233 int r, fd;
1235 fd = open("/dev/hpet", O_RDONLY);
1236 if (fd < 0)
1237 return -1;
1239 /* Set frequency */
1240 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1241 if (r < 0) {
1242 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1243 "error, but for better emulation accuracy type:\n"
1244 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1245 goto fail;
1248 /* Check capabilities */
1249 r = ioctl(fd, HPET_INFO, &info);
1250 if (r < 0)
1251 goto fail;
1253 /* Enable periodic mode */
1254 r = ioctl(fd, HPET_EPI, 0);
1255 if (info.hi_flags && (r < 0))
1256 goto fail;
1258 /* Enable interrupt */
1259 r = ioctl(fd, HPET_IE_ON, 0);
1260 if (r < 0)
1261 goto fail;
1263 enable_sigio_timer(fd);
1264 t->priv = (void *)(long)fd;
1266 return 0;
1267 fail:
1268 close(fd);
1269 return -1;
1272 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1274 int fd = (long)t->priv;
1276 close(fd);
1279 static int rtc_start_timer(struct qemu_alarm_timer *t)
1281 int rtc_fd;
1282 unsigned long current_rtc_freq = 0;
1284 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1285 if (rtc_fd < 0)
1286 return -1;
1287 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1288 if (current_rtc_freq != RTC_FREQ &&
1289 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1290 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1291 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1292 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1293 goto fail;
1295 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1296 fail:
1297 close(rtc_fd);
1298 return -1;
1301 enable_sigio_timer(rtc_fd);
1303 t->priv = (void *)(long)rtc_fd;
1305 return 0;
1308 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1310 int rtc_fd = (long)t->priv;
1312 close(rtc_fd);
1315 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1317 struct sigevent ev;
1318 timer_t host_timer;
1319 struct sigaction act;
1321 sigfillset(&act.sa_mask);
1322 act.sa_flags = 0;
1323 act.sa_handler = host_alarm_handler;
1325 sigaction(SIGALRM, &act, NULL);
1328 * Initialize ev struct to 0 to avoid valgrind complaining
1329 * about uninitialized data in timer_create call
1331 memset(&ev, 0, sizeof(ev));
1332 ev.sigev_value.sival_int = 0;
1333 ev.sigev_notify = SIGEV_SIGNAL;
1334 ev.sigev_signo = SIGALRM;
1336 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1337 perror("timer_create");
1339 /* disable dynticks */
1340 fprintf(stderr, "Dynamic Ticks disabled\n");
1342 return -1;
1345 t->priv = (void *)(long)host_timer;
1347 return 0;
1350 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1352 timer_t host_timer = (timer_t)(long)t->priv;
1354 timer_delete(host_timer);
1357 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360 struct itimerspec timeout;
1361 int64_t nearest_delta_us = INT64_MAX;
1362 int64_t current_us;
1364 if (!active_timers[QEMU_TIMER_REALTIME] &&
1365 !active_timers[QEMU_TIMER_VIRTUAL])
1366 return;
1368 nearest_delta_us = qemu_next_deadline_dyntick();
1370 /* check whether a timer is already running */
1371 if (timer_gettime(host_timer, &timeout)) {
1372 perror("gettime");
1373 fprintf(stderr, "Internal timer error: aborting\n");
1374 exit(1);
1376 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1377 if (current_us && current_us <= nearest_delta_us)
1378 return;
1380 timeout.it_interval.tv_sec = 0;
1381 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1382 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1383 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1384 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1385 perror("settime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1391 #endif /* defined(__linux__) */
1393 static int unix_start_timer(struct qemu_alarm_timer *t)
1395 struct sigaction act;
1396 struct itimerval itv;
1397 int err;
1399 /* timer signal */
1400 sigfillset(&act.sa_mask);
1401 act.sa_flags = 0;
1402 act.sa_handler = host_alarm_handler;
1404 sigaction(SIGALRM, &act, NULL);
1406 itv.it_interval.tv_sec = 0;
1407 /* for i386 kernel 2.6 to get 1 ms */
1408 itv.it_interval.tv_usec = 999;
1409 itv.it_value.tv_sec = 0;
1410 itv.it_value.tv_usec = 10 * 1000;
1412 err = setitimer(ITIMER_REAL, &itv, NULL);
1413 if (err)
1414 return -1;
1416 return 0;
1419 static void unix_stop_timer(struct qemu_alarm_timer *t)
1421 struct itimerval itv;
1423 memset(&itv, 0, sizeof(itv));
1424 setitimer(ITIMER_REAL, &itv, NULL);
1427 #endif /* !defined(_WIN32) */
1430 #ifdef _WIN32
1432 static int win32_start_timer(struct qemu_alarm_timer *t)
1434 TIMECAPS tc;
1435 struct qemu_alarm_win32 *data = t->priv;
1436 UINT flags;
1438 memset(&tc, 0, sizeof(tc));
1439 timeGetDevCaps(&tc, sizeof(tc));
1441 if (data->period < tc.wPeriodMin)
1442 data->period = tc.wPeriodMin;
1444 timeBeginPeriod(data->period);
1446 flags = TIME_CALLBACK_FUNCTION;
1447 if (alarm_has_dynticks(t))
1448 flags |= TIME_ONESHOT;
1449 else
1450 flags |= TIME_PERIODIC;
1452 data->timerId = timeSetEvent(1, // interval (ms)
1453 data->period, // resolution
1454 host_alarm_handler, // function
1455 (DWORD)t, // parameter
1456 flags);
1458 if (!data->timerId) {
1459 perror("Failed to initialize win32 alarm timer");
1460 timeEndPeriod(data->period);
1461 return -1;
1464 return 0;
1467 static void win32_stop_timer(struct qemu_alarm_timer *t)
1469 struct qemu_alarm_win32 *data = t->priv;
1471 timeKillEvent(data->timerId);
1472 timeEndPeriod(data->period);
1475 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1477 struct qemu_alarm_win32 *data = t->priv;
1478 uint64_t nearest_delta_us;
1480 if (!active_timers[QEMU_TIMER_REALTIME] &&
1481 !active_timers[QEMU_TIMER_VIRTUAL])
1482 return;
1484 nearest_delta_us = qemu_next_deadline_dyntick();
1485 nearest_delta_us /= 1000;
1487 timeKillEvent(data->timerId);
1489 data->timerId = timeSetEvent(1,
1490 data->period,
1491 host_alarm_handler,
1492 (DWORD)t,
1493 TIME_ONESHOT | TIME_PERIODIC);
1495 if (!data->timerId) {
1496 perror("Failed to re-arm win32 alarm timer");
1498 timeEndPeriod(data->period);
1499 exit(1);
1503 #endif /* _WIN32 */
1505 static int init_timer_alarm(void)
1507 struct qemu_alarm_timer *t = NULL;
1508 int i, err = -1;
1510 for (i = 0; alarm_timers[i].name; i++) {
1511 t = &alarm_timers[i];
1513 err = t->start(t);
1514 if (!err)
1515 break;
1518 if (err) {
1519 err = -ENOENT;
1520 goto fail;
1523 alarm_timer = t;
1525 return 0;
1527 fail:
1528 return err;
1531 static void quit_timers(void)
1533 alarm_timer->stop(alarm_timer);
1534 alarm_timer = NULL;
1537 /***********************************************************/
1538 /* host time/date access */
1539 void qemu_get_timedate(struct tm *tm, int offset)
1541 time_t ti;
1542 struct tm *ret;
1544 time(&ti);
1545 ti += offset;
1546 if (rtc_date_offset == -1) {
1547 if (rtc_utc)
1548 ret = gmtime(&ti);
1549 else
1550 ret = localtime(&ti);
1551 } else {
1552 ti -= rtc_date_offset;
1553 ret = gmtime(&ti);
1556 memcpy(tm, ret, sizeof(struct tm));
1559 int qemu_timedate_diff(struct tm *tm)
1561 time_t seconds;
1563 if (rtc_date_offset == -1)
1564 if (rtc_utc)
1565 seconds = mktimegm(tm);
1566 else
1567 seconds = mktime(tm);
1568 else
1569 seconds = mktimegm(tm) + rtc_date_offset;
1571 return seconds - time(NULL);
1574 #ifdef _WIN32
1575 static void socket_cleanup(void)
1577 WSACleanup();
1580 static int socket_init(void)
1582 WSADATA Data;
1583 int ret, err;
1585 ret = WSAStartup(MAKEWORD(2,2), &Data);
1586 if (ret != 0) {
1587 err = WSAGetLastError();
1588 fprintf(stderr, "WSAStartup: %d\n", err);
1589 return -1;
1591 atexit(socket_cleanup);
1592 return 0;
1594 #endif
1596 /***********************************************************/
1597 /* Bluetooth support */
1598 static int nb_hcis;
1599 static int cur_hci;
1600 static struct HCIInfo *hci_table[MAX_NICS];
1602 static struct bt_vlan_s {
1603 struct bt_scatternet_s net;
1604 int id;
1605 struct bt_vlan_s *next;
1606 } *first_bt_vlan;
1608 /* find or alloc a new bluetooth "VLAN" */
1609 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1611 struct bt_vlan_s **pvlan, *vlan;
1612 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1613 if (vlan->id == id)
1614 return &vlan->net;
1616 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1617 vlan->id = id;
1618 pvlan = &first_bt_vlan;
1619 while (*pvlan != NULL)
1620 pvlan = &(*pvlan)->next;
1621 *pvlan = vlan;
1622 return &vlan->net;
1625 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1629 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1631 return -ENOTSUP;
1634 static struct HCIInfo null_hci = {
1635 .cmd_send = null_hci_send,
1636 .sco_send = null_hci_send,
1637 .acl_send = null_hci_send,
1638 .bdaddr_set = null_hci_addr_set,
1641 struct HCIInfo *qemu_next_hci(void)
1643 if (cur_hci == nb_hcis)
1644 return &null_hci;
1646 return hci_table[cur_hci++];
1649 static struct HCIInfo *hci_init(const char *str)
1651 char *endp;
1652 struct bt_scatternet_s *vlan = 0;
1654 if (!strcmp(str, "null"))
1655 /* null */
1656 return &null_hci;
1657 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1658 /* host[:hciN] */
1659 return bt_host_hci(str[4] ? str + 5 : "hci0");
1660 else if (!strncmp(str, "hci", 3)) {
1661 /* hci[,vlan=n] */
1662 if (str[3]) {
1663 if (!strncmp(str + 3, ",vlan=", 6)) {
1664 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1665 if (*endp)
1666 vlan = 0;
1668 } else
1669 vlan = qemu_find_bt_vlan(0);
1670 if (vlan)
1671 return bt_new_hci(vlan);
1674 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1676 return 0;
1679 static int bt_hci_parse(const char *str)
1681 struct HCIInfo *hci;
1682 bdaddr_t bdaddr;
1684 if (nb_hcis >= MAX_NICS) {
1685 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1686 return -1;
1689 hci = hci_init(str);
1690 if (!hci)
1691 return -1;
1693 bdaddr.b[0] = 0x52;
1694 bdaddr.b[1] = 0x54;
1695 bdaddr.b[2] = 0x00;
1696 bdaddr.b[3] = 0x12;
1697 bdaddr.b[4] = 0x34;
1698 bdaddr.b[5] = 0x56 + nb_hcis;
1699 hci->bdaddr_set(hci, bdaddr.b);
1701 hci_table[nb_hcis++] = hci;
1703 return 0;
1706 static void bt_vhci_add(int vlan_id)
1708 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1710 if (!vlan->slave)
1711 fprintf(stderr, "qemu: warning: adding a VHCI to "
1712 "an empty scatternet %i\n", vlan_id);
1714 bt_vhci_init(bt_new_hci(vlan));
1717 static struct bt_device_s *bt_device_add(const char *opt)
1719 struct bt_scatternet_s *vlan;
1720 int vlan_id = 0;
1721 char *endp = strstr(opt, ",vlan=");
1722 int len = (endp ? endp - opt : strlen(opt)) + 1;
1723 char devname[10];
1725 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1727 if (endp) {
1728 vlan_id = strtol(endp + 6, &endp, 0);
1729 if (*endp) {
1730 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1731 return 0;
1735 vlan = qemu_find_bt_vlan(vlan_id);
1737 if (!vlan->slave)
1738 fprintf(stderr, "qemu: warning: adding a slave device to "
1739 "an empty scatternet %i\n", vlan_id);
1741 if (!strcmp(devname, "keyboard"))
1742 return bt_keyboard_init(vlan);
1744 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1745 return 0;
1748 static int bt_parse(const char *opt)
1750 const char *endp, *p;
1751 int vlan;
1753 if (strstart(opt, "hci", &endp)) {
1754 if (!*endp || *endp == ',') {
1755 if (*endp)
1756 if (!strstart(endp, ",vlan=", 0))
1757 opt = endp + 1;
1759 return bt_hci_parse(opt);
1761 } else if (strstart(opt, "vhci", &endp)) {
1762 if (!*endp || *endp == ',') {
1763 if (*endp) {
1764 if (strstart(endp, ",vlan=", &p)) {
1765 vlan = strtol(p, (char **) &endp, 0);
1766 if (*endp) {
1767 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1768 return 1;
1770 } else {
1771 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1772 return 1;
1774 } else
1775 vlan = 0;
1777 bt_vhci_add(vlan);
1778 return 0;
1780 } else if (strstart(opt, "device:", &endp))
1781 return !bt_device_add(endp);
1783 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1784 return 1;
1787 /***********************************************************/
1788 /* QEMU Block devices */
1790 #define HD_ALIAS "index=%d,media=disk"
1791 #define CDROM_ALIAS "index=2,media=cdrom"
1792 #define FD_ALIAS "index=%d,if=floppy"
1793 #define PFLASH_ALIAS "if=pflash"
1794 #define MTD_ALIAS "if=mtd"
1795 #define SD_ALIAS "index=0,if=sd"
1797 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1799 va_list ap;
1800 char optstr[1024];
1801 QemuOpts *opts;
1803 va_start(ap, fmt);
1804 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1805 va_end(ap);
1807 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1808 if (!opts) {
1809 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1810 __FUNCTION__, optstr);
1811 return NULL;
1813 if (file)
1814 qemu_opt_set(opts, "file", file);
1815 return opts;
1818 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1820 DriveInfo *dinfo;
1822 /* seek interface, bus and unit */
1824 TAILQ_FOREACH(dinfo, &drives, next) {
1825 if (dinfo->type == type &&
1826 dinfo->bus == bus &&
1827 dinfo->unit == unit)
1828 return dinfo;
1831 return NULL;
1834 DriveInfo *drive_get_by_id(const char *id)
1836 DriveInfo *dinfo;
1838 TAILQ_FOREACH(dinfo, &drives, next) {
1839 if (strcmp(id, dinfo->id))
1840 continue;
1841 return dinfo;
1843 return NULL;
1846 int drive_get_max_bus(BlockInterfaceType type)
1848 int max_bus;
1849 DriveInfo *dinfo;
1851 max_bus = -1;
1852 TAILQ_FOREACH(dinfo, &drives, next) {
1853 if(dinfo->type == type &&
1854 dinfo->bus > max_bus)
1855 max_bus = dinfo->bus;
1857 return max_bus;
1860 const char *drive_get_serial(BlockDriverState *bdrv)
1862 DriveInfo *dinfo;
1864 TAILQ_FOREACH(dinfo, &drives, next) {
1865 if (dinfo->bdrv == bdrv)
1866 return dinfo->serial;
1869 return "\0";
1872 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1874 DriveInfo *dinfo;
1876 TAILQ_FOREACH(dinfo, &drives, next) {
1877 if (dinfo->bdrv == bdrv)
1878 return dinfo->onerror;
1881 return BLOCK_ERR_STOP_ENOSPC;
1884 static void bdrv_format_print(void *opaque, const char *name)
1886 fprintf(stderr, " %s", name);
1889 void drive_uninit(BlockDriverState *bdrv)
1891 DriveInfo *dinfo;
1893 TAILQ_FOREACH(dinfo, &drives, next) {
1894 if (dinfo->bdrv != bdrv)
1895 continue;
1896 qemu_opts_del(dinfo->opts);
1897 TAILQ_REMOVE(&drives, dinfo, next);
1898 qemu_free(dinfo);
1899 break;
1903 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1904 int *fatal_error)
1906 const char *buf;
1907 const char *file = NULL;
1908 char devname[128];
1909 const char *serial;
1910 const char *mediastr = "";
1911 BlockInterfaceType type;
1912 enum { MEDIA_DISK, MEDIA_CDROM } media;
1913 int bus_id, unit_id;
1914 int cyls, heads, secs, translation;
1915 BlockDriver *drv = NULL;
1916 QEMUMachine *machine = opaque;
1917 int max_devs;
1918 int index;
1919 int cache;
1920 int aio = 0;
1921 int bdrv_flags, onerror;
1922 const char *devaddr;
1923 DriveInfo *dinfo;
1924 int snapshot = 0;
1926 *fatal_error = 1;
1928 translation = BIOS_ATA_TRANSLATION_AUTO;
1929 cache = 1;
1931 if (machine && machine->use_scsi) {
1932 type = IF_SCSI;
1933 max_devs = MAX_SCSI_DEVS;
1934 pstrcpy(devname, sizeof(devname), "scsi");
1935 } else {
1936 type = IF_IDE;
1937 max_devs = MAX_IDE_DEVS;
1938 pstrcpy(devname, sizeof(devname), "ide");
1940 media = MEDIA_DISK;
1942 /* extract parameters */
1943 bus_id = qemu_opt_get_number(opts, "bus", 0);
1944 unit_id = qemu_opt_get_number(opts, "unit", -1);
1945 index = qemu_opt_get_number(opts, "index", -1);
1947 cyls = qemu_opt_get_number(opts, "cyls", 0);
1948 heads = qemu_opt_get_number(opts, "heads", 0);
1949 secs = qemu_opt_get_number(opts, "secs", 0);
1951 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1953 file = qemu_opt_get(opts, "file");
1954 serial = qemu_opt_get(opts, "serial");
1956 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1957 pstrcpy(devname, sizeof(devname), buf);
1958 if (!strcmp(buf, "ide")) {
1959 type = IF_IDE;
1960 max_devs = MAX_IDE_DEVS;
1961 } else if (!strcmp(buf, "scsi")) {
1962 type = IF_SCSI;
1963 max_devs = MAX_SCSI_DEVS;
1964 } else if (!strcmp(buf, "floppy")) {
1965 type = IF_FLOPPY;
1966 max_devs = 0;
1967 } else if (!strcmp(buf, "pflash")) {
1968 type = IF_PFLASH;
1969 max_devs = 0;
1970 } else if (!strcmp(buf, "mtd")) {
1971 type = IF_MTD;
1972 max_devs = 0;
1973 } else if (!strcmp(buf, "sd")) {
1974 type = IF_SD;
1975 max_devs = 0;
1976 } else if (!strcmp(buf, "virtio")) {
1977 type = IF_VIRTIO;
1978 max_devs = 0;
1979 } else if (!strcmp(buf, "xen")) {
1980 type = IF_XEN;
1981 max_devs = 0;
1982 } else if (!strcmp(buf, "none")) {
1983 type = IF_NONE;
1984 max_devs = 0;
1985 } else {
1986 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1987 return NULL;
1991 if (cyls || heads || secs) {
1992 if (cyls < 1 || cyls > 16383) {
1993 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1994 return NULL;
1996 if (heads < 1 || heads > 16) {
1997 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1998 return NULL;
2000 if (secs < 1 || secs > 63) {
2001 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2002 return NULL;
2006 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2007 if (!cyls) {
2008 fprintf(stderr,
2009 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2010 buf);
2011 return NULL;
2013 if (!strcmp(buf, "none"))
2014 translation = BIOS_ATA_TRANSLATION_NONE;
2015 else if (!strcmp(buf, "lba"))
2016 translation = BIOS_ATA_TRANSLATION_LBA;
2017 else if (!strcmp(buf, "auto"))
2018 translation = BIOS_ATA_TRANSLATION_AUTO;
2019 else {
2020 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2021 return NULL;
2025 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2026 if (!strcmp(buf, "disk")) {
2027 media = MEDIA_DISK;
2028 } else if (!strcmp(buf, "cdrom")) {
2029 if (cyls || secs || heads) {
2030 fprintf(stderr,
2031 "qemu: '%s' invalid physical CHS format\n", buf);
2032 return NULL;
2034 media = MEDIA_CDROM;
2035 } else {
2036 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2037 return NULL;
2041 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2042 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2043 cache = 0;
2044 else if (!strcmp(buf, "writethrough"))
2045 cache = 1;
2046 else if (!strcmp(buf, "writeback"))
2047 cache = 2;
2048 else {
2049 fprintf(stderr, "qemu: invalid cache option\n");
2050 return NULL;
2054 #ifdef CONFIG_LINUX_AIO
2055 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2056 if (!strcmp(buf, "threads"))
2057 aio = 0;
2058 else if (!strcmp(buf, "native"))
2059 aio = 1;
2060 else {
2061 fprintf(stderr, "qemu: invalid aio option\n");
2062 return NULL;
2065 #endif
2067 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2068 if (strcmp(buf, "?") == 0) {
2069 fprintf(stderr, "qemu: Supported formats:");
2070 bdrv_iterate_format(bdrv_format_print, NULL);
2071 fprintf(stderr, "\n");
2072 return NULL;
2074 drv = bdrv_find_format(buf);
2075 if (!drv) {
2076 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2077 return NULL;
2081 onerror = BLOCK_ERR_STOP_ENOSPC;
2082 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2083 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2084 fprintf(stderr, "werror is no supported by this format\n");
2085 return NULL;
2087 if (!strcmp(buf, "ignore"))
2088 onerror = BLOCK_ERR_IGNORE;
2089 else if (!strcmp(buf, "enospc"))
2090 onerror = BLOCK_ERR_STOP_ENOSPC;
2091 else if (!strcmp(buf, "stop"))
2092 onerror = BLOCK_ERR_STOP_ANY;
2093 else if (!strcmp(buf, "report"))
2094 onerror = BLOCK_ERR_REPORT;
2095 else {
2096 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2097 return NULL;
2101 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2102 if (type != IF_VIRTIO) {
2103 fprintf(stderr, "addr is not supported\n");
2104 return NULL;
2108 /* compute bus and unit according index */
2110 if (index != -1) {
2111 if (bus_id != 0 || unit_id != -1) {
2112 fprintf(stderr,
2113 "qemu: index cannot be used with bus and unit\n");
2114 return NULL;
2116 if (max_devs == 0)
2118 unit_id = index;
2119 bus_id = 0;
2120 } else {
2121 unit_id = index % max_devs;
2122 bus_id = index / max_devs;
2126 /* if user doesn't specify a unit_id,
2127 * try to find the first free
2130 if (unit_id == -1) {
2131 unit_id = 0;
2132 while (drive_get(type, bus_id, unit_id) != NULL) {
2133 unit_id++;
2134 if (max_devs && unit_id >= max_devs) {
2135 unit_id -= max_devs;
2136 bus_id++;
2141 /* check unit id */
2143 if (max_devs && unit_id >= max_devs) {
2144 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2145 unit_id, max_devs - 1);
2146 return NULL;
2150 * ignore multiple definitions
2153 if (drive_get(type, bus_id, unit_id) != NULL) {
2154 *fatal_error = 0;
2155 return NULL;
2158 /* init */
2160 dinfo = qemu_mallocz(sizeof(*dinfo));
2161 if ((buf = qemu_opts_id(opts)) != NULL) {
2162 dinfo->id = qemu_strdup(buf);
2163 } else {
2164 /* no id supplied -> create one */
2165 dinfo->id = qemu_mallocz(32);
2166 if (type == IF_IDE || type == IF_SCSI)
2167 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2168 if (max_devs)
2169 snprintf(dinfo->id, 32, "%s%i%s%i",
2170 devname, bus_id, mediastr, unit_id);
2171 else
2172 snprintf(dinfo->id, 32, "%s%s%i",
2173 devname, mediastr, unit_id);
2175 dinfo->bdrv = bdrv_new(dinfo->id);
2176 dinfo->devaddr = devaddr;
2177 dinfo->type = type;
2178 dinfo->bus = bus_id;
2179 dinfo->unit = unit_id;
2180 dinfo->onerror = onerror;
2181 dinfo->opts = opts;
2182 if (serial)
2183 strncpy(dinfo->serial, serial, sizeof(serial));
2184 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2186 switch(type) {
2187 case IF_IDE:
2188 case IF_SCSI:
2189 case IF_XEN:
2190 switch(media) {
2191 case MEDIA_DISK:
2192 if (cyls != 0) {
2193 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2194 bdrv_set_translation_hint(dinfo->bdrv, translation);
2196 break;
2197 case MEDIA_CDROM:
2198 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2199 break;
2201 break;
2202 case IF_SD:
2203 /* FIXME: This isn't really a floppy, but it's a reasonable
2204 approximation. */
2205 case IF_FLOPPY:
2206 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2207 break;
2208 case IF_PFLASH:
2209 case IF_MTD:
2210 case IF_NONE:
2211 break;
2212 case IF_VIRTIO:
2213 /* add virtio block device */
2214 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2215 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2216 qemu_opt_set(opts, "drive", dinfo->id);
2217 if (devaddr)
2218 qemu_opt_set(opts, "addr", devaddr);
2219 break;
2220 case IF_COUNT:
2221 abort();
2223 if (!file) {
2224 *fatal_error = 0;
2225 return NULL;
2227 bdrv_flags = 0;
2228 if (snapshot) {
2229 bdrv_flags |= BDRV_O_SNAPSHOT;
2230 cache = 2; /* always use write-back with snapshot */
2232 if (cache == 0) /* no caching */
2233 bdrv_flags |= BDRV_O_NOCACHE;
2234 else if (cache == 2) /* write-back */
2235 bdrv_flags |= BDRV_O_CACHE_WB;
2237 if (aio == 1) {
2238 bdrv_flags |= BDRV_O_NATIVE_AIO;
2239 } else {
2240 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2243 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2244 fprintf(stderr, "qemu: could not open disk image %s\n",
2245 file);
2246 return NULL;
2249 if (bdrv_key_required(dinfo->bdrv))
2250 autostart = 0;
2251 *fatal_error = 0;
2252 return dinfo;
2255 static int drive_init_func(QemuOpts *opts, void *opaque)
2257 QEMUMachine *machine = opaque;
2258 int fatal_error = 0;
2260 if (drive_init(opts, machine, &fatal_error) == NULL) {
2261 if (fatal_error)
2262 return 1;
2264 return 0;
2267 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2269 if (NULL == qemu_opt_get(opts, "snapshot")) {
2270 qemu_opt_set(opts, "snapshot", "on");
2272 return 0;
2275 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2277 boot_set_handler = func;
2278 boot_set_opaque = opaque;
2281 int qemu_boot_set(const char *boot_devices)
2283 if (!boot_set_handler) {
2284 return -EINVAL;
2286 return boot_set_handler(boot_set_opaque, boot_devices);
2289 static int parse_bootdevices(char *devices)
2291 /* We just do some generic consistency checks */
2292 const char *p;
2293 int bitmap = 0;
2295 for (p = devices; *p != '\0'; p++) {
2296 /* Allowed boot devices are:
2297 * a-b: floppy disk drives
2298 * c-f: IDE disk drives
2299 * g-m: machine implementation dependant drives
2300 * n-p: network devices
2301 * It's up to each machine implementation to check if the given boot
2302 * devices match the actual hardware implementation and firmware
2303 * features.
2305 if (*p < 'a' || *p > 'p') {
2306 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2307 exit(1);
2309 if (bitmap & (1 << (*p - 'a'))) {
2310 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2311 exit(1);
2313 bitmap |= 1 << (*p - 'a');
2315 return bitmap;
2318 static void restore_boot_devices(void *opaque)
2320 char *standard_boot_devices = opaque;
2322 qemu_boot_set(standard_boot_devices);
2324 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2325 qemu_free(standard_boot_devices);
2328 static void numa_add(const char *optarg)
2330 char option[128];
2331 char *endptr;
2332 unsigned long long value, endvalue;
2333 int nodenr;
2335 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2336 if (!strcmp(option, "node")) {
2337 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2338 nodenr = nb_numa_nodes;
2339 } else {
2340 nodenr = strtoull(option, NULL, 10);
2343 if (get_param_value(option, 128, "mem", optarg) == 0) {
2344 node_mem[nodenr] = 0;
2345 } else {
2346 value = strtoull(option, &endptr, 0);
2347 switch (*endptr) {
2348 case 0: case 'M': case 'm':
2349 value <<= 20;
2350 break;
2351 case 'G': case 'g':
2352 value <<= 30;
2353 break;
2355 node_mem[nodenr] = value;
2357 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2358 node_cpumask[nodenr] = 0;
2359 } else {
2360 value = strtoull(option, &endptr, 10);
2361 if (value >= 64) {
2362 value = 63;
2363 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2364 } else {
2365 if (*endptr == '-') {
2366 endvalue = strtoull(endptr+1, &endptr, 10);
2367 if (endvalue >= 63) {
2368 endvalue = 62;
2369 fprintf(stderr,
2370 "only 63 CPUs in NUMA mode supported.\n");
2372 value = (1 << (endvalue + 1)) - (1 << value);
2373 } else {
2374 value = 1 << value;
2377 node_cpumask[nodenr] = value;
2379 nb_numa_nodes++;
2381 return;
2384 static void smp_parse(const char *optarg)
2386 int smp, sockets = 0, threads = 0, cores = 0;
2387 char *endptr;
2388 char option[128];
2390 smp = strtoul(optarg, &endptr, 10);
2391 if (endptr != optarg) {
2392 if (*endptr == ',') {
2393 endptr++;
2396 if (get_param_value(option, 128, "sockets", endptr) != 0)
2397 sockets = strtoull(option, NULL, 10);
2398 if (get_param_value(option, 128, "cores", endptr) != 0)
2399 cores = strtoull(option, NULL, 10);
2400 if (get_param_value(option, 128, "threads", endptr) != 0)
2401 threads = strtoull(option, NULL, 10);
2402 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2403 max_cpus = strtoull(option, NULL, 10);
2405 /* compute missing values, prefer sockets over cores over threads */
2406 if (smp == 0 || sockets == 0) {
2407 sockets = sockets > 0 ? sockets : 1;
2408 cores = cores > 0 ? cores : 1;
2409 threads = threads > 0 ? threads : 1;
2410 if (smp == 0) {
2411 smp = cores * threads * sockets;
2412 } else {
2413 sockets = smp / (cores * threads);
2415 } else {
2416 if (cores == 0) {
2417 threads = threads > 0 ? threads : 1;
2418 cores = smp / (sockets * threads);
2419 } else {
2420 if (sockets == 0) {
2421 sockets = smp / (cores * threads);
2422 } else {
2423 threads = smp / (cores * sockets);
2427 smp_cpus = smp;
2428 smp_cores = cores > 0 ? cores : 1;
2429 smp_threads = threads > 0 ? threads : 1;
2430 if (max_cpus == 0)
2431 max_cpus = smp_cpus;
2434 /***********************************************************/
2435 /* USB devices */
2437 static void usb_msd_password_cb(void *opaque, int err)
2439 USBDevice *dev = opaque;
2441 if (!err)
2442 usb_device_attach(dev);
2443 else
2444 dev->info->handle_destroy(dev);
2447 static struct {
2448 const char *name;
2449 const char *qdev;
2450 } usbdevs[] = {
2452 .name = "mouse",
2453 .qdev = "QEMU USB Mouse",
2455 .name = "tablet",
2456 .qdev = "QEMU USB Tablet",
2458 .name = "keyboard",
2459 .qdev = "QEMU USB Keyboard",
2461 .name = "wacom-tablet",
2462 .qdev = "QEMU PenPartner Tablet",
2466 static int usb_device_add(const char *devname, int is_hotplug)
2468 const char *p;
2469 USBBus *bus = usb_bus_find(-1 /* any */);
2470 USBDevice *dev = NULL;
2471 int i;
2473 if (!usb_enabled)
2474 return -1;
2476 /* simple devices which don't need extra care */
2477 for (i = 0; i < ARRAY_SIZE(usbdevs); i++) {
2478 if (strcmp(devname, usbdevs[i].name) != 0)
2479 continue;
2480 dev = usb_create_simple(bus, usbdevs[i].qdev);
2481 goto done;
2484 /* the other ones */
2485 if (strstart(devname, "host:", &p)) {
2486 dev = usb_host_device_open(p);
2487 } else if (strstart(devname, "disk:", &p)) {
2488 BlockDriverState *bs;
2490 dev = usb_msd_init(p);
2491 if (!dev)
2492 return -1;
2493 bs = usb_msd_get_bdrv(dev);
2494 if (bdrv_key_required(bs)) {
2495 autostart = 0;
2496 if (is_hotplug) {
2497 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2498 dev);
2499 return 0;
2502 } else if (strstart(devname, "serial:", &p)) {
2503 dev = usb_serial_init(p);
2504 #ifdef CONFIG_BRLAPI
2505 } else if (!strcmp(devname, "braille")) {
2506 dev = usb_baum_init();
2507 #endif
2508 } else if (strstart(devname, "net:", &p)) {
2509 int nic = nb_nics;
2511 if (net_client_init(NULL, "nic", p) < 0)
2512 return -1;
2513 nd_table[nic].model = "usb";
2514 dev = usb_net_init(&nd_table[nic]);
2515 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2516 dev = usb_bt_init(devname[2] ? hci_init(p) :
2517 bt_new_hci(qemu_find_bt_vlan(0)));
2518 } else {
2519 return -1;
2521 if (!dev)
2522 return -1;
2524 done:
2525 return 0;
2528 static int usb_device_del(const char *devname)
2530 int bus_num, addr;
2531 const char *p;
2533 if (strstart(devname, "host:", &p))
2534 return usb_host_device_close(p);
2536 if (!usb_enabled)
2537 return -1;
2539 p = strchr(devname, '.');
2540 if (!p)
2541 return -1;
2542 bus_num = strtoul(devname, NULL, 0);
2543 addr = strtoul(p + 1, NULL, 0);
2545 return usb_device_delete_addr(bus_num, addr);
2548 static int usb_parse(const char *cmdline)
2550 return usb_device_add(cmdline, 0);
2553 void do_usb_add(Monitor *mon, const QDict *qdict)
2555 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2558 void do_usb_del(Monitor *mon, const QDict *qdict)
2560 usb_device_del(qdict_get_str(qdict, "devname"));
2563 /***********************************************************/
2564 /* PCMCIA/Cardbus */
2566 static struct pcmcia_socket_entry_s {
2567 PCMCIASocket *socket;
2568 struct pcmcia_socket_entry_s *next;
2569 } *pcmcia_sockets = 0;
2571 void pcmcia_socket_register(PCMCIASocket *socket)
2573 struct pcmcia_socket_entry_s *entry;
2575 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2576 entry->socket = socket;
2577 entry->next = pcmcia_sockets;
2578 pcmcia_sockets = entry;
2581 void pcmcia_socket_unregister(PCMCIASocket *socket)
2583 struct pcmcia_socket_entry_s *entry, **ptr;
2585 ptr = &pcmcia_sockets;
2586 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2587 if (entry->socket == socket) {
2588 *ptr = entry->next;
2589 qemu_free(entry);
2593 void pcmcia_info(Monitor *mon)
2595 struct pcmcia_socket_entry_s *iter;
2597 if (!pcmcia_sockets)
2598 monitor_printf(mon, "No PCMCIA sockets\n");
2600 for (iter = pcmcia_sockets; iter; iter = iter->next)
2601 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2602 iter->socket->attached ? iter->socket->card_string :
2603 "Empty");
2606 /***********************************************************/
2607 /* register display */
2609 struct DisplayAllocator default_allocator = {
2610 defaultallocator_create_displaysurface,
2611 defaultallocator_resize_displaysurface,
2612 defaultallocator_free_displaysurface
2615 void register_displaystate(DisplayState *ds)
2617 DisplayState **s;
2618 s = &display_state;
2619 while (*s != NULL)
2620 s = &(*s)->next;
2621 ds->next = NULL;
2622 *s = ds;
2625 DisplayState *get_displaystate(void)
2627 return display_state;
2630 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2632 if(ds->allocator == &default_allocator) ds->allocator = da;
2633 return ds->allocator;
2636 /* dumb display */
2638 static void dumb_display_init(void)
2640 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2641 ds->allocator = &default_allocator;
2642 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2643 register_displaystate(ds);
2646 /***********************************************************/
2647 /* I/O handling */
2649 typedef struct IOHandlerRecord {
2650 int fd;
2651 IOCanRWHandler *fd_read_poll;
2652 IOHandler *fd_read;
2653 IOHandler *fd_write;
2654 int deleted;
2655 void *opaque;
2656 /* temporary data */
2657 struct pollfd *ufd;
2658 struct IOHandlerRecord *next;
2659 } IOHandlerRecord;
2661 static IOHandlerRecord *first_io_handler;
2663 /* XXX: fd_read_poll should be suppressed, but an API change is
2664 necessary in the character devices to suppress fd_can_read(). */
2665 int qemu_set_fd_handler2(int fd,
2666 IOCanRWHandler *fd_read_poll,
2667 IOHandler *fd_read,
2668 IOHandler *fd_write,
2669 void *opaque)
2671 IOHandlerRecord **pioh, *ioh;
2673 if (!fd_read && !fd_write) {
2674 pioh = &first_io_handler;
2675 for(;;) {
2676 ioh = *pioh;
2677 if (ioh == NULL)
2678 break;
2679 if (ioh->fd == fd) {
2680 ioh->deleted = 1;
2681 break;
2683 pioh = &ioh->next;
2685 } else {
2686 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2687 if (ioh->fd == fd)
2688 goto found;
2690 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2691 ioh->next = first_io_handler;
2692 first_io_handler = ioh;
2693 found:
2694 ioh->fd = fd;
2695 ioh->fd_read_poll = fd_read_poll;
2696 ioh->fd_read = fd_read;
2697 ioh->fd_write = fd_write;
2698 ioh->opaque = opaque;
2699 ioh->deleted = 0;
2701 return 0;
2704 int qemu_set_fd_handler(int fd,
2705 IOHandler *fd_read,
2706 IOHandler *fd_write,
2707 void *opaque)
2709 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2712 #ifdef _WIN32
2713 /***********************************************************/
2714 /* Polling handling */
2716 typedef struct PollingEntry {
2717 PollingFunc *func;
2718 void *opaque;
2719 struct PollingEntry *next;
2720 } PollingEntry;
2722 static PollingEntry *first_polling_entry;
2724 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2726 PollingEntry **ppe, *pe;
2727 pe = qemu_mallocz(sizeof(PollingEntry));
2728 pe->func = func;
2729 pe->opaque = opaque;
2730 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2731 *ppe = pe;
2732 return 0;
2735 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2737 PollingEntry **ppe, *pe;
2738 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2739 pe = *ppe;
2740 if (pe->func == func && pe->opaque == opaque) {
2741 *ppe = pe->next;
2742 qemu_free(pe);
2743 break;
2748 /***********************************************************/
2749 /* Wait objects support */
2750 typedef struct WaitObjects {
2751 int num;
2752 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2753 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2754 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2755 } WaitObjects;
2757 static WaitObjects wait_objects = {0};
2759 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2761 WaitObjects *w = &wait_objects;
2763 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2764 return -1;
2765 w->events[w->num] = handle;
2766 w->func[w->num] = func;
2767 w->opaque[w->num] = opaque;
2768 w->num++;
2769 return 0;
2772 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2774 int i, found;
2775 WaitObjects *w = &wait_objects;
2777 found = 0;
2778 for (i = 0; i < w->num; i++) {
2779 if (w->events[i] == handle)
2780 found = 1;
2781 if (found) {
2782 w->events[i] = w->events[i + 1];
2783 w->func[i] = w->func[i + 1];
2784 w->opaque[i] = w->opaque[i + 1];
2787 if (found)
2788 w->num--;
2790 #endif
2792 /***********************************************************/
2793 /* ram save/restore */
2795 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2797 int v;
2799 v = qemu_get_byte(f);
2800 switch(v) {
2801 case 0:
2802 if (qemu_get_buffer(f, buf, len) != len)
2803 return -EIO;
2804 break;
2805 case 1:
2806 v = qemu_get_byte(f);
2807 memset(buf, v, len);
2808 break;
2809 default:
2810 return -EINVAL;
2813 if (qemu_file_has_error(f))
2814 return -EIO;
2816 return 0;
2819 static int ram_load_v1(QEMUFile *f, void *opaque)
2821 int ret;
2822 ram_addr_t i;
2824 if (qemu_get_be32(f) != last_ram_offset)
2825 return -EINVAL;
2826 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2827 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2828 if (ret)
2829 return ret;
2831 return 0;
2834 #define BDRV_HASH_BLOCK_SIZE 1024
2835 #define IOBUF_SIZE 4096
2836 #define RAM_CBLOCK_MAGIC 0xfabe
2838 typedef struct RamDecompressState {
2839 z_stream zstream;
2840 QEMUFile *f;
2841 uint8_t buf[IOBUF_SIZE];
2842 } RamDecompressState;
2844 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2846 int ret;
2847 memset(s, 0, sizeof(*s));
2848 s->f = f;
2849 ret = inflateInit(&s->zstream);
2850 if (ret != Z_OK)
2851 return -1;
2852 return 0;
2855 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2857 int ret, clen;
2859 s->zstream.avail_out = len;
2860 s->zstream.next_out = buf;
2861 while (s->zstream.avail_out > 0) {
2862 if (s->zstream.avail_in == 0) {
2863 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2864 return -1;
2865 clen = qemu_get_be16(s->f);
2866 if (clen > IOBUF_SIZE)
2867 return -1;
2868 qemu_get_buffer(s->f, s->buf, clen);
2869 s->zstream.avail_in = clen;
2870 s->zstream.next_in = s->buf;
2872 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2873 if (ret != Z_OK && ret != Z_STREAM_END) {
2874 return -1;
2877 return 0;
2880 static void ram_decompress_close(RamDecompressState *s)
2882 inflateEnd(&s->zstream);
2885 #define RAM_SAVE_FLAG_FULL 0x01
2886 #define RAM_SAVE_FLAG_COMPRESS 0x02
2887 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2888 #define RAM_SAVE_FLAG_PAGE 0x08
2889 #define RAM_SAVE_FLAG_EOS 0x10
2891 static int is_dup_page(uint8_t *page, uint8_t ch)
2893 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2894 uint32_t *array = (uint32_t *)page;
2895 int i;
2897 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2898 if (array[i] != val)
2899 return 0;
2902 return 1;
2905 static int ram_save_block(QEMUFile *f)
2907 static ram_addr_t current_addr = 0;
2908 ram_addr_t saved_addr = current_addr;
2909 ram_addr_t addr = 0;
2910 int found = 0;
2912 while (addr < last_ram_offset) {
2913 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2914 uint8_t *p;
2916 cpu_physical_memory_reset_dirty(current_addr,
2917 current_addr + TARGET_PAGE_SIZE,
2918 MIGRATION_DIRTY_FLAG);
2920 p = qemu_get_ram_ptr(current_addr);
2922 if (is_dup_page(p, *p)) {
2923 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2924 qemu_put_byte(f, *p);
2925 } else {
2926 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2927 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2930 found = 1;
2931 break;
2933 addr += TARGET_PAGE_SIZE;
2934 current_addr = (saved_addr + addr) % last_ram_offset;
2937 return found;
2940 static uint64_t bytes_transferred = 0;
2942 static ram_addr_t ram_save_remaining(void)
2944 ram_addr_t addr;
2945 ram_addr_t count = 0;
2947 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2948 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2949 count++;
2952 return count;
2955 uint64_t ram_bytes_remaining(void)
2957 return ram_save_remaining() * TARGET_PAGE_SIZE;
2960 uint64_t ram_bytes_transferred(void)
2962 return bytes_transferred;
2965 uint64_t ram_bytes_total(void)
2967 return last_ram_offset;
2970 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2972 ram_addr_t addr;
2973 uint64_t bytes_transferred_last;
2974 double bwidth = 0;
2975 uint64_t expected_time = 0;
2977 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2978 qemu_file_set_error(f);
2979 return 0;
2982 if (stage == 1) {
2983 /* Make sure all dirty bits are set */
2984 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2985 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2986 cpu_physical_memory_set_dirty(addr);
2989 /* Enable dirty memory tracking */
2990 cpu_physical_memory_set_dirty_tracking(1);
2992 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2995 bytes_transferred_last = bytes_transferred;
2996 bwidth = get_clock();
2998 while (!qemu_file_rate_limit(f)) {
2999 int ret;
3001 ret = ram_save_block(f);
3002 bytes_transferred += ret * TARGET_PAGE_SIZE;
3003 if (ret == 0) /* no more blocks */
3004 break;
3007 bwidth = get_clock() - bwidth;
3008 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3010 /* if we haven't transferred anything this round, force expected_time to a
3011 * a very high value, but without crashing */
3012 if (bwidth == 0)
3013 bwidth = 0.000001;
3015 /* try transferring iterative blocks of memory */
3017 if (stage == 3) {
3019 /* flush all remaining blocks regardless of rate limiting */
3020 while (ram_save_block(f) != 0) {
3021 bytes_transferred += TARGET_PAGE_SIZE;
3023 cpu_physical_memory_set_dirty_tracking(0);
3026 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3028 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3030 return (stage == 2) && (expected_time <= migrate_max_downtime());
3033 static int ram_load_dead(QEMUFile *f, void *opaque)
3035 RamDecompressState s1, *s = &s1;
3036 uint8_t buf[10];
3037 ram_addr_t i;
3039 if (ram_decompress_open(s, f) < 0)
3040 return -EINVAL;
3041 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3042 if (ram_decompress_buf(s, buf, 1) < 0) {
3043 fprintf(stderr, "Error while reading ram block header\n");
3044 goto error;
3046 if (buf[0] == 0) {
3047 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3048 BDRV_HASH_BLOCK_SIZE) < 0) {
3049 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3050 goto error;
3052 } else {
3053 error:
3054 printf("Error block header\n");
3055 return -EINVAL;
3058 ram_decompress_close(s);
3060 return 0;
3063 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3065 ram_addr_t addr;
3066 int flags;
3068 if (version_id == 1)
3069 return ram_load_v1(f, opaque);
3071 if (version_id == 2) {
3072 if (qemu_get_be32(f) != last_ram_offset)
3073 return -EINVAL;
3074 return ram_load_dead(f, opaque);
3077 if (version_id != 3)
3078 return -EINVAL;
3080 do {
3081 addr = qemu_get_be64(f);
3083 flags = addr & ~TARGET_PAGE_MASK;
3084 addr &= TARGET_PAGE_MASK;
3086 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3087 if (addr != last_ram_offset)
3088 return -EINVAL;
3091 if (flags & RAM_SAVE_FLAG_FULL) {
3092 if (ram_load_dead(f, opaque) < 0)
3093 return -EINVAL;
3096 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3097 uint8_t ch = qemu_get_byte(f);
3098 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3099 #ifndef _WIN32
3100 if (ch == 0 &&
3101 (!kvm_enabled() || kvm_has_sync_mmu())) {
3102 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3104 #endif
3105 } else if (flags & RAM_SAVE_FLAG_PAGE)
3106 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3107 } while (!(flags & RAM_SAVE_FLAG_EOS));
3109 return 0;
3112 void qemu_service_io(void)
3114 qemu_notify_event();
3117 /***********************************************************/
3118 /* bottom halves (can be seen as timers which expire ASAP) */
3120 struct QEMUBH {
3121 QEMUBHFunc *cb;
3122 void *opaque;
3123 int scheduled;
3124 int idle;
3125 int deleted;
3126 QEMUBH *next;
3129 static QEMUBH *first_bh = NULL;
3131 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3133 QEMUBH *bh;
3134 bh = qemu_mallocz(sizeof(QEMUBH));
3135 bh->cb = cb;
3136 bh->opaque = opaque;
3137 bh->next = first_bh;
3138 first_bh = bh;
3139 return bh;
3142 int qemu_bh_poll(void)
3144 QEMUBH *bh, **bhp;
3145 int ret;
3147 ret = 0;
3148 for (bh = first_bh; bh; bh = bh->next) {
3149 if (!bh->deleted && bh->scheduled) {
3150 bh->scheduled = 0;
3151 if (!bh->idle)
3152 ret = 1;
3153 bh->idle = 0;
3154 bh->cb(bh->opaque);
3158 /* remove deleted bhs */
3159 bhp = &first_bh;
3160 while (*bhp) {
3161 bh = *bhp;
3162 if (bh->deleted) {
3163 *bhp = bh->next;
3164 qemu_free(bh);
3165 } else
3166 bhp = &bh->next;
3169 return ret;
3172 void qemu_bh_schedule_idle(QEMUBH *bh)
3174 if (bh->scheduled)
3175 return;
3176 bh->scheduled = 1;
3177 bh->idle = 1;
3180 void qemu_bh_schedule(QEMUBH *bh)
3182 if (bh->scheduled)
3183 return;
3184 bh->scheduled = 1;
3185 bh->idle = 0;
3186 /* stop the currently executing CPU to execute the BH ASAP */
3187 qemu_notify_event();
3190 void qemu_bh_cancel(QEMUBH *bh)
3192 bh->scheduled = 0;
3195 void qemu_bh_delete(QEMUBH *bh)
3197 bh->scheduled = 0;
3198 bh->deleted = 1;
3201 static void qemu_bh_update_timeout(int *timeout)
3203 QEMUBH *bh;
3205 for (bh = first_bh; bh; bh = bh->next) {
3206 if (!bh->deleted && bh->scheduled) {
3207 if (bh->idle) {
3208 /* idle bottom halves will be polled at least
3209 * every 10ms */
3210 *timeout = MIN(10, *timeout);
3211 } else {
3212 /* non-idle bottom halves will be executed
3213 * immediately */
3214 *timeout = 0;
3215 break;
3221 /***********************************************************/
3222 /* machine registration */
3224 static QEMUMachine *first_machine = NULL;
3225 QEMUMachine *current_machine = NULL;
3227 int qemu_register_machine(QEMUMachine *m)
3229 QEMUMachine **pm;
3230 pm = &first_machine;
3231 while (*pm != NULL)
3232 pm = &(*pm)->next;
3233 m->next = NULL;
3234 *pm = m;
3235 return 0;
3238 static QEMUMachine *find_machine(const char *name)
3240 QEMUMachine *m;
3242 for(m = first_machine; m != NULL; m = m->next) {
3243 if (!strcmp(m->name, name))
3244 return m;
3245 if (m->alias && !strcmp(m->alias, name))
3246 return m;
3248 return NULL;
3251 static QEMUMachine *find_default_machine(void)
3253 QEMUMachine *m;
3255 for(m = first_machine; m != NULL; m = m->next) {
3256 if (m->is_default) {
3257 return m;
3260 return NULL;
3263 /***********************************************************/
3264 /* main execution loop */
3266 static void gui_update(void *opaque)
3268 uint64_t interval = GUI_REFRESH_INTERVAL;
3269 DisplayState *ds = opaque;
3270 DisplayChangeListener *dcl = ds->listeners;
3272 dpy_refresh(ds);
3274 while (dcl != NULL) {
3275 if (dcl->gui_timer_interval &&
3276 dcl->gui_timer_interval < interval)
3277 interval = dcl->gui_timer_interval;
3278 dcl = dcl->next;
3280 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3283 static void nographic_update(void *opaque)
3285 uint64_t interval = GUI_REFRESH_INTERVAL;
3287 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3290 struct vm_change_state_entry {
3291 VMChangeStateHandler *cb;
3292 void *opaque;
3293 LIST_ENTRY (vm_change_state_entry) entries;
3296 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3298 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3299 void *opaque)
3301 VMChangeStateEntry *e;
3303 e = qemu_mallocz(sizeof (*e));
3305 e->cb = cb;
3306 e->opaque = opaque;
3307 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3308 return e;
3311 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3313 LIST_REMOVE (e, entries);
3314 qemu_free (e);
3317 static void vm_state_notify(int running, int reason)
3319 VMChangeStateEntry *e;
3321 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3322 e->cb(e->opaque, running, reason);
3326 static void resume_all_vcpus(void);
3327 static void pause_all_vcpus(void);
3329 void vm_start(void)
3331 if (!vm_running) {
3332 cpu_enable_ticks();
3333 vm_running = 1;
3334 vm_state_notify(1, 0);
3335 qemu_rearm_alarm_timer(alarm_timer);
3336 resume_all_vcpus();
3340 /* reset/shutdown handler */
3342 typedef struct QEMUResetEntry {
3343 TAILQ_ENTRY(QEMUResetEntry) entry;
3344 QEMUResetHandler *func;
3345 void *opaque;
3346 } QEMUResetEntry;
3348 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3349 TAILQ_HEAD_INITIALIZER(reset_handlers);
3350 static int reset_requested;
3351 static int shutdown_requested;
3352 static int powerdown_requested;
3353 static int debug_requested;
3354 static int vmstop_requested;
3356 int qemu_shutdown_requested(void)
3358 int r = shutdown_requested;
3359 shutdown_requested = 0;
3360 return r;
3363 int qemu_reset_requested(void)
3365 int r = reset_requested;
3366 reset_requested = 0;
3367 return r;
3370 int qemu_powerdown_requested(void)
3372 int r = powerdown_requested;
3373 powerdown_requested = 0;
3374 return r;
3377 static int qemu_debug_requested(void)
3379 int r = debug_requested;
3380 debug_requested = 0;
3381 return r;
3384 static int qemu_vmstop_requested(void)
3386 int r = vmstop_requested;
3387 vmstop_requested = 0;
3388 return r;
3391 static void do_vm_stop(int reason)
3393 if (vm_running) {
3394 cpu_disable_ticks();
3395 vm_running = 0;
3396 pause_all_vcpus();
3397 vm_state_notify(0, reason);
3401 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3403 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3405 re->func = func;
3406 re->opaque = opaque;
3407 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3410 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3412 QEMUResetEntry *re;
3414 TAILQ_FOREACH(re, &reset_handlers, entry) {
3415 if (re->func == func && re->opaque == opaque) {
3416 TAILQ_REMOVE(&reset_handlers, re, entry);
3417 qemu_free(re);
3418 return;
3423 void qemu_system_reset(void)
3425 QEMUResetEntry *re, *nre;
3427 /* reset all devices */
3428 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3429 re->func(re->opaque);
3433 void qemu_system_reset_request(void)
3435 if (no_reboot) {
3436 shutdown_requested = 1;
3437 } else {
3438 reset_requested = 1;
3440 qemu_notify_event();
3443 void qemu_system_shutdown_request(void)
3445 shutdown_requested = 1;
3446 qemu_notify_event();
3449 void qemu_system_powerdown_request(void)
3451 powerdown_requested = 1;
3452 qemu_notify_event();
3455 #ifdef CONFIG_IOTHREAD
3456 static void qemu_system_vmstop_request(int reason)
3458 vmstop_requested = reason;
3459 qemu_notify_event();
3461 #endif
3463 #ifndef _WIN32
3464 static int io_thread_fd = -1;
3466 static void qemu_event_increment(void)
3468 static const char byte = 0;
3470 if (io_thread_fd == -1)
3471 return;
3473 write(io_thread_fd, &byte, sizeof(byte));
3476 static void qemu_event_read(void *opaque)
3478 int fd = (unsigned long)opaque;
3479 ssize_t len;
3481 /* Drain the notify pipe */
3482 do {
3483 char buffer[512];
3484 len = read(fd, buffer, sizeof(buffer));
3485 } while ((len == -1 && errno == EINTR) || len > 0);
3488 static int qemu_event_init(void)
3490 int err;
3491 int fds[2];
3493 err = pipe(fds);
3494 if (err == -1)
3495 return -errno;
3497 err = fcntl_setfl(fds[0], O_NONBLOCK);
3498 if (err < 0)
3499 goto fail;
3501 err = fcntl_setfl(fds[1], O_NONBLOCK);
3502 if (err < 0)
3503 goto fail;
3505 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3506 (void *)(unsigned long)fds[0]);
3508 io_thread_fd = fds[1];
3509 return 0;
3511 fail:
3512 close(fds[0]);
3513 close(fds[1]);
3514 return err;
3516 #else
3517 HANDLE qemu_event_handle;
3519 static void dummy_event_handler(void *opaque)
3523 static int qemu_event_init(void)
3525 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3526 if (!qemu_event_handle) {
3527 perror("Failed CreateEvent");
3528 return -1;
3530 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3531 return 0;
3534 static void qemu_event_increment(void)
3536 SetEvent(qemu_event_handle);
3538 #endif
3540 static int cpu_can_run(CPUState *env)
3542 if (env->stop)
3543 return 0;
3544 if (env->stopped)
3545 return 0;
3546 return 1;
3549 #ifndef CONFIG_IOTHREAD
3550 static int qemu_init_main_loop(void)
3552 return qemu_event_init();
3555 void qemu_init_vcpu(void *_env)
3557 CPUState *env = _env;
3559 if (kvm_enabled())
3560 kvm_init_vcpu(env);
3561 env->nr_cores = smp_cores;
3562 env->nr_threads = smp_threads;
3563 return;
3566 int qemu_cpu_self(void *env)
3568 return 1;
3571 static void resume_all_vcpus(void)
3575 static void pause_all_vcpus(void)
3579 void qemu_cpu_kick(void *env)
3581 return;
3584 void qemu_notify_event(void)
3586 CPUState *env = cpu_single_env;
3588 if (env) {
3589 cpu_exit(env);
3593 #define qemu_mutex_lock_iothread() do { } while (0)
3594 #define qemu_mutex_unlock_iothread() do { } while (0)
3596 void vm_stop(int reason)
3598 do_vm_stop(reason);
3601 #else /* CONFIG_IOTHREAD */
3603 #include "qemu-thread.h"
3605 QemuMutex qemu_global_mutex;
3606 static QemuMutex qemu_fair_mutex;
3608 static QemuThread io_thread;
3610 static QemuThread *tcg_cpu_thread;
3611 static QemuCond *tcg_halt_cond;
3613 static int qemu_system_ready;
3614 /* cpu creation */
3615 static QemuCond qemu_cpu_cond;
3616 /* system init */
3617 static QemuCond qemu_system_cond;
3618 static QemuCond qemu_pause_cond;
3620 static void block_io_signals(void);
3621 static void unblock_io_signals(void);
3622 static int tcg_has_work(void);
3624 static int qemu_init_main_loop(void)
3626 int ret;
3628 ret = qemu_event_init();
3629 if (ret)
3630 return ret;
3632 qemu_cond_init(&qemu_pause_cond);
3633 qemu_mutex_init(&qemu_fair_mutex);
3634 qemu_mutex_init(&qemu_global_mutex);
3635 qemu_mutex_lock(&qemu_global_mutex);
3637 unblock_io_signals();
3638 qemu_thread_self(&io_thread);
3640 return 0;
3643 static void qemu_wait_io_event(CPUState *env)
3645 while (!tcg_has_work())
3646 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3648 qemu_mutex_unlock(&qemu_global_mutex);
3651 * Users of qemu_global_mutex can be starved, having no chance
3652 * to acquire it since this path will get to it first.
3653 * So use another lock to provide fairness.
3655 qemu_mutex_lock(&qemu_fair_mutex);
3656 qemu_mutex_unlock(&qemu_fair_mutex);
3658 qemu_mutex_lock(&qemu_global_mutex);
3659 if (env->stop) {
3660 env->stop = 0;
3661 env->stopped = 1;
3662 qemu_cond_signal(&qemu_pause_cond);
3666 static int qemu_cpu_exec(CPUState *env);
3668 static void *kvm_cpu_thread_fn(void *arg)
3670 CPUState *env = arg;
3672 block_io_signals();
3673 qemu_thread_self(env->thread);
3674 if (kvm_enabled())
3675 kvm_init_vcpu(env);
3677 /* signal CPU creation */
3678 qemu_mutex_lock(&qemu_global_mutex);
3679 env->created = 1;
3680 qemu_cond_signal(&qemu_cpu_cond);
3682 /* and wait for machine initialization */
3683 while (!qemu_system_ready)
3684 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3686 while (1) {
3687 if (cpu_can_run(env))
3688 qemu_cpu_exec(env);
3689 qemu_wait_io_event(env);
3692 return NULL;
3695 static void tcg_cpu_exec(void);
3697 static void *tcg_cpu_thread_fn(void *arg)
3699 CPUState *env = arg;
3701 block_io_signals();
3702 qemu_thread_self(env->thread);
3704 /* signal CPU creation */
3705 qemu_mutex_lock(&qemu_global_mutex);
3706 for (env = first_cpu; env != NULL; env = env->next_cpu)
3707 env->created = 1;
3708 qemu_cond_signal(&qemu_cpu_cond);
3710 /* and wait for machine initialization */
3711 while (!qemu_system_ready)
3712 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3714 while (1) {
3715 tcg_cpu_exec();
3716 qemu_wait_io_event(cur_cpu);
3719 return NULL;
3722 void qemu_cpu_kick(void *_env)
3724 CPUState *env = _env;
3725 qemu_cond_broadcast(env->halt_cond);
3726 if (kvm_enabled())
3727 qemu_thread_signal(env->thread, SIGUSR1);
3730 int qemu_cpu_self(void *env)
3732 return (cpu_single_env != NULL);
3735 static void cpu_signal(int sig)
3737 if (cpu_single_env)
3738 cpu_exit(cpu_single_env);
3741 static void block_io_signals(void)
3743 sigset_t set;
3744 struct sigaction sigact;
3746 sigemptyset(&set);
3747 sigaddset(&set, SIGUSR2);
3748 sigaddset(&set, SIGIO);
3749 sigaddset(&set, SIGALRM);
3750 pthread_sigmask(SIG_BLOCK, &set, NULL);
3752 sigemptyset(&set);
3753 sigaddset(&set, SIGUSR1);
3754 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3756 memset(&sigact, 0, sizeof(sigact));
3757 sigact.sa_handler = cpu_signal;
3758 sigaction(SIGUSR1, &sigact, NULL);
3761 static void unblock_io_signals(void)
3763 sigset_t set;
3765 sigemptyset(&set);
3766 sigaddset(&set, SIGUSR2);
3767 sigaddset(&set, SIGIO);
3768 sigaddset(&set, SIGALRM);
3769 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3771 sigemptyset(&set);
3772 sigaddset(&set, SIGUSR1);
3773 pthread_sigmask(SIG_BLOCK, &set, NULL);
3776 static void qemu_signal_lock(unsigned int msecs)
3778 qemu_mutex_lock(&qemu_fair_mutex);
3780 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3781 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3782 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3783 break;
3785 qemu_mutex_unlock(&qemu_fair_mutex);
3788 static void qemu_mutex_lock_iothread(void)
3790 if (kvm_enabled()) {
3791 qemu_mutex_lock(&qemu_fair_mutex);
3792 qemu_mutex_lock(&qemu_global_mutex);
3793 qemu_mutex_unlock(&qemu_fair_mutex);
3794 } else
3795 qemu_signal_lock(100);
3798 static void qemu_mutex_unlock_iothread(void)
3800 qemu_mutex_unlock(&qemu_global_mutex);
3803 static int all_vcpus_paused(void)
3805 CPUState *penv = first_cpu;
3807 while (penv) {
3808 if (!penv->stopped)
3809 return 0;
3810 penv = (CPUState *)penv->next_cpu;
3813 return 1;
3816 static void pause_all_vcpus(void)
3818 CPUState *penv = first_cpu;
3820 while (penv) {
3821 penv->stop = 1;
3822 qemu_thread_signal(penv->thread, SIGUSR1);
3823 qemu_cpu_kick(penv);
3824 penv = (CPUState *)penv->next_cpu;
3827 while (!all_vcpus_paused()) {
3828 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3829 penv = first_cpu;
3830 while (penv) {
3831 qemu_thread_signal(penv->thread, SIGUSR1);
3832 penv = (CPUState *)penv->next_cpu;
3837 static void resume_all_vcpus(void)
3839 CPUState *penv = first_cpu;
3841 while (penv) {
3842 penv->stop = 0;
3843 penv->stopped = 0;
3844 qemu_thread_signal(penv->thread, SIGUSR1);
3845 qemu_cpu_kick(penv);
3846 penv = (CPUState *)penv->next_cpu;
3850 static void tcg_init_vcpu(void *_env)
3852 CPUState *env = _env;
3853 /* share a single thread for all cpus with TCG */
3854 if (!tcg_cpu_thread) {
3855 env->thread = qemu_mallocz(sizeof(QemuThread));
3856 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3857 qemu_cond_init(env->halt_cond);
3858 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3859 while (env->created == 0)
3860 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3861 tcg_cpu_thread = env->thread;
3862 tcg_halt_cond = env->halt_cond;
3863 } else {
3864 env->thread = tcg_cpu_thread;
3865 env->halt_cond = tcg_halt_cond;
3869 static void kvm_start_vcpu(CPUState *env)
3871 env->thread = qemu_mallocz(sizeof(QemuThread));
3872 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3873 qemu_cond_init(env->halt_cond);
3874 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3875 while (env->created == 0)
3876 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3879 void qemu_init_vcpu(void *_env)
3881 CPUState *env = _env;
3883 if (kvm_enabled())
3884 kvm_start_vcpu(env);
3885 else
3886 tcg_init_vcpu(env);
3887 env->nr_cores = smp_cores;
3888 env->nr_threads = smp_threads;
3891 void qemu_notify_event(void)
3893 qemu_event_increment();
3896 void vm_stop(int reason)
3898 QemuThread me;
3899 qemu_thread_self(&me);
3901 if (!qemu_thread_equal(&me, &io_thread)) {
3902 qemu_system_vmstop_request(reason);
3904 * FIXME: should not return to device code in case
3905 * vm_stop() has been requested.
3907 if (cpu_single_env) {
3908 cpu_exit(cpu_single_env);
3909 cpu_single_env->stop = 1;
3911 return;
3913 do_vm_stop(reason);
3916 #endif
3919 #ifdef _WIN32
3920 static void host_main_loop_wait(int *timeout)
3922 int ret, ret2, i;
3923 PollingEntry *pe;
3926 /* XXX: need to suppress polling by better using win32 events */
3927 ret = 0;
3928 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3929 ret |= pe->func(pe->opaque);
3931 if (ret == 0) {
3932 int err;
3933 WaitObjects *w = &wait_objects;
3935 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3936 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3937 if (w->func[ret - WAIT_OBJECT_0])
3938 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3940 /* Check for additional signaled events */
3941 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3943 /* Check if event is signaled */
3944 ret2 = WaitForSingleObject(w->events[i], 0);
3945 if(ret2 == WAIT_OBJECT_0) {
3946 if (w->func[i])
3947 w->func[i](w->opaque[i]);
3948 } else if (ret2 == WAIT_TIMEOUT) {
3949 } else {
3950 err = GetLastError();
3951 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3954 } else if (ret == WAIT_TIMEOUT) {
3955 } else {
3956 err = GetLastError();
3957 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3961 *timeout = 0;
3963 #else
3964 static void host_main_loop_wait(int *timeout)
3967 #endif
3969 void main_loop_wait(int timeout)
3971 IOHandlerRecord *ioh;
3972 fd_set rfds, wfds, xfds;
3973 int ret, nfds;
3974 struct timeval tv;
3976 qemu_bh_update_timeout(&timeout);
3978 host_main_loop_wait(&timeout);
3980 /* poll any events */
3981 /* XXX: separate device handlers from system ones */
3982 nfds = -1;
3983 FD_ZERO(&rfds);
3984 FD_ZERO(&wfds);
3985 FD_ZERO(&xfds);
3986 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3987 if (ioh->deleted)
3988 continue;
3989 if (ioh->fd_read &&
3990 (!ioh->fd_read_poll ||
3991 ioh->fd_read_poll(ioh->opaque) != 0)) {
3992 FD_SET(ioh->fd, &rfds);
3993 if (ioh->fd > nfds)
3994 nfds = ioh->fd;
3996 if (ioh->fd_write) {
3997 FD_SET(ioh->fd, &wfds);
3998 if (ioh->fd > nfds)
3999 nfds = ioh->fd;
4003 tv.tv_sec = timeout / 1000;
4004 tv.tv_usec = (timeout % 1000) * 1000;
4006 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4008 qemu_mutex_unlock_iothread();
4009 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4010 qemu_mutex_lock_iothread();
4011 if (ret > 0) {
4012 IOHandlerRecord **pioh;
4014 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4015 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4016 ioh->fd_read(ioh->opaque);
4018 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4019 ioh->fd_write(ioh->opaque);
4023 /* remove deleted IO handlers */
4024 pioh = &first_io_handler;
4025 while (*pioh) {
4026 ioh = *pioh;
4027 if (ioh->deleted) {
4028 *pioh = ioh->next;
4029 qemu_free(ioh);
4030 } else
4031 pioh = &ioh->next;
4035 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4037 /* rearm timer, if not periodic */
4038 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4039 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4040 qemu_rearm_alarm_timer(alarm_timer);
4043 /* vm time timers */
4044 if (vm_running) {
4045 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4046 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4047 qemu_get_clock(vm_clock));
4050 /* real time timers */
4051 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4052 qemu_get_clock(rt_clock));
4054 /* Check bottom-halves last in case any of the earlier events triggered
4055 them. */
4056 qemu_bh_poll();
4060 static int qemu_cpu_exec(CPUState *env)
4062 int ret;
4063 #ifdef CONFIG_PROFILER
4064 int64_t ti;
4065 #endif
4067 #ifdef CONFIG_PROFILER
4068 ti = profile_getclock();
4069 #endif
4070 if (use_icount) {
4071 int64_t count;
4072 int decr;
4073 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4074 env->icount_decr.u16.low = 0;
4075 env->icount_extra = 0;
4076 count = qemu_next_deadline();
4077 count = (count + (1 << icount_time_shift) - 1)
4078 >> icount_time_shift;
4079 qemu_icount += count;
4080 decr = (count > 0xffff) ? 0xffff : count;
4081 count -= decr;
4082 env->icount_decr.u16.low = decr;
4083 env->icount_extra = count;
4085 ret = cpu_exec(env);
4086 #ifdef CONFIG_PROFILER
4087 qemu_time += profile_getclock() - ti;
4088 #endif
4089 if (use_icount) {
4090 /* Fold pending instructions back into the
4091 instruction counter, and clear the interrupt flag. */
4092 qemu_icount -= (env->icount_decr.u16.low
4093 + env->icount_extra);
4094 env->icount_decr.u32 = 0;
4095 env->icount_extra = 0;
4097 return ret;
4100 static void tcg_cpu_exec(void)
4102 int ret = 0;
4104 if (next_cpu == NULL)
4105 next_cpu = first_cpu;
4106 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4107 CPUState *env = cur_cpu = next_cpu;
4109 if (!vm_running)
4110 break;
4111 if (timer_alarm_pending) {
4112 timer_alarm_pending = 0;
4113 break;
4115 if (cpu_can_run(env))
4116 ret = qemu_cpu_exec(env);
4117 if (ret == EXCP_DEBUG) {
4118 gdb_set_stop_cpu(env);
4119 debug_requested = 1;
4120 break;
4125 static int cpu_has_work(CPUState *env)
4127 if (env->stop)
4128 return 1;
4129 if (env->stopped)
4130 return 0;
4131 if (!env->halted)
4132 return 1;
4133 if (qemu_cpu_has_work(env))
4134 return 1;
4135 return 0;
4138 static int tcg_has_work(void)
4140 CPUState *env;
4142 for (env = first_cpu; env != NULL; env = env->next_cpu)
4143 if (cpu_has_work(env))
4144 return 1;
4145 return 0;
4148 static int qemu_calculate_timeout(void)
4150 #ifndef CONFIG_IOTHREAD
4151 int timeout;
4153 if (!vm_running)
4154 timeout = 5000;
4155 else if (tcg_has_work())
4156 timeout = 0;
4157 else if (!use_icount)
4158 timeout = 5000;
4159 else {
4160 /* XXX: use timeout computed from timers */
4161 int64_t add;
4162 int64_t delta;
4163 /* Advance virtual time to the next event. */
4164 if (use_icount == 1) {
4165 /* When not using an adaptive execution frequency
4166 we tend to get badly out of sync with real time,
4167 so just delay for a reasonable amount of time. */
4168 delta = 0;
4169 } else {
4170 delta = cpu_get_icount() - cpu_get_clock();
4172 if (delta > 0) {
4173 /* If virtual time is ahead of real time then just
4174 wait for IO. */
4175 timeout = (delta / 1000000) + 1;
4176 } else {
4177 /* Wait for either IO to occur or the next
4178 timer event. */
4179 add = qemu_next_deadline();
4180 /* We advance the timer before checking for IO.
4181 Limit the amount we advance so that early IO
4182 activity won't get the guest too far ahead. */
4183 if (add > 10000000)
4184 add = 10000000;
4185 delta += add;
4186 add = (add + (1 << icount_time_shift) - 1)
4187 >> icount_time_shift;
4188 qemu_icount += add;
4189 timeout = delta / 1000000;
4190 if (timeout < 0)
4191 timeout = 0;
4195 return timeout;
4196 #else /* CONFIG_IOTHREAD */
4197 return 1000;
4198 #endif
4201 static int vm_can_run(void)
4203 if (powerdown_requested)
4204 return 0;
4205 if (reset_requested)
4206 return 0;
4207 if (shutdown_requested)
4208 return 0;
4209 if (debug_requested)
4210 return 0;
4211 return 1;
4214 qemu_irq qemu_system_powerdown;
4216 static void main_loop(void)
4218 int r;
4220 #ifdef CONFIG_IOTHREAD
4221 qemu_system_ready = 1;
4222 qemu_cond_broadcast(&qemu_system_cond);
4223 #endif
4225 for (;;) {
4226 do {
4227 #ifdef CONFIG_PROFILER
4228 int64_t ti;
4229 #endif
4230 #ifndef CONFIG_IOTHREAD
4231 tcg_cpu_exec();
4232 #endif
4233 #ifdef CONFIG_PROFILER
4234 ti = profile_getclock();
4235 #endif
4236 main_loop_wait(qemu_calculate_timeout());
4237 #ifdef CONFIG_PROFILER
4238 dev_time += profile_getclock() - ti;
4239 #endif
4240 } while (vm_can_run());
4242 if (qemu_debug_requested())
4243 vm_stop(EXCP_DEBUG);
4244 if (qemu_shutdown_requested()) {
4245 if (no_shutdown) {
4246 vm_stop(0);
4247 no_shutdown = 0;
4248 } else
4249 break;
4251 if (qemu_reset_requested()) {
4252 pause_all_vcpus();
4253 qemu_system_reset();
4254 resume_all_vcpus();
4256 if (qemu_powerdown_requested()) {
4257 qemu_irq_raise(qemu_system_powerdown);
4259 if ((r = qemu_vmstop_requested()))
4260 vm_stop(r);
4262 pause_all_vcpus();
4265 static void version(void)
4267 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4270 static void help(int exitcode)
4272 version();
4273 printf("usage: %s [options] [disk_image]\n"
4274 "\n"
4275 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4276 "\n"
4277 #define DEF(option, opt_arg, opt_enum, opt_help) \
4278 opt_help
4279 #define DEFHEADING(text) stringify(text) "\n"
4280 #include "qemu-options.h"
4281 #undef DEF
4282 #undef DEFHEADING
4283 #undef GEN_DOCS
4284 "\n"
4285 "During emulation, the following keys are useful:\n"
4286 "ctrl-alt-f toggle full screen\n"
4287 "ctrl-alt-n switch to virtual console 'n'\n"
4288 "ctrl-alt toggle mouse and keyboard grab\n"
4289 "\n"
4290 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4292 "qemu",
4293 DEFAULT_RAM_SIZE,
4294 #ifndef _WIN32
4295 DEFAULT_NETWORK_SCRIPT,
4296 DEFAULT_NETWORK_DOWN_SCRIPT,
4297 #endif
4298 DEFAULT_GDBSTUB_PORT,
4299 "/tmp/qemu.log");
4300 exit(exitcode);
4303 #define HAS_ARG 0x0001
4305 enum {
4306 #define DEF(option, opt_arg, opt_enum, opt_help) \
4307 opt_enum,
4308 #define DEFHEADING(text)
4309 #include "qemu-options.h"
4310 #undef DEF
4311 #undef DEFHEADING
4312 #undef GEN_DOCS
4315 typedef struct QEMUOption {
4316 const char *name;
4317 int flags;
4318 int index;
4319 } QEMUOption;
4321 static const QEMUOption qemu_options[] = {
4322 { "h", 0, QEMU_OPTION_h },
4323 #define DEF(option, opt_arg, opt_enum, opt_help) \
4324 { option, opt_arg, opt_enum },
4325 #define DEFHEADING(text)
4326 #include "qemu-options.h"
4327 #undef DEF
4328 #undef DEFHEADING
4329 #undef GEN_DOCS
4330 { NULL },
4333 #ifdef HAS_AUDIO
4334 struct soundhw soundhw[] = {
4335 #ifdef HAS_AUDIO_CHOICE
4336 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4338 "pcspk",
4339 "PC speaker",
4342 { .init_isa = pcspk_audio_init }
4344 #endif
4346 #ifdef CONFIG_SB16
4348 "sb16",
4349 "Creative Sound Blaster 16",
4352 { .init_isa = SB16_init }
4354 #endif
4356 #ifdef CONFIG_CS4231A
4358 "cs4231a",
4359 "CS4231A",
4362 { .init_isa = cs4231a_init }
4364 #endif
4366 #ifdef CONFIG_ADLIB
4368 "adlib",
4369 #ifdef HAS_YMF262
4370 "Yamaha YMF262 (OPL3)",
4371 #else
4372 "Yamaha YM3812 (OPL2)",
4373 #endif
4376 { .init_isa = Adlib_init }
4378 #endif
4380 #ifdef CONFIG_GUS
4382 "gus",
4383 "Gravis Ultrasound GF1",
4386 { .init_isa = GUS_init }
4388 #endif
4390 #ifdef CONFIG_AC97
4392 "ac97",
4393 "Intel 82801AA AC97 Audio",
4396 { .init_pci = ac97_init }
4398 #endif
4400 #ifdef CONFIG_ES1370
4402 "es1370",
4403 "ENSONIQ AudioPCI ES1370",
4406 { .init_pci = es1370_init }
4408 #endif
4410 #endif /* HAS_AUDIO_CHOICE */
4412 { NULL, NULL, 0, 0, { NULL } }
4415 static void select_soundhw (const char *optarg)
4417 struct soundhw *c;
4419 if (*optarg == '?') {
4420 show_valid_cards:
4422 printf ("Valid sound card names (comma separated):\n");
4423 for (c = soundhw; c->name; ++c) {
4424 printf ("%-11s %s\n", c->name, c->descr);
4426 printf ("\n-soundhw all will enable all of the above\n");
4427 exit (*optarg != '?');
4429 else {
4430 size_t l;
4431 const char *p;
4432 char *e;
4433 int bad_card = 0;
4435 if (!strcmp (optarg, "all")) {
4436 for (c = soundhw; c->name; ++c) {
4437 c->enabled = 1;
4439 return;
4442 p = optarg;
4443 while (*p) {
4444 e = strchr (p, ',');
4445 l = !e ? strlen (p) : (size_t) (e - p);
4447 for (c = soundhw; c->name; ++c) {
4448 if (!strncmp (c->name, p, l) && !c->name[l]) {
4449 c->enabled = 1;
4450 break;
4454 if (!c->name) {
4455 if (l > 80) {
4456 fprintf (stderr,
4457 "Unknown sound card name (too big to show)\n");
4459 else {
4460 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4461 (int) l, p);
4463 bad_card = 1;
4465 p += l + (e != NULL);
4468 if (bad_card)
4469 goto show_valid_cards;
4472 #endif
4474 static void select_vgahw (const char *p)
4476 const char *opts;
4478 vga_interface_type = VGA_NONE;
4479 if (strstart(p, "std", &opts)) {
4480 vga_interface_type = VGA_STD;
4481 } else if (strstart(p, "cirrus", &opts)) {
4482 vga_interface_type = VGA_CIRRUS;
4483 } else if (strstart(p, "vmware", &opts)) {
4484 vga_interface_type = VGA_VMWARE;
4485 } else if (strstart(p, "xenfb", &opts)) {
4486 vga_interface_type = VGA_XENFB;
4487 } else if (!strstart(p, "none", &opts)) {
4488 invalid_vga:
4489 fprintf(stderr, "Unknown vga type: %s\n", p);
4490 exit(1);
4492 while (*opts) {
4493 const char *nextopt;
4495 if (strstart(opts, ",retrace=", &nextopt)) {
4496 opts = nextopt;
4497 if (strstart(opts, "dumb", &nextopt))
4498 vga_retrace_method = VGA_RETRACE_DUMB;
4499 else if (strstart(opts, "precise", &nextopt))
4500 vga_retrace_method = VGA_RETRACE_PRECISE;
4501 else goto invalid_vga;
4502 } else goto invalid_vga;
4503 opts = nextopt;
4507 #ifdef TARGET_I386
4508 static int balloon_parse(const char *arg)
4510 QemuOpts *opts;
4512 if (strcmp(arg, "none") == 0) {
4513 return 0;
4516 if (!strncmp(arg, "virtio", 6)) {
4517 if (arg[6] == ',') {
4518 /* have params -> parse them */
4519 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4520 if (!opts)
4521 return -1;
4522 } else {
4523 /* create empty opts */
4524 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4526 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4527 return 0;
4530 return -1;
4532 #endif
4534 #ifdef _WIN32
4535 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4537 exit(STATUS_CONTROL_C_EXIT);
4538 return TRUE;
4540 #endif
4542 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4544 int ret;
4546 if(strlen(str) != 36)
4547 return -1;
4549 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4550 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4551 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4553 if(ret != 16)
4554 return -1;
4556 #ifdef TARGET_I386
4557 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4558 #endif
4560 return 0;
4563 #define MAX_NET_CLIENTS 32
4565 #ifndef _WIN32
4567 static void termsig_handler(int signal)
4569 qemu_system_shutdown_request();
4572 static void sigchld_handler(int signal)
4574 waitpid(-1, NULL, WNOHANG);
4577 static void sighandler_setup(void)
4579 struct sigaction act;
4581 memset(&act, 0, sizeof(act));
4582 act.sa_handler = termsig_handler;
4583 sigaction(SIGINT, &act, NULL);
4584 sigaction(SIGHUP, &act, NULL);
4585 sigaction(SIGTERM, &act, NULL);
4587 act.sa_handler = sigchld_handler;
4588 act.sa_flags = SA_NOCLDSTOP;
4589 sigaction(SIGCHLD, &act, NULL);
4592 #endif
4594 #ifdef _WIN32
4595 /* Look for support files in the same directory as the executable. */
4596 static char *find_datadir(const char *argv0)
4598 char *p;
4599 char buf[MAX_PATH];
4600 DWORD len;
4602 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4603 if (len == 0) {
4604 return NULL;
4607 buf[len] = 0;
4608 p = buf + len - 1;
4609 while (p != buf && *p != '\\')
4610 p--;
4611 *p = 0;
4612 if (access(buf, R_OK) == 0) {
4613 return qemu_strdup(buf);
4615 return NULL;
4617 #else /* !_WIN32 */
4619 /* Find a likely location for support files using the location of the binary.
4620 For installed binaries this will be "$bindir/../share/qemu". When
4621 running from the build tree this will be "$bindir/../pc-bios". */
4622 #define SHARE_SUFFIX "/share/qemu"
4623 #define BUILD_SUFFIX "/pc-bios"
4624 static char *find_datadir(const char *argv0)
4626 char *dir;
4627 char *p = NULL;
4628 char *res;
4629 char buf[PATH_MAX];
4630 size_t max_len;
4632 #if defined(__linux__)
4634 int len;
4635 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4636 if (len > 0) {
4637 buf[len] = 0;
4638 p = buf;
4641 #elif defined(__FreeBSD__)
4643 int len;
4644 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4645 if (len > 0) {
4646 buf[len] = 0;
4647 p = buf;
4650 #endif
4651 /* If we don't have any way of figuring out the actual executable
4652 location then try argv[0]. */
4653 if (!p) {
4654 p = realpath(argv0, buf);
4655 if (!p) {
4656 return NULL;
4659 dir = dirname(p);
4660 dir = dirname(dir);
4662 max_len = strlen(dir) +
4663 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4664 res = qemu_mallocz(max_len);
4665 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4666 if (access(res, R_OK)) {
4667 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4668 if (access(res, R_OK)) {
4669 qemu_free(res);
4670 res = NULL;
4674 return res;
4676 #undef SHARE_SUFFIX
4677 #undef BUILD_SUFFIX
4678 #endif
4680 char *qemu_find_file(int type, const char *name)
4682 int len;
4683 const char *subdir;
4684 char *buf;
4686 /* If name contains path separators then try it as a straight path. */
4687 if ((strchr(name, '/') || strchr(name, '\\'))
4688 && access(name, R_OK) == 0) {
4689 return qemu_strdup(name);
4691 switch (type) {
4692 case QEMU_FILE_TYPE_BIOS:
4693 subdir = "";
4694 break;
4695 case QEMU_FILE_TYPE_KEYMAP:
4696 subdir = "keymaps/";
4697 break;
4698 default:
4699 abort();
4701 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4702 buf = qemu_mallocz(len);
4703 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4704 if (access(buf, R_OK)) {
4705 qemu_free(buf);
4706 return NULL;
4708 return buf;
4711 static int device_init_func(QemuOpts *opts, void *opaque)
4713 DeviceState *dev;
4715 dev = qdev_device_add(opts);
4716 if (!dev)
4717 return -1;
4718 return 0;
4721 struct device_config {
4722 enum {
4723 DEV_USB, /* -usbdevice */
4724 DEV_BT, /* -bt */
4725 } type;
4726 const char *cmdline;
4727 TAILQ_ENTRY(device_config) next;
4729 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4731 static void add_device_config(int type, const char *cmdline)
4733 struct device_config *conf;
4735 conf = qemu_mallocz(sizeof(*conf));
4736 conf->type = type;
4737 conf->cmdline = cmdline;
4738 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4741 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4743 struct device_config *conf;
4744 int rc;
4746 TAILQ_FOREACH(conf, &device_configs, next) {
4747 if (conf->type != type)
4748 continue;
4749 rc = func(conf->cmdline);
4750 if (0 != rc)
4751 return rc;
4753 return 0;
4756 int main(int argc, char **argv, char **envp)
4758 const char *gdbstub_dev = NULL;
4759 uint32_t boot_devices_bitmap = 0;
4760 int i;
4761 int snapshot, linux_boot, net_boot;
4762 const char *initrd_filename;
4763 const char *kernel_filename, *kernel_cmdline;
4764 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4765 DisplayState *ds;
4766 DisplayChangeListener *dcl;
4767 int cyls, heads, secs, translation;
4768 const char *net_clients[MAX_NET_CLIENTS];
4769 int nb_net_clients;
4770 QemuOpts *hda_opts = NULL, *opts;
4771 int optind;
4772 const char *r, *optarg;
4773 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4774 const char *monitor_devices[MAX_MONITOR_DEVICES];
4775 int monitor_device_index;
4776 const char *serial_devices[MAX_SERIAL_PORTS];
4777 int serial_device_index;
4778 const char *parallel_devices[MAX_PARALLEL_PORTS];
4779 int parallel_device_index;
4780 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4781 int virtio_console_index;
4782 const char *loadvm = NULL;
4783 QEMUMachine *machine;
4784 const char *cpu_model;
4785 #ifndef _WIN32
4786 int fds[2];
4787 #endif
4788 int tb_size;
4789 const char *pid_file = NULL;
4790 const char *incoming = NULL;
4791 #ifndef _WIN32
4792 int fd = 0;
4793 struct passwd *pwd = NULL;
4794 const char *chroot_dir = NULL;
4795 const char *run_as = NULL;
4796 #endif
4797 CPUState *env;
4798 int show_vnc_port = 0;
4800 qemu_errors_to_file(stderr);
4801 qemu_cache_utils_init(envp);
4803 LIST_INIT (&vm_change_state_head);
4804 #ifndef _WIN32
4806 struct sigaction act;
4807 sigfillset(&act.sa_mask);
4808 act.sa_flags = 0;
4809 act.sa_handler = SIG_IGN;
4810 sigaction(SIGPIPE, &act, NULL);
4812 #else
4813 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4814 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4815 QEMU to run on a single CPU */
4817 HANDLE h;
4818 DWORD mask, smask;
4819 int i;
4820 h = GetCurrentProcess();
4821 if (GetProcessAffinityMask(h, &mask, &smask)) {
4822 for(i = 0; i < 32; i++) {
4823 if (mask & (1 << i))
4824 break;
4826 if (i != 32) {
4827 mask = 1 << i;
4828 SetProcessAffinityMask(h, mask);
4832 #endif
4834 module_call_init(MODULE_INIT_MACHINE);
4835 machine = find_default_machine();
4836 cpu_model = NULL;
4837 initrd_filename = NULL;
4838 ram_size = 0;
4839 snapshot = 0;
4840 kernel_filename = NULL;
4841 kernel_cmdline = "";
4842 cyls = heads = secs = 0;
4843 translation = BIOS_ATA_TRANSLATION_AUTO;
4845 serial_devices[0] = "vc:80Cx24C";
4846 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4847 serial_devices[i] = NULL;
4848 serial_device_index = 0;
4850 parallel_devices[0] = "vc:80Cx24C";
4851 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4852 parallel_devices[i] = NULL;
4853 parallel_device_index = 0;
4855 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4856 virtio_consoles[i] = NULL;
4857 virtio_console_index = 0;
4859 monitor_devices[0] = "vc:80Cx24C";
4860 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4861 monitor_devices[i] = NULL;
4863 monitor_device_index = 0;
4865 for (i = 0; i < MAX_NODES; i++) {
4866 node_mem[i] = 0;
4867 node_cpumask[i] = 0;
4870 nb_net_clients = 0;
4871 nb_numa_nodes = 0;
4872 nb_nics = 0;
4874 tb_size = 0;
4875 autostart= 1;
4877 optind = 1;
4878 for(;;) {
4879 if (optind >= argc)
4880 break;
4881 r = argv[optind];
4882 if (r[0] != '-') {
4883 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4884 } else {
4885 const QEMUOption *popt;
4887 optind++;
4888 /* Treat --foo the same as -foo. */
4889 if (r[1] == '-')
4890 r++;
4891 popt = qemu_options;
4892 for(;;) {
4893 if (!popt->name) {
4894 fprintf(stderr, "%s: invalid option -- '%s'\n",
4895 argv[0], r);
4896 exit(1);
4898 if (!strcmp(popt->name, r + 1))
4899 break;
4900 popt++;
4902 if (popt->flags & HAS_ARG) {
4903 if (optind >= argc) {
4904 fprintf(stderr, "%s: option '%s' requires an argument\n",
4905 argv[0], r);
4906 exit(1);
4908 optarg = argv[optind++];
4909 } else {
4910 optarg = NULL;
4913 switch(popt->index) {
4914 case QEMU_OPTION_M:
4915 machine = find_machine(optarg);
4916 if (!machine) {
4917 QEMUMachine *m;
4918 printf("Supported machines are:\n");
4919 for(m = first_machine; m != NULL; m = m->next) {
4920 if (m->alias)
4921 printf("%-10s %s (alias of %s)\n",
4922 m->alias, m->desc, m->name);
4923 printf("%-10s %s%s\n",
4924 m->name, m->desc,
4925 m->is_default ? " (default)" : "");
4927 exit(*optarg != '?');
4929 break;
4930 case QEMU_OPTION_cpu:
4931 /* hw initialization will check this */
4932 if (*optarg == '?') {
4933 /* XXX: implement xxx_cpu_list for targets that still miss it */
4934 #if defined(cpu_list)
4935 cpu_list(stdout, &fprintf);
4936 #endif
4937 exit(0);
4938 } else {
4939 cpu_model = optarg;
4941 break;
4942 case QEMU_OPTION_initrd:
4943 initrd_filename = optarg;
4944 break;
4945 case QEMU_OPTION_hda:
4946 if (cyls == 0)
4947 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4948 else
4949 hda_opts = drive_add(optarg, HD_ALIAS
4950 ",cyls=%d,heads=%d,secs=%d%s",
4951 0, cyls, heads, secs,
4952 translation == BIOS_ATA_TRANSLATION_LBA ?
4953 ",trans=lba" :
4954 translation == BIOS_ATA_TRANSLATION_NONE ?
4955 ",trans=none" : "");
4956 break;
4957 case QEMU_OPTION_hdb:
4958 case QEMU_OPTION_hdc:
4959 case QEMU_OPTION_hdd:
4960 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4961 break;
4962 case QEMU_OPTION_drive:
4963 drive_add(NULL, "%s", optarg);
4964 break;
4965 case QEMU_OPTION_set:
4966 if (qemu_set_option(optarg) != 0)
4967 exit(1);
4968 break;
4969 case QEMU_OPTION_mtdblock:
4970 drive_add(optarg, MTD_ALIAS);
4971 break;
4972 case QEMU_OPTION_sd:
4973 drive_add(optarg, SD_ALIAS);
4974 break;
4975 case QEMU_OPTION_pflash:
4976 drive_add(optarg, PFLASH_ALIAS);
4977 break;
4978 case QEMU_OPTION_snapshot:
4979 snapshot = 1;
4980 break;
4981 case QEMU_OPTION_hdachs:
4983 const char *p;
4984 p = optarg;
4985 cyls = strtol(p, (char **)&p, 0);
4986 if (cyls < 1 || cyls > 16383)
4987 goto chs_fail;
4988 if (*p != ',')
4989 goto chs_fail;
4990 p++;
4991 heads = strtol(p, (char **)&p, 0);
4992 if (heads < 1 || heads > 16)
4993 goto chs_fail;
4994 if (*p != ',')
4995 goto chs_fail;
4996 p++;
4997 secs = strtol(p, (char **)&p, 0);
4998 if (secs < 1 || secs > 63)
4999 goto chs_fail;
5000 if (*p == ',') {
5001 p++;
5002 if (!strcmp(p, "none"))
5003 translation = BIOS_ATA_TRANSLATION_NONE;
5004 else if (!strcmp(p, "lba"))
5005 translation = BIOS_ATA_TRANSLATION_LBA;
5006 else if (!strcmp(p, "auto"))
5007 translation = BIOS_ATA_TRANSLATION_AUTO;
5008 else
5009 goto chs_fail;
5010 } else if (*p != '\0') {
5011 chs_fail:
5012 fprintf(stderr, "qemu: invalid physical CHS format\n");
5013 exit(1);
5015 if (hda_opts != NULL) {
5016 char num[16];
5017 snprintf(num, sizeof(num), "%d", cyls);
5018 qemu_opt_set(hda_opts, "cyls", num);
5019 snprintf(num, sizeof(num), "%d", heads);
5020 qemu_opt_set(hda_opts, "heads", num);
5021 snprintf(num, sizeof(num), "%d", secs);
5022 qemu_opt_set(hda_opts, "secs", num);
5023 if (translation == BIOS_ATA_TRANSLATION_LBA)
5024 qemu_opt_set(hda_opts, "trans", "lba");
5025 if (translation == BIOS_ATA_TRANSLATION_NONE)
5026 qemu_opt_set(hda_opts, "trans", "none");
5029 break;
5030 case QEMU_OPTION_numa:
5031 if (nb_numa_nodes >= MAX_NODES) {
5032 fprintf(stderr, "qemu: too many NUMA nodes\n");
5033 exit(1);
5035 numa_add(optarg);
5036 break;
5037 case QEMU_OPTION_nographic:
5038 display_type = DT_NOGRAPHIC;
5039 break;
5040 #ifdef CONFIG_CURSES
5041 case QEMU_OPTION_curses:
5042 display_type = DT_CURSES;
5043 break;
5044 #endif
5045 case QEMU_OPTION_portrait:
5046 graphic_rotate = 1;
5047 break;
5048 case QEMU_OPTION_kernel:
5049 kernel_filename = optarg;
5050 break;
5051 case QEMU_OPTION_append:
5052 kernel_cmdline = optarg;
5053 break;
5054 case QEMU_OPTION_cdrom:
5055 drive_add(optarg, CDROM_ALIAS);
5056 break;
5057 case QEMU_OPTION_boot:
5059 static const char * const params[] = {
5060 "order", "once", "menu", NULL
5062 char buf[sizeof(boot_devices)];
5063 char *standard_boot_devices;
5064 int legacy = 0;
5066 if (!strchr(optarg, '=')) {
5067 legacy = 1;
5068 pstrcpy(buf, sizeof(buf), optarg);
5069 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5070 fprintf(stderr,
5071 "qemu: unknown boot parameter '%s' in '%s'\n",
5072 buf, optarg);
5073 exit(1);
5076 if (legacy ||
5077 get_param_value(buf, sizeof(buf), "order", optarg)) {
5078 boot_devices_bitmap = parse_bootdevices(buf);
5079 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5081 if (!legacy) {
5082 if (get_param_value(buf, sizeof(buf),
5083 "once", optarg)) {
5084 boot_devices_bitmap |= parse_bootdevices(buf);
5085 standard_boot_devices = qemu_strdup(boot_devices);
5086 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5087 qemu_register_reset(restore_boot_devices,
5088 standard_boot_devices);
5090 if (get_param_value(buf, sizeof(buf),
5091 "menu", optarg)) {
5092 if (!strcmp(buf, "on")) {
5093 boot_menu = 1;
5094 } else if (!strcmp(buf, "off")) {
5095 boot_menu = 0;
5096 } else {
5097 fprintf(stderr,
5098 "qemu: invalid option value '%s'\n",
5099 buf);
5100 exit(1);
5105 break;
5106 case QEMU_OPTION_fda:
5107 case QEMU_OPTION_fdb:
5108 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5109 break;
5110 #ifdef TARGET_I386
5111 case QEMU_OPTION_no_fd_bootchk:
5112 fd_bootchk = 0;
5113 break;
5114 #endif
5115 case QEMU_OPTION_net:
5116 if (nb_net_clients >= MAX_NET_CLIENTS) {
5117 fprintf(stderr, "qemu: too many network clients\n");
5118 exit(1);
5120 net_clients[nb_net_clients] = optarg;
5121 nb_net_clients++;
5122 break;
5123 #ifdef CONFIG_SLIRP
5124 case QEMU_OPTION_tftp:
5125 legacy_tftp_prefix = optarg;
5126 break;
5127 case QEMU_OPTION_bootp:
5128 legacy_bootp_filename = optarg;
5129 break;
5130 #ifndef _WIN32
5131 case QEMU_OPTION_smb:
5132 net_slirp_smb(optarg);
5133 break;
5134 #endif
5135 case QEMU_OPTION_redir:
5136 net_slirp_redir(optarg);
5137 break;
5138 #endif
5139 case QEMU_OPTION_bt:
5140 add_device_config(DEV_BT, optarg);
5141 break;
5142 #ifdef HAS_AUDIO
5143 case QEMU_OPTION_audio_help:
5144 AUD_help ();
5145 exit (0);
5146 break;
5147 case QEMU_OPTION_soundhw:
5148 select_soundhw (optarg);
5149 break;
5150 #endif
5151 case QEMU_OPTION_h:
5152 help(0);
5153 break;
5154 case QEMU_OPTION_version:
5155 version();
5156 exit(0);
5157 break;
5158 case QEMU_OPTION_m: {
5159 uint64_t value;
5160 char *ptr;
5162 value = strtoul(optarg, &ptr, 10);
5163 switch (*ptr) {
5164 case 0: case 'M': case 'm':
5165 value <<= 20;
5166 break;
5167 case 'G': case 'g':
5168 value <<= 30;
5169 break;
5170 default:
5171 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5172 exit(1);
5175 /* On 32-bit hosts, QEMU is limited by virtual address space */
5176 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5177 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5178 exit(1);
5180 if (value != (uint64_t)(ram_addr_t)value) {
5181 fprintf(stderr, "qemu: ram size too large\n");
5182 exit(1);
5184 ram_size = value;
5185 break;
5187 case QEMU_OPTION_d:
5189 int mask;
5190 const CPULogItem *item;
5192 mask = cpu_str_to_log_mask(optarg);
5193 if (!mask) {
5194 printf("Log items (comma separated):\n");
5195 for(item = cpu_log_items; item->mask != 0; item++) {
5196 printf("%-10s %s\n", item->name, item->help);
5198 exit(1);
5200 cpu_set_log(mask);
5202 break;
5203 case QEMU_OPTION_s:
5204 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5205 break;
5206 case QEMU_OPTION_gdb:
5207 gdbstub_dev = optarg;
5208 break;
5209 case QEMU_OPTION_L:
5210 data_dir = optarg;
5211 break;
5212 case QEMU_OPTION_bios:
5213 bios_name = optarg;
5214 break;
5215 case QEMU_OPTION_singlestep:
5216 singlestep = 1;
5217 break;
5218 case QEMU_OPTION_S:
5219 autostart = 0;
5220 break;
5221 #ifndef _WIN32
5222 case QEMU_OPTION_k:
5223 keyboard_layout = optarg;
5224 break;
5225 #endif
5226 case QEMU_OPTION_localtime:
5227 rtc_utc = 0;
5228 break;
5229 case QEMU_OPTION_vga:
5230 select_vgahw (optarg);
5231 break;
5232 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5233 case QEMU_OPTION_g:
5235 const char *p;
5236 int w, h, depth;
5237 p = optarg;
5238 w = strtol(p, (char **)&p, 10);
5239 if (w <= 0) {
5240 graphic_error:
5241 fprintf(stderr, "qemu: invalid resolution or depth\n");
5242 exit(1);
5244 if (*p != 'x')
5245 goto graphic_error;
5246 p++;
5247 h = strtol(p, (char **)&p, 10);
5248 if (h <= 0)
5249 goto graphic_error;
5250 if (*p == 'x') {
5251 p++;
5252 depth = strtol(p, (char **)&p, 10);
5253 if (depth != 8 && depth != 15 && depth != 16 &&
5254 depth != 24 && depth != 32)
5255 goto graphic_error;
5256 } else if (*p == '\0') {
5257 depth = graphic_depth;
5258 } else {
5259 goto graphic_error;
5262 graphic_width = w;
5263 graphic_height = h;
5264 graphic_depth = depth;
5266 break;
5267 #endif
5268 case QEMU_OPTION_echr:
5270 char *r;
5271 term_escape_char = strtol(optarg, &r, 0);
5272 if (r == optarg)
5273 printf("Bad argument to echr\n");
5274 break;
5276 case QEMU_OPTION_monitor:
5277 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5278 fprintf(stderr, "qemu: too many monitor devices\n");
5279 exit(1);
5281 monitor_devices[monitor_device_index] = optarg;
5282 monitor_device_index++;
5283 break;
5284 case QEMU_OPTION_chardev:
5285 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5286 if (!opts) {
5287 fprintf(stderr, "parse error: %s\n", optarg);
5288 exit(1);
5290 if (NULL == qemu_chr_open_opts(opts, NULL)) {
5291 exit(1);
5293 break;
5294 case QEMU_OPTION_serial:
5295 if (serial_device_index >= MAX_SERIAL_PORTS) {
5296 fprintf(stderr, "qemu: too many serial ports\n");
5297 exit(1);
5299 serial_devices[serial_device_index] = optarg;
5300 serial_device_index++;
5301 break;
5302 case QEMU_OPTION_watchdog:
5303 if (watchdog) {
5304 fprintf(stderr,
5305 "qemu: only one watchdog option may be given\n");
5306 return 1;
5308 watchdog = optarg;
5309 break;
5310 case QEMU_OPTION_watchdog_action:
5311 if (select_watchdog_action(optarg) == -1) {
5312 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5313 exit(1);
5315 break;
5316 case QEMU_OPTION_virtiocon:
5317 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5318 fprintf(stderr, "qemu: too many virtio consoles\n");
5319 exit(1);
5321 virtio_consoles[virtio_console_index] = optarg;
5322 virtio_console_index++;
5323 break;
5324 case QEMU_OPTION_parallel:
5325 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5326 fprintf(stderr, "qemu: too many parallel ports\n");
5327 exit(1);
5329 parallel_devices[parallel_device_index] = optarg;
5330 parallel_device_index++;
5331 break;
5332 case QEMU_OPTION_loadvm:
5333 loadvm = optarg;
5334 break;
5335 case QEMU_OPTION_full_screen:
5336 full_screen = 1;
5337 break;
5338 #ifdef CONFIG_SDL
5339 case QEMU_OPTION_no_frame:
5340 no_frame = 1;
5341 break;
5342 case QEMU_OPTION_alt_grab:
5343 alt_grab = 1;
5344 break;
5345 case QEMU_OPTION_no_quit:
5346 no_quit = 1;
5347 break;
5348 case QEMU_OPTION_sdl:
5349 display_type = DT_SDL;
5350 break;
5351 #endif
5352 case QEMU_OPTION_pidfile:
5353 pid_file = optarg;
5354 break;
5355 #ifdef TARGET_I386
5356 case QEMU_OPTION_win2k_hack:
5357 win2k_install_hack = 1;
5358 break;
5359 case QEMU_OPTION_rtc_td_hack:
5360 rtc_td_hack = 1;
5361 break;
5362 case QEMU_OPTION_acpitable:
5363 if(acpi_table_add(optarg) < 0) {
5364 fprintf(stderr, "Wrong acpi table provided\n");
5365 exit(1);
5367 break;
5368 case QEMU_OPTION_smbios:
5369 if(smbios_entry_add(optarg) < 0) {
5370 fprintf(stderr, "Wrong smbios provided\n");
5371 exit(1);
5373 break;
5374 #endif
5375 #ifdef CONFIG_KVM
5376 case QEMU_OPTION_enable_kvm:
5377 kvm_allowed = 1;
5378 break;
5379 #endif
5380 case QEMU_OPTION_usb:
5381 usb_enabled = 1;
5382 break;
5383 case QEMU_OPTION_usbdevice:
5384 usb_enabled = 1;
5385 add_device_config(DEV_USB, optarg);
5386 break;
5387 case QEMU_OPTION_device:
5388 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5389 if (!opts) {
5390 fprintf(stderr, "parse error: %s\n", optarg);
5391 exit(1);
5393 break;
5394 case QEMU_OPTION_smp:
5395 smp_parse(optarg);
5396 if (smp_cpus < 1) {
5397 fprintf(stderr, "Invalid number of CPUs\n");
5398 exit(1);
5400 if (max_cpus < smp_cpus) {
5401 fprintf(stderr, "maxcpus must be equal to or greater than "
5402 "smp\n");
5403 exit(1);
5405 if (max_cpus > 255) {
5406 fprintf(stderr, "Unsupported number of maxcpus\n");
5407 exit(1);
5409 break;
5410 case QEMU_OPTION_vnc:
5411 display_type = DT_VNC;
5412 vnc_display = optarg;
5413 break;
5414 #ifdef TARGET_I386
5415 case QEMU_OPTION_no_acpi:
5416 acpi_enabled = 0;
5417 break;
5418 case QEMU_OPTION_no_hpet:
5419 no_hpet = 1;
5420 break;
5421 case QEMU_OPTION_balloon:
5422 if (balloon_parse(optarg) < 0) {
5423 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5424 exit(1);
5426 break;
5427 #endif
5428 case QEMU_OPTION_no_reboot:
5429 no_reboot = 1;
5430 break;
5431 case QEMU_OPTION_no_shutdown:
5432 no_shutdown = 1;
5433 break;
5434 case QEMU_OPTION_show_cursor:
5435 cursor_hide = 0;
5436 break;
5437 case QEMU_OPTION_uuid:
5438 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5439 fprintf(stderr, "Fail to parse UUID string."
5440 " Wrong format.\n");
5441 exit(1);
5443 break;
5444 #ifndef _WIN32
5445 case QEMU_OPTION_daemonize:
5446 daemonize = 1;
5447 break;
5448 #endif
5449 case QEMU_OPTION_option_rom:
5450 if (nb_option_roms >= MAX_OPTION_ROMS) {
5451 fprintf(stderr, "Too many option ROMs\n");
5452 exit(1);
5454 option_rom[nb_option_roms] = optarg;
5455 nb_option_roms++;
5456 break;
5457 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5458 case QEMU_OPTION_semihosting:
5459 semihosting_enabled = 1;
5460 break;
5461 #endif
5462 case QEMU_OPTION_name:
5463 qemu_name = qemu_strdup(optarg);
5465 char *p = strchr(qemu_name, ',');
5466 if (p != NULL) {
5467 *p++ = 0;
5468 if (strncmp(p, "process=", 8)) {
5469 fprintf(stderr, "Unknown subargument %s to -name", p);
5470 exit(1);
5472 p += 8;
5473 set_proc_name(p);
5476 break;
5477 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5478 case QEMU_OPTION_prom_env:
5479 if (nb_prom_envs >= MAX_PROM_ENVS) {
5480 fprintf(stderr, "Too many prom variables\n");
5481 exit(1);
5483 prom_envs[nb_prom_envs] = optarg;
5484 nb_prom_envs++;
5485 break;
5486 #endif
5487 #ifdef TARGET_ARM
5488 case QEMU_OPTION_old_param:
5489 old_param = 1;
5490 break;
5491 #endif
5492 case QEMU_OPTION_clock:
5493 configure_alarms(optarg);
5494 break;
5495 case QEMU_OPTION_startdate:
5497 struct tm tm;
5498 time_t rtc_start_date;
5499 if (!strcmp(optarg, "now")) {
5500 rtc_date_offset = -1;
5501 } else {
5502 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5503 &tm.tm_year,
5504 &tm.tm_mon,
5505 &tm.tm_mday,
5506 &tm.tm_hour,
5507 &tm.tm_min,
5508 &tm.tm_sec) == 6) {
5509 /* OK */
5510 } else if (sscanf(optarg, "%d-%d-%d",
5511 &tm.tm_year,
5512 &tm.tm_mon,
5513 &tm.tm_mday) == 3) {
5514 tm.tm_hour = 0;
5515 tm.tm_min = 0;
5516 tm.tm_sec = 0;
5517 } else {
5518 goto date_fail;
5520 tm.tm_year -= 1900;
5521 tm.tm_mon--;
5522 rtc_start_date = mktimegm(&tm);
5523 if (rtc_start_date == -1) {
5524 date_fail:
5525 fprintf(stderr, "Invalid date format. Valid format are:\n"
5526 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5527 exit(1);
5529 rtc_date_offset = time(NULL) - rtc_start_date;
5532 break;
5533 case QEMU_OPTION_tb_size:
5534 tb_size = strtol(optarg, NULL, 0);
5535 if (tb_size < 0)
5536 tb_size = 0;
5537 break;
5538 case QEMU_OPTION_icount:
5539 use_icount = 1;
5540 if (strcmp(optarg, "auto") == 0) {
5541 icount_time_shift = -1;
5542 } else {
5543 icount_time_shift = strtol(optarg, NULL, 0);
5545 break;
5546 case QEMU_OPTION_incoming:
5547 incoming = optarg;
5548 break;
5549 #ifndef _WIN32
5550 case QEMU_OPTION_chroot:
5551 chroot_dir = optarg;
5552 break;
5553 case QEMU_OPTION_runas:
5554 run_as = optarg;
5555 break;
5556 #endif
5557 #ifdef CONFIG_XEN
5558 case QEMU_OPTION_xen_domid:
5559 xen_domid = atoi(optarg);
5560 break;
5561 case QEMU_OPTION_xen_create:
5562 xen_mode = XEN_CREATE;
5563 break;
5564 case QEMU_OPTION_xen_attach:
5565 xen_mode = XEN_ATTACH;
5566 break;
5567 #endif
5572 if (kvm_enabled()) {
5573 int ret;
5575 ret = kvm_init(smp_cpus);
5576 if (ret < 0) {
5577 fprintf(stderr, "failed to initialize KVM\n");
5578 exit(1);
5582 /* If no data_dir is specified then try to find it relative to the
5583 executable path. */
5584 if (!data_dir) {
5585 data_dir = find_datadir(argv[0]);
5587 /* If all else fails use the install patch specified when building. */
5588 if (!data_dir) {
5589 data_dir = CONFIG_QEMU_SHAREDIR;
5593 * Default to max_cpus = smp_cpus, in case the user doesn't
5594 * specify a max_cpus value.
5596 if (!max_cpus)
5597 max_cpus = smp_cpus;
5599 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5600 if (smp_cpus > machine->max_cpus) {
5601 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5602 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5603 machine->max_cpus);
5604 exit(1);
5607 if (display_type == DT_NOGRAPHIC) {
5608 if (serial_device_index == 0)
5609 serial_devices[0] = "stdio";
5610 if (parallel_device_index == 0)
5611 parallel_devices[0] = "null";
5612 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5613 monitor_devices[0] = "stdio";
5617 #ifndef _WIN32
5618 if (daemonize) {
5619 pid_t pid;
5621 if (pipe(fds) == -1)
5622 exit(1);
5624 pid = fork();
5625 if (pid > 0) {
5626 uint8_t status;
5627 ssize_t len;
5629 close(fds[1]);
5631 again:
5632 len = read(fds[0], &status, 1);
5633 if (len == -1 && (errno == EINTR))
5634 goto again;
5636 if (len != 1)
5637 exit(1);
5638 else if (status == 1) {
5639 fprintf(stderr, "Could not acquire pidfile\n");
5640 exit(1);
5641 } else
5642 exit(0);
5643 } else if (pid < 0)
5644 exit(1);
5646 setsid();
5648 pid = fork();
5649 if (pid > 0)
5650 exit(0);
5651 else if (pid < 0)
5652 exit(1);
5654 umask(027);
5656 signal(SIGTSTP, SIG_IGN);
5657 signal(SIGTTOU, SIG_IGN);
5658 signal(SIGTTIN, SIG_IGN);
5661 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5662 if (daemonize) {
5663 uint8_t status = 1;
5664 write(fds[1], &status, 1);
5665 } else
5666 fprintf(stderr, "Could not acquire pid file\n");
5667 exit(1);
5669 #endif
5671 if (qemu_init_main_loop()) {
5672 fprintf(stderr, "qemu_init_main_loop failed\n");
5673 exit(1);
5675 linux_boot = (kernel_filename != NULL);
5677 if (!linux_boot && *kernel_cmdline != '\0') {
5678 fprintf(stderr, "-append only allowed with -kernel option\n");
5679 exit(1);
5682 if (!linux_boot && initrd_filename != NULL) {
5683 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5684 exit(1);
5687 #ifndef _WIN32
5688 /* Win32 doesn't support line-buffering and requires size >= 2 */
5689 setvbuf(stdout, NULL, _IOLBF, 0);
5690 #endif
5692 init_timers();
5693 if (init_timer_alarm() < 0) {
5694 fprintf(stderr, "could not initialize alarm timer\n");
5695 exit(1);
5697 if (use_icount && icount_time_shift < 0) {
5698 use_icount = 2;
5699 /* 125MIPS seems a reasonable initial guess at the guest speed.
5700 It will be corrected fairly quickly anyway. */
5701 icount_time_shift = 3;
5702 init_icount_adjust();
5705 #ifdef _WIN32
5706 socket_init();
5707 #endif
5709 /* init network clients */
5710 if (nb_net_clients == 0) {
5711 /* if no clients, we use a default config */
5712 net_clients[nb_net_clients++] = "nic";
5713 #ifdef CONFIG_SLIRP
5714 net_clients[nb_net_clients++] = "user";
5715 #endif
5718 for(i = 0;i < nb_net_clients; i++) {
5719 if (net_client_parse(net_clients[i]) < 0)
5720 exit(1);
5723 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5724 net_set_boot_mask(net_boot);
5726 net_client_check();
5728 /* init the bluetooth world */
5729 if (foreach_device_config(DEV_BT, bt_parse))
5730 exit(1);
5732 /* init the memory */
5733 if (ram_size == 0)
5734 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5736 /* init the dynamic translator */
5737 cpu_exec_init_all(tb_size * 1024 * 1024);
5739 bdrv_init();
5741 /* we always create the cdrom drive, even if no disk is there */
5742 drive_add(NULL, CDROM_ALIAS);
5744 /* we always create at least one floppy */
5745 drive_add(NULL, FD_ALIAS, 0);
5747 /* we always create one sd slot, even if no card is in it */
5748 drive_add(NULL, SD_ALIAS);
5750 /* open the virtual block devices */
5751 if (snapshot)
5752 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5753 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5754 exit(1);
5756 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5757 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5759 /* Maintain compatibility with multiple stdio monitors */
5760 if (!strcmp(monitor_devices[0],"stdio")) {
5761 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5762 const char *devname = serial_devices[i];
5763 if (devname && !strcmp(devname,"mon:stdio")) {
5764 monitor_devices[0] = NULL;
5765 break;
5766 } else if (devname && !strcmp(devname,"stdio")) {
5767 monitor_devices[0] = NULL;
5768 serial_devices[i] = "mon:stdio";
5769 break;
5774 if (nb_numa_nodes > 0) {
5775 int i;
5777 if (nb_numa_nodes > smp_cpus) {
5778 nb_numa_nodes = smp_cpus;
5781 /* If no memory size if given for any node, assume the default case
5782 * and distribute the available memory equally across all nodes
5784 for (i = 0; i < nb_numa_nodes; i++) {
5785 if (node_mem[i] != 0)
5786 break;
5788 if (i == nb_numa_nodes) {
5789 uint64_t usedmem = 0;
5791 /* On Linux, the each node's border has to be 8MB aligned,
5792 * the final node gets the rest.
5794 for (i = 0; i < nb_numa_nodes - 1; i++) {
5795 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5796 usedmem += node_mem[i];
5798 node_mem[i] = ram_size - usedmem;
5801 for (i = 0; i < nb_numa_nodes; i++) {
5802 if (node_cpumask[i] != 0)
5803 break;
5805 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5806 * must cope with this anyway, because there are BIOSes out there in
5807 * real machines which also use this scheme.
5809 if (i == nb_numa_nodes) {
5810 for (i = 0; i < smp_cpus; i++) {
5811 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5816 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5817 const char *devname = monitor_devices[i];
5818 if (devname && strcmp(devname, "none")) {
5819 char label[32];
5820 if (i == 0) {
5821 snprintf(label, sizeof(label), "monitor");
5822 } else {
5823 snprintf(label, sizeof(label), "monitor%d", i);
5825 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5826 if (!monitor_hds[i]) {
5827 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5828 devname);
5829 exit(1);
5834 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5835 const char *devname = serial_devices[i];
5836 if (devname && strcmp(devname, "none")) {
5837 char label[32];
5838 snprintf(label, sizeof(label), "serial%d", i);
5839 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5840 if (!serial_hds[i]) {
5841 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5842 devname);
5843 exit(1);
5848 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5849 const char *devname = parallel_devices[i];
5850 if (devname && strcmp(devname, "none")) {
5851 char label[32];
5852 snprintf(label, sizeof(label), "parallel%d", i);
5853 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5854 if (!parallel_hds[i]) {
5855 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5856 devname);
5857 exit(1);
5862 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5863 const char *devname = virtio_consoles[i];
5864 if (devname && strcmp(devname, "none")) {
5865 char label[32];
5866 snprintf(label, sizeof(label), "virtcon%d", i);
5867 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5868 if (!virtcon_hds[i]) {
5869 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5870 devname);
5871 exit(1);
5876 module_call_init(MODULE_INIT_DEVICE);
5878 if (watchdog) {
5879 i = select_watchdog(watchdog);
5880 if (i > 0)
5881 exit (i == 1 ? 1 : 0);
5884 if (machine->compat_props) {
5885 qdev_prop_register_compat(machine->compat_props);
5887 machine->init(ram_size, boot_devices,
5888 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5891 #ifndef _WIN32
5892 /* must be after terminal init, SDL library changes signal handlers */
5893 sighandler_setup();
5894 #endif
5896 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5897 for (i = 0; i < nb_numa_nodes; i++) {
5898 if (node_cpumask[i] & (1 << env->cpu_index)) {
5899 env->numa_node = i;
5904 current_machine = machine;
5906 /* init USB devices */
5907 if (usb_enabled) {
5908 foreach_device_config(DEV_USB, usb_parse);
5911 /* init generic devices */
5912 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5913 exit(1);
5915 if (!display_state)
5916 dumb_display_init();
5917 /* just use the first displaystate for the moment */
5918 ds = display_state;
5920 if (display_type == DT_DEFAULT) {
5921 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5922 display_type = DT_SDL;
5923 #else
5924 display_type = DT_VNC;
5925 vnc_display = "localhost:0,to=99";
5926 show_vnc_port = 1;
5927 #endif
5931 switch (display_type) {
5932 case DT_NOGRAPHIC:
5933 break;
5934 #if defined(CONFIG_CURSES)
5935 case DT_CURSES:
5936 curses_display_init(ds, full_screen);
5937 break;
5938 #endif
5939 #if defined(CONFIG_SDL)
5940 case DT_SDL:
5941 sdl_display_init(ds, full_screen, no_frame);
5942 break;
5943 #elif defined(CONFIG_COCOA)
5944 case DT_SDL:
5945 cocoa_display_init(ds, full_screen);
5946 break;
5947 #endif
5948 case DT_VNC:
5949 vnc_display_init(ds);
5950 if (vnc_display_open(ds, vnc_display) < 0)
5951 exit(1);
5953 if (show_vnc_port) {
5954 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5956 break;
5957 default:
5958 break;
5960 dpy_resize(ds);
5962 dcl = ds->listeners;
5963 while (dcl != NULL) {
5964 if (dcl->dpy_refresh != NULL) {
5965 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5966 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5968 dcl = dcl->next;
5971 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5972 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5973 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5976 text_consoles_set_display(display_state);
5977 qemu_chr_initial_reset();
5979 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5980 if (monitor_devices[i] && monitor_hds[i]) {
5981 monitor_init(monitor_hds[i],
5982 MONITOR_USE_READLINE |
5983 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5987 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5988 const char *devname = serial_devices[i];
5989 if (devname && strcmp(devname, "none")) {
5990 if (strstart(devname, "vc", 0))
5991 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5995 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5996 const char *devname = parallel_devices[i];
5997 if (devname && strcmp(devname, "none")) {
5998 if (strstart(devname, "vc", 0))
5999 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6003 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6004 const char *devname = virtio_consoles[i];
6005 if (virtcon_hds[i] && devname) {
6006 if (strstart(devname, "vc", 0))
6007 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6011 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6012 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6013 gdbstub_dev);
6014 exit(1);
6017 if (loadvm) {
6018 if (load_vmstate(cur_mon, loadvm) < 0) {
6019 autostart = 0;
6023 if (incoming) {
6024 qemu_start_incoming_migration(incoming);
6025 } else if (autostart) {
6026 vm_start();
6029 #ifndef _WIN32
6030 if (daemonize) {
6031 uint8_t status = 0;
6032 ssize_t len;
6034 again1:
6035 len = write(fds[1], &status, 1);
6036 if (len == -1 && (errno == EINTR))
6037 goto again1;
6039 if (len != 1)
6040 exit(1);
6042 chdir("/");
6043 TFR(fd = open("/dev/null", O_RDWR));
6044 if (fd == -1)
6045 exit(1);
6048 if (run_as) {
6049 pwd = getpwnam(run_as);
6050 if (!pwd) {
6051 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6052 exit(1);
6056 if (chroot_dir) {
6057 if (chroot(chroot_dir) < 0) {
6058 fprintf(stderr, "chroot failed\n");
6059 exit(1);
6061 chdir("/");
6064 if (run_as) {
6065 if (setgid(pwd->pw_gid) < 0) {
6066 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6067 exit(1);
6069 if (setuid(pwd->pw_uid) < 0) {
6070 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6071 exit(1);
6073 if (setuid(0) != -1) {
6074 fprintf(stderr, "Dropping privileges failed\n");
6075 exit(1);
6079 if (daemonize) {
6080 dup2(fd, 0);
6081 dup2(fd, 1);
6082 dup2(fd, 2);
6084 close(fd);
6086 #endif
6088 main_loop();
6089 quit_timers();
6090 net_cleanup();
6092 return 0;