8 #include "exec/cpu_ldst.h"
13 #endif /* DEBUG_REMAP */
15 #include "exec/user/abitypes.h"
17 #include "exec/user/thunk.h"
18 #include "syscall_defs.h"
20 #include "exec/gdbstub.h"
21 #include "qemu/queue.h"
23 #define THREAD __thread
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
41 abi_ulong start_stack
;
42 abi_ulong stack_limit
;
44 abi_ulong code_offset
;
45 abi_ulong data_offset
;
52 #ifdef CONFIG_USE_FDPIC
53 abi_ulong loadmap_addr
;
56 abi_ulong pt_dynamic_addr
;
57 struct image_info
*other_info
;
62 /* Information about the current linux thread */
63 struct vm86_saved_state
{
64 uint32_t eax
; /* return code */
74 uint16_t cs
, ss
, ds
, es
, fs
, gs
;
78 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
80 #include "nwfpe/fpa11.h"
83 #define MAX_SIGQUEUE_SIZE 1024
86 struct sigqueue
*next
;
87 target_siginfo_t info
;
90 struct emulated_sigtable
{
91 int pending
; /* true if signal is pending */
92 struct sigqueue
*first
;
93 struct sigqueue info
; /* in order to always have memory for the
94 first signal, we put it here */
97 /* NOTE: we force a big alignment so that the stack stored after is
99 typedef struct TaskState
{
100 pid_t ts_tid
; /* tid (or pid) of this task */
108 #ifdef TARGET_UNICORE32
111 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
112 abi_ulong target_v86
;
113 struct vm86_saved_state vm86_saved_regs
;
114 struct target_vm86plus_struct vm86plus
;
118 abi_ulong child_tidptr
;
123 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
124 /* Extra fields for semihosted binaries. */
129 int used
; /* non zero if used */
130 bool sigsegv_blocked
; /* SIGSEGV blocked by guest */
131 struct image_info
*info
;
132 struct linux_binprm
*bprm
;
134 struct emulated_sigtable sigtab
[TARGET_NSIG
];
135 struct sigqueue sigqueue_table
[MAX_SIGQUEUE_SIZE
]; /* siginfo queue */
136 struct sigqueue
*first_free
; /* first free siginfo queue entry */
137 int signal_pending
; /* non zero if a signal may be pending */
138 } __attribute__((aligned(16))) TaskState
;
140 extern char *exec_path
;
141 void init_task_state(TaskState
*ts
);
142 void task_settid(TaskState
*);
143 void stop_all_tasks(void);
144 extern const char *qemu_uname_release
;
145 extern unsigned long mmap_min_addr
;
147 /* ??? See if we can avoid exposing so much of the loader internals. */
149 * MAX_ARG_PAGES defines the number of pages allocated for arguments
150 * and envelope for the new program. 32 should suffice, this gives
151 * a maximum env+arg of 128kB w/4KB pages!
153 #define MAX_ARG_PAGES 33
155 /* Read a good amount of data initially, to hopefully get all the
156 program headers loaded. */
157 #define BPRM_BUF_SIZE 1024
160 * This structure is used to hold the arguments that are
161 * used when loading binaries.
163 struct linux_binprm
{
164 char buf
[BPRM_BUF_SIZE
] __attribute__((aligned
));
165 void *page
[MAX_ARG_PAGES
];
172 char * filename
; /* Name of binary */
173 int (*core_dump
)(int, const CPUArchState
*); /* coredump routine */
176 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
);
177 abi_ulong
loader_build_argptr(int envc
, int argc
, abi_ulong sp
,
178 abi_ulong stringp
, int push_ptr
);
179 int loader_exec(int fdexec
, const char *filename
, char **argv
, char **envp
,
180 struct target_pt_regs
* regs
, struct image_info
*infop
,
181 struct linux_binprm
*);
183 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
184 int load_flt_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
186 abi_long
memcpy_to_target(abi_ulong dest
, const void *src
,
188 void target_set_brk(abi_ulong new_brk
);
189 abi_long
do_brk(abi_ulong new_brk
);
190 void syscall_init(void);
191 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
192 abi_long arg2
, abi_long arg3
, abi_long arg4
,
193 abi_long arg5
, abi_long arg6
, abi_long arg7
,
195 void gemu_log(const char *fmt
, ...) GCC_FMT_ATTR(1, 2);
196 extern THREAD CPUState
*thread_cpu
;
197 void cpu_loop(CPUArchState
*env
);
198 char *target_strerror(int err
);
199 int get_osversion(void);
200 void init_qemu_uname_release(void);
201 void fork_start(void);
202 void fork_end(int child
);
204 /* Creates the initial guest address space in the host memory space using
205 * the given host start address hint and size. The guest_start parameter
206 * specifies the start address of the guest space. guest_base will be the
207 * difference between the host start address computed by this function and
208 * guest_start. If fixed is specified, then the mapped address space must
209 * start at host_start. The real start address of the mapped memory space is
210 * returned or -1 if there was an error.
212 unsigned long init_guest_space(unsigned long host_start
,
213 unsigned long host_size
,
214 unsigned long guest_start
,
217 #include "qemu/log.h"
220 int host_to_target_waitstatus(int status
);
223 void print_syscall(int num
,
224 abi_long arg1
, abi_long arg2
, abi_long arg3
,
225 abi_long arg4
, abi_long arg5
, abi_long arg6
);
226 void print_syscall_ret(int num
, abi_long arg1
);
227 extern int do_strace
;
230 void process_pending_signals(CPUArchState
*cpu_env
);
231 void signal_init(void);
232 int queue_signal(CPUArchState
*env
, int sig
, target_siginfo_t
*info
);
233 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
);
234 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
);
235 int target_to_host_signal(int sig
);
236 int host_to_target_signal(int sig
);
237 long do_sigreturn(CPUArchState
*env
);
238 long do_rt_sigreturn(CPUArchState
*env
);
239 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
);
240 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
);
244 void save_v86_state(CPUX86State
*env
);
245 void handle_vm86_trap(CPUX86State
*env
, int trapno
);
246 void handle_vm86_fault(CPUX86State
*env
);
247 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong v86_addr
);
248 #elif defined(TARGET_SPARC64)
249 void sparc64_set_context(CPUSPARCState
*env
);
250 void sparc64_get_context(CPUSPARCState
*env
);
254 int target_mprotect(abi_ulong start
, abi_ulong len
, int prot
);
255 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int prot
,
256 int flags
, int fd
, abi_ulong offset
);
257 int target_munmap(abi_ulong start
, abi_ulong len
);
258 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
259 abi_ulong new_size
, unsigned long flags
,
261 int target_msync(abi_ulong start
, abi_ulong len
, int flags
);
262 extern unsigned long last_brk
;
263 extern abi_ulong mmap_next_start
;
264 void mmap_lock(void);
265 void mmap_unlock(void);
266 abi_ulong
mmap_find_vma(abi_ulong
, abi_ulong
);
267 void cpu_list_lock(void);
268 void cpu_list_unlock(void);
269 void mmap_fork_start(void);
270 void mmap_fork_end(int child
);
273 extern unsigned long guest_stack_size
;
277 #define VERIFY_READ 0
278 #define VERIFY_WRITE 1 /* implies read access */
280 static inline int access_ok(int type
, abi_ulong addr
, abi_ulong size
)
282 return page_check_range((target_ulong
)addr
, size
,
283 (type
== VERIFY_READ
) ? PAGE_READ
: (PAGE_READ
| PAGE_WRITE
)) == 0;
286 /* NOTE __get_user and __put_user use host pointers and don't check access.
287 These are usually used to access struct data members once the struct has
288 been locked - usually with lock_user_struct. */
291 - Use __builtin_choose_expr to avoid type promotion from ?:,
292 - Invalid sizes result in a compile time error stemming from
293 the fact that abort has no parameters.
294 - It's easier to use the endian-specific unaligned load/store
295 functions than host-endian unaligned load/store plus tswapN. */
297 #define __put_user_e(x, hptr, e) \
298 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
299 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
300 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
301 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
302 ((hptr), (x)), (void)0)
304 #define __get_user_e(x, hptr, e) \
305 ((x) = (typeof(*hptr))( \
306 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
307 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
308 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
309 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
312 #ifdef TARGET_WORDS_BIGENDIAN
313 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
314 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
316 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
317 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
320 /* put_user()/get_user() take a guest address and check access */
321 /* These are usually used to access an atomic data type, such as an int,
322 * that has been passed by address. These internally perform locking
323 * and unlocking on the data type.
325 #define put_user(x, gaddr, target_type) \
327 abi_ulong __gaddr = (gaddr); \
328 target_type *__hptr; \
329 abi_long __ret = 0; \
330 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
331 __put_user((x), __hptr); \
332 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
334 __ret = -TARGET_EFAULT; \
338 #define get_user(x, gaddr, target_type) \
340 abi_ulong __gaddr = (gaddr); \
341 target_type *__hptr; \
342 abi_long __ret = 0; \
343 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
344 __get_user((x), __hptr); \
345 unlock_user(__hptr, __gaddr, 0); \
347 /* avoid warning */ \
349 __ret = -TARGET_EFAULT; \
354 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
355 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
356 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
357 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
358 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
359 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
360 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
361 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
362 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
363 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
365 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
366 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
367 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
368 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
369 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
370 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
371 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
372 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
373 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
374 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
376 /* copy_from_user() and copy_to_user() are usually used to copy data
377 * buffers between the target and host. These internally perform
378 * locking/unlocking of the memory.
380 abi_long
copy_from_user(void *hptr
, abi_ulong gaddr
, size_t len
);
381 abi_long
copy_to_user(abi_ulong gaddr
, void *hptr
, size_t len
);
383 /* Functions for accessing guest memory. The tget and tput functions
384 read/write single values, byteswapping as necessary. The lock_user function
385 gets a pointer to a contiguous area of guest memory, but does not perform
386 any byteswapping. lock_user may return either a pointer to the guest
387 memory, or a temporary buffer. */
389 /* Lock an area of guest memory into the host. If copy is true then the
390 host area will have the same contents as the guest. */
391 static inline void *lock_user(int type
, abi_ulong guest_addr
, long len
, int copy
)
393 if (!access_ok(type
, guest_addr
, len
))
400 memcpy(addr
, g2h(guest_addr
), len
);
402 memset(addr
, 0, len
);
406 return g2h(guest_addr
);
410 /* Unlock an area of guest memory. The first LEN bytes must be
411 flushed back to guest memory. host_ptr = NULL is explicitly
412 allowed and does nothing. */
413 static inline void unlock_user(void *host_ptr
, abi_ulong guest_addr
,
420 if (host_ptr
== g2h(guest_addr
))
423 memcpy(g2h(guest_addr
), host_ptr
, len
);
428 /* Return the length of a string in target memory or -TARGET_EFAULT if
430 abi_long
target_strlen(abi_ulong gaddr
);
432 /* Like lock_user but for null terminated strings. */
433 static inline void *lock_user_string(abi_ulong guest_addr
)
436 len
= target_strlen(guest_addr
);
439 return lock_user(VERIFY_READ
, guest_addr
, (long)(len
+ 1), 1);
442 /* Helper macros for locking/unlocking a target struct. */
443 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
444 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
445 #define unlock_user_struct(host_ptr, guest_addr, copy) \
446 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
450 /* Include target-specific struct and function definitions;
451 * they may need access to the target-independent structures
452 * above, so include them last.
454 #include "target_cpu.h"
455 #include "target_signal.h"
456 #include "target_structs.h"