2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
30 * ip_output.c,v 1.9 1994/11/16 10:17:10 jkh Exp
34 * Changes and additions relating to SLiRP are
35 * Copyright (c) 1995 Danny Gasparovski.
37 * Please read the file COPYRIGHT for the
38 * terms and conditions of the copyright.
43 /* Number of packets queued before we start sending
44 * (to prevent allocing too many mbufs) */
48 * IP output. The packet in mbuf chain m contains a skeletal IP
49 * header (with len, off, ttl, proto, tos, src, dst).
50 * The mbuf chain containing the packet will be freed.
51 * The mbuf opt, if present, will not be freed.
54 ip_output(struct socket
*so
, struct mbuf
*m0
)
56 Slirp
*slirp
= m0
->slirp
;
57 register struct ip
*ip
;
58 register struct mbuf
*m
= m0
;
59 register int hlen
= sizeof(struct ip
);
60 int len
, off
, error
= 0;
62 DEBUG_CALL("ip_output");
63 DEBUG_ARG("so = %lx", (long)so
);
64 DEBUG_ARG("m0 = %lx", (long)m0
);
66 ip
= mtod(m
, struct ip
*);
72 ip
->ip_id
= htons(slirp
->ip_id
++);
73 ip
->ip_hl
= hlen
>> 2;
76 * If small enough for interface, can just send directly.
78 if ((uint16_t)ip
->ip_len
<= IF_MTU
) {
79 ip
->ip_len
= htons((uint16_t)ip
->ip_len
);
80 ip
->ip_off
= htons((uint16_t)ip
->ip_off
);
82 ip
->ip_sum
= cksum(m
, hlen
);
89 * Too large for interface; fragment if possible.
90 * Must be able to put at least 8 bytes per fragment.
92 if (ip
->ip_off
& IP_DF
) {
97 len
= (IF_MTU
- hlen
) &~ 7; /* ip databytes per packet */
104 int mhlen
, firstlen
= len
;
105 struct mbuf
**mnext
= &m
->m_nextpkt
;
108 * Loop through length of segment after first fragment,
109 * make new header and copy data of each part and link onto chain.
112 mhlen
= sizeof (struct ip
);
113 for (off
= hlen
+ len
; off
< (uint16_t)ip
->ip_len
; off
+= len
) {
114 register struct ip
*mhip
;
120 m
->m_data
+= IF_MAXLINKHDR
;
121 mhip
= mtod(m
, struct ip
*);
125 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
126 if (ip
->ip_off
& IP_MF
)
127 mhip
->ip_off
|= IP_MF
;
128 if (off
+ len
>= (uint16_t)ip
->ip_len
)
129 len
= (uint16_t)ip
->ip_len
- off
;
131 mhip
->ip_off
|= IP_MF
;
132 mhip
->ip_len
= htons((uint16_t)(len
+ mhlen
));
134 if (m_copy(m
, m0
, off
, len
) < 0) {
139 mhip
->ip_off
= htons((uint16_t)mhip
->ip_off
);
141 mhip
->ip_sum
= cksum(m
, mhlen
);
143 mnext
= &m
->m_nextpkt
;
146 * Update first fragment by trimming what's been copied out
147 * and updating header, then send each fragment (in order).
150 m_adj(m
, hlen
+ firstlen
- (uint16_t)ip
->ip_len
);
151 ip
->ip_len
= htons((uint16_t)m
->m_len
);
152 ip
->ip_off
= htons((uint16_t)(ip
->ip_off
| IP_MF
));
154 ip
->ip_sum
= cksum(m
, hlen
);
156 for (m
= m0
; m
; m
= m0
) {