2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
30 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
);
31 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
32 int64_t offset
, int64_t length
, uint64_t addend
,
33 bool decrease
, enum qcow2_discard_type type
);
35 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
);
36 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
);
37 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
);
38 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
);
39 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
);
40 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
);
41 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
);
43 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
45 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
47 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
49 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
51 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
53 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
55 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
59 static Qcow2GetRefcountFunc
*const get_refcount_funcs
[] = {
69 static Qcow2SetRefcountFunc
*const set_refcount_funcs
[] = {
80 /*********************************************************/
81 /* refcount handling */
83 int qcow2_refcount_init(BlockDriverState
*bs
)
85 BDRVQcowState
*s
= bs
->opaque
;
86 unsigned int refcount_table_size2
, i
;
89 assert(s
->refcount_order
>= 0 && s
->refcount_order
<= 6);
91 s
->get_refcount
= get_refcount_funcs
[s
->refcount_order
];
92 s
->set_refcount
= set_refcount_funcs
[s
->refcount_order
];
94 assert(s
->refcount_table_size
<= INT_MAX
/ sizeof(uint64_t));
95 refcount_table_size2
= s
->refcount_table_size
* sizeof(uint64_t);
96 s
->refcount_table
= g_try_malloc(refcount_table_size2
);
98 if (s
->refcount_table_size
> 0) {
99 if (s
->refcount_table
== NULL
) {
103 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_LOAD
);
104 ret
= bdrv_pread(bs
->file
, s
->refcount_table_offset
,
105 s
->refcount_table
, refcount_table_size2
);
109 for(i
= 0; i
< s
->refcount_table_size
; i
++)
110 be64_to_cpus(&s
->refcount_table
[i
]);
117 void qcow2_refcount_close(BlockDriverState
*bs
)
119 BDRVQcowState
*s
= bs
->opaque
;
120 g_free(s
->refcount_table
);
124 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
)
126 return (((const uint8_t *)refcount_array
)[index
/ 8] >> (index
% 8)) & 0x1;
129 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
132 assert(!(value
>> 1));
133 ((uint8_t *)refcount_array
)[index
/ 8] &= ~(0x1 << (index
% 8));
134 ((uint8_t *)refcount_array
)[index
/ 8] |= value
<< (index
% 8);
137 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
)
139 return (((const uint8_t *)refcount_array
)[index
/ 4] >> (2 * (index
% 4)))
143 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
146 assert(!(value
>> 2));
147 ((uint8_t *)refcount_array
)[index
/ 4] &= ~(0x3 << (2 * (index
% 4)));
148 ((uint8_t *)refcount_array
)[index
/ 4] |= value
<< (2 * (index
% 4));
151 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
)
153 return (((const uint8_t *)refcount_array
)[index
/ 2] >> (4 * (index
% 2)))
157 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
160 assert(!(value
>> 4));
161 ((uint8_t *)refcount_array
)[index
/ 2] &= ~(0xf << (4 * (index
% 2)));
162 ((uint8_t *)refcount_array
)[index
/ 2] |= value
<< (4 * (index
% 2));
165 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
)
167 return ((const uint8_t *)refcount_array
)[index
];
170 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
173 assert(!(value
>> 8));
174 ((uint8_t *)refcount_array
)[index
] = value
;
177 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
)
179 return be16_to_cpu(((const uint16_t *)refcount_array
)[index
]);
182 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
185 assert(!(value
>> 16));
186 ((uint16_t *)refcount_array
)[index
] = cpu_to_be16(value
);
189 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
)
191 return be32_to_cpu(((const uint32_t *)refcount_array
)[index
]);
194 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
197 assert(!(value
>> 32));
198 ((uint32_t *)refcount_array
)[index
] = cpu_to_be32(value
);
201 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
)
203 return be64_to_cpu(((const uint64_t *)refcount_array
)[index
]);
206 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
209 ((uint64_t *)refcount_array
)[index
] = cpu_to_be64(value
);
213 static int load_refcount_block(BlockDriverState
*bs
,
214 int64_t refcount_block_offset
,
215 void **refcount_block
)
217 BDRVQcowState
*s
= bs
->opaque
;
220 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_LOAD
);
221 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
228 * Retrieves the refcount of the cluster given by its index and stores it in
229 * *refcount. Returns 0 on success and -errno on failure.
231 int qcow2_get_refcount(BlockDriverState
*bs
, int64_t cluster_index
,
234 BDRVQcowState
*s
= bs
->opaque
;
235 uint64_t refcount_table_index
, block_index
;
236 int64_t refcount_block_offset
;
238 void *refcount_block
;
240 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
241 if (refcount_table_index
>= s
->refcount_table_size
) {
245 refcount_block_offset
=
246 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
247 if (!refcount_block_offset
) {
252 if (offset_into_cluster(s
, refcount_block_offset
)) {
253 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#" PRIx64
254 " unaligned (reftable index: %#" PRIx64
")",
255 refcount_block_offset
, refcount_table_index
);
259 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
265 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
266 *refcount
= s
->get_refcount(refcount_block
, block_index
);
268 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
277 * Rounds the refcount table size up to avoid growing the table for each single
278 * refcount block that is allocated.
280 static unsigned int next_refcount_table_size(BDRVQcowState
*s
,
281 unsigned int min_size
)
283 unsigned int min_clusters
= (min_size
>> (s
->cluster_bits
- 3)) + 1;
284 unsigned int refcount_table_clusters
=
285 MAX(1, s
->refcount_table_size
>> (s
->cluster_bits
- 3));
287 while (min_clusters
> refcount_table_clusters
) {
288 refcount_table_clusters
= (refcount_table_clusters
* 3 + 1) / 2;
291 return refcount_table_clusters
<< (s
->cluster_bits
- 3);
295 /* Checks if two offsets are described by the same refcount block */
296 static int in_same_refcount_block(BDRVQcowState
*s
, uint64_t offset_a
,
299 uint64_t block_a
= offset_a
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
300 uint64_t block_b
= offset_b
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
302 return (block_a
== block_b
);
306 * Loads a refcount block. If it doesn't exist yet, it is allocated first
307 * (including growing the refcount table if needed).
309 * Returns 0 on success or -errno in error case
311 static int alloc_refcount_block(BlockDriverState
*bs
,
312 int64_t cluster_index
, void **refcount_block
)
314 BDRVQcowState
*s
= bs
->opaque
;
315 unsigned int refcount_table_index
;
318 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC
);
320 /* Find the refcount block for the given cluster */
321 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
323 if (refcount_table_index
< s
->refcount_table_size
) {
325 uint64_t refcount_block_offset
=
326 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
328 /* If it's already there, we're done */
329 if (refcount_block_offset
) {
330 if (offset_into_cluster(s
, refcount_block_offset
)) {
331 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
332 PRIx64
" unaligned (reftable index: "
333 "%#x)", refcount_block_offset
,
334 refcount_table_index
);
338 return load_refcount_block(bs
, refcount_block_offset
,
344 * If we came here, we need to allocate something. Something is at least
345 * a cluster for the new refcount block. It may also include a new refcount
346 * table if the old refcount table is too small.
348 * Note that allocating clusters here needs some special care:
350 * - We can't use the normal qcow2_alloc_clusters(), it would try to
351 * increase the refcount and very likely we would end up with an endless
352 * recursion. Instead we must place the refcount blocks in a way that
353 * they can describe them themselves.
355 * - We need to consider that at this point we are inside update_refcounts
356 * and potentially doing an initial refcount increase. This means that
357 * some clusters have already been allocated by the caller, but their
358 * refcount isn't accurate yet. If we allocate clusters for metadata, we
359 * need to return -EAGAIN to signal the caller that it needs to restart
360 * the search for free clusters.
362 * - alloc_clusters_noref and qcow2_free_clusters may load a different
363 * refcount block into the cache
366 *refcount_block
= NULL
;
368 /* We write to the refcount table, so we might depend on L2 tables */
369 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
374 /* Allocate the refcount block itself and mark it as used */
375 int64_t new_block
= alloc_clusters_noref(bs
, s
->cluster_size
);
381 fprintf(stderr
, "qcow2: Allocate refcount block %d for %" PRIx64
383 refcount_table_index
, cluster_index
<< s
->cluster_bits
, new_block
);
386 if (in_same_refcount_block(s
, new_block
, cluster_index
<< s
->cluster_bits
)) {
387 /* Zero the new refcount block before updating it */
388 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
394 memset(*refcount_block
, 0, s
->cluster_size
);
396 /* The block describes itself, need to update the cache */
397 int block_index
= (new_block
>> s
->cluster_bits
) &
398 (s
->refcount_block_size
- 1);
399 s
->set_refcount(*refcount_block
, block_index
, 1);
401 /* Described somewhere else. This can recurse at most twice before we
402 * arrive at a block that describes itself. */
403 ret
= update_refcount(bs
, new_block
, s
->cluster_size
, 1, false,
404 QCOW2_DISCARD_NEVER
);
409 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
414 /* Initialize the new refcount block only after updating its refcount,
415 * update_refcount uses the refcount cache itself */
416 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
422 memset(*refcount_block
, 0, s
->cluster_size
);
425 /* Now the new refcount block needs to be written to disk */
426 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE
);
427 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
, *refcount_block
);
428 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
433 /* If the refcount table is big enough, just hook the block up there */
434 if (refcount_table_index
< s
->refcount_table_size
) {
435 uint64_t data64
= cpu_to_be64(new_block
);
436 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_HOOKUP
);
437 ret
= bdrv_pwrite_sync(bs
->file
,
438 s
->refcount_table_offset
+ refcount_table_index
* sizeof(uint64_t),
439 &data64
, sizeof(data64
));
444 s
->refcount_table
[refcount_table_index
] = new_block
;
446 /* The new refcount block may be where the caller intended to put its
447 * data, so let it restart the search. */
451 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
457 * If we come here, we need to grow the refcount table. Again, a new
458 * refcount table needs some space and we can't simply allocate to avoid
461 * Therefore let's grab new refcount blocks at the end of the image, which
462 * will describe themselves and the new refcount table. This way we can
463 * reference them only in the new table and do the switch to the new
464 * refcount table at once without producing an inconsistent state in
467 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_GROW
);
469 /* Calculate the number of refcount blocks needed so far; this will be the
470 * basis for calculating the index of the first cluster used for the
471 * self-describing refcount structures which we are about to create.
473 * Because we reached this point, there cannot be any refcount entries for
474 * cluster_index or higher indices yet. However, because new_block has been
475 * allocated to describe that cluster (and it will assume this role later
476 * on), we cannot use that index; also, new_block may actually have a higher
477 * cluster index than cluster_index, so it needs to be taken into account
478 * here (and 1 needs to be added to its value because that cluster is used).
480 uint64_t blocks_used
= DIV_ROUND_UP(MAX(cluster_index
+ 1,
481 (new_block
>> s
->cluster_bits
) + 1),
482 s
->refcount_block_size
);
484 if (blocks_used
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
488 /* And now we need at least one block more for the new metadata */
489 uint64_t table_size
= next_refcount_table_size(s
, blocks_used
+ 1);
490 uint64_t last_table_size
;
491 uint64_t blocks_clusters
;
493 uint64_t table_clusters
=
494 size_to_clusters(s
, table_size
* sizeof(uint64_t));
495 blocks_clusters
= 1 +
496 ((table_clusters
+ s
->refcount_block_size
- 1)
497 / s
->refcount_block_size
);
498 uint64_t meta_clusters
= table_clusters
+ blocks_clusters
;
500 last_table_size
= table_size
;
501 table_size
= next_refcount_table_size(s
, blocks_used
+
502 ((meta_clusters
+ s
->refcount_block_size
- 1)
503 / s
->refcount_block_size
));
505 } while (last_table_size
!= table_size
);
508 fprintf(stderr
, "qcow2: Grow refcount table %" PRId32
" => %" PRId64
"\n",
509 s
->refcount_table_size
, table_size
);
512 /* Create the new refcount table and blocks */
513 uint64_t meta_offset
= (blocks_used
* s
->refcount_block_size
) *
515 uint64_t table_offset
= meta_offset
+ blocks_clusters
* s
->cluster_size
;
516 uint64_t *new_table
= g_try_new0(uint64_t, table_size
);
517 void *new_blocks
= g_try_malloc0(blocks_clusters
* s
->cluster_size
);
519 assert(table_size
> 0 && blocks_clusters
> 0);
520 if (new_table
== NULL
|| new_blocks
== NULL
) {
525 /* Fill the new refcount table */
526 memcpy(new_table
, s
->refcount_table
,
527 s
->refcount_table_size
* sizeof(uint64_t));
528 new_table
[refcount_table_index
] = new_block
;
531 for (i
= 0; i
< blocks_clusters
; i
++) {
532 new_table
[blocks_used
+ i
] = meta_offset
+ (i
* s
->cluster_size
);
535 /* Fill the refcount blocks */
536 uint64_t table_clusters
= size_to_clusters(s
, table_size
* sizeof(uint64_t));
538 for (i
= 0; i
< table_clusters
+ blocks_clusters
; i
++) {
539 s
->set_refcount(new_blocks
, block
++, 1);
542 /* Write refcount blocks to disk */
543 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS
);
544 ret
= bdrv_pwrite_sync(bs
->file
, meta_offset
, new_blocks
,
545 blocks_clusters
* s
->cluster_size
);
552 /* Write refcount table to disk */
553 for(i
= 0; i
< table_size
; i
++) {
554 cpu_to_be64s(&new_table
[i
]);
557 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE
);
558 ret
= bdrv_pwrite_sync(bs
->file
, table_offset
, new_table
,
559 table_size
* sizeof(uint64_t));
564 for(i
= 0; i
< table_size
; i
++) {
565 be64_to_cpus(&new_table
[i
]);
568 /* Hook up the new refcount table in the qcow2 header */
570 cpu_to_be64w((uint64_t*)data
, table_offset
);
571 cpu_to_be32w((uint32_t*)(data
+ 8), table_clusters
);
572 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE
);
573 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, refcount_table_offset
),
579 /* And switch it in memory */
580 uint64_t old_table_offset
= s
->refcount_table_offset
;
581 uint64_t old_table_size
= s
->refcount_table_size
;
583 g_free(s
->refcount_table
);
584 s
->refcount_table
= new_table
;
585 s
->refcount_table_size
= table_size
;
586 s
->refcount_table_offset
= table_offset
;
588 /* Free old table. */
589 qcow2_free_clusters(bs
, old_table_offset
, old_table_size
* sizeof(uint64_t),
590 QCOW2_DISCARD_OTHER
);
592 ret
= load_refcount_block(bs
, new_block
, refcount_block
);
597 /* If we were trying to do the initial refcount update for some cluster
598 * allocation, we might have used the same clusters to store newly
599 * allocated metadata. Make the caller search some new space. */
606 if (*refcount_block
!= NULL
) {
607 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
612 void qcow2_process_discards(BlockDriverState
*bs
, int ret
)
614 BDRVQcowState
*s
= bs
->opaque
;
615 Qcow2DiscardRegion
*d
, *next
;
617 QTAILQ_FOREACH_SAFE(d
, &s
->discards
, next
, next
) {
618 QTAILQ_REMOVE(&s
->discards
, d
, next
);
620 /* Discard is optional, ignore the return value */
622 bdrv_discard(bs
->file
,
623 d
->offset
>> BDRV_SECTOR_BITS
,
624 d
->bytes
>> BDRV_SECTOR_BITS
);
631 static void update_refcount_discard(BlockDriverState
*bs
,
632 uint64_t offset
, uint64_t length
)
634 BDRVQcowState
*s
= bs
->opaque
;
635 Qcow2DiscardRegion
*d
, *p
, *next
;
637 QTAILQ_FOREACH(d
, &s
->discards
, next
) {
638 uint64_t new_start
= MIN(offset
, d
->offset
);
639 uint64_t new_end
= MAX(offset
+ length
, d
->offset
+ d
->bytes
);
641 if (new_end
- new_start
<= length
+ d
->bytes
) {
642 /* There can't be any overlap, areas ending up here have no
643 * references any more and therefore shouldn't get freed another
645 assert(d
->bytes
+ length
== new_end
- new_start
);
646 d
->offset
= new_start
;
647 d
->bytes
= new_end
- new_start
;
652 d
= g_malloc(sizeof(*d
));
653 *d
= (Qcow2DiscardRegion
) {
658 QTAILQ_INSERT_TAIL(&s
->discards
, d
, next
);
661 /* Merge discard requests if they are adjacent now */
662 QTAILQ_FOREACH_SAFE(p
, &s
->discards
, next
, next
) {
664 || p
->offset
> d
->offset
+ d
->bytes
665 || d
->offset
> p
->offset
+ p
->bytes
)
670 /* Still no overlap possible */
671 assert(p
->offset
== d
->offset
+ d
->bytes
672 || d
->offset
== p
->offset
+ p
->bytes
);
674 QTAILQ_REMOVE(&s
->discards
, p
, next
);
675 d
->offset
= MIN(d
->offset
, p
->offset
);
676 d
->bytes
+= p
->bytes
;
681 /* XXX: cache several refcount block clusters ? */
682 /* @addend is the absolute value of the addend; if @decrease is set, @addend
683 * will be subtracted from the current refcount, otherwise it will be added */
684 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
689 enum qcow2_discard_type type
)
691 BDRVQcowState
*s
= bs
->opaque
;
692 int64_t start
, last
, cluster_offset
;
693 void *refcount_block
= NULL
;
694 int64_t old_table_index
= -1;
698 fprintf(stderr
, "update_refcount: offset=%" PRId64
" size=%" PRId64
699 " addend=%s%" PRIu64
"\n", offset
, length
, decrease
? "-" : "",
704 } else if (length
== 0) {
709 qcow2_cache_set_dependency(bs
, s
->refcount_block_cache
,
713 start
= start_of_cluster(s
, offset
);
714 last
= start_of_cluster(s
, offset
+ length
- 1);
715 for(cluster_offset
= start
; cluster_offset
<= last
;
716 cluster_offset
+= s
->cluster_size
)
720 int64_t cluster_index
= cluster_offset
>> s
->cluster_bits
;
721 int64_t table_index
= cluster_index
>> s
->refcount_block_bits
;
723 /* Load the refcount block and allocate it if needed */
724 if (table_index
!= old_table_index
) {
725 if (refcount_block
) {
726 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
,
733 ret
= alloc_refcount_block(bs
, cluster_index
, &refcount_block
);
738 old_table_index
= table_index
;
740 qcow2_cache_entry_mark_dirty(s
->refcount_block_cache
, refcount_block
);
742 /* we can update the count and save it */
743 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
745 refcount
= s
->get_refcount(refcount_block
, block_index
);
746 if (decrease
? (refcount
- addend
> refcount
)
747 : (refcount
+ addend
< refcount
||
748 refcount
+ addend
> s
->refcount_max
))
758 if (refcount
== 0 && cluster_index
< s
->free_cluster_index
) {
759 s
->free_cluster_index
= cluster_index
;
761 s
->set_refcount(refcount_block
, block_index
, refcount
);
763 if (refcount
== 0 && s
->discard_passthrough
[type
]) {
764 update_refcount_discard(bs
, cluster_offset
, s
->cluster_size
);
770 if (!s
->cache_discards
) {
771 qcow2_process_discards(bs
, ret
);
774 /* Write last changed block to disk */
775 if (refcount_block
) {
777 wret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
779 return ret
< 0 ? ret
: wret
;
784 * Try do undo any updates if an error is returned (This may succeed in
785 * some cases like ENOSPC for allocating a new refcount block)
789 dummy
= update_refcount(bs
, offset
, cluster_offset
- offset
, addend
,
790 !decrease
, QCOW2_DISCARD_NEVER
);
798 * Increases or decreases the refcount of a given cluster.
800 * @addend is the absolute value of the addend; if @decrease is set, @addend
801 * will be subtracted from the current refcount, otherwise it will be added.
803 * On success 0 is returned; on failure -errno is returned.
805 int qcow2_update_cluster_refcount(BlockDriverState
*bs
,
806 int64_t cluster_index
,
807 uint64_t addend
, bool decrease
,
808 enum qcow2_discard_type type
)
810 BDRVQcowState
*s
= bs
->opaque
;
813 ret
= update_refcount(bs
, cluster_index
<< s
->cluster_bits
, 1, addend
,
824 /*********************************************************/
825 /* cluster allocation functions */
829 /* return < 0 if error */
830 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
)
832 BDRVQcowState
*s
= bs
->opaque
;
833 uint64_t i
, nb_clusters
, refcount
;
836 nb_clusters
= size_to_clusters(s
, size
);
838 for(i
= 0; i
< nb_clusters
; i
++) {
839 uint64_t next_cluster_index
= s
->free_cluster_index
++;
840 ret
= qcow2_get_refcount(bs
, next_cluster_index
, &refcount
);
844 } else if (refcount
!= 0) {
849 /* Make sure that all offsets in the "allocated" range are representable
851 if (s
->free_cluster_index
> 0 &&
852 s
->free_cluster_index
- 1 > (INT64_MAX
>> s
->cluster_bits
))
858 fprintf(stderr
, "alloc_clusters: size=%" PRId64
" -> %" PRId64
"\n",
860 (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
);
862 return (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
;
865 int64_t qcow2_alloc_clusters(BlockDriverState
*bs
, uint64_t size
)
870 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC
);
872 offset
= alloc_clusters_noref(bs
, size
);
877 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
878 } while (ret
== -EAGAIN
);
887 int qcow2_alloc_clusters_at(BlockDriverState
*bs
, uint64_t offset
,
890 BDRVQcowState
*s
= bs
->opaque
;
891 uint64_t cluster_index
, refcount
;
895 assert(nb_clusters
>= 0);
896 if (nb_clusters
== 0) {
901 /* Check how many clusters there are free */
902 cluster_index
= offset
>> s
->cluster_bits
;
903 for(i
= 0; i
< nb_clusters
; i
++) {
904 ret
= qcow2_get_refcount(bs
, cluster_index
++, &refcount
);
907 } else if (refcount
!= 0) {
912 /* And then allocate them */
913 ret
= update_refcount(bs
, offset
, i
<< s
->cluster_bits
, 1, false,
914 QCOW2_DISCARD_NEVER
);
915 } while (ret
== -EAGAIN
);
924 /* only used to allocate compressed sectors. We try to allocate
925 contiguous sectors. size must be <= cluster_size */
926 int64_t qcow2_alloc_bytes(BlockDriverState
*bs
, int size
)
928 BDRVQcowState
*s
= bs
->opaque
;
930 size_t free_in_cluster
;
933 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC_BYTES
);
934 assert(size
> 0 && size
<= s
->cluster_size
);
935 assert(!s
->free_byte_offset
|| offset_into_cluster(s
, s
->free_byte_offset
));
937 offset
= s
->free_byte_offset
;
941 ret
= qcow2_get_refcount(bs
, offset
>> s
->cluster_bits
, &refcount
);
946 if (refcount
== s
->refcount_max
) {
951 free_in_cluster
= s
->cluster_size
- offset_into_cluster(s
, offset
);
952 if (!offset
|| free_in_cluster
< size
) {
953 int64_t new_cluster
= alloc_clusters_noref(bs
, s
->cluster_size
);
954 if (new_cluster
< 0) {
958 if (!offset
|| ROUND_UP(offset
, s
->cluster_size
) != new_cluster
) {
959 offset
= new_cluster
;
964 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
969 /* The cluster refcount was incremented; refcount blocks must be flushed
970 * before the caller's L2 table updates. */
971 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
973 s
->free_byte_offset
= offset
+ size
;
974 if (!offset_into_cluster(s
, s
->free_byte_offset
)) {
975 s
->free_byte_offset
= 0;
981 void qcow2_free_clusters(BlockDriverState
*bs
,
982 int64_t offset
, int64_t size
,
983 enum qcow2_discard_type type
)
987 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_FREE
);
988 ret
= update_refcount(bs
, offset
, size
, 1, true, type
);
990 fprintf(stderr
, "qcow2_free_clusters failed: %s\n", strerror(-ret
));
991 /* TODO Remember the clusters to free them later and avoid leaking */
996 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
997 * normal cluster, compressed cluster, etc.)
999 void qcow2_free_any_clusters(BlockDriverState
*bs
, uint64_t l2_entry
,
1000 int nb_clusters
, enum qcow2_discard_type type
)
1002 BDRVQcowState
*s
= bs
->opaque
;
1004 switch (qcow2_get_cluster_type(l2_entry
)) {
1005 case QCOW2_CLUSTER_COMPRESSED
:
1008 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1010 qcow2_free_clusters(bs
,
1011 (l2_entry
& s
->cluster_offset_mask
) & ~511,
1012 nb_csectors
* 512, type
);
1015 case QCOW2_CLUSTER_NORMAL
:
1016 case QCOW2_CLUSTER_ZERO
:
1017 if (l2_entry
& L2E_OFFSET_MASK
) {
1018 if (offset_into_cluster(s
, l2_entry
& L2E_OFFSET_MASK
)) {
1019 qcow2_signal_corruption(bs
, false, -1, -1,
1020 "Cannot free unaligned cluster %#llx",
1021 l2_entry
& L2E_OFFSET_MASK
);
1023 qcow2_free_clusters(bs
, l2_entry
& L2E_OFFSET_MASK
,
1024 nb_clusters
<< s
->cluster_bits
, type
);
1028 case QCOW2_CLUSTER_UNALLOCATED
:
1037 /*********************************************************/
1038 /* snapshots and image creation */
1042 /* update the refcounts of snapshots and the copied flag */
1043 int qcow2_update_snapshot_refcount(BlockDriverState
*bs
,
1044 int64_t l1_table_offset
, int l1_size
, int addend
)
1046 BDRVQcowState
*s
= bs
->opaque
;
1047 uint64_t *l1_table
, *l2_table
, l2_offset
, offset
, l1_size2
, refcount
;
1048 bool l1_allocated
= false;
1049 int64_t old_offset
, old_l2_offset
;
1050 int i
, j
, l1_modified
= 0, nb_csectors
;
1053 assert(addend
>= -1 && addend
<= 1);
1057 l1_size2
= l1_size
* sizeof(uint64_t);
1059 s
->cache_discards
= true;
1061 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1062 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1063 * when changing this! */
1064 if (l1_table_offset
!= s
->l1_table_offset
) {
1065 l1_table
= g_try_malloc0(align_offset(l1_size2
, 512));
1066 if (l1_size2
&& l1_table
== NULL
) {
1070 l1_allocated
= true;
1072 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1077 for(i
= 0;i
< l1_size
; i
++)
1078 be64_to_cpus(&l1_table
[i
]);
1080 assert(l1_size
== s
->l1_size
);
1081 l1_table
= s
->l1_table
;
1082 l1_allocated
= false;
1085 for(i
= 0; i
< l1_size
; i
++) {
1086 l2_offset
= l1_table
[i
];
1088 old_l2_offset
= l2_offset
;
1089 l2_offset
&= L1E_OFFSET_MASK
;
1091 if (offset_into_cluster(s
, l2_offset
)) {
1092 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1093 PRIx64
" unaligned (L1 index: %#x)",
1099 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1100 (void**) &l2_table
);
1105 for(j
= 0; j
< s
->l2_size
; j
++) {
1106 uint64_t cluster_index
;
1108 offset
= be64_to_cpu(l2_table
[j
]);
1109 old_offset
= offset
;
1110 offset
&= ~QCOW_OFLAG_COPIED
;
1112 switch (qcow2_get_cluster_type(offset
)) {
1113 case QCOW2_CLUSTER_COMPRESSED
:
1114 nb_csectors
= ((offset
>> s
->csize_shift
) &
1117 ret
= update_refcount(bs
,
1118 (offset
& s
->cluster_offset_mask
) & ~511,
1119 nb_csectors
* 512, abs(addend
), addend
< 0,
1120 QCOW2_DISCARD_SNAPSHOT
);
1125 /* compressed clusters are never modified */
1129 case QCOW2_CLUSTER_NORMAL
:
1130 case QCOW2_CLUSTER_ZERO
:
1131 if (offset_into_cluster(s
, offset
& L2E_OFFSET_MASK
)) {
1132 qcow2_signal_corruption(bs
, true, -1, -1, "Data "
1133 "cluster offset %#llx "
1134 "unaligned (L2 offset: %#"
1135 PRIx64
", L2 index: %#x)",
1136 offset
& L2E_OFFSET_MASK
,
1142 cluster_index
= (offset
& L2E_OFFSET_MASK
) >> s
->cluster_bits
;
1143 if (!cluster_index
) {
1149 ret
= qcow2_update_cluster_refcount(bs
,
1150 cluster_index
, abs(addend
), addend
< 0,
1151 QCOW2_DISCARD_SNAPSHOT
);
1157 ret
= qcow2_get_refcount(bs
, cluster_index
, &refcount
);
1163 case QCOW2_CLUSTER_UNALLOCATED
:
1171 if (refcount
== 1) {
1172 offset
|= QCOW_OFLAG_COPIED
;
1174 if (offset
!= old_offset
) {
1176 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1177 s
->refcount_block_cache
);
1179 l2_table
[j
] = cpu_to_be64(offset
);
1180 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1184 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1191 ret
= qcow2_update_cluster_refcount(bs
, l2_offset
>>
1193 abs(addend
), addend
< 0,
1194 QCOW2_DISCARD_SNAPSHOT
);
1199 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1203 } else if (refcount
== 1) {
1204 l2_offset
|= QCOW_OFLAG_COPIED
;
1206 if (l2_offset
!= old_l2_offset
) {
1207 l1_table
[i
] = l2_offset
;
1213 ret
= bdrv_flush(bs
);
1216 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1219 s
->cache_discards
= false;
1220 qcow2_process_discards(bs
, ret
);
1222 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1223 if (ret
== 0 && addend
>= 0 && l1_modified
) {
1224 for (i
= 0; i
< l1_size
; i
++) {
1225 cpu_to_be64s(&l1_table
[i
]);
1228 ret
= bdrv_pwrite_sync(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1230 for (i
= 0; i
< l1_size
; i
++) {
1231 be64_to_cpus(&l1_table
[i
]);
1242 /*********************************************************/
1243 /* refcount checking functions */
1246 static size_t refcount_array_byte_size(BDRVQcowState
*s
, uint64_t entries
)
1248 /* This assertion holds because there is no way we can address more than
1249 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1250 * offsets have to be representable in bytes); due to every cluster
1251 * corresponding to one refcount entry, we are well below that limit */
1252 assert(entries
< (UINT64_C(1) << (64 - 9)));
1254 /* Thanks to the assertion this will not overflow, because
1255 * s->refcount_order < 7.
1256 * (note: x << s->refcount_order == x * s->refcount_bits) */
1257 return DIV_ROUND_UP(entries
<< s
->refcount_order
, 8);
1261 * Reallocates *array so that it can hold new_size entries. *size must contain
1262 * the current number of entries in *array. If the reallocation fails, *array
1263 * and *size will not be modified and -errno will be returned. If the
1264 * reallocation is successful, *array will be set to the new buffer, *size
1265 * will be set to new_size and 0 will be returned. The size of the reallocated
1266 * refcount array buffer will be aligned to a cluster boundary, and the newly
1267 * allocated area will be zeroed.
1269 static int realloc_refcount_array(BDRVQcowState
*s
, void **array
,
1270 int64_t *size
, int64_t new_size
)
1272 size_t old_byte_size
, new_byte_size
;
1275 /* Round to clusters so the array can be directly written to disk */
1276 old_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, *size
))
1278 new_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, new_size
))
1281 if (new_byte_size
== old_byte_size
) {
1286 assert(new_byte_size
> 0);
1288 new_ptr
= g_try_realloc(*array
, new_byte_size
);
1293 if (new_byte_size
> old_byte_size
) {
1294 memset((void *)((uintptr_t)new_ptr
+ old_byte_size
), 0,
1295 new_byte_size
- old_byte_size
);
1305 * Increases the refcount for a range of clusters in a given refcount table.
1306 * This is used to construct a temporary refcount table out of L1 and L2 tables
1307 * which can be compared the the refcount table saved in the image.
1309 * Modifies the number of errors in res.
1311 static int inc_refcounts(BlockDriverState
*bs
,
1312 BdrvCheckResult
*res
,
1313 void **refcount_table
,
1314 int64_t *refcount_table_size
,
1315 int64_t offset
, int64_t size
)
1317 BDRVQcowState
*s
= bs
->opaque
;
1318 uint64_t start
, last
, cluster_offset
, k
, refcount
;
1325 start
= start_of_cluster(s
, offset
);
1326 last
= start_of_cluster(s
, offset
+ size
- 1);
1327 for(cluster_offset
= start
; cluster_offset
<= last
;
1328 cluster_offset
+= s
->cluster_size
) {
1329 k
= cluster_offset
>> s
->cluster_bits
;
1330 if (k
>= *refcount_table_size
) {
1331 ret
= realloc_refcount_array(s
, refcount_table
,
1332 refcount_table_size
, k
+ 1);
1334 res
->check_errors
++;
1339 refcount
= s
->get_refcount(*refcount_table
, k
);
1340 if (refcount
== s
->refcount_max
) {
1341 fprintf(stderr
, "ERROR: overflow cluster offset=0x%" PRIx64
1342 "\n", cluster_offset
);
1346 s
->set_refcount(*refcount_table
, k
, refcount
+ 1);
1352 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1354 CHECK_FRAG_INFO
= 0x2, /* update BlockFragInfo counters */
1358 * Increases the refcount in the given refcount table for the all clusters
1359 * referenced in the L2 table. While doing so, performs some checks on L2
1362 * Returns the number of errors found by the checks or -errno if an internal
1365 static int check_refcounts_l2(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1366 void **refcount_table
,
1367 int64_t *refcount_table_size
, int64_t l2_offset
,
1370 BDRVQcowState
*s
= bs
->opaque
;
1371 uint64_t *l2_table
, l2_entry
;
1372 uint64_t next_contiguous_offset
= 0;
1373 int i
, l2_size
, nb_csectors
, ret
;
1375 /* Read L2 table from disk */
1376 l2_size
= s
->l2_size
* sizeof(uint64_t);
1377 l2_table
= g_malloc(l2_size
);
1379 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
, l2_size
);
1381 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l2\n");
1382 res
->check_errors
++;
1386 /* Do the actual checks */
1387 for(i
= 0; i
< s
->l2_size
; i
++) {
1388 l2_entry
= be64_to_cpu(l2_table
[i
]);
1390 switch (qcow2_get_cluster_type(l2_entry
)) {
1391 case QCOW2_CLUSTER_COMPRESSED
:
1392 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1393 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1394 fprintf(stderr
, "ERROR: cluster %" PRId64
": "
1395 "copied flag must never be set for compressed "
1396 "clusters\n", l2_entry
>> s
->cluster_bits
);
1397 l2_entry
&= ~QCOW_OFLAG_COPIED
;
1401 /* Mark cluster as used */
1402 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1404 l2_entry
&= s
->cluster_offset_mask
;
1405 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1406 l2_entry
& ~511, nb_csectors
* 512);
1411 if (flags
& CHECK_FRAG_INFO
) {
1412 res
->bfi
.allocated_clusters
++;
1413 res
->bfi
.compressed_clusters
++;
1415 /* Compressed clusters are fragmented by nature. Since they
1416 * take up sub-sector space but we only have sector granularity
1417 * I/O we need to re-read the same sectors even for adjacent
1418 * compressed clusters.
1420 res
->bfi
.fragmented_clusters
++;
1424 case QCOW2_CLUSTER_ZERO
:
1425 if ((l2_entry
& L2E_OFFSET_MASK
) == 0) {
1430 case QCOW2_CLUSTER_NORMAL
:
1432 uint64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1434 if (flags
& CHECK_FRAG_INFO
) {
1435 res
->bfi
.allocated_clusters
++;
1436 if (next_contiguous_offset
&&
1437 offset
!= next_contiguous_offset
) {
1438 res
->bfi
.fragmented_clusters
++;
1440 next_contiguous_offset
= offset
+ s
->cluster_size
;
1443 /* Mark cluster as used */
1444 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1445 offset
, s
->cluster_size
);
1450 /* Correct offsets are cluster aligned */
1451 if (offset_into_cluster(s
, offset
)) {
1452 fprintf(stderr
, "ERROR offset=%" PRIx64
": Cluster is not "
1453 "properly aligned; L2 entry corrupted.\n", offset
);
1459 case QCOW2_CLUSTER_UNALLOCATED
:
1476 * Increases the refcount for the L1 table, its L2 tables and all referenced
1477 * clusters in the given refcount table. While doing so, performs some checks
1478 * on L1 and L2 entries.
1480 * Returns the number of errors found by the checks or -errno if an internal
1483 static int check_refcounts_l1(BlockDriverState
*bs
,
1484 BdrvCheckResult
*res
,
1485 void **refcount_table
,
1486 int64_t *refcount_table_size
,
1487 int64_t l1_table_offset
, int l1_size
,
1490 BDRVQcowState
*s
= bs
->opaque
;
1491 uint64_t *l1_table
= NULL
, l2_offset
, l1_size2
;
1494 l1_size2
= l1_size
* sizeof(uint64_t);
1496 /* Mark L1 table as used */
1497 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1498 l1_table_offset
, l1_size2
);
1503 /* Read L1 table entries from disk */
1505 l1_table
= g_try_malloc(l1_size2
);
1506 if (l1_table
== NULL
) {
1508 res
->check_errors
++;
1511 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1513 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l1\n");
1514 res
->check_errors
++;
1517 for(i
= 0;i
< l1_size
; i
++)
1518 be64_to_cpus(&l1_table
[i
]);
1521 /* Do the actual checks */
1522 for(i
= 0; i
< l1_size
; i
++) {
1523 l2_offset
= l1_table
[i
];
1525 /* Mark L2 table as used */
1526 l2_offset
&= L1E_OFFSET_MASK
;
1527 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1528 l2_offset
, s
->cluster_size
);
1533 /* L2 tables are cluster aligned */
1534 if (offset_into_cluster(s
, l2_offset
)) {
1535 fprintf(stderr
, "ERROR l2_offset=%" PRIx64
": Table is not "
1536 "cluster aligned; L1 entry corrupted\n", l2_offset
);
1540 /* Process and check L2 entries */
1541 ret
= check_refcounts_l2(bs
, res
, refcount_table
,
1542 refcount_table_size
, l2_offset
, flags
);
1557 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1559 * This function does not print an error message nor does it increment
1560 * check_errors if qcow2_get_refcount fails (this is because such an error will
1561 * have been already detected and sufficiently signaled by the calling function
1562 * (qcow2_check_refcounts) by the time this function is called).
1564 static int check_oflag_copied(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1567 BDRVQcowState
*s
= bs
->opaque
;
1568 uint64_t *l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1573 for (i
= 0; i
< s
->l1_size
; i
++) {
1574 uint64_t l1_entry
= s
->l1_table
[i
];
1575 uint64_t l2_offset
= l1_entry
& L1E_OFFSET_MASK
;
1576 bool l2_dirty
= false;
1582 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1585 /* don't print message nor increment check_errors */
1588 if ((refcount
== 1) != ((l1_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1589 fprintf(stderr
, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1590 "l1_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1591 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1593 i
, l1_entry
, refcount
);
1594 if (fix
& BDRV_FIX_ERRORS
) {
1595 s
->l1_table
[i
] = refcount
== 1
1596 ? l1_entry
| QCOW_OFLAG_COPIED
1597 : l1_entry
& ~QCOW_OFLAG_COPIED
;
1598 ret
= qcow2_write_l1_entry(bs
, i
);
1600 res
->check_errors
++;
1603 res
->corruptions_fixed
++;
1609 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
,
1610 s
->l2_size
* sizeof(uint64_t));
1612 fprintf(stderr
, "ERROR: Could not read L2 table: %s\n",
1614 res
->check_errors
++;
1618 for (j
= 0; j
< s
->l2_size
; j
++) {
1619 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1620 uint64_t data_offset
= l2_entry
& L2E_OFFSET_MASK
;
1621 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1623 if ((cluster_type
== QCOW2_CLUSTER_NORMAL
) ||
1624 ((cluster_type
== QCOW2_CLUSTER_ZERO
) && (data_offset
!= 0))) {
1625 ret
= qcow2_get_refcount(bs
,
1626 data_offset
>> s
->cluster_bits
,
1629 /* don't print message nor increment check_errors */
1632 if ((refcount
== 1) != ((l2_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1633 fprintf(stderr
, "%s OFLAG_COPIED data cluster: "
1634 "l2_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1635 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1637 l2_entry
, refcount
);
1638 if (fix
& BDRV_FIX_ERRORS
) {
1639 l2_table
[j
] = cpu_to_be64(refcount
== 1
1640 ? l2_entry
| QCOW_OFLAG_COPIED
1641 : l2_entry
& ~QCOW_OFLAG_COPIED
);
1643 res
->corruptions_fixed
++;
1652 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L2
,
1653 l2_offset
, s
->cluster_size
);
1655 fprintf(stderr
, "ERROR: Could not write L2 table; metadata "
1656 "overlap check failed: %s\n", strerror(-ret
));
1657 res
->check_errors
++;
1661 ret
= bdrv_pwrite(bs
->file
, l2_offset
, l2_table
, s
->cluster_size
);
1663 fprintf(stderr
, "ERROR: Could not write L2 table: %s\n",
1665 res
->check_errors
++;
1674 qemu_vfree(l2_table
);
1679 * Checks consistency of refblocks and accounts for each refblock in
1682 static int check_refblocks(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1683 BdrvCheckMode fix
, bool *rebuild
,
1684 void **refcount_table
, int64_t *nb_clusters
)
1686 BDRVQcowState
*s
= bs
->opaque
;
1690 for(i
= 0; i
< s
->refcount_table_size
; i
++) {
1691 uint64_t offset
, cluster
;
1692 offset
= s
->refcount_table
[i
];
1693 cluster
= offset
>> s
->cluster_bits
;
1695 /* Refcount blocks are cluster aligned */
1696 if (offset_into_cluster(s
, offset
)) {
1697 fprintf(stderr
, "ERROR refcount block %" PRId64
" is not "
1698 "cluster aligned; refcount table entry corrupted\n", i
);
1704 if (cluster
>= *nb_clusters
) {
1705 fprintf(stderr
, "%s refcount block %" PRId64
" is outside image\n",
1706 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR", i
);
1708 if (fix
& BDRV_FIX_ERRORS
) {
1709 int64_t new_nb_clusters
;
1711 if (offset
> INT64_MAX
- s
->cluster_size
) {
1716 ret
= bdrv_truncate(bs
->file
, offset
+ s
->cluster_size
);
1720 size
= bdrv_getlength(bs
->file
);
1726 new_nb_clusters
= size_to_clusters(s
, size
);
1727 assert(new_nb_clusters
>= *nb_clusters
);
1729 ret
= realloc_refcount_array(s
, refcount_table
,
1730 nb_clusters
, new_nb_clusters
);
1732 res
->check_errors
++;
1736 if (cluster
>= *nb_clusters
) {
1741 res
->corruptions_fixed
++;
1742 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1743 offset
, s
->cluster_size
);
1747 /* No need to check whether the refcount is now greater than 1:
1748 * This area was just allocated and zeroed, so it can only be
1749 * exactly 1 after inc_refcounts() */
1755 fprintf(stderr
, "ERROR could not resize image: %s\n",
1764 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1765 offset
, s
->cluster_size
);
1769 if (s
->get_refcount(*refcount_table
, cluster
) != 1) {
1770 fprintf(stderr
, "ERROR refcount block %" PRId64
1771 " refcount=%" PRIu64
"\n", i
,
1772 s
->get_refcount(*refcount_table
, cluster
));
1783 * Calculates an in-memory refcount table.
1785 static int calculate_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1786 BdrvCheckMode fix
, bool *rebuild
,
1787 void **refcount_table
, int64_t *nb_clusters
)
1789 BDRVQcowState
*s
= bs
->opaque
;
1794 if (!*refcount_table
) {
1795 int64_t old_size
= 0;
1796 ret
= realloc_refcount_array(s
, refcount_table
,
1797 &old_size
, *nb_clusters
);
1799 res
->check_errors
++;
1805 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1806 0, s
->cluster_size
);
1811 /* current L1 table */
1812 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1813 s
->l1_table_offset
, s
->l1_size
, CHECK_FRAG_INFO
);
1819 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1820 sn
= s
->snapshots
+ i
;
1821 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1822 sn
->l1_table_offset
, sn
->l1_size
, 0);
1827 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1828 s
->snapshots_offset
, s
->snapshots_size
);
1834 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1835 s
->refcount_table_offset
,
1836 s
->refcount_table_size
* sizeof(uint64_t));
1841 return check_refblocks(bs
, res
, fix
, rebuild
, refcount_table
, nb_clusters
);
1845 * Compares the actual reference count for each cluster in the image against the
1846 * refcount as reported by the refcount structures on-disk.
1848 static void compare_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1849 BdrvCheckMode fix
, bool *rebuild
,
1850 int64_t *highest_cluster
,
1851 void *refcount_table
, int64_t nb_clusters
)
1853 BDRVQcowState
*s
= bs
->opaque
;
1855 uint64_t refcount1
, refcount2
;
1858 for (i
= 0, *highest_cluster
= 0; i
< nb_clusters
; i
++) {
1859 ret
= qcow2_get_refcount(bs
, i
, &refcount1
);
1861 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
1863 res
->check_errors
++;
1867 refcount2
= s
->get_refcount(refcount_table
, i
);
1869 if (refcount1
> 0 || refcount2
> 0) {
1870 *highest_cluster
= i
;
1873 if (refcount1
!= refcount2
) {
1874 /* Check if we're allowed to fix the mismatch */
1875 int *num_fixed
= NULL
;
1876 if (refcount1
== 0) {
1878 } else if (refcount1
> refcount2
&& (fix
& BDRV_FIX_LEAKS
)) {
1879 num_fixed
= &res
->leaks_fixed
;
1880 } else if (refcount1
< refcount2
&& (fix
& BDRV_FIX_ERRORS
)) {
1881 num_fixed
= &res
->corruptions_fixed
;
1884 fprintf(stderr
, "%s cluster %" PRId64
" refcount=%" PRIu64
1885 " reference=%" PRIu64
"\n",
1886 num_fixed
!= NULL
? "Repairing" :
1887 refcount1
< refcount2
? "ERROR" :
1889 i
, refcount1
, refcount2
);
1892 ret
= update_refcount(bs
, i
<< s
->cluster_bits
, 1,
1893 refcount_diff(refcount1
, refcount2
),
1894 refcount1
> refcount2
,
1895 QCOW2_DISCARD_ALWAYS
);
1902 /* And if we couldn't, print an error */
1903 if (refcount1
< refcount2
) {
1913 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1914 * the on-disk refcount structures.
1916 * On input, *first_free_cluster tells where to start looking, and need not
1917 * actually be a free cluster; the returned offset will not be before that
1918 * cluster. On output, *first_free_cluster points to the first gap found, even
1919 * if that gap was too small to be used as the returned offset.
1921 * Note that *first_free_cluster is a cluster index whereas the return value is
1924 static int64_t alloc_clusters_imrt(BlockDriverState
*bs
,
1926 void **refcount_table
,
1927 int64_t *imrt_nb_clusters
,
1928 int64_t *first_free_cluster
)
1930 BDRVQcowState
*s
= bs
->opaque
;
1931 int64_t cluster
= *first_free_cluster
, i
;
1932 bool first_gap
= true;
1933 int contiguous_free_clusters
;
1936 /* Starting at *first_free_cluster, find a range of at least cluster_count
1937 * continuously free clusters */
1938 for (contiguous_free_clusters
= 0;
1939 cluster
< *imrt_nb_clusters
&&
1940 contiguous_free_clusters
< cluster_count
;
1943 if (!s
->get_refcount(*refcount_table
, cluster
)) {
1944 contiguous_free_clusters
++;
1946 /* If this is the first free cluster found, update
1947 * *first_free_cluster accordingly */
1948 *first_free_cluster
= cluster
;
1951 } else if (contiguous_free_clusters
) {
1952 contiguous_free_clusters
= 0;
1956 /* If contiguous_free_clusters is greater than zero, it contains the number
1957 * of continuously free clusters until the current cluster; the first free
1958 * cluster in the current "gap" is therefore
1959 * cluster - contiguous_free_clusters */
1961 /* If no such range could be found, grow the in-memory refcount table
1962 * accordingly to append free clusters at the end of the image */
1963 if (contiguous_free_clusters
< cluster_count
) {
1964 /* contiguous_free_clusters clusters are already empty at the image end;
1965 * we need cluster_count clusters; therefore, we have to allocate
1966 * cluster_count - contiguous_free_clusters new clusters at the end of
1967 * the image (which is the current value of cluster; note that cluster
1968 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1970 ret
= realloc_refcount_array(s
, refcount_table
, imrt_nb_clusters
,
1971 cluster
+ cluster_count
1972 - contiguous_free_clusters
);
1978 /* Go back to the first free cluster */
1979 cluster
-= contiguous_free_clusters
;
1980 for (i
= 0; i
< cluster_count
; i
++) {
1981 s
->set_refcount(*refcount_table
, cluster
+ i
, 1);
1984 return cluster
<< s
->cluster_bits
;
1988 * Creates a new refcount structure based solely on the in-memory information
1989 * given through *refcount_table. All necessary allocations will be reflected
1992 * On success, the old refcount structure is leaked (it will be covered by the
1993 * new refcount structure).
1995 static int rebuild_refcount_structure(BlockDriverState
*bs
,
1996 BdrvCheckResult
*res
,
1997 void **refcount_table
,
1998 int64_t *nb_clusters
)
2000 BDRVQcowState
*s
= bs
->opaque
;
2001 int64_t first_free_cluster
= 0, reftable_offset
= -1, cluster
= 0;
2002 int64_t refblock_offset
, refblock_start
, refblock_index
;
2003 uint32_t reftable_size
= 0;
2004 uint64_t *on_disk_reftable
= NULL
;
2005 void *on_disk_refblock
;
2008 uint64_t reftable_offset
;
2009 uint32_t reftable_clusters
;
2010 } QEMU_PACKED reftable_offset_and_clusters
;
2012 qcow2_cache_empty(bs
, s
->refcount_block_cache
);
2015 for (; cluster
< *nb_clusters
; cluster
++) {
2016 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2020 refblock_index
= cluster
>> s
->refcount_block_bits
;
2021 refblock_start
= refblock_index
<< s
->refcount_block_bits
;
2023 /* Don't allocate a cluster in a refblock already written to disk */
2024 if (first_free_cluster
< refblock_start
) {
2025 first_free_cluster
= refblock_start
;
2027 refblock_offset
= alloc_clusters_imrt(bs
, 1, refcount_table
,
2028 nb_clusters
, &first_free_cluster
);
2029 if (refblock_offset
< 0) {
2030 fprintf(stderr
, "ERROR allocating refblock: %s\n",
2031 strerror(-refblock_offset
));
2032 res
->check_errors
++;
2033 ret
= refblock_offset
;
2037 if (reftable_size
<= refblock_index
) {
2038 uint32_t old_reftable_size
= reftable_size
;
2039 uint64_t *new_on_disk_reftable
;
2041 reftable_size
= ROUND_UP((refblock_index
+ 1) * sizeof(uint64_t),
2042 s
->cluster_size
) / sizeof(uint64_t);
2043 new_on_disk_reftable
= g_try_realloc(on_disk_reftable
,
2046 if (!new_on_disk_reftable
) {
2047 res
->check_errors
++;
2051 on_disk_reftable
= new_on_disk_reftable
;
2053 memset(on_disk_reftable
+ old_reftable_size
, 0,
2054 (reftable_size
- old_reftable_size
) * sizeof(uint64_t));
2056 /* The offset we have for the reftable is now no longer valid;
2057 * this will leak that range, but we can easily fix that by running
2058 * a leak-fixing check after this rebuild operation */
2059 reftable_offset
= -1;
2061 on_disk_reftable
[refblock_index
] = refblock_offset
;
2063 /* If this is apparently the last refblock (for now), try to squeeze the
2065 if (refblock_index
== (*nb_clusters
- 1) >> s
->refcount_block_bits
&&
2066 reftable_offset
< 0)
2068 uint64_t reftable_clusters
= size_to_clusters(s
, reftable_size
*
2070 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2071 refcount_table
, nb_clusters
,
2072 &first_free_cluster
);
2073 if (reftable_offset
< 0) {
2074 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2075 strerror(-reftable_offset
));
2076 res
->check_errors
++;
2077 ret
= reftable_offset
;
2082 ret
= qcow2_pre_write_overlap_check(bs
, 0, refblock_offset
,
2085 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2089 /* The size of *refcount_table is always cluster-aligned, therefore the
2090 * write operation will not overflow */
2091 on_disk_refblock
= (void *)((char *) *refcount_table
+
2092 refblock_index
* s
->cluster_size
);
2094 ret
= bdrv_write(bs
->file
, refblock_offset
/ BDRV_SECTOR_SIZE
,
2095 on_disk_refblock
, s
->cluster_sectors
);
2097 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2101 /* Go to the end of this refblock */
2102 cluster
= refblock_start
+ s
->refcount_block_size
- 1;
2105 if (reftable_offset
< 0) {
2106 uint64_t post_refblock_start
, reftable_clusters
;
2108 post_refblock_start
= ROUND_UP(*nb_clusters
, s
->refcount_block_size
);
2109 reftable_clusters
= size_to_clusters(s
,
2110 reftable_size
* sizeof(uint64_t));
2111 /* Not pretty but simple */
2112 if (first_free_cluster
< post_refblock_start
) {
2113 first_free_cluster
= post_refblock_start
;
2115 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2116 refcount_table
, nb_clusters
,
2117 &first_free_cluster
);
2118 if (reftable_offset
< 0) {
2119 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2120 strerror(-reftable_offset
));
2121 res
->check_errors
++;
2122 ret
= reftable_offset
;
2126 goto write_refblocks
;
2129 assert(on_disk_reftable
);
2131 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2132 cpu_to_be64s(&on_disk_reftable
[refblock_index
]);
2135 ret
= qcow2_pre_write_overlap_check(bs
, 0, reftable_offset
,
2136 reftable_size
* sizeof(uint64_t));
2138 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2142 assert(reftable_size
< INT_MAX
/ sizeof(uint64_t));
2143 ret
= bdrv_pwrite(bs
->file
, reftable_offset
, on_disk_reftable
,
2144 reftable_size
* sizeof(uint64_t));
2146 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2150 /* Enter new reftable into the image header */
2151 cpu_to_be64w(&reftable_offset_and_clusters
.reftable_offset
,
2153 cpu_to_be32w(&reftable_offset_and_clusters
.reftable_clusters
,
2154 size_to_clusters(s
, reftable_size
* sizeof(uint64_t)));
2155 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
,
2156 refcount_table_offset
),
2157 &reftable_offset_and_clusters
,
2158 sizeof(reftable_offset_and_clusters
));
2160 fprintf(stderr
, "ERROR setting reftable: %s\n", strerror(-ret
));
2164 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2165 be64_to_cpus(&on_disk_reftable
[refblock_index
]);
2167 s
->refcount_table
= on_disk_reftable
;
2168 s
->refcount_table_offset
= reftable_offset
;
2169 s
->refcount_table_size
= reftable_size
;
2174 g_free(on_disk_reftable
);
2179 * Checks an image for refcount consistency.
2181 * Returns 0 if no errors are found, the number of errors in case the image is
2182 * detected as corrupted, and -errno when an internal error occurred.
2184 int qcow2_check_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2187 BDRVQcowState
*s
= bs
->opaque
;
2188 BdrvCheckResult pre_compare_res
;
2189 int64_t size
, highest_cluster
, nb_clusters
;
2190 void *refcount_table
= NULL
;
2191 bool rebuild
= false;
2194 size
= bdrv_getlength(bs
->file
);
2196 res
->check_errors
++;
2200 nb_clusters
= size_to_clusters(s
, size
);
2201 if (nb_clusters
> INT_MAX
) {
2202 res
->check_errors
++;
2206 res
->bfi
.total_clusters
=
2207 size_to_clusters(s
, bs
->total_sectors
* BDRV_SECTOR_SIZE
);
2209 ret
= calculate_refcounts(bs
, res
, fix
, &rebuild
, &refcount_table
,
2215 /* In case we don't need to rebuild the refcount structure (but want to fix
2216 * something), this function is immediately called again, in which case the
2217 * result should be ignored */
2218 pre_compare_res
= *res
;
2219 compare_refcounts(bs
, res
, 0, &rebuild
, &highest_cluster
, refcount_table
,
2222 if (rebuild
&& (fix
& BDRV_FIX_ERRORS
)) {
2223 BdrvCheckResult old_res
= *res
;
2224 int fresh_leaks
= 0;
2226 fprintf(stderr
, "Rebuilding refcount structure\n");
2227 ret
= rebuild_refcount_structure(bs
, res
, &refcount_table
,
2233 res
->corruptions
= 0;
2236 /* Because the old reftable has been exchanged for a new one the
2237 * references have to be recalculated */
2239 memset(refcount_table
, 0, refcount_array_byte_size(s
, nb_clusters
));
2240 ret
= calculate_refcounts(bs
, res
, 0, &rebuild
, &refcount_table
,
2246 if (fix
& BDRV_FIX_LEAKS
) {
2247 /* The old refcount structures are now leaked, fix it; the result
2248 * can be ignored, aside from leaks which were introduced by
2249 * rebuild_refcount_structure() that could not be fixed */
2250 BdrvCheckResult saved_res
= *res
;
2251 *res
= (BdrvCheckResult
){ 0 };
2253 compare_refcounts(bs
, res
, BDRV_FIX_LEAKS
, &rebuild
,
2254 &highest_cluster
, refcount_table
, nb_clusters
);
2256 fprintf(stderr
, "ERROR rebuilt refcount structure is still "
2260 /* Any leaks accounted for here were introduced by
2261 * rebuild_refcount_structure() because that function has created a
2262 * new refcount structure from scratch */
2263 fresh_leaks
= res
->leaks
;
2267 if (res
->corruptions
< old_res
.corruptions
) {
2268 res
->corruptions_fixed
+= old_res
.corruptions
- res
->corruptions
;
2270 if (res
->leaks
< old_res
.leaks
) {
2271 res
->leaks_fixed
+= old_res
.leaks
- res
->leaks
;
2273 res
->leaks
+= fresh_leaks
;
2276 fprintf(stderr
, "ERROR need to rebuild refcount structures\n");
2277 res
->check_errors
++;
2282 if (res
->leaks
|| res
->corruptions
) {
2283 *res
= pre_compare_res
;
2284 compare_refcounts(bs
, res
, fix
, &rebuild
, &highest_cluster
,
2285 refcount_table
, nb_clusters
);
2289 /* check OFLAG_COPIED */
2290 ret
= check_oflag_copied(bs
, res
, fix
);
2295 res
->image_end_offset
= (highest_cluster
+ 1) * s
->cluster_size
;
2299 g_free(refcount_table
);
2304 #define overlaps_with(ofs, sz) \
2305 ranges_overlap(offset, size, ofs, sz)
2308 * Checks if the given offset into the image file is actually free to use by
2309 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2310 * i.e. a sanity check without relying on the refcount tables.
2312 * The ign parameter specifies what checks not to perform (being a bitmask of
2313 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2316 * - 0 if writing to this offset will not affect the mentioned metadata
2317 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2318 * - a negative value (-errno) indicating an error while performing a check,
2319 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2321 int qcow2_check_metadata_overlap(BlockDriverState
*bs
, int ign
, int64_t offset
,
2324 BDRVQcowState
*s
= bs
->opaque
;
2325 int chk
= s
->overlap_check
& ~ign
;
2332 if (chk
& QCOW2_OL_MAIN_HEADER
) {
2333 if (offset
< s
->cluster_size
) {
2334 return QCOW2_OL_MAIN_HEADER
;
2338 /* align range to test to cluster boundaries */
2339 size
= align_offset(offset_into_cluster(s
, offset
) + size
, s
->cluster_size
);
2340 offset
= start_of_cluster(s
, offset
);
2342 if ((chk
& QCOW2_OL_ACTIVE_L1
) && s
->l1_size
) {
2343 if (overlaps_with(s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t))) {
2344 return QCOW2_OL_ACTIVE_L1
;
2348 if ((chk
& QCOW2_OL_REFCOUNT_TABLE
) && s
->refcount_table_size
) {
2349 if (overlaps_with(s
->refcount_table_offset
,
2350 s
->refcount_table_size
* sizeof(uint64_t))) {
2351 return QCOW2_OL_REFCOUNT_TABLE
;
2355 if ((chk
& QCOW2_OL_SNAPSHOT_TABLE
) && s
->snapshots_size
) {
2356 if (overlaps_with(s
->snapshots_offset
, s
->snapshots_size
)) {
2357 return QCOW2_OL_SNAPSHOT_TABLE
;
2361 if ((chk
& QCOW2_OL_INACTIVE_L1
) && s
->snapshots
) {
2362 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2363 if (s
->snapshots
[i
].l1_size
&&
2364 overlaps_with(s
->snapshots
[i
].l1_table_offset
,
2365 s
->snapshots
[i
].l1_size
* sizeof(uint64_t))) {
2366 return QCOW2_OL_INACTIVE_L1
;
2371 if ((chk
& QCOW2_OL_ACTIVE_L2
) && s
->l1_table
) {
2372 for (i
= 0; i
< s
->l1_size
; i
++) {
2373 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) &&
2374 overlaps_with(s
->l1_table
[i
] & L1E_OFFSET_MASK
,
2376 return QCOW2_OL_ACTIVE_L2
;
2381 if ((chk
& QCOW2_OL_REFCOUNT_BLOCK
) && s
->refcount_table
) {
2382 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
2383 if ((s
->refcount_table
[i
] & REFT_OFFSET_MASK
) &&
2384 overlaps_with(s
->refcount_table
[i
] & REFT_OFFSET_MASK
,
2386 return QCOW2_OL_REFCOUNT_BLOCK
;
2391 if ((chk
& QCOW2_OL_INACTIVE_L2
) && s
->snapshots
) {
2392 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2393 uint64_t l1_ofs
= s
->snapshots
[i
].l1_table_offset
;
2394 uint32_t l1_sz
= s
->snapshots
[i
].l1_size
;
2395 uint64_t l1_sz2
= l1_sz
* sizeof(uint64_t);
2396 uint64_t *l1
= g_try_malloc(l1_sz2
);
2399 if (l1_sz2
&& l1
== NULL
) {
2403 ret
= bdrv_pread(bs
->file
, l1_ofs
, l1
, l1_sz2
);
2409 for (j
= 0; j
< l1_sz
; j
++) {
2410 uint64_t l2_ofs
= be64_to_cpu(l1
[j
]) & L1E_OFFSET_MASK
;
2411 if (l2_ofs
&& overlaps_with(l2_ofs
, s
->cluster_size
)) {
2413 return QCOW2_OL_INACTIVE_L2
;
2424 static const char *metadata_ol_names
[] = {
2425 [QCOW2_OL_MAIN_HEADER_BITNR
] = "qcow2_header",
2426 [QCOW2_OL_ACTIVE_L1_BITNR
] = "active L1 table",
2427 [QCOW2_OL_ACTIVE_L2_BITNR
] = "active L2 table",
2428 [QCOW2_OL_REFCOUNT_TABLE_BITNR
] = "refcount table",
2429 [QCOW2_OL_REFCOUNT_BLOCK_BITNR
] = "refcount block",
2430 [QCOW2_OL_SNAPSHOT_TABLE_BITNR
] = "snapshot table",
2431 [QCOW2_OL_INACTIVE_L1_BITNR
] = "inactive L1 table",
2432 [QCOW2_OL_INACTIVE_L2_BITNR
] = "inactive L2 table",
2436 * First performs a check for metadata overlaps (through
2437 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2438 * while performing a check), that value is returned. If an impending overlap
2439 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2440 * and -EIO returned.
2442 * Returns 0 if there were neither overlaps nor errors while checking for
2443 * overlaps; or a negative value (-errno) on error.
2445 int qcow2_pre_write_overlap_check(BlockDriverState
*bs
, int ign
, int64_t offset
,
2448 int ret
= qcow2_check_metadata_overlap(bs
, ign
, offset
, size
);
2452 } else if (ret
> 0) {
2453 int metadata_ol_bitnr
= ffs(ret
) - 1;
2454 assert(metadata_ol_bitnr
< QCOW2_OL_MAX_BITNR
);
2456 qcow2_signal_corruption(bs
, true, offset
, size
, "Preventing invalid "
2457 "write on metadata (overlaps with %s)",
2458 metadata_ol_names
[metadata_ol_bitnr
]);