2 * ARM Generic Interrupt Controller v3 (emulation)
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
18 #include "qemu/main-loop.h"
20 #include "gicv3_internal.h"
24 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
26 return env
->gicv3state
;
29 static bool gicv3_use_ns_bank(CPUARMState
*env
)
31 /* Return true if we should use the NonSecure bank for a banked GIC
32 * CPU interface register. Note that this differs from the
33 * access_secure_reg() function because GICv3 banked registers are
34 * banked even for AArch64, unlike the other CPU system registers.
36 return !arm_is_secure_below_el3(env
);
39 /* The minimum BPR for the virtual interface is a configurable property */
40 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
42 return 7 - cs
->vprebits
;
45 /* Simple accessor functions for LR fields */
46 static uint32_t ich_lr_vintid(uint64_t lr
)
48 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
51 static uint32_t ich_lr_pintid(uint64_t lr
)
53 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
56 static uint32_t ich_lr_prio(uint64_t lr
)
58 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
61 static int ich_lr_state(uint64_t lr
)
63 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
66 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
68 /* Return true if this ICC_ register access should really be
69 * directed to an ICV_ access. hcr_flags is a mask of
70 * HCR_EL2 bits to check: we treat this as an ICV_ access
71 * if we are in NS EL1 and at least one of the specified
72 * HCR_EL2 bits is set.
74 * ICV registers fall into four categories:
75 * * access if NS EL1 and HCR_EL2.FMO == 1:
76 * all ICV regs with '0' in their name
77 * * access if NS EL1 and HCR_EL2.IMO == 1:
78 * all ICV regs with '1' in their name
79 * * access if NS EL1 and either IMO or FMO == 1:
82 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
83 bool flagmatch
= hcr_el2
& hcr_flags
& (HCR_IMO
| HCR_FMO
);
85 return flagmatch
&& arm_current_el(env
) == 1
86 && !arm_is_secure_below_el3(env
);
89 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
91 /* Read VBPR value out of the VMCR field (caller must handle
92 * VCBPR effects if required)
94 if (grp
== GICV3_G0
) {
95 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
96 ICH_VMCR_EL2_VBPR0_LENGTH
);
98 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
99 ICH_VMCR_EL2_VBPR1_LENGTH
);
103 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
105 /* Write new VBPR1 value, handling the "writing a value less than
106 * the minimum sets it to the minimum" semantics.
108 int min
= icv_min_vbpr(cs
);
110 if (grp
!= GICV3_G0
) {
114 value
= MAX(value
, min
);
116 if (grp
== GICV3_G0
) {
117 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
118 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
120 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
121 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
125 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
127 /* Return a mask word which clears the unimplemented priority bits
128 * from a priority value for a virtual interrupt. (Not to be confused
129 * with the group priority, whose mask depends on the value of VBPR
130 * for the interrupt group.)
132 return ~0U << (8 - cs
->vpribits
);
135 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
137 /* Calculate the current running priority based on the set bits
138 * in the ICH Active Priority Registers.
141 int aprmax
= 1 << (cs
->vprebits
- 5);
143 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
145 for (i
= 0; i
< aprmax
; i
++) {
146 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
147 cs
->ich_apr
[GICV3_G1NS
][i
];
152 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
154 /* No current active interrupts: return idle priority */
158 static int hppvi_index(GICv3CPUState
*cs
)
160 /* Return the list register index of the highest priority pending
161 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
162 * pseudocode. If no pending virtual interrupts, return -1.
166 /* Note that a list register entry with a priority of 0xff will
167 * never be reported by this function; this is the architecturally
172 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
173 /* Both groups disabled, definitely nothing to do */
177 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
178 uint64_t lr
= cs
->ich_lr_el2
[i
];
181 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
186 /* Ignore interrupts if relevant group enable not set */
187 if (lr
& ICH_LR_EL2_GROUP
) {
188 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
192 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
197 thisprio
= ich_lr_prio(lr
);
199 if (thisprio
< prio
) {
208 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
210 /* Return a mask word which clears the subpriority bits from
211 * a priority value for a virtual interrupt in the specified group.
212 * This depends on the VBPR value.
213 * If using VBPR0 then:
214 * a BPR of 0 means the group priority bits are [7:1];
215 * a BPR of 1 means they are [7:2], and so on down to
216 * a BPR of 7 meaning no group priority bits at all.
217 * If using VBPR1 then:
218 * a BPR of 0 is impossible (the minimum value is 1)
219 * a BPR of 1 means the group priority bits are [7:1];
220 * a BPR of 2 means they are [7:2], and so on down to
221 * a BPR of 7 meaning the group priority is [7].
223 * Which BPR to use depends on the group of the interrupt and
224 * the current ICH_VMCR_EL2.VCBPR settings.
226 * This corresponds to the VGroupBits() pseudocode.
230 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
234 bpr
= read_vbpr(cs
, group
);
235 if (group
== GICV3_G1NS
) {
240 return ~0U << (bpr
+ 1);
243 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
245 /* Return true if we can signal this virtual interrupt defined by
246 * the given list register value; see the pseudocode functions
247 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
248 * Compare also icc_hppi_can_preempt() which is the non-virtual
249 * equivalent of these checks.
252 uint32_t mask
, prio
, rprio
, vpmr
;
254 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
255 /* Virtual interface disabled */
259 /* We don't need to check that this LR is in Pending state because
260 * that has already been done in hppvi_index().
263 prio
= ich_lr_prio(lr
);
264 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
265 ICH_VMCR_EL2_VPMR_LENGTH
);
268 /* Priority mask masks this interrupt */
272 rprio
= ich_highest_active_virt_prio(cs
);
274 /* No running interrupt so we can preempt */
278 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
280 mask
= icv_gprio_mask(cs
, grp
);
282 /* We only preempt a running interrupt if the pending interrupt's
283 * group priority is sufficient (the subpriorities are not considered).
285 if ((prio
& mask
) < (rprio
& mask
)) {
292 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
295 /* Return a set of bits indicating the EOI maintenance interrupt status
296 * for each list register. The EOI maintenance interrupt status is
297 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
298 * (see the GICv3 spec for the ICH_EISR_EL2 register).
299 * If misr is not NULL then we should also collect the information
300 * about the MISR.EOI, MISR.NP and MISR.U bits.
304 bool seenpending
= false;
307 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
308 uint64_t lr
= cs
->ich_lr_el2
[i
];
310 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
314 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
317 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
323 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
324 *misr
|= ICH_MISR_EL2_U
;
326 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
327 *misr
|= ICH_MISR_EL2_NP
;
330 *misr
|= ICH_MISR_EL2_EOI
;
336 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
338 /* Return a set of bits indicating the maintenance interrupt status
339 * (as seen in the ICH_MISR_EL2 register).
343 /* Scan list registers and fill in the U, NP and EOI bits */
344 eoi_maintenance_interrupt_state(cs
, &value
);
346 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_LRENPIE
) &&
347 (cs
->ich_hcr_el2
& ICH_HCR_EL2_EOICOUNT_MASK
)) {
348 value
|= ICH_MISR_EL2_LRENP
;
351 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
352 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
353 value
|= ICH_MISR_EL2_VGRP0E
;
356 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
357 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
358 value
|= ICH_MISR_EL2_VGRP0D
;
360 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
361 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
362 value
|= ICH_MISR_EL2_VGRP1E
;
365 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
366 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
367 value
|= ICH_MISR_EL2_VGRP1D
;
373 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
375 /* Tell the CPU about any pending virtual interrupts or
376 * maintenance interrupts, following a change to the state
377 * of the CPU interface relevant to virtual interrupts.
379 * CAUTION: this function will call qemu_set_irq() on the
380 * CPU maintenance IRQ line, which is typically wired up
381 * to the GIC as a per-CPU interrupt. This means that it
382 * will recursively call back into the GIC code via
383 * gicv3_redist_set_irq() and thus into the CPU interface code's
384 * gicv3_cpuif_update(). It is therefore important that this
385 * function is only called as the final action of a CPU interface
386 * register write implementation, after all the GIC state
387 * fields have been updated. gicv3_cpuif_update() also must
388 * not cause this function to be called, but that happens
389 * naturally as a result of there being no architectural
390 * linkage between the physical and virtual GIC logic.
396 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
398 idx
= hppvi_index(cs
);
399 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
401 uint64_t lr
= cs
->ich_lr_el2
[idx
];
403 if (icv_hppi_can_preempt(cs
, lr
)) {
404 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
405 if (lr
& ICH_LR_EL2_GROUP
) {
413 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) &&
414 maintenance_interrupt_state(cs
) != 0) {
418 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
419 irqlevel
, maintlevel
);
421 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
422 qemu_set_irq(cs
->parent_virq
, irqlevel
);
423 qemu_set_irq(cpu
->gicv3_maintenance_interrupt
, maintlevel
);
426 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
428 GICv3CPUState
*cs
= icc_cs_from_env(env
);
429 int regno
= ri
->opc2
& 3;
430 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
431 uint64_t value
= cs
->ich_apr
[grp
][regno
];
433 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
437 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
440 GICv3CPUState
*cs
= icc_cs_from_env(env
);
441 int regno
= ri
->opc2
& 3;
442 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
444 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
446 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
448 gicv3_cpuif_virt_update(cs
);
452 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
454 GICv3CPUState
*cs
= icc_cs_from_env(env
);
455 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
459 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
460 /* reads return bpr0 + 1 saturated to 7, writes ignored */
465 bpr
= read_vbpr(cs
, grp
);
472 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
477 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
480 GICv3CPUState
*cs
= icc_cs_from_env(env
);
481 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
483 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
484 gicv3_redist_affid(cs
), value
);
486 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
487 /* reads return bpr0 + 1 saturated to 7, writes ignored */
491 write_vbpr(cs
, grp
, value
);
493 gicv3_cpuif_virt_update(cs
);
496 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
498 GICv3CPUState
*cs
= icc_cs_from_env(env
);
501 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
502 ICH_VMCR_EL2_VPMR_LENGTH
);
504 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
508 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
511 GICv3CPUState
*cs
= icc_cs_from_env(env
);
513 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
515 value
&= icv_fullprio_mask(cs
);
517 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
518 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
520 gicv3_cpuif_virt_update(cs
);
523 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
525 GICv3CPUState
*cs
= icc_cs_from_env(env
);
529 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
530 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
532 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
533 gicv3_redist_affid(cs
), value
);
537 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
540 GICv3CPUState
*cs
= icc_cs_from_env(env
);
543 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
544 gicv3_redist_affid(cs
), value
);
546 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
548 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
549 gicv3_cpuif_virt_update(cs
);
552 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
554 GICv3CPUState
*cs
= icc_cs_from_env(env
);
557 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
558 * should match the ones reported in ich_vtr_read().
560 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
561 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
563 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
564 value
|= ICC_CTLR_EL1_EOIMODE
;
567 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
568 value
|= ICC_CTLR_EL1_CBPR
;
571 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
575 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
578 GICv3CPUState
*cs
= icc_cs_from_env(env
);
580 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
582 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
583 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
584 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
585 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
587 gicv3_cpuif_virt_update(cs
);
590 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
592 GICv3CPUState
*cs
= icc_cs_from_env(env
);
593 int prio
= ich_highest_active_virt_prio(cs
);
595 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
599 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
601 GICv3CPUState
*cs
= icc_cs_from_env(env
);
602 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
603 int idx
= hppvi_index(cs
);
604 uint64_t value
= INTID_SPURIOUS
;
607 uint64_t lr
= cs
->ich_lr_el2
[idx
];
608 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
610 if (grp
== thisgrp
) {
611 value
= ich_lr_vintid(lr
);
615 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
619 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
621 /* Activate the interrupt in the specified list register
622 * by moving it from Pending to Active state, and update the
623 * Active Priority Registers.
625 uint32_t mask
= icv_gprio_mask(cs
, grp
);
626 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
627 int aprbit
= prio
>> (8 - cs
->vprebits
);
628 int regno
= aprbit
/ 32;
629 int regbit
= aprbit
% 32;
631 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
632 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
633 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
636 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
638 GICv3CPUState
*cs
= icc_cs_from_env(env
);
639 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
640 int idx
= hppvi_index(cs
);
641 uint64_t intid
= INTID_SPURIOUS
;
644 uint64_t lr
= cs
->ich_lr_el2
[idx
];
645 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
647 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
648 intid
= ich_lr_vintid(lr
);
649 if (!gicv3_intid_is_special(intid
)) {
650 icv_activate_irq(cs
, idx
, grp
);
652 /* Interrupt goes from Pending to Invalid */
653 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
654 /* We will now return the (bogus) ID from the list register,
655 * as per the pseudocode.
661 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
662 gicv3_redist_affid(cs
), intid
);
664 gicv3_cpuif_virt_update(cs
);
669 static int icc_highest_active_prio(GICv3CPUState
*cs
)
671 /* Calculate the current running priority based on the set bits
672 * in the Active Priority Registers.
676 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
677 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
678 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
683 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
685 /* No current active interrupts: return idle priority */
689 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
691 /* Return a mask word which clears the subpriority bits from
692 * a priority value for an interrupt in the specified group.
693 * This depends on the BPR value. For CBPR0 (S or NS):
694 * a BPR of 0 means the group priority bits are [7:1];
695 * a BPR of 1 means they are [7:2], and so on down to
696 * a BPR of 7 meaning no group priority bits at all.
698 * a BPR of 0 is impossible (the minimum value is 1)
699 * a BPR of 1 means the group priority bits are [7:1];
700 * a BPR of 2 means they are [7:2], and so on down to
701 * a BPR of 7 meaning the group priority is [7].
703 * Which BPR to use depends on the group of the interrupt and
704 * the current ICC_CTLR.CBPR settings.
706 * This corresponds to the GroupBits() pseudocode.
710 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
711 (group
== GICV3_G1NS
&&
712 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
716 bpr
= cs
->icc_bpr
[group
] & 7;
718 if (group
== GICV3_G1NS
) {
723 return ~0U << (bpr
+ 1);
726 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
728 /* Return true if there is no pending interrupt, or the
729 * highest priority pending interrupt is in a group which has been
730 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
732 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
735 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
737 /* Return true if we have a pending interrupt of sufficient
738 * priority to preempt.
743 if (icc_no_enabled_hppi(cs
)) {
747 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
748 /* Priority mask masks this interrupt */
752 rprio
= icc_highest_active_prio(cs
);
754 /* No currently running interrupt so we can preempt */
758 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
760 /* We only preempt a running interrupt if the pending interrupt's
761 * group priority is sufficient (the subpriorities are not considered).
763 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
770 void gicv3_cpuif_update(GICv3CPUState
*cs
)
772 /* Tell the CPU about its highest priority pending interrupt */
775 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
776 CPUARMState
*env
= &cpu
->env
;
778 g_assert(qemu_mutex_iothread_locked());
780 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
781 cs
->hppi
.grp
, cs
->hppi
.prio
);
783 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
784 /* If a Security-enabled GIC sends a G1S interrupt to a
785 * Security-disabled CPU, we must treat it as if it were G0.
787 cs
->hppi
.grp
= GICV3_G0
;
790 if (icc_hppi_can_preempt(cs
)) {
791 /* We have an interrupt: should we signal it as IRQ or FIQ?
792 * This is described in the GICv3 spec section 4.6.2.
796 switch (cs
->hppi
.grp
) {
801 isfiq
= (!arm_is_secure(env
) ||
802 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
805 isfiq
= arm_is_secure(env
);
808 g_assert_not_reached();
818 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
820 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
821 qemu_set_irq(cs
->parent_irq
, irqlevel
);
824 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
826 GICv3CPUState
*cs
= icc_cs_from_env(env
);
827 uint32_t value
= cs
->icc_pmr_el1
;
829 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
830 return icv_pmr_read(env
, ri
);
833 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
834 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
835 /* NS access and Group 0 is inaccessible to NS: return the
836 * NS view of the current priority
838 if ((value
& 0x80) == 0) {
839 /* Secure priorities not visible to NS */
841 } else if (value
!= 0xff) {
842 value
= (value
<< 1) & 0xff;
846 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
851 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
854 GICv3CPUState
*cs
= icc_cs_from_env(env
);
856 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
857 return icv_pmr_write(env
, ri
, value
);
860 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
864 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
865 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
866 /* NS access and Group 0 is inaccessible to NS: return the
867 * NS view of the current priority
869 if (!(cs
->icc_pmr_el1
& 0x80)) {
870 /* Current PMR in the secure range, don't allow NS to change it */
873 value
= (value
>> 1) | 0x80;
875 cs
->icc_pmr_el1
= value
;
876 gicv3_cpuif_update(cs
);
879 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
881 /* Move the interrupt from the Pending state to Active, and update
882 * the Active Priority Registers
884 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
885 int prio
= cs
->hppi
.prio
& mask
;
886 int aprbit
= prio
>> 1;
887 int regno
= aprbit
/ 32;
888 int regbit
= aprbit
% 32;
890 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
892 if (irq
< GIC_INTERNAL
) {
893 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
894 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
895 gicv3_redist_update(cs
);
896 } else if (irq
< GICV3_LPI_INTID_START
) {
897 gicv3_gicd_active_set(cs
->gic
, irq
);
898 gicv3_gicd_pending_clear(cs
->gic
, irq
);
899 gicv3_update(cs
->gic
, irq
, 1);
901 gicv3_redist_lpi_pending(cs
, irq
, 0);
905 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
907 /* Return the highest priority pending interrupt register value
912 if (cs
->hppi
.prio
== 0xff) {
913 return INTID_SPURIOUS
;
916 /* Check whether we can return the interrupt or if we should return
917 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
918 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
921 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
922 (cs
->hppi
.grp
!= GICV3_G1NS
));
924 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
925 return INTID_SPURIOUS
;
927 if (irq_is_secure
&& !arm_is_secure(env
)) {
928 /* Secure interrupts not visible to Nonsecure */
929 return INTID_SPURIOUS
;
932 if (cs
->hppi
.grp
!= GICV3_G0
) {
933 /* Indicate to EL3 that there's a Group 1 interrupt for the other
936 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
942 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
944 /* Return the highest priority pending interrupt register value
949 if (cs
->hppi
.prio
== 0xff) {
950 return INTID_SPURIOUS
;
953 /* Check whether we can return the interrupt or if we should return
954 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
955 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
958 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
959 (cs
->hppi
.grp
!= GICV3_G1NS
));
961 if (cs
->hppi
.grp
== GICV3_G0
) {
962 /* Group 0 interrupts not visible via HPPIR1 */
963 return INTID_SPURIOUS
;
966 if (!arm_is_secure(env
)) {
967 /* Secure interrupts not visible in Non-secure */
968 return INTID_SPURIOUS
;
970 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
971 /* Group 1 non-secure interrupts not visible in Secure EL1 */
972 return INTID_SPURIOUS
;
978 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
980 GICv3CPUState
*cs
= icc_cs_from_env(env
);
983 if (icv_access(env
, HCR_FMO
)) {
984 return icv_iar_read(env
, ri
);
987 if (!icc_hppi_can_preempt(cs
)) {
988 intid
= INTID_SPURIOUS
;
990 intid
= icc_hppir0_value(cs
, env
);
993 if (!gicv3_intid_is_special(intid
)) {
994 icc_activate_irq(cs
, intid
);
997 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
1001 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1003 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1006 if (icv_access(env
, HCR_IMO
)) {
1007 return icv_iar_read(env
, ri
);
1010 if (!icc_hppi_can_preempt(cs
)) {
1011 intid
= INTID_SPURIOUS
;
1013 intid
= icc_hppir1_value(cs
, env
);
1016 if (!gicv3_intid_is_special(intid
)) {
1017 icc_activate_irq(cs
, intid
);
1020 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1024 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1026 /* Drop the priority of the currently active interrupt in
1027 * the specified group.
1029 * Note that we can guarantee (because of the requirement to nest
1030 * ICC_IAR reads [which activate an interrupt and raise priority]
1031 * with ICC_EOIR writes [which drop the priority for the interrupt])
1032 * that the interrupt we're being called for is the highest priority
1033 * active interrupt, meaning that it has the lowest set bit in the
1036 * If the guest does not honour the ordering constraints then the
1037 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1038 * the values of the APR registers might become incorrect and the
1039 * running priority will be wrong, so interrupts that should preempt
1040 * might not do so, and interrupts that should not preempt might do so.
1044 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1045 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1050 /* Clear the lowest set bit */
1055 /* running priority change means we need an update for this cpu i/f */
1056 gicv3_cpuif_update(cs
);
1059 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1061 /* Return true if we should split priority drop and interrupt
1062 * deactivation, ie whether the relevant EOIMode bit is set.
1064 if (arm_is_el3_or_mon(env
)) {
1065 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1067 if (arm_is_secure_below_el3(env
)) {
1068 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1070 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1074 static int icc_highest_active_group(GICv3CPUState
*cs
)
1076 /* Return the group with the highest priority active interrupt.
1077 * We can do this by just comparing the APRs to see which one
1078 * has the lowest set bit.
1079 * (If more than one group is active at the same priority then
1080 * we're in UNPREDICTABLE territory.)
1084 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1085 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1086 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1087 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1089 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1092 if (g1ctz
< g0ctz
) {
1099 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1100 * ignores the spurious EOI attempt.
1105 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1107 if (irq
< GIC_INTERNAL
) {
1108 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1109 gicv3_redist_update(cs
);
1111 gicv3_gicd_active_clear(cs
->gic
, irq
);
1112 gicv3_update(cs
->gic
, irq
, 1);
1116 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1118 /* Return true if we should split priority drop and interrupt
1119 * deactivation, ie whether the virtual EOIMode bit is set.
1121 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1124 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1126 /* Given an interrupt number for an active interrupt, return the index
1127 * of the corresponding list register, or -1 if there is no match.
1128 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1132 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1133 uint64_t lr
= cs
->ich_lr_el2
[i
];
1135 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1143 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1145 /* Deactivate the interrupt in the specified list register index */
1146 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1148 if (lr
& ICH_LR_EL2_HW
) {
1149 /* Deactivate the associated physical interrupt */
1150 int pirq
= ich_lr_pintid(lr
);
1152 if (pirq
< INTID_SECURE
) {
1153 icc_deactivate_irq(cs
, pirq
);
1157 /* Clear the 'active' part of the state, so ActivePending->Pending
1158 * and Active->Invalid.
1160 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1161 cs
->ich_lr_el2
[idx
] = lr
;
1164 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1166 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1167 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1168 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1170 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1171 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1174 static int icv_drop_prio(GICv3CPUState
*cs
)
1176 /* Drop the priority of the currently active virtual interrupt
1177 * (favouring group 0 if there is a set active bit at
1178 * the same priority for both group 0 and group 1).
1179 * Return the priority value for the bit we just cleared,
1180 * or 0xff if no bits were set in the AP registers at all.
1181 * Note that though the ich_apr[] are uint64_t only the low
1182 * 32 bits are actually relevant.
1185 int aprmax
= 1 << (cs
->vprebits
- 5);
1187 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1189 for (i
= 0; i
< aprmax
; i
++) {
1190 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1191 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1192 int apr0count
, apr1count
;
1194 if (!*papr0
&& !*papr1
) {
1198 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1199 * because we need to return the bit number we cleared so
1200 * it can be compared against the list register's priority field.
1202 apr0count
= ctz32(*papr0
);
1203 apr1count
= ctz32(*papr1
);
1205 if (apr0count
<= apr1count
) {
1206 *papr0
&= *papr0
- 1;
1207 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1209 *papr1
&= *papr1
- 1;
1210 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1216 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1219 /* Deactivate interrupt */
1220 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1222 int irq
= value
& 0xffffff;
1224 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1226 if (irq
>= GICV3_MAXIRQ
) {
1227 /* Also catches special interrupt numbers and LPIs */
1231 if (!icv_eoi_split(env
, cs
)) {
1235 idx
= icv_find_active(cs
, irq
);
1238 /* No list register matching this, so increment the EOI count
1239 * (might trigger a maintenance interrupt)
1241 icv_increment_eoicount(cs
);
1243 icv_deactivate_irq(cs
, idx
);
1246 gicv3_cpuif_virt_update(cs
);
1249 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1252 /* End of Interrupt */
1253 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1254 int irq
= value
& 0xffffff;
1255 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1258 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1259 gicv3_redist_affid(cs
), value
);
1261 if (gicv3_intid_is_special(irq
)) {
1265 /* We implement the IMPDEF choice of "drop priority before doing
1266 * error checks" (because that lets us avoid scanning the AP
1269 dropprio
= icv_drop_prio(cs
);
1270 if (dropprio
== 0xff) {
1271 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1272 * whether the list registers are checked in this
1273 * situation; we choose not to.
1278 idx
= icv_find_active(cs
, irq
);
1281 /* No valid list register corresponding to EOI ID */
1282 icv_increment_eoicount(cs
);
1284 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1285 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1286 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1288 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1289 if (!icv_eoi_split(env
, cs
)) {
1290 /* Priority drop and deactivate not split: deactivate irq now */
1291 icv_deactivate_irq(cs
, idx
);
1296 gicv3_cpuif_virt_update(cs
);
1299 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1302 /* End of Interrupt */
1303 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1304 int irq
= value
& 0xffffff;
1306 bool is_eoir0
= ri
->crm
== 8;
1308 if (icv_access(env
, is_eoir0
? HCR_FMO
: HCR_IMO
)) {
1309 icv_eoir_write(env
, ri
, value
);
1313 trace_gicv3_icc_eoir_write(is_eoir0
? 0 : 1,
1314 gicv3_redist_affid(cs
), value
);
1316 if ((irq
>= cs
->gic
->num_irq
) &&
1317 !(cs
->gic
->lpi_enable
&& (irq
>= GICV3_LPI_INTID_START
))) {
1318 /* This handles two cases:
1319 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1320 * to the GICC_EOIR, the GIC ignores that write.
1321 * 2. If software writes the number of a non-existent interrupt
1322 * this must be a subcase of "value written does not match the last
1323 * valid interrupt value read from the Interrupt Acknowledge
1324 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1329 grp
= icc_highest_active_group(cs
);
1335 if (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
)
1336 && arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
)) {
1344 if (!arm_is_secure(env
)) {
1352 if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
1357 qemu_log_mask(LOG_GUEST_ERROR
,
1358 "%s: IRQ %d isn't active\n", __func__
, irq
);
1362 icc_drop_prio(cs
, grp
);
1364 if (!icc_eoi_split(env
, cs
)) {
1365 /* Priority drop and deactivate not split: deactivate irq now */
1366 icc_deactivate_irq(cs
, irq
);
1370 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1372 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1375 if (icv_access(env
, HCR_FMO
)) {
1376 return icv_hppir_read(env
, ri
);
1379 value
= icc_hppir0_value(cs
, env
);
1380 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1384 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1386 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1389 if (icv_access(env
, HCR_IMO
)) {
1390 return icv_hppir_read(env
, ri
);
1393 value
= icc_hppir1_value(cs
, env
);
1394 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1398 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1400 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1401 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1402 bool satinc
= false;
1405 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1406 return icv_bpr_read(env
, ri
);
1409 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1413 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1414 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1415 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1421 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1422 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1423 /* reads return bpr0 + 1 sat to 7, writes ignored */
1428 bpr
= cs
->icc_bpr
[grp
];
1434 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1439 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1442 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1443 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1446 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1447 icv_bpr_write(env
, ri
, value
);
1451 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1452 gicv3_redist_affid(cs
), value
);
1454 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1458 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1459 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1460 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1466 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1467 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1468 /* reads return bpr0 + 1 sat to 7, writes ignored */
1472 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1473 if (value
< minval
) {
1477 cs
->icc_bpr
[grp
] = value
& 7;
1478 gicv3_cpuif_update(cs
);
1481 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1483 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1486 int regno
= ri
->opc2
& 3;
1487 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1489 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1490 return icv_ap_read(env
, ri
);
1493 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1497 value
= cs
->icc_apr
[grp
][regno
];
1499 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1503 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1506 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1508 int regno
= ri
->opc2
& 3;
1509 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1511 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1512 icv_ap_write(env
, ri
, value
);
1516 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1518 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1522 /* It's not possible to claim that a Non-secure interrupt is active
1523 * at a priority outside the Non-secure range (128..255), since this
1524 * would otherwise allow malicious NS code to block delivery of S interrupts
1525 * by writing a bad value to these registers.
1527 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1531 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1532 gicv3_cpuif_update(cs
);
1535 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1538 /* Deactivate interrupt */
1539 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1540 int irq
= value
& 0xffffff;
1541 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1542 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1544 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1545 icv_dir_write(env
, ri
, value
);
1549 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1551 if (irq
>= cs
->gic
->num_irq
) {
1552 /* Also catches special interrupt numbers and LPIs */
1556 if (!icc_eoi_split(env
, cs
)) {
1560 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1562 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1563 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1564 irq_is_grp0
= grp
== GICV3_G0
;
1566 /* Check whether we're allowed to deactivate this interrupt based
1567 * on its group and the current CPU state.
1568 * These checks are laid out to correspond to the spec's pseudocode.
1570 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1571 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1572 /* No need to include !IsSecure in route_*_to_el2 as it's only
1573 * tested in cases where we know !IsSecure is true.
1575 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1576 route_fiq_to_el2
= hcr_el2
& HCR_FMO
;
1577 route_irq_to_el2
= hcr_el2
& HCR_IMO
;
1579 switch (arm_current_el(env
)) {
1583 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1586 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1591 if (!arm_is_secure_below_el3(env
)) {
1592 if (single_sec_state
&& irq_is_grp0
&&
1593 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1596 if (!irq_is_secure
&& !irq_is_grp0
&&
1597 !route_irq_to_el3
&& !route_irq_to_el2
) {
1601 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1605 (!irq_is_secure
|| !single_sec_state
) &&
1606 !route_irq_to_el3
) {
1612 g_assert_not_reached();
1615 icc_deactivate_irq(cs
, irq
);
1618 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1620 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1623 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1624 return icv_rpr_read(env
, ri
);
1627 prio
= icc_highest_active_prio(cs
);
1629 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1630 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1631 /* NS GIC access and Group 0 is inaccessible to NS */
1632 if ((prio
& 0x80) == 0) {
1633 /* NS mustn't see priorities in the Secure half of the range */
1635 } else if (prio
!= 0xff) {
1636 /* Non-idle priority: show the Non-secure view of it */
1637 prio
= (prio
<< 1) & 0xff;
1641 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1645 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1646 uint64_t value
, int grp
, bool ns
)
1648 GICv3State
*s
= cs
->gic
;
1650 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1651 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1652 extract64(value
, 32, 8) << 8 |
1653 extract64(value
, 16, 8);
1654 uint32_t targetlist
= extract64(value
, 0, 16);
1655 uint32_t irq
= extract64(value
, 24, 4);
1656 bool irm
= extract64(value
, 40, 1);
1659 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1660 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1661 * interrupts as Group 0 interrupts and must send Secure Group 0
1662 * interrupts to the target CPUs.
1667 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1670 for (i
= 0; i
< s
->num_cpu
; i
++) {
1671 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1674 /* IRM == 1 : route to all CPUs except self */
1679 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1680 * where the corresponding bit is set in targetlist
1684 if (ocs
->gicr_typer
>> 40 != aff
) {
1687 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1688 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1693 /* The redistributor will check against its own GICR_NSACR as needed */
1694 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1698 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1701 /* Generate Secure Group 0 SGI. */
1702 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1703 bool ns
= !arm_is_secure(env
);
1705 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1708 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1711 /* Generate Group 1 SGI for the current Security state */
1712 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1714 bool ns
= !arm_is_secure(env
);
1716 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1717 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1720 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1723 /* Generate Group 1 SGI for the Security state that is not
1726 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1728 bool ns
= !arm_is_secure(env
);
1730 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1731 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1734 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1736 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1737 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1740 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1741 return icv_igrpen_read(env
, ri
);
1744 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1748 value
= cs
->icc_igrpen
[grp
];
1749 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1750 gicv3_redist_affid(cs
), value
);
1754 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1757 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1758 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1760 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1761 icv_igrpen_write(env
, ri
, value
);
1765 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1766 gicv3_redist_affid(cs
), value
);
1768 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1772 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1773 gicv3_cpuif_update(cs
);
1776 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1778 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1781 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1782 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1783 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1787 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1790 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1792 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1794 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1795 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1796 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1797 gicv3_cpuif_update(cs
);
1800 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1802 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1803 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1806 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1807 return icv_ctlr_read(env
, ri
);
1810 value
= cs
->icc_ctlr_el1
[bank
];
1811 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1815 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1818 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1819 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1822 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1823 icv_ctlr_write(env
, ri
, value
);
1827 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1829 /* Only CBPR and EOIMODE can be RW;
1830 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1831 * the asseciated priority-based routing of them);
1832 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1834 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1835 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1836 mask
= ICC_CTLR_EL1_EOIMODE
;
1838 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1841 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1842 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1843 gicv3_cpuif_update(cs
);
1847 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1849 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1852 value
= cs
->icc_ctlr_el3
;
1853 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1854 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1856 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1857 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1859 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1860 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1862 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1863 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1866 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1870 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1873 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1876 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1878 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1879 cs
->icc_ctlr_el1
[GICV3_NS
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1880 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1881 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1883 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1884 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1887 cs
->icc_ctlr_el1
[GICV3_S
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1888 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1889 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1891 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1892 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1895 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1896 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1898 cs
->icc_ctlr_el3
&= ~mask
;
1899 cs
->icc_ctlr_el3
|= (value
& mask
);
1900 gicv3_cpuif_update(cs
);
1903 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1904 const ARMCPRegInfo
*ri
, bool isread
)
1906 CPAccessResult r
= CP_ACCESS_OK
;
1907 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1908 int el
= arm_current_el(env
);
1910 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1911 el
== 1 && !arm_is_secure_below_el3(env
)) {
1912 /* Takes priority over a possible EL3 trap */
1913 return CP_ACCESS_TRAP_EL2
;
1916 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1919 /* Note that arm_hcr_el2_eff takes secure state into account. */
1920 if ((arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) == 0) {
1921 r
= CP_ACCESS_TRAP_EL3
;
1925 r
= CP_ACCESS_TRAP_EL3
;
1928 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1929 r
= CP_ACCESS_TRAP_EL3
;
1933 g_assert_not_reached();
1937 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1943 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1944 const ARMCPRegInfo
*ri
, bool isread
)
1946 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1948 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1949 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1950 /* Takes priority over a possible EL3 trap */
1951 return CP_ACCESS_TRAP_EL2
;
1954 return gicv3_irqfiq_access(env
, ri
, isread
);
1957 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1958 const ARMCPRegInfo
*ri
, bool isread
)
1960 if (arm_current_el(env
) == 1 &&
1961 (arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) != 0) {
1962 /* Takes priority over a possible EL3 trap */
1963 return CP_ACCESS_TRAP_EL2
;
1966 return gicv3_irqfiq_access(env
, ri
, isread
);
1969 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1970 const ARMCPRegInfo
*ri
, bool isread
)
1972 CPAccessResult r
= CP_ACCESS_OK
;
1973 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1974 int el
= arm_current_el(env
);
1976 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1977 el
== 1 && !arm_is_secure_below_el3(env
)) {
1978 /* Takes priority over a possible EL3 trap */
1979 return CP_ACCESS_TRAP_EL2
;
1982 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1985 if ((arm_hcr_el2_eff(env
) & HCR_FMO
) == 0) {
1986 r
= CP_ACCESS_TRAP_EL3
;
1990 r
= CP_ACCESS_TRAP_EL3
;
1993 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1994 r
= CP_ACCESS_TRAP_EL3
;
1998 g_assert_not_reached();
2002 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2008 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
2009 const ARMCPRegInfo
*ri
, bool isread
)
2011 CPAccessResult r
= CP_ACCESS_OK
;
2012 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2013 int el
= arm_current_el(env
);
2015 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
2016 el
== 1 && !arm_is_secure_below_el3(env
)) {
2017 /* Takes priority over a possible EL3 trap */
2018 return CP_ACCESS_TRAP_EL2
;
2021 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2024 if ((arm_hcr_el2_eff(env
) & HCR_IMO
) == 0) {
2025 r
= CP_ACCESS_TRAP_EL3
;
2029 r
= CP_ACCESS_TRAP_EL3
;
2032 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2033 r
= CP_ACCESS_TRAP_EL3
;
2037 g_assert_not_reached();
2041 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2047 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2049 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2051 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2052 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2053 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2054 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2055 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2056 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2057 cs
->icc_pmr_el1
= 0;
2058 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2059 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2060 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2061 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2062 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2063 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2064 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2065 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2067 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2068 cs
->ich_hcr_el2
= 0;
2069 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2070 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2071 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2072 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2075 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2076 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2077 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2078 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2079 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2080 .readfn
= icc_pmr_read
,
2081 .writefn
= icc_pmr_write
,
2082 /* We hang the whole cpu interface reset routine off here
2083 * rather than parcelling it out into one little function
2086 .resetfn
= icc_reset
,
2088 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2089 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2090 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2091 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2092 .readfn
= icc_iar0_read
,
2094 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2095 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2096 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2097 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2098 .writefn
= icc_eoir_write
,
2100 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2101 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2102 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2103 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2104 .readfn
= icc_hppir0_read
,
2106 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2107 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2108 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2109 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2110 .readfn
= icc_bpr_read
,
2111 .writefn
= icc_bpr_write
,
2113 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2114 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2115 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2116 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2117 .readfn
= icc_ap_read
,
2118 .writefn
= icc_ap_write
,
2120 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2121 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2122 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2123 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2124 .readfn
= icc_ap_read
,
2125 .writefn
= icc_ap_write
,
2127 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2128 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2129 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2130 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2131 .readfn
= icc_ap_read
,
2132 .writefn
= icc_ap_write
,
2134 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2135 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2136 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2137 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2138 .readfn
= icc_ap_read
,
2139 .writefn
= icc_ap_write
,
2141 /* All the ICC_AP1R*_EL1 registers are banked */
2142 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2143 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2144 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2145 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2146 .readfn
= icc_ap_read
,
2147 .writefn
= icc_ap_write
,
2149 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2150 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2151 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2152 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2153 .readfn
= icc_ap_read
,
2154 .writefn
= icc_ap_write
,
2156 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2157 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2158 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2159 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2160 .readfn
= icc_ap_read
,
2161 .writefn
= icc_ap_write
,
2163 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2164 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2165 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2166 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2167 .readfn
= icc_ap_read
,
2168 .writefn
= icc_ap_write
,
2170 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2171 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2172 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2173 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2174 .writefn
= icc_dir_write
,
2176 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2177 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2178 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2179 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2180 .readfn
= icc_rpr_read
,
2182 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2183 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2184 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2185 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2186 .writefn
= icc_sgi1r_write
,
2188 { .name
= "ICC_SGI1R",
2189 .cp
= 15, .opc1
= 0, .crm
= 12,
2190 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2191 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2192 .writefn
= icc_sgi1r_write
,
2194 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2195 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2196 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2197 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2198 .writefn
= icc_asgi1r_write
,
2200 { .name
= "ICC_ASGI1R",
2201 .cp
= 15, .opc1
= 1, .crm
= 12,
2202 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2203 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2204 .writefn
= icc_asgi1r_write
,
2206 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2207 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2208 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2209 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2210 .writefn
= icc_sgi0r_write
,
2212 { .name
= "ICC_SGI0R",
2213 .cp
= 15, .opc1
= 2, .crm
= 12,
2214 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2215 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2216 .writefn
= icc_sgi0r_write
,
2218 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2219 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2220 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2221 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2222 .readfn
= icc_iar1_read
,
2224 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2225 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2226 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2227 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2228 .writefn
= icc_eoir_write
,
2230 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2231 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2232 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2233 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2234 .readfn
= icc_hppir1_read
,
2236 /* This register is banked */
2237 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2238 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2239 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2240 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2241 .readfn
= icc_bpr_read
,
2242 .writefn
= icc_bpr_write
,
2244 /* This register is banked */
2245 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2246 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2247 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2248 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2249 .readfn
= icc_ctlr_el1_read
,
2250 .writefn
= icc_ctlr_el1_write
,
2252 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2253 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2254 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2256 /* We don't support IRQ/FIQ bypass and system registers are
2257 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2258 * This register is banked but since it's constant we don't
2259 * need to do anything special.
2263 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2264 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2265 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2266 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2267 .readfn
= icc_igrpen_read
,
2268 .writefn
= icc_igrpen_write
,
2270 /* This register is banked */
2271 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2272 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2273 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2274 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2275 .readfn
= icc_igrpen_read
,
2276 .writefn
= icc_igrpen_write
,
2278 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2279 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2280 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2282 /* We don't support IRQ/FIQ bypass and system registers are
2283 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2287 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2288 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2289 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2291 .readfn
= icc_ctlr_el3_read
,
2292 .writefn
= icc_ctlr_el3_write
,
2294 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2295 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2296 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2298 /* We don't support IRQ/FIQ bypass and system registers are
2299 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2303 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2304 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2305 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2307 .readfn
= icc_igrpen1_el3_read
,
2308 .writefn
= icc_igrpen1_el3_write
,
2313 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2315 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2316 int regno
= ri
->opc2
& 3;
2317 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2320 value
= cs
->ich_apr
[grp
][regno
];
2321 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2325 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2328 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2329 int regno
= ri
->opc2
& 3;
2330 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2332 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2334 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2335 gicv3_cpuif_virt_update(cs
);
2338 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2340 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2341 uint64_t value
= cs
->ich_hcr_el2
;
2343 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2347 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2350 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2352 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2354 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2355 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2356 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2357 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2358 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2360 cs
->ich_hcr_el2
= value
;
2361 gicv3_cpuif_virt_update(cs
);
2364 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2366 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2367 uint64_t value
= cs
->ich_vmcr_el2
;
2369 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2373 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2376 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2378 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2380 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2381 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2382 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2383 value
|= ICH_VMCR_EL2_VFIQEN
;
2385 cs
->ich_vmcr_el2
= value
;
2386 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2387 * by reading and writing back the fields.
2389 write_vbpr(cs
, GICV3_G0
, read_vbpr(cs
, GICV3_G0
));
2390 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2392 gicv3_cpuif_virt_update(cs
);
2395 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2397 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2398 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2401 /* This read function handles all of:
2402 * 64-bit reads of the whole LR
2403 * 32-bit reads of the low half of the LR
2404 * 32-bit reads of the high half of the LR
2406 if (ri
->state
== ARM_CP_STATE_AA32
) {
2407 if (ri
->crm
>= 14) {
2408 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2409 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2411 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2412 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2415 value
= cs
->ich_lr_el2
[regno
];
2416 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2422 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2425 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2426 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2428 /* This write function handles all of:
2429 * 64-bit writes to the whole LR
2430 * 32-bit writes to the low half of the LR
2431 * 32-bit writes to the high half of the LR
2433 if (ri
->state
== ARM_CP_STATE_AA32
) {
2434 if (ri
->crm
>= 14) {
2435 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2436 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2438 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2439 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2442 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2445 /* Enforce RES0 bits in priority field */
2446 if (cs
->vpribits
< 8) {
2447 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2448 8 - cs
->vpribits
, 0);
2451 cs
->ich_lr_el2
[regno
] = value
;
2452 gicv3_cpuif_virt_update(cs
);
2455 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2457 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2460 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2461 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2462 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2463 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2464 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2466 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2470 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2472 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2473 uint64_t value
= maintenance_interrupt_state(cs
);
2475 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2479 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2481 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2482 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2484 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2488 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2490 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2494 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2495 uint64_t lr
= cs
->ich_lr_el2
[i
];
2497 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2498 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2503 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2507 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2508 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2509 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2510 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2512 .readfn
= ich_ap_read
,
2513 .writefn
= ich_ap_write
,
2515 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2516 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2517 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2519 .readfn
= ich_ap_read
,
2520 .writefn
= ich_ap_write
,
2522 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2523 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2524 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2526 .readfn
= ich_hcr_read
,
2527 .writefn
= ich_hcr_write
,
2529 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2530 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2531 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2533 .readfn
= ich_vtr_read
,
2535 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2536 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2537 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2539 .readfn
= ich_misr_read
,
2541 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2542 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2543 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2545 .readfn
= ich_eisr_read
,
2547 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2548 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2549 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2551 .readfn
= ich_elrsr_read
,
2553 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2554 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2555 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2557 .readfn
= ich_vmcr_read
,
2558 .writefn
= ich_vmcr_write
,
2563 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2564 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2565 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2566 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2568 .readfn
= ich_ap_read
,
2569 .writefn
= ich_ap_write
,
2571 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2572 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2573 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2575 .readfn
= ich_ap_read
,
2576 .writefn
= ich_ap_write
,
2581 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2582 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2583 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2584 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2586 .readfn
= ich_ap_read
,
2587 .writefn
= ich_ap_write
,
2589 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2590 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2591 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2593 .readfn
= ich_ap_read
,
2594 .writefn
= ich_ap_write
,
2596 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2597 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2598 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2600 .readfn
= ich_ap_read
,
2601 .writefn
= ich_ap_write
,
2603 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2604 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2605 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2607 .readfn
= ich_ap_read
,
2608 .writefn
= ich_ap_write
,
2613 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2615 GICv3CPUState
*cs
= opaque
;
2617 gicv3_cpuif_update(cs
);
2620 void gicv3_init_cpuif(GICv3State
*s
)
2622 /* Called from the GICv3 realize function; register our system
2623 * registers with the CPU
2627 for (i
= 0; i
< s
->num_cpu
; i
++) {
2628 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2629 GICv3CPUState
*cs
= &s
->cpu
[i
];
2631 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2632 * in define_arm_cp_regs_with_opaque(), because when we're called back
2633 * it might be with code translated by CPU 0 but run by CPU 1, in
2634 * which case we'd get the wrong value.
2635 * So instead we define the regs with no ri->opaque info, and
2636 * get back to the GICv3CPUState from the CPUARMState.
2638 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2639 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2640 && cpu
->gic_num_lrs
) {
2643 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2644 cs
->vpribits
= cpu
->gic_vpribits
;
2645 cs
->vprebits
= cpu
->gic_vprebits
;
2647 /* Check against architectural constraints: getting these
2648 * wrong would be a bug in the CPU code defining these,
2649 * and the implementation relies on them holding.
2651 g_assert(cs
->vprebits
<= cs
->vpribits
);
2652 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2653 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2655 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2657 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2658 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2659 * are split into two cp15 regs, LR (the low part, with the
2660 * same encoding as the AArch64 LR) and LRC (the high part).
2662 ARMCPRegInfo lr_regset
[] = {
2663 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2664 .opc0
= 3, .opc1
= 4, .crn
= 12,
2665 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2666 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2668 .readfn
= ich_lr_read
,
2669 .writefn
= ich_lr_write
,
2671 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2672 .cp
= 15, .opc1
= 4, .crn
= 12,
2673 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2674 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2676 .readfn
= ich_lr_read
,
2677 .writefn
= ich_lr_write
,
2681 define_arm_cp_regs(cpu
, lr_regset
);
2683 if (cs
->vprebits
>= 6) {
2684 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2686 if (cs
->vprebits
== 7) {
2687 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2690 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);