target/ppc: implement vclrrb
[qemu/rayw.git] / hw / char / cadence_uart.c
blobc069a30842ed43bd00caa8bbba72a9a176d6844e
1 /*
2 * Device model for Cadence UART
4 * Reference: Xilinx Zynq 7000 reference manual
5 * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6 * - Chapter 19 UART Controller
7 * - Appendix B for Register details
9 * Copyright (c) 2010 Xilinx Inc.
10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11 * Copyright (c) 2012 PetaLogix Pty Ltd.
12 * Written by Haibing Ma
13 * M.Habib
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "migration/vmstate.h"
27 #include "chardev/char-fe.h"
28 #include "chardev/char-serial.h"
29 #include "qemu/timer.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "hw/char/cadence_uart.h"
33 #include "hw/irq.h"
34 #include "hw/qdev-clock.h"
35 #include "hw/qdev-properties-system.h"
36 #include "trace.h"
38 #ifdef CADENCE_UART_ERR_DEBUG
39 #define DB_PRINT(...) do { \
40 fprintf(stderr, ": %s: ", __func__); \
41 fprintf(stderr, ## __VA_ARGS__); \
42 } while (0)
43 #else
44 #define DB_PRINT(...)
45 #endif
47 #define UART_SR_INTR_RTRIG 0x00000001
48 #define UART_SR_INTR_REMPTY 0x00000002
49 #define UART_SR_INTR_RFUL 0x00000004
50 #define UART_SR_INTR_TEMPTY 0x00000008
51 #define UART_SR_INTR_TFUL 0x00000010
52 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
53 #define UART_SR_TTRIG 0x00002000
54 #define UART_INTR_TTRIG 0x00000400
55 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
56 * SR, then the same bit in CISR is set high too */
57 #define UART_SR_TO_CISR_MASK 0x0000001F
59 #define UART_INTR_ROVR 0x00000020
60 #define UART_INTR_FRAME 0x00000040
61 #define UART_INTR_PARE 0x00000080
62 #define UART_INTR_TIMEOUT 0x00000100
63 #define UART_INTR_DMSI 0x00000200
64 #define UART_INTR_TOVR 0x00001000
66 #define UART_SR_RACTIVE 0x00000400
67 #define UART_SR_TACTIVE 0x00000800
68 #define UART_SR_FDELT 0x00001000
70 #define UART_CR_RXRST 0x00000001
71 #define UART_CR_TXRST 0x00000002
72 #define UART_CR_RX_EN 0x00000004
73 #define UART_CR_RX_DIS 0x00000008
74 #define UART_CR_TX_EN 0x00000010
75 #define UART_CR_TX_DIS 0x00000020
76 #define UART_CR_RST_TO 0x00000040
77 #define UART_CR_STARTBRK 0x00000080
78 #define UART_CR_STOPBRK 0x00000100
80 #define UART_MR_CLKS 0x00000001
81 #define UART_MR_CHRL 0x00000006
82 #define UART_MR_CHRL_SH 1
83 #define UART_MR_PAR 0x00000038
84 #define UART_MR_PAR_SH 3
85 #define UART_MR_NBSTOP 0x000000C0
86 #define UART_MR_NBSTOP_SH 6
87 #define UART_MR_CHMODE 0x00000300
88 #define UART_MR_CHMODE_SH 8
89 #define UART_MR_UCLKEN 0x00000400
90 #define UART_MR_IRMODE 0x00000800
92 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
93 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
94 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
95 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
96 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
97 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
98 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
99 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
100 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
101 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
103 #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
105 #define R_CR (0x00/4)
106 #define R_MR (0x04/4)
107 #define R_IER (0x08/4)
108 #define R_IDR (0x0C/4)
109 #define R_IMR (0x10/4)
110 #define R_CISR (0x14/4)
111 #define R_BRGR (0x18/4)
112 #define R_RTOR (0x1C/4)
113 #define R_RTRIG (0x20/4)
114 #define R_MCR (0x24/4)
115 #define R_MSR (0x28/4)
116 #define R_SR (0x2C/4)
117 #define R_TX_RX (0x30/4)
118 #define R_BDIV (0x34/4)
119 #define R_FDEL (0x38/4)
120 #define R_PMIN (0x3C/4)
121 #define R_PWID (0x40/4)
122 #define R_TTRIG (0x44/4)
125 static void uart_update_status(CadenceUARTState *s)
127 s->r[R_SR] = 0;
129 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
130 : 0;
131 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
132 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
134 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
135 : 0;
136 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
137 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
139 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
140 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
141 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
144 static void fifo_trigger_update(void *opaque)
146 CadenceUARTState *s = opaque;
148 if (s->r[R_RTOR]) {
149 s->r[R_CISR] |= UART_INTR_TIMEOUT;
150 uart_update_status(s);
154 static void uart_rx_reset(CadenceUARTState *s)
156 s->rx_wpos = 0;
157 s->rx_count = 0;
158 qemu_chr_fe_accept_input(&s->chr);
161 static void uart_tx_reset(CadenceUARTState *s)
163 s->tx_count = 0;
166 static void uart_send_breaks(CadenceUARTState *s)
168 int break_enabled = 1;
170 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
171 &break_enabled);
174 static void uart_parameters_setup(CadenceUARTState *s)
176 QEMUSerialSetParams ssp;
177 unsigned int baud_rate, packet_size, input_clk;
178 input_clk = clock_get_hz(s->refclk);
180 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
181 baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
182 trace_cadence_uart_baudrate(baud_rate);
184 ssp.speed = baud_rate;
186 packet_size = 1;
188 switch (s->r[R_MR] & UART_MR_PAR) {
189 case UART_PARITY_EVEN:
190 ssp.parity = 'E';
191 packet_size++;
192 break;
193 case UART_PARITY_ODD:
194 ssp.parity = 'O';
195 packet_size++;
196 break;
197 default:
198 ssp.parity = 'N';
199 break;
202 switch (s->r[R_MR] & UART_MR_CHRL) {
203 case UART_DATA_BITS_6:
204 ssp.data_bits = 6;
205 break;
206 case UART_DATA_BITS_7:
207 ssp.data_bits = 7;
208 break;
209 default:
210 ssp.data_bits = 8;
211 break;
214 switch (s->r[R_MR] & UART_MR_NBSTOP) {
215 case UART_STOP_BITS_1:
216 ssp.stop_bits = 1;
217 break;
218 default:
219 ssp.stop_bits = 2;
220 break;
223 packet_size += ssp.data_bits + ssp.stop_bits;
224 if (ssp.speed == 0) {
226 * Avoid division-by-zero below.
227 * TODO: find something better
229 ssp.speed = 1;
231 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
232 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
235 static int uart_can_receive(void *opaque)
237 CadenceUARTState *s = opaque;
238 int ret;
239 uint32_t ch_mode;
241 /* ignore characters when unclocked or in reset */
242 if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
243 qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
244 __func__);
245 return 0;
248 ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
249 ch_mode = s->r[R_MR] & UART_MR_CHMODE;
251 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
252 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
254 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
255 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
257 return ret;
260 static void uart_ctrl_update(CadenceUARTState *s)
262 if (s->r[R_CR] & UART_CR_TXRST) {
263 uart_tx_reset(s);
266 if (s->r[R_CR] & UART_CR_RXRST) {
267 uart_rx_reset(s);
270 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
272 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
273 uart_send_breaks(s);
277 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
279 CadenceUARTState *s = opaque;
280 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
281 int i;
283 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
284 return;
287 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
288 s->r[R_CISR] |= UART_INTR_ROVR;
289 } else {
290 for (i = 0; i < size; i++) {
291 s->rx_fifo[s->rx_wpos] = buf[i];
292 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
293 s->rx_count++;
295 timer_mod(s->fifo_trigger_handle, new_rx_time +
296 (s->char_tx_time * 4));
298 uart_update_status(s);
301 static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
302 void *opaque)
304 CadenceUARTState *s = opaque;
305 int ret;
307 /* instant drain the fifo when there's no back-end */
308 if (!qemu_chr_fe_backend_connected(&s->chr)) {
309 s->tx_count = 0;
310 return FALSE;
313 if (!s->tx_count) {
314 return FALSE;
317 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
319 if (ret >= 0) {
320 s->tx_count -= ret;
321 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
324 if (s->tx_count) {
325 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
326 cadence_uart_xmit, s);
327 if (!r) {
328 s->tx_count = 0;
329 return FALSE;
333 uart_update_status(s);
334 return FALSE;
337 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
338 int size)
340 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
341 return;
344 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
345 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
347 * This can only be a guest error via a bad tx fifo register push,
348 * as can_receive() should stop remote loop and echo modes ever getting
349 * us to here.
351 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
352 s->r[R_CISR] |= UART_INTR_ROVR;
355 memcpy(s->tx_fifo + s->tx_count, buf, size);
356 s->tx_count += size;
358 cadence_uart_xmit(NULL, G_IO_OUT, s);
361 static void uart_receive(void *opaque, const uint8_t *buf, int size)
363 CadenceUARTState *s = opaque;
364 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
366 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
367 uart_write_rx_fifo(opaque, buf, size);
369 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
370 uart_write_tx_fifo(s, buf, size);
374 static void uart_event(void *opaque, QEMUChrEvent event)
376 CadenceUARTState *s = opaque;
377 uint8_t buf = '\0';
379 /* ignore characters when unclocked or in reset */
380 if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
381 qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
382 __func__);
383 return;
386 if (event == CHR_EVENT_BREAK) {
387 uart_write_rx_fifo(opaque, &buf, 1);
390 uart_update_status(s);
393 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
395 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
396 return;
399 if (s->rx_count) {
400 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
401 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
402 *c = s->rx_fifo[rx_rpos];
403 s->rx_count--;
405 qemu_chr_fe_accept_input(&s->chr);
406 } else {
407 *c = 0;
410 uart_update_status(s);
413 static MemTxResult uart_write(void *opaque, hwaddr offset,
414 uint64_t value, unsigned size, MemTxAttrs attrs)
416 CadenceUARTState *s = opaque;
418 /* ignore access when unclocked or in reset */
419 if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
420 qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
421 __func__);
422 return MEMTX_ERROR;
425 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
426 offset >>= 2;
427 if (offset >= CADENCE_UART_R_MAX) {
428 return MEMTX_DECODE_ERROR;
430 switch (offset) {
431 case R_IER: /* ier (wts imr) */
432 s->r[R_IMR] |= value;
433 break;
434 case R_IDR: /* idr (wtc imr) */
435 s->r[R_IMR] &= ~value;
436 break;
437 case R_IMR: /* imr (read only) */
438 break;
439 case R_CISR: /* cisr (wtc) */
440 s->r[R_CISR] &= ~value;
441 break;
442 case R_TX_RX: /* UARTDR */
443 switch (s->r[R_MR] & UART_MR_CHMODE) {
444 case NORMAL_MODE:
445 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
446 break;
447 case LOCAL_LOOPBACK:
448 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
449 break;
451 break;
452 case R_BRGR: /* Baud rate generator */
453 if (value >= 0x01) {
454 s->r[offset] = value & 0xFFFF;
456 break;
457 case R_BDIV: /* Baud rate divider */
458 if (value >= 0x04) {
459 s->r[offset] = value & 0xFF;
461 break;
462 default:
463 s->r[offset] = value;
466 switch (offset) {
467 case R_CR:
468 uart_ctrl_update(s);
469 break;
470 case R_MR:
471 uart_parameters_setup(s);
472 break;
474 uart_update_status(s);
476 return MEMTX_OK;
479 static MemTxResult uart_read(void *opaque, hwaddr offset,
480 uint64_t *value, unsigned size, MemTxAttrs attrs)
482 CadenceUARTState *s = opaque;
483 uint32_t c = 0;
485 /* ignore access when unclocked or in reset */
486 if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
487 qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
488 __func__);
489 return MEMTX_ERROR;
492 offset >>= 2;
493 if (offset >= CADENCE_UART_R_MAX) {
494 return MEMTX_DECODE_ERROR;
496 if (offset == R_TX_RX) {
497 uart_read_rx_fifo(s, &c);
498 } else {
499 c = s->r[offset];
502 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
503 *value = c;
504 return MEMTX_OK;
507 static const MemoryRegionOps uart_ops = {
508 .read_with_attrs = uart_read,
509 .write_with_attrs = uart_write,
510 .endianness = DEVICE_NATIVE_ENDIAN,
513 static void cadence_uart_reset_init(Object *obj, ResetType type)
515 CadenceUARTState *s = CADENCE_UART(obj);
517 s->r[R_CR] = 0x00000128;
518 s->r[R_IMR] = 0;
519 s->r[R_CISR] = 0;
520 s->r[R_RTRIG] = 0x00000020;
521 s->r[R_BRGR] = 0x0000028B;
522 s->r[R_BDIV] = 0x0000000F;
523 s->r[R_TTRIG] = 0x00000020;
526 static void cadence_uart_reset_hold(Object *obj)
528 CadenceUARTState *s = CADENCE_UART(obj);
530 uart_rx_reset(s);
531 uart_tx_reset(s);
533 uart_update_status(s);
536 static void cadence_uart_realize(DeviceState *dev, Error **errp)
538 CadenceUARTState *s = CADENCE_UART(dev);
540 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
541 fifo_trigger_update, s);
543 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
544 uart_event, NULL, s, NULL, true);
547 static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
549 CadenceUARTState *s = opaque;
551 /* recompute uart's speed on clock change */
552 uart_parameters_setup(s);
555 static void cadence_uart_init(Object *obj)
557 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
558 CadenceUARTState *s = CADENCE_UART(obj);
560 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
561 sysbus_init_mmio(sbd, &s->iomem);
562 sysbus_init_irq(sbd, &s->irq);
564 s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
565 cadence_uart_refclk_update, s, ClockUpdate);
566 /* initialize the frequency in case the clock remains unconnected */
567 clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
569 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
572 static int cadence_uart_pre_load(void *opaque)
574 CadenceUARTState *s = opaque;
576 /* the frequency will be overriden if the refclk field is present */
577 clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
578 return 0;
581 static int cadence_uart_post_load(void *opaque, int version_id)
583 CadenceUARTState *s = opaque;
585 /* Ensure these two aren't invalid numbers */
586 if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
587 s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
588 /* Value is invalid, abort */
589 return 1;
592 uart_parameters_setup(s);
593 uart_update_status(s);
594 return 0;
597 static const VMStateDescription vmstate_cadence_uart = {
598 .name = "cadence_uart",
599 .version_id = 3,
600 .minimum_version_id = 2,
601 .pre_load = cadence_uart_pre_load,
602 .post_load = cadence_uart_post_load,
603 .fields = (VMStateField[]) {
604 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
605 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
606 CADENCE_UART_RX_FIFO_SIZE),
607 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
608 CADENCE_UART_TX_FIFO_SIZE),
609 VMSTATE_UINT32(rx_count, CadenceUARTState),
610 VMSTATE_UINT32(tx_count, CadenceUARTState),
611 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
612 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
613 VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
614 VMSTATE_END_OF_LIST()
618 static Property cadence_uart_properties[] = {
619 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
620 DEFINE_PROP_END_OF_LIST(),
623 static void cadence_uart_class_init(ObjectClass *klass, void *data)
625 DeviceClass *dc = DEVICE_CLASS(klass);
626 ResettableClass *rc = RESETTABLE_CLASS(klass);
628 dc->realize = cadence_uart_realize;
629 dc->vmsd = &vmstate_cadence_uart;
630 rc->phases.enter = cadence_uart_reset_init;
631 rc->phases.hold = cadence_uart_reset_hold;
632 device_class_set_props(dc, cadence_uart_properties);
635 static const TypeInfo cadence_uart_info = {
636 .name = TYPE_CADENCE_UART,
637 .parent = TYPE_SYS_BUS_DEVICE,
638 .instance_size = sizeof(CadenceUARTState),
639 .instance_init = cadence_uart_init,
640 .class_init = cadence_uart_class_init,
643 static void cadence_uart_register_types(void)
645 type_register_static(&cadence_uart_info);
648 type_init(cadence_uart_register_types)