2 * Helpers for floating point instructions.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "exec/helper-proto.h"
22 #include "fpu/softfloat.h"
24 #define FP_STATUS (env->fp_status)
27 void helper_setroundmode(CPUAlphaState
*env
, uint32_t val
)
29 set_float_rounding_mode(val
, &FP_STATUS
);
32 void helper_setflushzero(CPUAlphaState
*env
, uint32_t val
)
34 set_flush_to_zero(val
, &FP_STATUS
);
37 #define CONVERT_BIT(X, SRC, DST) \
38 (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
40 static uint32_t soft_to_fpcr_exc(CPUAlphaState
*env
)
42 uint8_t exc
= get_float_exception_flags(&FP_STATUS
);
46 set_float_exception_flags(0, &FP_STATUS
);
47 ret
|= CONVERT_BIT(exc
, float_flag_invalid
, FPCR_INV
);
48 ret
|= CONVERT_BIT(exc
, float_flag_divbyzero
, FPCR_DZE
);
49 ret
|= CONVERT_BIT(exc
, float_flag_overflow
, FPCR_OVF
);
50 ret
|= CONVERT_BIT(exc
, float_flag_underflow
, FPCR_UNF
);
51 ret
|= CONVERT_BIT(exc
, float_flag_inexact
, FPCR_INE
);
57 static void fp_exc_raise1(CPUAlphaState
*env
, uintptr_t retaddr
,
58 uint32_t exc
, uint32_t regno
, uint32_t hw_exc
)
60 hw_exc
|= CONVERT_BIT(exc
, FPCR_INV
, EXC_M_INV
);
61 hw_exc
|= CONVERT_BIT(exc
, FPCR_DZE
, EXC_M_DZE
);
62 hw_exc
|= CONVERT_BIT(exc
, FPCR_OVF
, EXC_M_FOV
);
63 hw_exc
|= CONVERT_BIT(exc
, FPCR_UNF
, EXC_M_UNF
);
64 hw_exc
|= CONVERT_BIT(exc
, FPCR_INE
, EXC_M_INE
);
65 hw_exc
|= CONVERT_BIT(exc
, FPCR_IOV
, EXC_M_IOV
);
67 arith_excp(env
, retaddr
, hw_exc
, 1ull << regno
);
70 /* Raise exceptions for ieee fp insns without software completion.
71 In that case there are no exceptions that don't trap; the mask
73 void helper_fp_exc_raise(CPUAlphaState
*env
, uint32_t ignore
, uint32_t regno
)
75 uint32_t exc
= env
->error_code
;
80 fp_exc_raise1(env
, GETPC(), exc
, regno
, 0);
85 /* Raise exceptions for ieee fp insns with software completion. */
86 void helper_fp_exc_raise_s(CPUAlphaState
*env
, uint32_t ignore
, uint32_t regno
)
88 uint32_t exc
= env
->error_code
& ~ignore
;
93 exc
&= env
->fpcr_exc_enable
;
94 fp_exc_raise1(env
, GETPC(), exc
, regno
, EXC_M_SWC
);
99 /* Input handing without software completion. Trap for all
100 non-finite numbers. */
101 void helper_ieee_input(CPUAlphaState
*env
, uint64_t val
)
103 uint32_t exp
= (uint32_t)(val
>> 52) & 0x7ff;
104 uint64_t frac
= val
& 0xfffffffffffffull
;
107 /* Denormals without /S raise an exception. */
109 arith_excp(env
, GETPC(), EXC_M_INV
, 0);
111 } else if (exp
== 0x7ff) {
112 /* Infinity or NaN. */
113 env
->fpcr
|= FPCR_INV
;
114 arith_excp(env
, GETPC(), EXC_M_INV
, 0);
118 /* Similar, but does not trap for infinities. Used for comparisons. */
119 void helper_ieee_input_cmp(CPUAlphaState
*env
, uint64_t val
)
121 uint32_t exp
= (uint32_t)(val
>> 52) & 0x7ff;
122 uint64_t frac
= val
& 0xfffffffffffffull
;
125 /* Denormals without /S raise an exception. */
127 arith_excp(env
, GETPC(), EXC_M_INV
, 0);
129 } else if (exp
== 0x7ff && frac
) {
131 env
->fpcr
|= FPCR_INV
;
132 arith_excp(env
, GETPC(), EXC_M_INV
, 0);
136 /* Input handing with software completion. Trap for denorms, unless DNZ
137 is set. If we try to support DNOD (which none of the produced hardware
138 did, AFAICS), we'll need to suppress the trap when FPCR.DNOD is set;
139 then the code downstream of that will need to cope with denorms sans
140 flush_input_to_zero. Most of it should work sanely, but there's
141 nothing to compare with. */
142 void helper_ieee_input_s(CPUAlphaState
*env
, uint64_t val
)
144 if (unlikely(2 * val
- 1 < 0x1fffffffffffffull
)
145 && !env
->fp_status
.flush_inputs_to_zero
) {
146 arith_excp(env
, GETPC(), EXC_M_INV
| EXC_M_SWC
, 0);
150 /* S floating (single) */
152 /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
153 static inline uint64_t float32_to_s_int(uint32_t fi
)
155 uint32_t frac
= fi
& 0x7fffff;
156 uint32_t sign
= fi
>> 31;
157 uint32_t exp_msb
= (fi
>> 30) & 1;
158 uint32_t exp_low
= (fi
>> 23) & 0x7f;
161 exp
= (exp_msb
<< 10) | exp_low
;
163 if (exp_low
== 0x7f) {
167 if (exp_low
!= 0x00) {
172 return (((uint64_t)sign
<< 63)
173 | ((uint64_t)exp
<< 52)
174 | ((uint64_t)frac
<< 29));
177 static inline uint64_t float32_to_s(float32 fa
)
181 return float32_to_s_int(a
.l
);
184 static inline uint32_t s_to_float32_int(uint64_t a
)
186 return ((a
>> 32) & 0xc0000000) | ((a
>> 29) & 0x3fffffff);
189 static inline float32
s_to_float32(uint64_t a
)
192 r
.l
= s_to_float32_int(a
);
196 uint32_t helper_s_to_memory(uint64_t a
)
198 return s_to_float32_int(a
);
201 uint64_t helper_memory_to_s(uint32_t a
)
203 return float32_to_s_int(a
);
206 uint64_t helper_adds(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
210 fa
= s_to_float32(a
);
211 fb
= s_to_float32(b
);
212 fr
= float32_add(fa
, fb
, &FP_STATUS
);
213 env
->error_code
= soft_to_fpcr_exc(env
);
215 return float32_to_s(fr
);
218 uint64_t helper_subs(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
222 fa
= s_to_float32(a
);
223 fb
= s_to_float32(b
);
224 fr
= float32_sub(fa
, fb
, &FP_STATUS
);
225 env
->error_code
= soft_to_fpcr_exc(env
);
227 return float32_to_s(fr
);
230 uint64_t helper_muls(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
234 fa
= s_to_float32(a
);
235 fb
= s_to_float32(b
);
236 fr
= float32_mul(fa
, fb
, &FP_STATUS
);
237 env
->error_code
= soft_to_fpcr_exc(env
);
239 return float32_to_s(fr
);
242 uint64_t helper_divs(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
246 fa
= s_to_float32(a
);
247 fb
= s_to_float32(b
);
248 fr
= float32_div(fa
, fb
, &FP_STATUS
);
249 env
->error_code
= soft_to_fpcr_exc(env
);
251 return float32_to_s(fr
);
254 uint64_t helper_sqrts(CPUAlphaState
*env
, uint64_t a
)
258 fa
= s_to_float32(a
);
259 fr
= float32_sqrt(fa
, &FP_STATUS
);
260 env
->error_code
= soft_to_fpcr_exc(env
);
262 return float32_to_s(fr
);
266 /* T floating (double) */
267 static inline float64
t_to_float64(uint64_t a
)
269 /* Memory format is the same as float64 */
275 static inline uint64_t float64_to_t(float64 fa
)
277 /* Memory format is the same as float64 */
283 uint64_t helper_addt(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
287 fa
= t_to_float64(a
);
288 fb
= t_to_float64(b
);
289 fr
= float64_add(fa
, fb
, &FP_STATUS
);
290 env
->error_code
= soft_to_fpcr_exc(env
);
292 return float64_to_t(fr
);
295 uint64_t helper_subt(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
299 fa
= t_to_float64(a
);
300 fb
= t_to_float64(b
);
301 fr
= float64_sub(fa
, fb
, &FP_STATUS
);
302 env
->error_code
= soft_to_fpcr_exc(env
);
304 return float64_to_t(fr
);
307 uint64_t helper_mult(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
311 fa
= t_to_float64(a
);
312 fb
= t_to_float64(b
);
313 fr
= float64_mul(fa
, fb
, &FP_STATUS
);
314 env
->error_code
= soft_to_fpcr_exc(env
);
316 return float64_to_t(fr
);
319 uint64_t helper_divt(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
323 fa
= t_to_float64(a
);
324 fb
= t_to_float64(b
);
325 fr
= float64_div(fa
, fb
, &FP_STATUS
);
326 env
->error_code
= soft_to_fpcr_exc(env
);
328 return float64_to_t(fr
);
331 uint64_t helper_sqrtt(CPUAlphaState
*env
, uint64_t a
)
335 fa
= t_to_float64(a
);
336 fr
= float64_sqrt(fa
, &FP_STATUS
);
337 env
->error_code
= soft_to_fpcr_exc(env
);
339 return float64_to_t(fr
);
343 uint64_t helper_cmptun(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
348 fa
= t_to_float64(a
);
349 fb
= t_to_float64(b
);
351 if (float64_unordered_quiet(fa
, fb
, &FP_STATUS
)) {
352 ret
= 0x4000000000000000ULL
;
354 env
->error_code
= soft_to_fpcr_exc(env
);
359 uint64_t helper_cmpteq(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
364 fa
= t_to_float64(a
);
365 fb
= t_to_float64(b
);
367 if (float64_eq_quiet(fa
, fb
, &FP_STATUS
)) {
368 ret
= 0x4000000000000000ULL
;
370 env
->error_code
= soft_to_fpcr_exc(env
);
375 uint64_t helper_cmptle(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
380 fa
= t_to_float64(a
);
381 fb
= t_to_float64(b
);
383 if (float64_le(fa
, fb
, &FP_STATUS
)) {
384 ret
= 0x4000000000000000ULL
;
386 env
->error_code
= soft_to_fpcr_exc(env
);
391 uint64_t helper_cmptlt(CPUAlphaState
*env
, uint64_t a
, uint64_t b
)
396 fa
= t_to_float64(a
);
397 fb
= t_to_float64(b
);
399 if (float64_lt(fa
, fb
, &FP_STATUS
)) {
400 ret
= 0x4000000000000000ULL
;
402 env
->error_code
= soft_to_fpcr_exc(env
);
407 /* Floating point format conversion */
408 uint64_t helper_cvtts(CPUAlphaState
*env
, uint64_t a
)
413 fa
= t_to_float64(a
);
414 fr
= float64_to_float32(fa
, &FP_STATUS
);
415 env
->error_code
= soft_to_fpcr_exc(env
);
417 return float32_to_s(fr
);
420 uint64_t helper_cvtst(CPUAlphaState
*env
, uint64_t a
)
425 fa
= s_to_float32(a
);
426 fr
= float32_to_float64(fa
, &FP_STATUS
);
427 env
->error_code
= soft_to_fpcr_exc(env
);
429 return float64_to_t(fr
);
432 uint64_t helper_cvtqs(CPUAlphaState
*env
, uint64_t a
)
434 float32 fr
= int64_to_float32(a
, &FP_STATUS
);
435 env
->error_code
= soft_to_fpcr_exc(env
);
437 return float32_to_s(fr
);
440 /* Implement float64 to uint64 conversion without saturation -- we must
441 supply the truncated result. This behaviour is used by the compiler
442 to get unsigned conversion for free with the same instruction. */
444 static uint64_t do_cvttq(CPUAlphaState
*env
, uint64_t a
, int roundmode
)
446 uint64_t frac
, ret
= 0;
447 uint32_t exp
, sign
, exc
= 0;
451 exp
= (uint32_t)(a
>> 52) & 0x7ff;
452 frac
= a
& 0xfffffffffffffull
;
455 if (unlikely(frac
!= 0) && !env
->fp_status
.flush_inputs_to_zero
) {
458 } else if (exp
== 0x7ff) {
461 /* Restore implicit bit. */
462 frac
|= 0x10000000000000ull
;
464 shift
= exp
- 1023 - 52;
466 /* In this case the number is so large that we must shift
467 the fraction left. There is no rounding to do. */
471 /* Check for overflow. Note the special case of -0x1p63. */
472 if (shift
>= 11 && a
!= 0xC3E0000000000000ull
) {
473 exc
= FPCR_IOV
| FPCR_INE
;
478 /* In this case the number is smaller than the fraction as
479 represented by the 52 bit number. Here we must think
480 about rounding the result. Handle this by shifting the
481 fractional part of the number into the high bits of ROUND.
482 This will let us efficiently handle round-to-nearest. */
486 round
= frac
<< (64 - shift
);
488 /* The exponent is so small we shift out everything.
489 Leave a sticky bit for proper rounding below. */
497 case float_round_nearest_even
:
498 if (round
== (1ull << 63)) {
499 /* Fraction is exactly 0.5; round to even. */
501 } else if (round
> (1ull << 63)) {
505 case float_round_to_zero
:
510 case float_round_down
:
520 env
->error_code
= exc
;
525 uint64_t helper_cvttq(CPUAlphaState
*env
, uint64_t a
)
527 return do_cvttq(env
, a
, FP_STATUS
.float_rounding_mode
);
530 uint64_t helper_cvttq_c(CPUAlphaState
*env
, uint64_t a
)
532 return do_cvttq(env
, a
, float_round_to_zero
);
535 uint64_t helper_cvtqt(CPUAlphaState
*env
, uint64_t a
)
537 float64 fr
= int64_to_float64(a
, &FP_STATUS
);
538 env
->error_code
= soft_to_fpcr_exc(env
);
539 return float64_to_t(fr
);
542 uint64_t helper_cvtql(CPUAlphaState
*env
, uint64_t val
)
545 if (val
!= (int32_t)val
) {
546 exc
= FPCR_IOV
| FPCR_INE
;
548 env
->error_code
= exc
;
550 return ((val
& 0xc0000000) << 32) | ((val
& 0x3fffffff) << 29);